[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010199628A - Semiconductor device and electric power conversion device using the same - Google Patents

Semiconductor device and electric power conversion device using the same Download PDF

Info

Publication number
JP2010199628A
JP2010199628A JP2010134648A JP2010134648A JP2010199628A JP 2010199628 A JP2010199628 A JP 2010199628A JP 2010134648 A JP2010134648 A JP 2010134648A JP 2010134648 A JP2010134648 A JP 2010134648A JP 2010199628 A JP2010199628 A JP 2010199628A
Authority
JP
Japan
Prior art keywords
semiconductor element
element group
potential
semiconductor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010134648A
Other languages
Japanese (ja)
Other versions
JP5341824B2 (en
Inventor
Katsunori Azuma
克典 東
Toshiaki Morita
俊章 守田
Hiroyuki Hozoji
裕之 宝藏寺
Kazuhiro Suzuki
和弘 鈴木
Toshiya Sato
俊也 佐藤
Osamu Otsuka
修 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2010134648A priority Critical patent/JP5341824B2/en
Publication of JP2010199628A publication Critical patent/JP2010199628A/en
Application granted granted Critical
Publication of JP5341824B2 publication Critical patent/JP5341824B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30107Inductance

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low loss semiconductor device having both low inductance and heat production balance, and an electric power conversion device using it. <P>SOLUTION: Disclosed is a semiconductor device including: a first semiconductor element group where at least one first power semiconductor element is electrically connected between first electric potential and third electric potential; a second semiconductor element group where at least one second power semiconductor element is electrically connected between second electric potential and third electric potential; and a third semiconductor element group where at least one third power semiconductor element is electrically connected between the first electric potential and the third electric potential, and an electric power conversion device using it. The second semiconductor element group is disposed between the first semiconductor element group and the third semiconductor element group. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置及びそれを用いた電力変換装置に関し、特に、自動車等の移動体に用いられる低損失発熱分散型の半導体装置及びそれを用いた電力変換装置に関する。   The present invention relates to a semiconductor device and a power conversion device using the same, and more particularly to a low-loss heat-dissipation semiconductor device used for a moving body such as an automobile and a power conversion device using the same.

近年、大電流のスイッチング可能なパワー半導体素子の開発が進んでいる。それを用いた半導体装置で構成された電力変換装置は、モータ等の負荷に効率良く電力を供給することができる。このため、電車や自動車等の移動体のモータ駆動に幅広く利用されている。特に、ハイブリッド自動車では、エンジンと電気モータを組み合わせ、モータの低回転からの高トルク,電池への回生エネルギーの貯蔵,アイドル・ストップシステムを加えることにより、高燃費,CO2の削減を実現している。 In recent years, power semiconductor elements capable of switching large currents have been developed. A power conversion device including a semiconductor device using the power supply can efficiently supply power to a load such as a motor. For this reason, it is widely used for driving motors of moving bodies such as trains and automobiles. In particular, in hybrid vehicles, the combination of an engine and an electric motor, high torque from low motor rotation, storage of regenerative energy in the battery, and addition of an idling / stop system have resulted in high fuel consumption and CO 2 reduction. Yes.

電力変換装置に用いられるパワー半導体素子は、通電による定常損失、及び、スイッチング時のスイッチング損失の存在が問題となっている。電力変換の効率を上げるために、この2つの損失を低減したパワー半導体素子、及び、これを用いた半導体装置や電力変換装置の開発が進んでいる。   A power semiconductor element used in a power conversion device has a problem of steady loss due to energization and the presence of switching loss during switching. In order to increase the efficiency of power conversion, development of a power semiconductor element in which these two losses are reduced, and a semiconductor device and a power conversion device using the power semiconductor element are in progress.

一般的に、パワー半導体素子は、オフ時の耐圧が高くなるほど、半導体内部の電界緩和のために素子の厚みが増す。このため、損失を低くするには、できるだけ耐圧の低いパワー半導体素子を用いることが重要である。   Generally, in a power semiconductor device, the higher the breakdown voltage at the time of off, the greater the thickness of the device for relaxing the electric field inside the semiconductor. For this reason, in order to reduce the loss, it is important to use a power semiconductor element having as low a breakdown voltage as possible.

しかし、電力変換装置のスイッチング時には、その急激な電流変化と、配線の寄生インダクタンスのため、パワー半導体素子に加わる電圧が跳ね上がる。この跳ね上がり電圧のため、電力変換装置は、電源電圧の約2倍の耐圧性を備えたパワー半導体素子を用いている。また、跳ね上がり電圧を低減するため、配線の寄生インダクタンスを低減した、いわゆる低インダクタンスの半導体装置及び電力変換装置の開発が進んでいる。   However, when the power converter is switched, the voltage applied to the power semiconductor element jumps due to the rapid current change and the parasitic inductance of the wiring. Because of this jumping voltage, the power conversion device uses a power semiconductor element having a withstand voltage approximately twice that of the power supply voltage. Further, in order to reduce the jumping voltage, development of so-called low-inductance semiconductor devices and power conversion devices in which the parasitic inductance of the wiring is reduced is in progress.

従来の技術として、特許文献1(特開平11−4584号公報)には、パワー半導体素子を同一平面上に直線的に配置し、平板状の積層した配線導体を素子配列に並設した構造が開示されている。平板状の配線導体に互いに電流が逆向きに流れるように積層して往復電流経路を作ることにより、低インダクタンスな配線を実現しようとしている。さらに、特許文献1には、インバータ装置の配線の積層順序として、正極側のPライン導体を最下層,出力側のUライン導体を中間層,負極側のNライン導体を最上層とすることが記載されている。   As a conventional technique, Patent Document 1 (Japanese Patent Laid-Open No. 11-4584) has a structure in which power semiconductor elements are linearly arranged on the same plane, and flat laminated wiring conductors are arranged in parallel in the element array. It is disclosed. Low-inductance wiring is to be realized by creating a round-trip current path by laminating flat wiring conductors so that currents flow in opposite directions. Further, in Patent Document 1, as a wiring stacking order of the inverter device, a positive-side P-line conductor is a lowermost layer, an output-side U-line conductor is an intermediate layer, and a negative-side N-line conductor is an uppermost layer. Are listed.

また、特許文献2(特開2001−332688号公報)には、2個のパワー半導体素子について、正極側のPライン導体,出力側のUライン導体,負極側のNライン導体を、厚さよりも幅が大きい幅広電極で構成した技術が開示されている。さらに、特許文献2では、Pライン導体,Uライン導体、及び、Nライン導体をPUNの順に積層することにより、低インダクタンス化を実現しようとしている。   Patent Document 2 (Japanese Patent Application Laid-Open No. 2001-332688) discloses that for two power semiconductor elements, the P-line conductor on the positive electrode side, the U-line conductor on the output side, and the N-line conductor on the negative electrode side are more than the thickness. A technique is disclosed that includes wide electrodes having a large width. Furthermore, in Patent Document 2, an attempt is made to reduce inductance by laminating a P-line conductor, a U-line conductor, and an N-line conductor in the order of PUN.

また、特許文献3(特開2003−197858号公報)には、複数の正極側のパワー半導体素子,負極側のパワー半導体素子の間に、正極側,負極側,出力側の外部接続用の電極を積層して配置することにより、低インダクタンス化を実現しようとした技術が開示されている。   Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-197858) discloses a positive electrode side, a negative electrode side, and an output side electrode for external connection between a plurality of positive power semiconductor elements and a negative power semiconductor element. A technique has been disclosed that attempts to achieve low inductance by stacking the layers.

特開平11−4584号公報Japanese Patent Laid-Open No. 11-4584 特開2001−332688号公報JP 2001-332688 A 特開2003−197858号公報JP 2003-197858 A

しかしながら、上記の従来技術では、正極側の半導体素子及び負極側の半導体素子が、それぞれ1群ずつにまとまって配置されているため、電力変換装置の運転状態によっては、半導体装置内で発熱が集中するという問題点があった。   However, in the above-described conventional technology, the positive-side semiconductor elements and the negative-side semiconductor elements are arranged in groups of one group, and heat generation is concentrated in the semiconductor device depending on the operating state of the power conversion device. There was a problem of doing.

例えば、自動車における縁石等の乗り上げ時において、タイヤが固定されてモータが固定されるため、インバータは過負荷状態になる。この状態はモータロック状態と呼ばれる。モータロック状態においては、インバータの片側のパワー半導体素子のみに過電流が流れるため、熱的に最も厳しい条件となる。   For example, when riding a curbstone or the like in an automobile, the tire is fixed and the motor is fixed, so the inverter is overloaded. This state is called a motor lock state. In the motor lock state, the overcurrent flows only in the power semiconductor element on one side of the inverter, which is the most severe condition thermally.

このモータロック状態において、半導体装置内で片側のパワー半導体素子が集まった配置をしている場合には、半導体装置内で発熱が集中する。この状態のとき、通常の加速時よりも素子温度が高くなる。このため、ハイブリット自動車用では、特に、発熱を分散させる構造を採用する必要がある。   In this motor lock state, when the power semiconductor elements on one side are gathered in the semiconductor device, heat generation is concentrated in the semiconductor device. In this state, the element temperature becomes higher than in normal acceleration. For this reason, it is necessary to employ a structure that disperses heat generation particularly for hybrid vehicles.

しかしながら、上記の従来技術のパワー半導体素子は、パワー半導体素子の発熱のバランスを考慮した配置になっていない。   However, the above-described conventional power semiconductor elements are not arranged in consideration of the heat generation balance of the power semiconductor elements.

上記課題を解決するため、本発明の半導体装置の代表的な一つは、第1電位(正極電位)と第3電位(出力電位)との間に少なくとも一つの第1パワー半導体素子(IGBT1)が電気的に接続された第1半導体素子群と、第2電位(負極電位)と第3電位(出力電位)との間に少なくとも一つの第2パワー半導体素子(IGBT2)が電気的に接続された第2半導体素子群と、第1電位(正極電位)と第3電位(出力電位)との間に少なくとも一つの第3パワー半導体素子(IGBT1)が電気的に接続された第3半導体素子群とを有し、第2半導体素子群は、第1半導体素子群と第3半導体素子群との間に配置されているものである。   In order to solve the above problems, a representative semiconductor device of the present invention includes at least one first power semiconductor element (IGBT1) between a first potential (positive electrode potential) and a third potential (output potential). At least one second power semiconductor element (IGBT2) is electrically connected between the first semiconductor element group electrically connected to each other and the second potential (negative electrode potential) and the third potential (output potential). The second semiconductor element group, and the third semiconductor element group in which at least one third power semiconductor element (IGBT1) is electrically connected between the first potential (positive electrode potential) and the third potential (output potential). The second semiconductor element group is disposed between the first semiconductor element group and the third semiconductor element group.

また、本発明の半導体装置の代表的な他の一つは、第1電位(正極電位)と第3電位(出力電位)との間に少なくとも一つの第1パワー半導体素子(IGBT1)が電気的に接続された第1半導体素子群と、第2電位(負極電位)と第3電位(出力電位)との間に少なくとも一つの第2パワー半導体素子(IGBT2)が電気的に接続された第2半導体素子群と、第1電位(正極電位)と第3電位(出力電位)との間に少なくとも一つの第3パワー半導体素子(IGBT1)が電気的に接続された第3半導体素子群と、第2電位(負極電位)と第3電位(出力電位)との間に少なくとも一つの第4パワー半導体素子(IGBT2)が電気的に接続された第4半導体素子群と、第1電位(正極電位)に電気的接続するための電極板及び前記第2電位(負極電位)に電気的接続するための電極板を、絶縁体を介して積層した積層構造体とを有し、第1半導体素子群及び第2半導体素子群は、積層構造体の一方の側において、積層構造体に平行に配置されており、第3半導体素子群及び第4半導体素子群は、積層構造体の一方の側とは反対の他方の側において、積層構造体に平行に配置されているものである。   Another representative example of the semiconductor device according to the present invention is that at least one first power semiconductor element (IGBT1) is electrically connected between a first potential (positive electrode potential) and a third potential (output potential). A first semiconductor element group connected to the first semiconductor element group, and a second power semiconductor element (IGBT2) electrically connected between the second potential (negative potential) and the third potential (output potential). A third semiconductor element group in which at least one third power semiconductor element (IGBT1) is electrically connected between the semiconductor element group and a first potential (positive electrode potential) and a third potential (output potential); A fourth semiconductor element group in which at least one fourth power semiconductor element (IGBT2) is electrically connected between the second potential (negative potential) and the third potential (output potential); and the first potential (positive potential) An electrode plate for electrical connection to the second electrode and the second plate A laminated structure in which electrode plates for electrical connection to a potential (negative potential) are laminated via an insulator, and the first semiconductor element group and the second semiconductor element group are one of the laminated structures. The third semiconductor element group and the fourth semiconductor element group are arranged in parallel to the stacked structure on the other side opposite to one side of the stacked structure. It is what has been.

また、本発明の電力変換装置の代表的な一つは、第1端子(正極側端子5a)と第3端子(出力端子6a)との間に少なくとも一つの第1パワー半導体素子(IGBT1)が接続された第1半導体素子群,第2端子(負極側端子7a)と第3端子(出力端子6a)との間に少なくとも一つの第2パワー半導体素子(IGBT2)が接続された第2半導体素子群、及び、第1端子(正極側端子5a)と第3端子(出力端子6a)との間に少なくとも一つの第3パワー半導体素子(IGBT1)が接続された第3半導体素子群を有する複数の半導体スイッチング装置(半導体装置29)と、第1端子(正極側端子5a)と第2端子(負極側端子7a)との間に接続されたコンデンサとを備え、第2半導体素子群は、第1半導体素子群と第3半導体素子群との間に配置されており、第1端子(正極側端子5a)とコンデンサとの間は、第1板状導体を用いて電気的接続されており、第2端子(負極側端子7a)とコンデンサとの間は、第2板状導体を用いて電気的接続されており、第1板状導体と第2板状導体とは、絶縁体を介して積層されているものである。   In addition, a representative one of the power conversion device of the present invention is that at least one first power semiconductor element (IGBT1) is provided between the first terminal (positive terminal 5a) and the third terminal (output terminal 6a). Connected first semiconductor element group, second semiconductor element in which at least one second power semiconductor element (IGBT2) is connected between the second terminal (negative terminal 7a) and the third terminal (output terminal 6a). And a plurality of third semiconductor element groups having at least one third power semiconductor element (IGBT1) connected between the first terminal (positive electrode side terminal 5a) and the third terminal (output terminal 6a). A semiconductor switching device (semiconductor device 29); and a capacitor connected between the first terminal (positive electrode side terminal 5a) and the second terminal (negative electrode side terminal 7a). Semiconductor element group and third semiconductor The first terminal (positive terminal 5a) and the capacitor are electrically connected using a first plate conductor, and the second terminal (negative terminal 7a). ) And the capacitor are electrically connected using a second plate-like conductor, and the first plate-like conductor and the second plate-like conductor are laminated via an insulator.

本発明によれば、低インダクタンスの半導体装置及びそれを用いた電力変換装置を提供することができる。   According to the present invention, a low-inductance semiconductor device and a power conversion device using the same can be provided.

本発明の第1の実施例における半導体装置の斜視図である。1 is a perspective view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施例における半導体装置の上面図である。1 is a top view of a semiconductor device according to a first embodiment of the present invention. 本発明の第1の実施例における半導体装置の図2のA−A′断面である。FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 2 of the semiconductor device according to the first embodiment of the present invention. 本発明の第1の実施例における半導体装置の図2のB−B′断面である。FIG. 3 is a cross-sectional view taken along the line BB ′ of FIG. 2 of the semiconductor device according to the first embodiment of the present invention. 本発明の第2の実施例における半導体装置の斜視図である。It is a perspective view of the semiconductor device in the 2nd example of the present invention. 本発明の第2の実施例における半導体装置の上面図である。It is a top view of the semiconductor device in the 2nd example of the present invention. 本発明の第2の実施例における半導体装置の図6のA−A′断面である。FIG. 7 is a cross-sectional view taken along the line AA ′ of FIG. 6 of the semiconductor device according to the second embodiment of the present invention. 本発明の第2の実施例における半導体装置の図6のB−B′断面である。FIG. 7 is a cross-sectional view taken along the line BB ′ of FIG. 6 of the semiconductor device according to the second embodiment of the present invention. 本発明の第3の実施例における半導体装置の斜視図である。It is a perspective view of the semiconductor device in the 3rd example of the present invention. 本発明の第3の実施例における半導体装置の上面図である。It is a top view of the semiconductor device in the 3rd example of the present invention. 本発明の第3の実施例における半導体装置の図10のA−A′断面である。FIG. 11 is a cross-sectional view taken along the line AA ′ of FIG. 10 of the semiconductor device according to the third embodiment of the present invention. 本発明の第3の実施例における半導体装置の図10のB−B′断面である。FIG. 11 is a cross-sectional view taken along the line BB ′ of FIG. 10 of the semiconductor device according to the third embodiment of the present invention. 本発明の第4の実施例における半導体装置の斜視図である。It is a perspective view of the semiconductor device in the 4th example of the present invention. 本発明の第4の実施例における半導体装置の上面図である。It is a top view of the semiconductor device in the 4th example of the present invention. 本発明の第4の実施例における半導体装置の図14のA−A′断面である。FIG. 15 is a cross-sectional view taken along line AA ′ of FIG. 14 of the semiconductor device according to the fourth example of the present invention. 本発明の第4の実施例における半導体装置の図14のB−B′断面である。FIG. 15 is a cross-sectional view taken along the line BB ′ of FIG. 14 of the semiconductor device according to the fourth embodiment of the present invention. 本発明の第5の実施例における半導体装置の斜視図である。It is a perspective view of the semiconductor device in the 5th example of the present invention. 本発明の第5の実施例における半導体装置の上面図である。It is a top view of the semiconductor device in the 5th example of the present invention. 本発明の第5の実施例における半導体装置の図18のA−A′断面である。FIG. 19 is a cross-sectional view taken along the line AA ′ of FIG. 18 of the semiconductor device according to the fifth example of the present invention. 本発明の第5の実施例における半導体装置の図18のB−B′断面である。FIG. 19 is a cross-sectional view taken along the line BB ′ of FIG. 18 of the semiconductor device according to the fifth embodiment of the present invention. 一般的な電力変換装置の回路図である。It is a circuit diagram of a general power converter. 本発明の第1の実施例における半導体装置の回路図である。1 is a circuit diagram of a semiconductor device according to a first embodiment of the present invention. 本発明の第2の実施例における半導体装置の回路図である。It is a circuit diagram of the semiconductor device in the 2nd example of the present invention. 本発明の半導体装置を3個用いた3相電力変換装置の斜視図である。It is a perspective view of a three-phase power converter using three semiconductor devices of the present invention. 従来技術における半導体装置の回路図である。It is a circuit diagram of the semiconductor device in a prior art.

以下、本発明の実施例について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の第1の実施例における半導体装置の構成及び動作について、図1〜図4,図21,図22を用いて説明する。   The configuration and operation of the semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 4, 21, and 22.

まず、インダクタンスの低減させるための回路構成を説明する。図21は、電力変換装置を直流電源と負荷へ接続したときの回路図である。ここでは、スイッチングさせるパワー半導体素子として、IGBT(絶縁ゲート型バイポーラトランジスタ)を用いた場合を示している。また、スイッチング時に流れる電流を考えるため、インダクタンスを回路図に示している。   First, a circuit configuration for reducing inductance will be described. FIG. 21 is a circuit diagram when the power converter is connected to a DC power source and a load. Here, a case where an IGBT (insulated gate bipolar transistor) is used as a power semiconductor element to be switched is shown. In addition, the inductance is shown in the circuit diagram in order to consider the current that flows during switching.

電力変換装置30は、直流電源16とケーブルのインダクタンス18,19により接続される。図示しない制御装置からの指令に基づき、上アームのIGBT1と下アームのIGBT2がスイッチング動作を行うことにより、負荷と負荷接続ケーブルのインダクタンス22へ電圧を加えるように制御される。   The power conversion device 30 is connected to the DC power source 16 by cable inductances 18 and 19. Based on a command from a control device (not shown), the upper arm IGBT 1 and the lower arm IGBT 2 are controlled so as to apply a voltage to the load and the inductance 22 of the load connection cable.

電力変換装置30は、コンデンサ17と半導体装置29とから構成され、接続用導体のインダクタンス20,21で結ばれた回路となる。半導体装置29は、高電位を出力するためのIGBT1と低電位を出力するIGBT2とが直列に接続されている。IGBT1とIGBT2の接続点の電位は、出力端子6aで負荷インダクタンス22へ出力される。   The power conversion device 30 includes a capacitor 17 and a semiconductor device 29, and is a circuit connected by inductances 20 and 21 of connection conductors. In the semiconductor device 29, an IGBT 1 for outputting a high potential and an IGBT 2 for outputting a low potential are connected in series. The potential at the connection point between IGBT1 and IGBT2 is output to the load inductance 22 at the output terminal 6a.

半導体装置29においては、IGBT1及びIGBT2が正極側端子5aと負極側端子7aとの間に直列接続されている。正極側端子5aと負極側端子7aとの間には、正極側端子5aのインダクタンス23,負極側端子7aのインダクタンス24,内部で接続導体のインダクタンス25,26,27,28が存在している。また、IGBT1及びIGBT2のそれぞれには、IGBTのオフ時における電流還流用のダイオード3,4が、逆並列接続されている。   In the semiconductor device 29, the IGBT 1 and the IGBT 2 are connected in series between the positive terminal 5a and the negative terminal 7a. Between the positive electrode side terminal 5a and the negative electrode side terminal 7a, an inductance 23 of the positive electrode side terminal 5a, an inductance 24 of the negative electrode side terminal 7a, and inductances 25, 26, 27, and 28 of connection conductors exist. Further, each of the IGBT 1 and the IGBT 2 is connected in reverse parallel with diodes 3 and 4 for current return when the IGBT is OFF.

まず、IGBT1がオンで、IGBT2がオフしている場合の電流を考える。電流は、直流電源16からケーブルのインダクタンス18,導体インダクタンス20,半導体装置29内のインダクタンス23,25,IGBT1,インダクタンス26を通り、負荷22へ流れ込む。このときの電流経路は、図21の実線の矢印で表される。   First, consider the current when IGBT1 is on and IGBT2 is off. The current flows from the DC power source 16 through the cable inductance 18, the conductor inductance 20, the inductances 23 and 25 in the semiconductor device 29, the IGBT 1 and the inductance 26 into the load 22. The current path at this time is represented by a solid arrow in FIG.

次に、上記の電流が流れている状態で、IGBT1がオフした場合を考える。このとき、ケーブルのインダクタンス18及び負荷22のインダクタンスは大きいため、瞬間的には電流はゼロにならず、電流源として働くことになる。その結果、ケーブルを流れていた電流は、コンデンサ17,インダクタンス21,24,28,還流用のダイオード4を通り、負荷22へ流れる電流経路に変わる。このときの電流経路は、図21の破線の矢印で表される。   Next, consider a case where the IGBT 1 is turned off in the state where the current flows. At this time, since the inductance 18 of the cable and the inductance of the load 22 are large, the current does not instantaneously become zero, but acts as a current source. As a result, the current flowing through the cable passes through the capacitor 17, the inductances 21, 24, 28, and the return diode 4, and changes to a current path that flows to the load 22. The current path at this time is represented by a dashed arrow in FIG.

このスイッチング時の電流変化を考えると、図21の一点鎖線の経路で示されるように、瞬間的な電流が流れる。この一点鎖線の回路を主回路と呼ぶ。この主回路のインダクタンスLを低減すれば、スイッチング時の電流変化di/dtによる跳ね上がり電圧V=L・di/dtを低減させることができる。   Considering the current change at the time of switching, an instantaneous current flows as shown by the chain line in FIG. This one-dot chain line circuit is called a main circuit. If the inductance L of the main circuit is reduced, the jump voltage V = L · di / dt due to the current change di / dt at the time of switching can be reduced.

このことは、スイッチング時の発熱損失を低減できるばかりでなく、素子耐圧の低い、すなわち、定常損失の低い素子を用いることができることを意味する。このため、主回路のインダクタンスLを低くすることは、電力変換装置30の発熱を低減させることに寄与する。   This means that not only the heat loss during switching can be reduced, but also an element having a low element breakdown voltage, that is, a low steady loss can be used. For this reason, reducing the inductance L of the main circuit contributes to reducing the heat generation of the power converter 30.

図1〜図4は、高電位側(正極電位側)素子,低電位側(負極電位側)素子を各々4つ用いた場合の半導体装置29の斜視図(図1),上面図(図2),高電位側(正極電位側)の断面図(図3)、及び、低電位側(負極電位側)の断面図(図4)である。   1 to 4 are a perspective view (FIG. 1) and a top view (FIG. 2) of a semiconductor device 29 when four high potential side (positive potential side) elements and four low potential side (negative potential side) elements are used. ), A cross-sectional view (FIG. 3) on the high potential side (positive electrode potential side), and a cross-sectional view (FIG. 4) on the low potential side (negative electrode potential side).

半導体装置29は、冷却用金属板8にはんだ等で固着された配線導体パターン14を備えた絶縁基板13の上に、高電位側のスイッチング素子であるIGBT1,低電位側のスイッチング素子であるIGBT2,各々の還流用ダイオード3,4がはんだで固着されて構成されている。   The semiconductor device 29 includes an IGBT 1 serving as a high-potential side switching element and an IGBT 2 serving as a low-potential side switching element on an insulating substrate 13 having a wiring conductor pattern 14 fixed to the cooling metal plate 8 with solder or the like. Each of the reflux diodes 3 and 4 is fixed by soldering.

また、高電位側に接続される正極側端子5a,出力端子6a,低電位側に接続される負極側端子7aは、帯状で薄板状の正極側導電板5,出力導電板6,負極側導電板7の一部に形成されている。正極側導電板5,出力導電板6,負極側導電板7は、少なくともその一部において、絶縁体15(図1,図2では図示せず)を介して対向して配置されている。   Further, the positive electrode side terminal 5a and the output terminal 6a connected to the high potential side, and the negative electrode side terminal 7a connected to the low potential side are a strip-like thin plate-like positive electrode side conductive plate 5, output conductive plate 6, negative electrode side conductive material. It is formed on a part of the plate 7. At least a part of the positive electrode side conductive plate 5, the output conductive plate 6, and the negative electrode side conductive plate 7 are disposed to face each other with an insulator 15 (not shown in FIGS. 1 and 2) interposed therebetween.

また、正極側端子5a,出力端子6a,負極側端子7aとIGBT1,2,ダイオード3,4との接続は、薄板状の接続導体9,10,11,12により接続されている。この導体配置により、図21のインダクタンスの23と24,25と26,27と28が、2枚の平板上に往復電流を流した形でインダクタンスが低くなり、前述した主回路インダクタンスLが低減できる構成となっている。   The positive terminal 5a, the output terminal 6a, and the negative terminal 7a are connected to the IGBTs 1, 2, and the diodes 3 and 4 through thin connecting conductors 9, 10, 11, and 12. With this conductor arrangement, the inductances 23 and 24, 25 and 26, 27 and 28 in FIG. 21 are reduced in the form of a reciprocating current flowing on two flat plates, and the main circuit inductance L described above can be reduced. It has a configuration.

本実施例では、インダクタンスを低くし、発熱分散効果で半導体素子温度の上昇を抑えるため、高電位側のIGBT1,低電位側のIGBT2の配列を、高電位側のIGBT1を2つ、低電位側のIGBT2を4つ、高電位側のIGBT1を2つ並べ、帯状の薄板導体の長手方向に一列に配置したことである。すなわち、高電位側の複数のパワー半導体素子を2群以上に分割し、低電位側のパワー半導体素子を挟むように、帯状の薄板導体の長手方向に各素子を配列している。   In this embodiment, in order to reduce the inductance and suppress the increase in the temperature of the semiconductor element due to the heat dispersion effect, the arrangement of the high-potential-side IGBT1 and the low-potential-side IGBT2 is composed of two high-potential-side IGBT1 and the low-potential-side. This is that four IGBTs 2 and two high-potential-side IGBTs 1 are arranged in a line in the longitudinal direction of the strip-shaped thin plate conductor. That is, a plurality of power semiconductor elements on the high potential side are divided into two or more groups, and each element is arranged in the longitudinal direction of the strip-shaped thin plate conductor so as to sandwich the power semiconductor element on the low potential side.

この実装構造に対応する回路図を図22に示す。ここで、出力導体のインダクタンス31a〜31gは、各IGBT間、または、各還流用ダイオード間を接続する出力用導体で生じるインダクタンスである。出力用導体は、往復電流が流れ、インダクタンスが生じない構造であるが、絶縁物の厚み分の距離が離れているため、漏れインダクタンスが生じる。この値は、絶縁基板上のIGBTが均等に配置されているため、ほぼ同じ値になる。このインダクタンスの値を仮にLoとする。主回路インダクタンスのうち、半導体装置29内のインダクタンスを考えると、4つのIGBT1a〜1d、4つのIGBT2a〜2dのどのペアで電流が流れるかにより、インダクタンスは異なる。   A circuit diagram corresponding to this mounting structure is shown in FIG. Here, the inductances 31a to 31g of the output conductors are inductances generated in the output conductors connecting the IGBTs or between the return diodes. The output conductor has a structure in which a reciprocal current flows and no inductance is generated, but a leakage inductance is generated because a distance corresponding to the thickness of the insulator is separated. This value is almost the same value because the IGBTs on the insulating substrate are evenly arranged. The inductance value is assumed to be Lo. Considering the inductance in the semiconductor device 29 among the main circuit inductances, the inductance differs depending on which pair of the four IGBTs 1a to 1d and the four IGBTs 2a to 2d flows.

25a〜25d,26a〜26d,27a〜27d,28a〜28dは、接続導体のインダクタンス23a〜23dは、高電位側導体のインダクタンスであり、24a〜24dは、低電位側導体のインダクタンスである。以下、高電位側導体のインダクタンス,低電位側導体のインダクタンスは、4つの高電位側のIGBT1a〜1d及びそれに並列接続された還流用ダイオード、4つの低電位側のIGBT2a〜2d及びそれに並列接続された還流用ダイオードに対して等しいものと考える。   Reference numerals 25a to 25d, 26a to 26d, 27a to 27d, and 28a to 28d are inductances of the connection conductors 23a to 23d, and 24a to 24d are inductances of the low potential side conductor. Hereinafter, the inductance of the high potential side conductor and the inductance of the low potential side conductor are the four high potential side IGBTs 1a to 1d and the reflux diodes connected in parallel thereto, the four low potential side IGBTs 2a to 2d and the parallel connection thereto. It is considered to be equal to the reflux diode.

図22の回路において、図21の一点鎖線のスイッチング時の過渡的な電流経路を考えた場合、図22はインダクタンス31dに対して対称な回路である。このため、IGBT1a,1b及びその還流用ダイオード,IGBT2a,2b及びその還流用ダイオードの半分の経路で考える。   In the circuit of FIG. 22, when considering a transient current path at the time of switching of the one-dot chain line of FIG. 21, FIG. 22 is a circuit that is symmetrical with respect to the inductance 31d. For this reason, a half path of the IGBTs 1a and 1b and the return diodes, and the IGBTs 2a and 2b and the return diodes is considered.

まず、最もインダクタンスの小さくなる経路は、IGBT1bまたはその還流用ダイオード、IGBT2aまたはその還流用ダイオードを流れる経路である。また、最もインダクタンスが大きくなる経路は、IGBT1aまたはその還流用ダイオード、IGBT2bまたはその還流用ダイオードを流れる経路である。この差は、接続用導体のインダクタンスの差で、接続用インダクタンスのみを考慮した場合、前者はLo、後者は3Loとなる。   First, the path with the smallest inductance is the path through the IGBT 1b or its return diode, and the IGBT 2a or its return diode. Further, the path with the largest inductance is a path that flows through the IGBT 1a or its return diode, and the IGBT 2b or its return diode. This difference is a difference in inductance of the connection conductor. When only the connection inductance is considered, the former is Lo and the latter is 3Lo.

一方、従来のように高電位側IGBT,低電位側IGBTを分割しない構造とした場合の回路図を図25に示す。本回路の場合、最小インダクタンスとなる経路を考えたときは、IGBT1dまたはその還流用ダイオード,IGBT2aまたはその還流用ダイオードの経路が最小で、接続用導体のインダクタンスはLo、最大の経路を考えると、IGBT1aまたはその還流用ダイオード,IGBT2dまたはその還流用ダイオードの7Loとなる。このため、平均的なインダクタンスが大きくなる他、過渡的な電流が中央部で集中することになり、スイッチング損失の発熱が中央部に集中し、各パワー半導体素子の最大温度がばらつく原因となる。   On the other hand, FIG. 25 shows a circuit diagram in the case where the high potential side IGBT and the low potential side IGBT are not divided as in the prior art. In the case of this circuit, when considering the path having the minimum inductance, the path of the IGBT 1d or its return diode, the path of the IGBT 2a or its return diode is minimum, the inductance of the connecting conductor is Lo, and the maximum path is considered. IGBT1a or its recirculation diode, IGBT2d or its recirculation diode 7Lo. For this reason, the average inductance is increased, and the transient current is concentrated in the central portion, and the heat generated by the switching loss is concentrated in the central portion, which causes the maximum temperature of each power semiconductor element to vary.

本実施例では、高電位側の複数のパワー半導体素子を2群以上に分割し、低電位側のパワー半導体素子を挟むように、帯状の薄板導体の長手方向に素子を配列しているため、低インダクタンスの半導体装置及び電力変換装置を構成することができる。   In this embodiment, the plurality of power semiconductor elements on the high potential side are divided into two or more groups, and the elements are arranged in the longitudinal direction of the strip-shaped thin plate conductor so as to sandwich the power semiconductor element on the low potential side. Low-inductance semiconductor devices and power converters can be configured.

本発明の第2の実施例による半導体装置の構成及び動作について、図5〜図8を用いて説明する。図5〜図8は、高電位側素子(IGBT1),低電位側素子(IGBT2)を各々4つ用いた場合の半導体装置29の斜視図(図5),上面図(図6),高電位側(正極電位側)の断面図(図7),低電位側(負極電位側)の断面図(図8)である。   The configuration and operation of the semiconductor device according to the second embodiment of the present invention will be described with reference to FIGS. 5 to 8 are a perspective view (FIG. 5), a top view (FIG. 6), and a high potential of the semiconductor device 29 when four high potential side elements (IGBT1) and four low potential side elements (IGBT2) are used. FIG. 8 is a sectional view (FIG. 7) on the side (positive potential side) and a sectional view (FIG. 8) on the low potential side (negative potential side).

第1の実施例と異なる点は、高電位側(正極電位側),低電位側(負極電位側)の半導体素子群をパワー半導体素子1つまで分割して、高電位側,低電位側のパワー半導体素子(IGBT1,IGBT2)を交互に配置した点である。   The difference from the first embodiment is that the high-potential side (positive potential side) and low-potential side (negative-potential side) semiconductor element groups are divided into one power semiconductor element, and the high-potential side and low-potential side are separated. The power semiconductor elements (IGBT1, IGBT2) are alternately arranged.

この実装構造に対応する回路図を図23に示す。本実施例のような配置によれば、高電位側(正極電位側)から低電位側(負極電位側)のパワー半導体素子(IGBT1,2)へ流れる電流が出力側導体を通るインダクタンスはLoで全て同じになる。これにより、本実施例によれば、実施例1の構成と比較して、インダクタンスをさらに低減させることができる。   A circuit diagram corresponding to this mounting structure is shown in FIG. According to the arrangement of the present embodiment, the inductance that the current flowing from the high potential side (positive potential side) to the power semiconductor element (IGBT1, 2) on the low potential side (negative potential side) passes through the output side conductor is Lo. Everything will be the same. Thereby, according to the present Example, compared with the structure of Example 1, an inductance can further be reduced.

また、正極電位側及び負極電位側のパワー半導体素子(IGBT1,2)を交互に配置したことにより、分散発熱構造となっている。このため、モータロック時、すなわち熱的に最も厳しい条件での素子温度を下げることができ、ハイブリット自動車等に適して用いられる。   Further, the power semiconductor elements (IGBT1, 2) on the positive electrode potential side and the negative electrode potential side are alternately arranged, thereby forming a distributed heat generation structure. For this reason, the element temperature can be lowered when the motor is locked, that is, under the most severe thermal conditions, and is suitable for use in a hybrid vehicle or the like.

次に、本発明の第3の実施例による半導体装置の構成及び動作について、図9〜図12を用いて説明する。図9〜図12は、高電位側素子(IGBT1),低電位側素子(IGBT2)を各々4つ用いた場合の半導体装置29の斜視図(図9),上面図(図10),高電位側(正極電位側)の断面図(図11)、及び、低電位側(負極電位側)の断面図(図12)である。   Next, the configuration and operation of the semiconductor device according to the third embodiment of the present invention will be described with reference to FIGS. 9 to 12 are a perspective view (FIG. 9), a top view (FIG. 10), and a high potential of the semiconductor device 29 when four high potential side elements (IGBT1) and four low potential side elements (IGBT2) are used. FIG. 11 is a cross-sectional view (FIG. 11) on the side (positive electrode potential side) and a cross-sectional view (FIG. 12) on the low potential side (negative electrode potential side).

第1,第2の実施例と異なる点は、高電位側(正極電位側),低電位側(負極電位側)の半導体素子(IGBT1,2)を2群以上の半導体素子群に分割し、分割した半導体素子群が薄板導体の正極側導電板5,出力導電板6,負極側導電板7を挟むように、半導体素子を2列に配列した点である。   The difference from the first and second embodiments is that the high potential side (positive potential side) and low potential side (negative potential side) semiconductor elements (IGBT1, 2) are divided into two or more groups of semiconductor elements. The semiconductor elements are arranged in two rows so that the divided semiconductor element group sandwiches the positive electrode side conductive plate 5, the output conductive plate 6, and the negative electrode side conductive plate 7 of the thin plate conductor.

すなわち、第1半導体素子群(IGBT1)は、第2半導体素子群(IGBT2)の一辺に並んで配置されており、第3半導体素子群(IGBT1)は、第4半導体素子群(IGBT2)の一辺に並んで配置されている。第1半導体素子群(IGBT1)と第3半導体素子群(IGBT1)は、積層構造体を介して対向して配置されている。また、第2半導体素子群(IGBT2)と第4半導体素子群(IGBT2)も、積層構造体を介して対向して配置されている。   That is, the first semiconductor element group (IGBT1) is arranged along one side of the second semiconductor element group (IGBT2), and the third semiconductor element group (IGBT1) is one side of the fourth semiconductor element group (IGBT2). Are arranged side by side. The first semiconductor element group (IGBT1) and the third semiconductor element group (IGBT1) are arranged to face each other through the stacked structure. In addition, the second semiconductor element group (IGBT2) and the fourth semiconductor element group (IGBT2) are also arranged to face each other through the stacked structure.

第1半導体素子群(IGBT1)及び第2半導体素子群(IGBT2)、また、第3半導体素子群(IGBT1)及び第4半導体素子群(IGBT2)は、それぞれ、積層構造体に平行に配置されている。   The first semiconductor element group (IGBT1) and the second semiconductor element group (IGBT2), and the third semiconductor element group (IGBT1) and the fourth semiconductor element group (IGBT2) are respectively arranged in parallel to the stacked structure. Yes.

積層構造体は、正極側導電板5と負極側導電板7とが絶縁体15を介して積層されることにより構成されている。正極側導電板5には、正極側端子5aが設けられており、直流電源16の正極に電気的に接続される。負極側導電板7には、負極側端子7aが設けられており、直流電源16の負極に電気的に接続される。   The laminated structure is configured by laminating the positive electrode side conductive plate 5 and the negative electrode side conductive plate 7 via an insulator 15. The positive electrode side conductive plate 5 is provided with a positive electrode side terminal 5 a and is electrically connected to the positive electrode of the DC power source 16. The negative electrode side conductive plate 7 is provided with a negative electrode side terminal 7 a and is electrically connected to the negative electrode of the DC power source 16.

また、本実施例では、正極側導電板5は二枚の薄板を備える。すなわち、第1半導体素子群(IGBT1)と接続するための正極側導電板と、第3半導体素子群(IGBT1)と接続するための正極側導電板とから構成されている。負極側導電板7もまた、正極側導電板5と同様に二枚の薄板から構成されている。   In the present embodiment, the positive electrode-side conductive plate 5 includes two thin plates. That is, it is comprised from the positive electrode side electrically conductive plate for connecting with a 1st semiconductor element group (IGBT1), and the positive electrode side electrically conductive plate for connecting with a 3rd semiconductor element group (IGBT1). Similarly to the positive electrode side conductive plate 5, the negative electrode side conductive plate 7 is also composed of two thin plates.

また、第1半導体素子群(IGBT1)と第3半導体素子群(IGBT1)との間、及び、第2半導体素子群(IGBT2)と第4半導体素子群(IGBT2)との間には、出力導電板6が配置されている。出力導電板6は、出力電圧を負荷へ供給するための出力端子6aが設けられている。本実施例においては、出力導電板6は、正極側端子5aと負極側端子7aの間に配置されている。本実施例では、出力導電板6もまた、正極側導電板5及び負極側導電板7と同様に、二枚の薄板から構成されている。   In addition, output conduction between the first semiconductor element group (IGBT1) and the third semiconductor element group (IGBT1) and between the second semiconductor element group (IGBT2) and the fourth semiconductor element group (IGBT2). A plate 6 is arranged. The output conductive plate 6 is provided with an output terminal 6a for supplying an output voltage to a load. In this embodiment, the output conductive plate 6 is disposed between the positive terminal 5a and the negative terminal 7a. In this embodiment, the output conductive plate 6 is also composed of two thin plates, like the positive electrode side conductive plate 5 and the negative electrode side conductive plate 7.

本実施例では、正極側導電板5,負極側導電板7,出力導電板6のそれぞれを二枚の薄板で構成しているが、特にこれに限られず、これらのいずれか、または、全てを一枚の薄板で構成するものであってもよい。   In the present embodiment, each of the positive electrode side conductive plate 5, the negative electrode side conductive plate 7, and the output conductive plate 6 is constituted by two thin plates, but is not limited to this, and any or all of these are configured. It may be composed of a single thin plate.

なお、本実施例では、第1半導体素子群(IGBT1)と第3半導体素子群(IGBT1)、また、第2半導体素子群(IGBT2)と第4半導体素子群(IGBT2)をそれぞれ積層構造体を介し、対向して配置している。しかし、特にこれには限られず、第1半導体素子群(IGBT1)と第4半導体素子群(IGBT2)、また、第2半導体素子群(IGBT2)と第3半導体素子群(IGBT1)をそれぞれ積層構造体を介し、対向して配置するものであってもよい。   In this embodiment, the first semiconductor element group (IGBT1) and the third semiconductor element group (IGBT1), and the second semiconductor element group (IGBT2) and the fourth semiconductor element group (IGBT2) are laminated structures. Are arranged opposite to each other. However, the present invention is not particularly limited thereto, and the first semiconductor element group (IGBT1) and the fourth semiconductor element group (IGBT2), and the second semiconductor element group (IGBT2) and the third semiconductor element group (IGBT1) are stacked. It may be arranged to face each other through the body.

本実施例のような構造を採用することにより、インダクタンスを下げることができ、かつ、発熱を分散させる構造となる。   By adopting the structure as in this embodiment, the inductance can be lowered and the heat generation can be dispersed.

次に、本発明の第4の実施例を図13〜図16に示す。図13〜図16は、高電位側素子(IGBT1),低電位側素子(IGBT2)を各々4つ用いた場合の半導体装置29の斜視図(図13),上面図(図14),高電位側(正極電位側)の断面図(図15)、及び、低電位側(負極電位側)の断面図(図16)である。   Next, a fourth embodiment of the present invention is shown in FIGS. 13 to 16 are a perspective view (FIG. 13), a top view (FIG. 14), and a high potential of the semiconductor device 29 when four high potential side elements (IGBT1) and four low potential side elements (IGBT2) are used. FIG. 15 is a sectional view (FIG. 15) on the side (positive electrode potential side) and a sectional view (FIG. 16) on the low potential side (negative electrode potential side).

第1の実施例と異なる点は、正極側端子5aを2つに分割し、この2つの正極側端子5aで負極側端子7aを挟むように1列に配置した点である。正極側端子5aと負極側端子7aは、絶縁距離をとる必要があるため、これらを接近させることができない。しかし、インダクタンスをより小さくするには、これらをできるだけ近づけることにより、主回路の電流経路が作るループ面積をより小さくすることが必要となる。   The difference from the first embodiment is that the positive electrode side terminal 5a is divided into two parts and arranged in one row so that the negative electrode side terminal 7a is sandwiched between the two positive electrode side terminals 5a. Since the positive electrode side terminal 5a and the negative electrode side terminal 7a need to have an insulation distance, they cannot be brought close to each other. However, in order to further reduce the inductance, it is necessary to make the loop area formed by the current path of the main circuit smaller by bringing them as close as possible.

これを解決するために、本実施例では、高電位側の外部接続端子(正極側端子5a)を分割し、その中心位置が低電位側の外部接続端子(負極側端子7a)の位置と一致するように構成している。   In order to solve this, in the present embodiment, the high-potential side external connection terminal (positive electrode side terminal 5a) is divided and the center position thereof coincides with the position of the low potential side external connection terminal (negative electrode side terminal 7a). It is configured to do.

また、半導体素子(IGBT1,2)の配列と並列に並べることにより、外部端子(正極側端子5a,負極側端子7a)から半導体素子(IGBT1,2)までの距離を平均化しているため、さらなる低インダクタンス化が可能となっている。   Further, since the distance from the external terminal (positive terminal 5a, negative terminal 7a) to the semiconductor element (IGBT1, 2) is averaged by arranging in parallel with the arrangement of the semiconductor elements (IGBT1, 2), further Low inductance is possible.

次に、本発明の第5の実施例を図17〜図20に示す。図17〜図20は、高電位側素子(IGBT1),低電位側素子(IGBT2)を各々4つ用いた場合の半導体装置29の斜視図(図17),上面図(図18),高電位側(正極電位側)の断面図(図19)、及び、低電位側(負極電位側)の断面図(図20)である。   Next, a fifth embodiment of the present invention is shown in FIGS. 17 to 20 are a perspective view (FIG. 17), a top view (FIG. 18), and a high potential of the semiconductor device 29 when four high potential side elements (IGBT1) and four low potential side elements (IGBT2) are used. FIG. 19 is a sectional view (FIG. 19) on the side (positive electrode potential side) and a sectional view (FIG. 20) on the low potential side (negative electrode potential side).

第4の実施例と異なる点は、高電位側,低電位側の外部端子(正極側端子5a,負極側端子7a)を複数設け、これらを交互に一列に配置した点である。このように配置すれば、各半導体素子(IGBT1,IGBT2)と外部端子(正極側端子5a,負極側端子7a)の距離がより均一になる。このため、これらの間のインダクタンスが等しくなることで、さらなる低インダクタンス化を実現させることができる。   The difference from the fourth embodiment is that a plurality of high potential side and low potential side external terminals (positive terminal 5a, negative terminal 7a) are provided, and these are alternately arranged in a line. If arranged in this way, the distance between each semiconductor element (IGBT1, IGBT2) and the external terminal (positive terminal 5a, negative terminal 7a) becomes more uniform. For this reason, the inductance between these becomes equal, and further reduction in inductance can be realized.

次に、第6の実施例を図24に示す。本実施例は、上述した半導体装置29を3個組み合わせることにより、電力変換装置を構成したものである。この電力変換装置は、3個の半導体装置29を有することにより、それぞれの半導体装置29が、U相,V相,W相の3相のモータ電流を生成する。   Next, a sixth embodiment is shown in FIG. In the present embodiment, a power conversion device is configured by combining three semiconductor devices 29 described above. Since this power conversion device includes three semiconductor devices 29, each semiconductor device 29 generates a three-phase motor current of U phase, V phase, and W phase.

3個の半導体装置29は、特定の方向(第1方向)に一列に並んで配置されている。また、3個の半導体装置29の隣には、半導体装置29が並んでいる方向に直交する方向(第2方向)において、複数のコンデンサ17が第1方向に一列に並んで配置されている。   The three semiconductor devices 29 are arranged in a line in a specific direction (first direction). Next to the three semiconductor devices 29, a plurality of capacitors 17 are arranged in a row in the first direction in a direction (second direction) orthogonal to the direction in which the semiconductor devices 29 are arranged.

3個の半導体装置29それぞれの正極側端子5aと負極側端子7aは、積層平板導体32を介して、コンデンサ17の正極端子と負極端子に接続されている。積層平板導体32は、3個の半導体装置29を覆うように、半導体装置29の上面に配置されている。積層平板導体32は、半導体装置29の正極側端子5aとコンデンサ17の正極端子との間を電気的に接続した正極側平板導体と、半導体装置29の負極側端子5aとコンデンサ17の負極端子との間を電気的に接続した負極側平板導体とを、絶縁体を介して積層することにより構成されている。   The positive electrode side terminal 5 a and the negative electrode side terminal 7 a of each of the three semiconductor devices 29 are connected to the positive electrode terminal and the negative electrode terminal of the capacitor 17 through the laminated flat plate conductor 32. The laminated flat conductor 32 is arranged on the upper surface of the semiconductor device 29 so as to cover the three semiconductor devices 29. The laminated flat conductor 32 includes a positive flat conductor that electrically connects the positive terminal 5 a of the semiconductor device 29 and the positive terminal of the capacitor 17, a negative terminal 5 a of the semiconductor device 29, and a negative terminal of the capacitor 17. And a negative electrode side flat conductor that is electrically connected to each other, is laminated via an insulator.

積層平板導体32は、半導体装置29の端子とコンデンサ17の端子との間を、1枚の板で電気的に接続するものでもよいし、または、複数の板に分け、それらの間をさらなる接続部を介して電気的に接続するものであってもよい。   The laminated flat conductor 32 may be one in which the terminal of the semiconductor device 29 and the terminal of the capacitor 17 are electrically connected by a single plate, or divided into a plurality of plates and further connected between them. It may be electrically connected via the part.

このような構造により、本実施例の電力変換装置では、コンデンサ17の配置の自由度を稼ぎながら、低インダクタンス化を実現している。   With such a structure, in the power conversion device of the present embodiment, low inductance is realized while increasing the degree of freedom of arrangement of the capacitor 17.

以上、本発明を具体的な実施例に基づいて説明したが、本発明は特にこれらに限られるものではなく、技術思想の範囲内で種々の変更が可能である。例えば、上記実施例では、パワー半導体素子としてIGBTを用いた場合を説明したが、パワーMOSFET等の他のパワー半導体素子でも代替が可能である。パワー半導体素子としてパワーMOSFETを用いた場合、パワーMOSFETにはダイオードが内蔵されているため、外付けのダイオードを設けることを省略することができる。   Although the present invention has been described based on the specific embodiments, the present invention is not particularly limited thereto, and various modifications can be made within the scope of the technical idea. For example, in the above-described embodiment, the case where the IGBT is used as the power semiconductor element has been described. However, other power semiconductor elements such as a power MOSFET can be substituted. When a power MOSFET is used as the power semiconductor element, since a diode is built in the power MOSFET, it is possible to omit providing an external diode.

また、本実施例では、接続導体9,10,11,12を用いて各導電板とIGBT等とを電気的に接続しているが、本発明では特にこれに限られず、接続導体9,10,11,12の全てまたは一部をアルミ等のワイヤで代替することも可能である。   In the present embodiment, each conductive plate is electrically connected to the IGBT and the like using the connection conductors 9, 10, 11, and 12. However, the present invention is not limited to this, and the connection conductors 9 and 10 are not particularly limited thereto. , 11 and 12 can be replaced with wires such as aluminum.

本発明の実施形態によれば、低インダクタンスと発熱バランスを兼ね備えた、低損失な半導体装置及びそれを用いた電力変換装置を実現することができる。   According to the embodiment of the present invention, it is possible to realize a low-loss semiconductor device having both a low inductance and a heat generation balance and a power conversion device using the same.

1,2…IGBT、3,4…ダイオード、5…正極側導電板、5a…正極側端子、6…出力導電板、6a…出力端子、7…負極側導電板、7a…負極側端子、8…冷却用金属板、9,10,11,12…接続導体、13…絶縁基板、14…配線導体パターン、15…絶縁体、16…直流電源、17…コンデンサ、29…半導体装置、30…電力変換装置、32…積層平板導体。   DESCRIPTION OF SYMBOLS 1, 2 ... IGBT, 3, 4 ... Diode, 5 ... Positive electrode side conductive plate, 5a ... Positive electrode side terminal, 6 ... Output conductive plate, 6a ... Output terminal, 7 ... Negative electrode side conductive plate, 7a ... Negative electrode side terminal, 8 Metal plate for cooling, 9, 10, 11, 12 ... Connection conductor, 13 ... Insulating substrate, 14 ... Wiring conductor pattern, 15 ... Insulator, 16 ... DC power supply, 17 ... Capacitor, 29 ... Semiconductor device, 30 ... Electric power Conversion device, 32 ... laminated flat conductor.

Claims (16)

第1電位と第3電位との間に少なくとも一つの第1パワー半導体素子が電気的に接続された第1半導体素子群と、
第2電位と前記第3電位との間に少なくとも一つの第2パワー半導体素子が電気的に接続された第2半導体素子群と、
前記第1電位と前記第3電位との間に少なくとも一つの第3パワー半導体素子が電気的に接続された第3半導体素子群とを有する半導体装置であって、
前記第2半導体素子群は、前記第1半導体素子群と前記第3半導体素子群との間に配置され、
前記第1半導体素子群,前記第2半導体素子群、及び、前記第3半導体素子群は、一列に配置されていることを特徴とする半導体装置。
A first semiconductor element group in which at least one first power semiconductor element is electrically connected between the first potential and the third potential;
A second semiconductor element group in which at least one second power semiconductor element is electrically connected between a second potential and the third potential;
A semiconductor device having a third semiconductor element group in which at least one third power semiconductor element is electrically connected between the first potential and the third potential;
The second semiconductor element group is disposed between the first semiconductor element group and the third semiconductor element group,
The semiconductor device, wherein the first semiconductor element group, the second semiconductor element group, and the third semiconductor element group are arranged in a line.
請求項1記載の半導体装置において、
前記半導体装置は、前記第1半導体素子群及び前記第3半導体素子群を前記第1電位に電気的接続するための第1電極板と、前記第2半導体素子群を前記第2電位に電気的接続するための第2電極板とを有し、
前記第1電極板と前記第2電極板とは、絶縁体を介して積層されていることを特徴とする半導体装置。
The semiconductor device according to claim 1,
The semiconductor device includes a first electrode plate for electrically connecting the first semiconductor element group and the third semiconductor element group to the first potential, and electrically connecting the second semiconductor element group to the second potential. A second electrode plate for connection;
The semiconductor device, wherein the first electrode plate and the second electrode plate are stacked with an insulator interposed therebetween.
請求項2記載の半導体装置において、
前記半導体装置は、前記第1半導体素子群,前記第2半導体素子群、及び、前記第3半導体素子群を前記第3電位に電気的接続するための出力導電板を有し、
前記出力導電板の少なくとも一部は、前記第1電極板と前記第2電極板との間に設けられていることを特徴とする半導体装置。
The semiconductor device according to claim 2,
The semiconductor device includes an output conductive plate for electrically connecting the first semiconductor element group, the second semiconductor element group, and the third semiconductor element group to the third potential;
At least a part of the output conductive plate is provided between the first electrode plate and the second electrode plate.
請求項2記載の半導体装置において、
前記第1電極板は、前記第1電位に電気的接続するための2つの第1端子を有し、
前記第2電極板は、前記第2電位に電気的接続するための第2端子を有し、
前記第2端子は、2つの前記第1端子の間に配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 2,
The first electrode plate has two first terminals for electrical connection to the first potential,
The second electrode plate has a second terminal for electrical connection to the second potential,
The semiconductor device, wherein the second terminal is disposed between the two first terminals.
請求項2記載の半導体装置において、
前記第1電極板は、前記第1電位に電気的接続するための複数の第1端子を有し、
前記第2電極板は、前記第2電位に電気的接続するための複数の第2端子を有し、
複数の前記第1端子と複数の前記第2端子とは、交互に配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 2,
The first electrode plate has a plurality of first terminals for electrical connection to the first potential,
The second electrode plate has a plurality of second terminals for electrical connection to the second potential,
The plurality of first terminals and the plurality of second terminals are alternately arranged.
請求項3記載の半導体装置において、
前記第1パワー半導体素子は、第1接続板により前記出力導電板と接続されており、
前記第2パワー半導体素子は、第2接続板により前記第2電極板と接続されており、
前記第3パワー半導体素子は、第3接続板により前記出力導電板と接続されていることを特徴とする半導体装置。
The semiconductor device according to claim 3.
The first power semiconductor element is connected to the output conductive plate by a first connection plate,
The second power semiconductor element is connected to the second electrode plate by a second connection plate,
The semiconductor device, wherein the third power semiconductor element is connected to the output conductive plate by a third connection plate.
請求項6記載の半導体装置において、
前記第1パワー半導体素子,前記第2パワー半導体素子、及び、前記第3パワー半導体素子は、IGBTであり、
前記第1半導体素子群は、前記第1パワー半導体素子に並列接続された第1ダイオードを備え、
前記第2半導体素子群は、前記第2パワー半導体素子に並列接続された第2ダイオードを備え、
前記第3半導体素子群は、前記第3パワー半導体素子に並列接続された第3ダイオードを備え、
前記第1ダイオードは、前記第1接続板により前記第1パワー半導体素子と接続されており、
前記第2ダイオードは、前記第2接続板により前記第2パワー半導体素子と接続されており、
前記第3ダイオードは、前記第3接続板により前記第3パワー半導体素子と接続されていることを特徴とする半導体装置。
The semiconductor device according to claim 6.
The first power semiconductor element, the second power semiconductor element, and the third power semiconductor element are IGBTs,
The first semiconductor element group includes a first diode connected in parallel to the first power semiconductor element,
The second semiconductor element group includes a second diode connected in parallel to the second power semiconductor element,
The third semiconductor element group includes a third diode connected in parallel to the third power semiconductor element,
The first diode is connected to the first power semiconductor element by the first connection plate;
The second diode is connected to the second power semiconductor element by the second connection plate;
The semiconductor device, wherein the third diode is connected to the third power semiconductor element by the third connection plate.
第1電位と第3電位との間に少なくとも一つの第1パワー半導体素子が電気的に接続された第1半導体素子群と、
第2電位と前記第3電位との間に少なくとも一つの第2パワー半導体素子が電気的に接続された第2半導体素子群と、
前記第1電位と前記第3電位との間に少なくとも一つの第3パワー半導体素子が電気的に接続された第3半導体素子群と、
前記第2電位と前記第3電位との間に少なくとも一つの第4パワー半導体素子が電気的に接続された第4半導体素子群と、
前記第1電位に電気的接続するための電極板及び前記第2電位に電気的接続するための電極板を、絶縁体を介して積層した積層構造体とを有する半導体装置であって、
前記第1半導体素子群及び前記第2半導体素子群は、前記積層構造体の一方の側において、該積層構造体に平行に配置されており、
前記第3半導体素子群及び前記第4半導体素子群は、前記積層構造体の前記一方の側とは反対の他方の側において、該積層構造体に平行に配置されていることを特徴とする半導体装置。
A first semiconductor element group in which at least one first power semiconductor element is electrically connected between the first potential and the third potential;
A second semiconductor element group in which at least one second power semiconductor element is electrically connected between a second potential and the third potential;
A third semiconductor element group in which at least one third power semiconductor element is electrically connected between the first potential and the third potential;
A fourth semiconductor element group in which at least one fourth power semiconductor element is electrically connected between the second potential and the third potential;
A semiconductor device having a stacked structure in which an electrode plate for electrical connection to the first potential and an electrode plate for electrical connection to the second potential are stacked via an insulator;
The first semiconductor element group and the second semiconductor element group are arranged in parallel to the multilayer structure on one side of the multilayer structure,
The third semiconductor element group and the fourth semiconductor element group are arranged in parallel to the stacked structure on the other side opposite to the one side of the stacked structure. apparatus.
請求項8記載の半導体装置において、
前記第3半導体素子群は、前記積層構造体を介して、前記第1半導体素子群と対向して配置されており、
前記第4半導体素子群は、前記積層構造体を介して、前記第2半導体素子群と対向して配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 8.
The third semiconductor element group is disposed to face the first semiconductor element group with the stacked structure interposed therebetween,
The semiconductor device, wherein the fourth semiconductor element group is arranged to face the second semiconductor element group with the stacked structure interposed therebetween.
請求項8記載の半導体装置において、
前記第3半導体素子群は、前記積層構造体を介して、前記第2半導体素子群と対向して配置されており、
前記第4半導体素子群は、前記積層構造体を介して、前記第1半導体素子群と対向して配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 8.
The third semiconductor element group is disposed to face the second semiconductor element group via the stacked structure,
The semiconductor device, wherein the fourth semiconductor element group is disposed to face the first semiconductor element group with the stacked structure interposed therebetween.
請求項8記載の半導体装置において、
前記第1半導体素子群は、複数の前記第1パワー半導体素子が並列接続されて構成されており、
前記第2半導体素子群は、複数の前記第2パワー半導体素子が並列接続されて構成されており、
前記第3半導体素子群は、複数の前記第3パワー半導体素子が並列接続されて構成されており、
前記第4半導体素子群は、複数の前記第3パワー半導体素子が並列接続されて構成されていることを特徴とする半導体装置。
The semiconductor device according to claim 8.
The first semiconductor element group is configured by connecting a plurality of the first power semiconductor elements in parallel.
The second semiconductor element group is configured by connecting a plurality of the second power semiconductor elements in parallel.
The third semiconductor element group includes a plurality of third power semiconductor elements connected in parallel.
The fourth semiconductor element group includes a plurality of the third power semiconductor elements connected in parallel.
請求項8記載の半導体装置において、
前記第1電位に電気的接続するための電極板は、前記第1半導体素子群を該第1電位に電気的接続するための第1電極板及び前記第3半導体素子群を該第1電位に電気的接続するための第3電極板を備えており、
前記第2電位に電気的接続するための電極板は、前記第2半導体素子群を該第2電位に電気的接続するための第2電極板及び前記第4半導体素子群を該第2電位に電気的接続するための第4電極板を備えていることを特徴とする半導体装置。
The semiconductor device according to claim 8.
The electrode plate for electrically connecting to the first potential has the first electrode plate for electrically connecting the first semiconductor element group to the first potential and the third semiconductor element group to the first potential. A third electrode plate for electrical connection;
The electrode plate for electrically connecting to the second potential has the second electrode plate for electrically connecting the second semiconductor element group to the second potential and the fourth semiconductor element group to the second potential. A semiconductor device comprising a fourth electrode plate for electrical connection.
請求項12記載の半導体装置において、
前記第1電極板及び前記第3電極板は、前記第2電極板と前記第4電極板との間に、前記絶縁体を介して配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 12, wherein
The semiconductor device, wherein the first electrode plate and the third electrode plate are disposed between the second electrode plate and the fourth electrode plate via the insulator.
請求項13記載の半導体装置において、
前記半導体装置は、前記第1半導体素子群及び前記第2半導体素子群を前記第3電位に電気的接続するための第1出力導電板と、前記第3半導体素子群及び前記第4半導体素子群を該第3電位に電気的接続するための第2出力導電板とを有し、
前記第1出力導電板の少なくとも一部は、前記第1電極板と前記第2電極板との間に、前記絶縁体を介して配置されており、
前記第2出力導電板の少なくとも一部は、前記第3電極板と前記第4電極板との間に、前記絶縁体を介して配置されていることを特徴とする半導体装置。
The semiconductor device according to claim 13.
The semiconductor device includes a first output conductive plate for electrically connecting the first semiconductor element group and the second semiconductor element group to the third potential, the third semiconductor element group, and the fourth semiconductor element group. And a second output conductive plate for electrically connecting to the third potential,
At least a part of the first output conductive plate is disposed between the first electrode plate and the second electrode plate via the insulator,
At least a part of the second output conductive plate is disposed between the third electrode plate and the fourth electrode plate via the insulator.
第1端子と第3端子との間に少なくとも一つの第1パワー半導体素子が接続された第1半導体素子群,第2端子と前記第3端子との間に少なくとも一つの第2パワー半導体素子が接続された第2半導体素子群、及び、前記第1端子と前記第3端子との間に少なくとも一つの第3パワー半導体素子が接続された第3半導体素子群を有する複数の半導体スイッチング装置と、
前記第1端子と前記第2端子との間に接続されたコンデンサとを備えた電力変換装置であって、
前記第2半導体素子群は、前記第1半導体素子群と前記第3半導体素子群との間に配置されており、
前記第1端子と前記コンデンサとの間は、第1板状導体を用いて電気的接続されており、
前記第2端子と前記コンデンサとの間は、第2板状導体を用いて電気的接続されており、
前記第1板状導体と前記第2板状導体とは、絶縁体を介して積層されていることを特徴とする電力変換装置。
A first semiconductor element group in which at least one first power semiconductor element is connected between the first terminal and the third terminal; and at least one second power semiconductor element between the second terminal and the third terminal. A plurality of semiconductor switching devices having a connected second semiconductor element group, and a third semiconductor element group in which at least one third power semiconductor element is connected between the first terminal and the third terminal;
A power converter comprising a capacitor connected between the first terminal and the second terminal,
The second semiconductor element group is disposed between the first semiconductor element group and the third semiconductor element group,
The first terminal and the capacitor are electrically connected using a first plate conductor,
The second terminal and the capacitor are electrically connected using a second plate conductor,
The power conversion device, wherein the first plate-like conductor and the second plate-like conductor are laminated via an insulator.
請求項15記載の電力変換装置において、
前記複数の半導体スイッチング装置は、第1方向に一列に並んで配置されており、
前記コンデンサは、前記半導体スイッチング装置が並んでいる前記第1方向と直交する第2方向において、該半導体スイッチング装置の隣に配置されていることを特徴とする電力変換装置。
The power conversion device according to claim 15, wherein
The plurality of semiconductor switching devices are arranged in a line in a first direction,
The power converter according to claim 1, wherein the capacitor is arranged next to the semiconductor switching device in a second direction orthogonal to the first direction in which the semiconductor switching devices are arranged.
JP2010134648A 2010-06-14 2010-06-14 Semiconductor device Expired - Fee Related JP5341824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010134648A JP5341824B2 (en) 2010-06-14 2010-06-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010134648A JP5341824B2 (en) 2010-06-14 2010-06-14 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005245232A Division JP4603956B2 (en) 2005-08-26 2005-08-26 Power converter

Publications (2)

Publication Number Publication Date
JP2010199628A true JP2010199628A (en) 2010-09-09
JP5341824B2 JP5341824B2 (en) 2013-11-13

Family

ID=42823948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010134648A Expired - Fee Related JP5341824B2 (en) 2010-06-14 2010-06-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JP5341824B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093532A (en) * 2011-10-27 2013-05-16 Toyota Motor Corp Semiconductor device
US9246408B2 (en) 2011-05-31 2016-01-26 Hitachi Automotive Systems, Ltd. Power conversion apparatus
JPWO2014014012A1 (en) * 2012-07-19 2016-07-07 三菱電機株式会社 Power semiconductor module
US9627955B2 (en) 2014-02-18 2017-04-18 Toyota Jidosha Kabushiki Kaisha Semiconductor module
JP2020047677A (en) * 2018-09-14 2020-03-26 株式会社東芝 Semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088394A (en) * 1994-06-23 1996-01-12 Fuji Electric Co Ltd Main circuit configuration of high speed switching device
JP2001332688A (en) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd Power wiring structure and semiconductor device
JP2001358244A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Power semiconductor module
JP2003197858A (en) * 2001-12-25 2003-07-11 Mitsubishi Electric Corp Power semiconductor device and its manufacturing method
JP2005085840A (en) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp Power semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088394A (en) * 1994-06-23 1996-01-12 Fuji Electric Co Ltd Main circuit configuration of high speed switching device
JP2001332688A (en) * 2000-05-25 2001-11-30 Nissan Motor Co Ltd Power wiring structure and semiconductor device
JP2001358244A (en) * 2000-06-12 2001-12-26 Hitachi Ltd Power semiconductor module
JP2003197858A (en) * 2001-12-25 2003-07-11 Mitsubishi Electric Corp Power semiconductor device and its manufacturing method
JP2005085840A (en) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp Power semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246408B2 (en) 2011-05-31 2016-01-26 Hitachi Automotive Systems, Ltd. Power conversion apparatus
JP2013093532A (en) * 2011-10-27 2013-05-16 Toyota Motor Corp Semiconductor device
JPWO2014014012A1 (en) * 2012-07-19 2016-07-07 三菱電機株式会社 Power semiconductor module
US9627955B2 (en) 2014-02-18 2017-04-18 Toyota Jidosha Kabushiki Kaisha Semiconductor module
JP2020047677A (en) * 2018-09-14 2020-03-26 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP5341824B2 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP4603956B2 (en) Power converter
JP3633432B2 (en) Semiconductor device and power conversion device
JP4920677B2 (en) Power conversion device and assembly method thereof
JP3723869B2 (en) Semiconductor device
JP6513303B2 (en) Power semiconductor module and power converter
JP5218541B2 (en) Switching module
US20060273592A1 (en) Power unit
JP5132175B2 (en) Power converter
CN102017140A (en) Semiconductor device
JP5851267B2 (en) Inverter and vehicle control device
JP2010016947A (en) Power module of power conversion apparatus
JP2014217270A (en) Half bridge for 3-level power conversion device
JP5341824B2 (en) Semiconductor device
JP2019110228A (en) Power conversion device
WO2015128975A1 (en) Power module and power conversion device
JP4842018B2 (en) Power converter
JPH10304680A (en) Power converter
WO2019146179A1 (en) Power conversion device and electric railroad vehicle equipped with power conversion device
JP5100535B2 (en) Power semiconductor module and semiconductor power conversion device including the same
JP4582629B2 (en) 3-level inverter
JPWO2018109884A1 (en) Power converter
JP4697025B2 (en) Power semiconductor module
JP2013236460A (en) Three-level inverter
JP2005192328A (en) Semiconductor device
US11456673B2 (en) Power conversion device of a neutral point clamp type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Ref document number: 5341824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees