[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010192929A - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
JP2010192929A
JP2010192929A JP2010102850A JP2010102850A JP2010192929A JP 2010192929 A JP2010192929 A JP 2010192929A JP 2010102850 A JP2010102850 A JP 2010102850A JP 2010102850 A JP2010102850 A JP 2010102850A JP 2010192929 A JP2010192929 A JP 2010192929A
Authority
JP
Japan
Prior art keywords
light
optical
wavelength
optical amplifier
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010102850A
Other languages
Japanese (ja)
Other versions
JP5152248B2 (en
Inventor
Yoshinori Onaka
美紀 尾中
Etsuko Hayashi
悦子 林
Hiroshi Onaka
寛 尾中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010102850A priority Critical patent/JP5152248B2/en
Publication of JP2010192929A publication Critical patent/JP2010192929A/en
Application granted granted Critical
Publication of JP5152248B2 publication Critical patent/JP5152248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide at a low cost an optical amplifier, detecting noise optical power, signal optical power or the like, generated upon amplifying a signal light, through a simple optical circuit structure with a high accuracy, and stably acquiring WDM (Wavelength Division Multiplex) light having flat wavelength characteristic. <P>SOLUTION: The optical amplifier is equipped with: a light amplifying circuit 1 which amplifies signal light; a light reflecting medium arranged on an optical fiber F connected to the light amplifying circuit 1 and employing a tilt chirp type fiber grating having a transmission wavelength characteristic for flattening the gain wavelength characteristic of the optical amplifying circuit 1; a light receiver 3 which receives light of signal band reflected by the light reflecting medium to detect power; an operation circuit 4 which obtians the wavelength characteristic of the WDM light transmitted through the light reflecting medium based on the detecting result of the light receiver 3; and a control circuit 7 which controls the light amplifying circuit 1, based on the wavelength characteristic of the WDM light. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主に光通信に利用される光増幅器に関し、特に、信号光を増幅する際に発生する雑音光のパワー等を検出するモニタ機能を備えた光増幅器に関する。   The present invention relates to an optical amplifier mainly used for optical communication, and more particularly to an optical amplifier having a monitor function for detecting the power of noise light generated when signal light is amplified.

光増幅器は光通信システムの長距離化および大容量化を実現するキーコンポーネントの1つである。光増幅器は反転分布媒質からの誘導放出を用いるレーザ増幅器と、ラマン散乱やブリルアン散乱などの非線形光学効果に基づく増幅器に分別される。さらに、レーザ増幅器には、希土類添加ファイバ増幅器と半導体増幅媒体を用いる半導体レーザ増幅器がある。前者は光励起により、また、後者は注入電流励起により光増幅器として動作する。これらの光増幅器の中で、希土類添加光ファイバ増幅器は、例えば、ビットレートフリー、高利得、低雑音、広帯域、低い結合損失、低偏光依存性、高効率などの性能面で大きな利点を有している。希土類添加光ファイバ増幅器の中でも、エルビウム(Er)ドープファイバ増幅器(Erbium-doped fiber amplifier:以下、EDFAとする)が一般的であり、現在、光ファイバ通信システムにおいて実用化されている。このような光増幅器については、適用される光通信システムの性能およびコストパフォーマンス等の向上を図るために、簡易な光回路構成を有しつつ、より高い性能を実現することが求められ、そのような光増幅器に対する需要が大きくなっている。   An optical amplifier is one of key components for realizing a long distance and large capacity of an optical communication system. Optical amplifiers are classified into laser amplifiers using stimulated emission from inversion distributed media and amplifiers based on nonlinear optical effects such as Raman scattering and Brillouin scattering. Furthermore, laser amplifiers include semiconductor laser amplifiers that use rare-earth doped fiber amplifiers and semiconductor amplification media. The former operates as an optical amplifier by optical excitation, and the latter operates as an optical amplifier by injection current excitation. Among these optical amplifiers, rare earth doped optical fiber amplifiers have great advantages in terms of performance such as bit rate free, high gain, low noise, broadband, low coupling loss, low polarization dependence, and high efficiency. ing. Among rare earth-doped optical fiber amplifiers, erbium-doped fiber amplifiers (hereinafter referred to as EDFAs) are common and are currently in practical use in optical fiber communication systems. For such an optical amplifier, in order to improve the performance and cost performance of the applied optical communication system, it is required to achieve higher performance while having a simple optical circuit configuration. Demand for such optical amplifiers is increasing.

ところで、波長の異なる複数の光信号を含んだ波長多重(Wavelength Division Multiplexing:WDM)光の中継伝送を行うWDM用光通信システムにおいて、所定の伝送特性を満たすために、信号光パワーの波長特性は平坦であることが望まれる。しかしながら、光伝送路の条件や、希土類添加光ファイバ増幅器、ラマン増幅器等を用いた光増幅中継局における利得波長特性(例えば、チルトやリップルなど)の累積といった様々な要因により、受信側における信号光パワーの波長平坦性の劣化が問題視されている。このため、光増幅器の動作制御に関する1つの課題として、光増幅中継局の出力波長特性を制御する技術を確立することが挙げられる(第1の課題)。   By the way, in a WDM optical communication system that performs relay transmission of wavelength division multiplexing (WDM) light including a plurality of optical signals having different wavelengths, the wavelength characteristics of signal light power are as follows in order to satisfy predetermined transmission characteristics: It is desired to be flat. However, due to various factors such as the conditions of the optical transmission line and the accumulation of gain wavelength characteristics (for example, tilt, ripple, etc.) in optical amplification repeaters using rare earth doped optical fiber amplifiers, Raman amplifiers, etc., the signal light on the receiving side Deterioration of wavelength flatness of power is regarded as a problem. For this reason, as one problem related to the operation control of the optical amplifier, it is possible to establish a technique for controlling the output wavelength characteristic of the optical amplification repeater station (first problem).

また、光増幅器では光増幅に伴って雑音成分である自然放出光(ASE)が発生する。このASEは、光パワーレベルが信号光と比べて圧倒的に小さいものの、広い波長帯域に亘って発生する。このため、光増幅器の出力光を分岐して受光器で受ける一般的な出力モニタ技術を用いて出力一定制御や利得一定制御などといった光増幅器の制御を行う場合、信号光とともに雑音成分であるASEの光パワーが含まれるため、ASEの影響が出力モニタ結果に現れて光増幅器の制御精度を劣化させてしまう。また、上流に配置した光増幅器のASEにより、下流に配置した光増幅器の入力シャットダウン機能(入力信号光パワーの入力断を検出して光増幅器の励起光パワーをオフにする機能)も劣化してしまう。このようなASEに起因した問題は、特に、信号波長数がダイナミックに変わるシステム等ではASEの発生量も大きく変わるため深刻なものとなる。このため、光増幅器の動作制御に関する他の課題として、光増幅器で発生するASEパワーを正確に見積もって(モニタ)、当該光増幅器の制御目標値の補正および入力断検出閾値の補正を行う技術を確立することが挙げられる(第2の課題)。   In the optical amplifier, spontaneous emission light (ASE), which is a noise component, is generated with optical amplification. This ASE occurs over a wide wavelength band although the optical power level is overwhelmingly smaller than that of signal light. For this reason, when performing control of the optical amplifier such as constant output control and constant gain control using a general output monitoring technique that branches the output light of the optical amplifier and is received by the light receiver, ASE that is a noise component together with the signal light. Therefore, the influence of ASE appears in the output monitor result and the control accuracy of the optical amplifier is deteriorated. In addition, the ASE of the optical amplifier arranged upstream also deteriorates the input shutdown function of the optical amplifier arranged downstream (the function of detecting the input signal light power input interruption and turning off the pumping light power of the optical amplifier). End up. Such a problem caused by ASE becomes serious particularly in a system or the like in which the number of signal wavelengths dynamically changes because the amount of ASE generated also greatly changes. For this reason, as another problem relating to the operation control of the optical amplifier, a technique for accurately estimating (monitoring) the ASE power generated in the optical amplifier, correcting the control target value of the optical amplifier, and correcting the input disconnection detection threshold. Establish (second problem).

さらに、光増幅器では、より大きな利得係数を有する波長域について、高い反転分布状態においてエネルギーが集中して発振動作し、雑音成分が増えて伝送特性を劣化させてしまうという問題もある。この光増幅器の発振現象は、光増幅媒体の利得と光増幅媒体の入出力側の反射減衰量との関係に応じた閾値を持っており、光増幅器の利得条件や構成光部品の反射減衰量劣化といった要因により上記のような問題が顕在化する。具体的には、例えば、光増幅器に入力される信号数が少ない場合や、光増幅媒体に繋がる光路上の光アイソレータにおけるアイソレーション量が劣化したときなどに、発振動作(雑音成分の増加)が顕著になる。このため、光増幅器の動作制御に関する別の課題として、予め分かっている利得係数の大きい波長域について、出力光レベルが発振閾値を超えないようにする制御技術を確立することが挙げられる(第3の課題)。   Furthermore, the optical amplifier also has a problem that in a wavelength region having a larger gain coefficient, energy concentrates and oscillates in a high inversion distribution state, and noise components increase to deteriorate transmission characteristics. The oscillation phenomenon of this optical amplifier has a threshold corresponding to the relationship between the gain of the optical amplification medium and the reflection attenuation amount on the input / output side of the optical amplification medium, and the gain conditions of the optical amplifier and the reflection attenuation amount of the constituent optical components The above problems become obvious due to factors such as deterioration. Specifically, for example, when the number of signals input to the optical amplifier is small, or when the amount of isolation in the optical isolator on the optical path connected to the optical amplifying medium deteriorates, the oscillation operation (increase in noise component) occurs. Become prominent. For this reason, another problem relating to the operation control of the optical amplifier is to establish a control technique for preventing the output light level from exceeding the oscillation threshold in a wavelength region having a large gain coefficient that is known in advance (third). Issue).

WDM用光通信システムの性能および信頼性の向上を図るためには、上記のような光増幅器の動作制御に関する第1〜第3の課題を同時に解決することが重要である。具体的には、第1の課題に対してWDM信号光パワーの波長特性を高い精度でモニタでき、また、第2および第3の課題に対してASE等の雑音光のパワーを高い精度でモニタできることが必要である。   In order to improve the performance and reliability of the WDM optical communication system, it is important to simultaneously solve the first to third problems related to the operation control of the optical amplifier as described above. Specifically, the wavelength characteristic of the WDM signal light power can be monitored with high accuracy for the first problem, and the power of noise light such as ASE can be monitored with high precision for the second and third problems. It must be possible.

従来の光増幅器における光パワーモニタの構成としては、例えば図12に示すように、WDM光の伝搬する主信号系の光路上に光分岐器101を挿入し、その光分岐器101の分岐ポートに光スペクトルアナライザ(OSA)102を配置して、光スペクトルアナライザ102でモニタされる光スペクトルの測定結果を可変利得等化器(VGEQ)103等に伝えて制御を実施する構成などが知られている。また、光スペクトルアナライザ102に代えて、光分岐器101の分岐ポートに波長分離デバイス(例えば、クレーティングや光フィルタ等)および受光器を設け、波長分離デバイスで分波した光を受光器で受光してパワーをモニタする構成もある(例えば、特許文献1参照)。   As a configuration of an optical power monitor in a conventional optical amplifier, for example, as shown in FIG. 12, an optical branching device 101 is inserted on the optical path of the main signal system through which WDM light propagates, and the optical branching device 101 has a branching port. A configuration is known in which an optical spectrum analyzer (OSA) 102 is arranged, and the measurement result of an optical spectrum monitored by the optical spectrum analyzer 102 is transmitted to a variable gain equalizer (VGEQ) 103 or the like to perform control. . Further, in place of the optical spectrum analyzer 102, a wavelength separation device (for example, a grating or an optical filter) and a light receiver are provided at the branch port of the optical branch device 101, and the light demultiplexed by the wavelength separation device is received by the light receiver. There is also a configuration for monitoring power (see, for example, Patent Document 1).

特開2001−168841号公報JP 2001-168841 A

しかしながら、上記のような従来の光パワーモニタの構成では、光分岐器101および高価な光スペクトルアナライザ102若しくは波長分離デバイス等を光増幅器に新たに加える必要があるため、光回路構成の複雑化および高コスト化を招くという欠点がある。   However, in the configuration of the conventional optical power monitor as described above, it is necessary to newly add the optical splitter 101 and the expensive optical spectrum analyzer 102 or the wavelength separation device to the optical amplifier. There is a disadvantage that the cost increases.

また、図12の左下に例示したように、単位微小波長域あたりの光パワーが信号光に比べて圧倒的に小さいASE等の雑音光が光分岐器101において信号光と同じ分岐比で分岐される。光分岐器101の分岐比は、主信号光のパワーの減少を極力抑える必要が生じるため、モニタ光側の比率が低くなるように設定される(例えば、主信号光側が95〜99%、モニタ光側が1〜5%など)。このため、モニタ光に含まれる雑音光は極僅かとなり、光スペクトルアナライザ102で受光される雑音光のレベルは低く、従って、受光感度は悪く、雑音光パワーを所望の精度でモニタすることが困難になるという問題点もある。   In addition, as illustrated in the lower left of FIG. 12, noise light such as ASE whose optical power per unit minute wavelength region is overwhelmingly smaller than the signal light is branched at the same branching ratio as the signal light in the optical branching device 101. The The branching ratio of the optical branching unit 101 is set so that the ratio on the monitor light side is low because it is necessary to suppress the decrease in the power of the main signal light as much as possible (for example, 95 to 99% on the main signal light side, 1-5% on the light side). For this reason, the noise light included in the monitor light is extremely small, the level of the noise light received by the optical spectrum analyzer 102 is low, and therefore the light receiving sensitivity is poor, and it is difficult to monitor the noise light power with a desired accuracy. There is also the problem of becoming.

上記のような従来構成の問題点を解消するための1つの手法として、例えば、光増幅器で発生する雑音光のパワーの典型的な値を実験やシミュレーション等により予め求め、その結果を用いて光増幅器の制御を行うようにすることが考えられる。しかし、このような手法では、光増幅媒体の部品個体差や環境(例えば、温度や湿度等)の変化、WDM光に含まれる信号光の波長数などに応じて雑音光の発生量がダイナミックに変化するため、光増幅器で発生する雑音光のパワーの値を正確に見積もることが難しい。このため、実際にモニタした光出力パワーについて雑音光成分の補正を正確に行うことができなくなるので、光増幅器の制御精度が悪くなり、WDM用光通信システムの性能および信頼性を劣化させてしまう。   As one method for solving the problems of the conventional configuration as described above, for example, a typical value of the power of noise light generated in an optical amplifier is obtained in advance by experiments, simulations, etc. It is conceivable to control the amplifier. However, with such a technique, the amount of noise light generated dynamically depends on the differences in individual components of the optical amplification medium, changes in the environment (for example, temperature, humidity, etc.), and the number of wavelengths of signal light included in the WDM light. Therefore, it is difficult to accurately estimate the power value of the noise light generated in the optical amplifier. For this reason, it becomes impossible to correct the noise light component accurately for the optical output power actually monitored, so that the control accuracy of the optical amplifier is deteriorated and the performance and reliability of the WDM optical communication system are deteriorated. .

本発明は上記の点に着目してなされたもので、信号光を増幅する際に発生する雑音光パワーや信号光パワー等を簡易な光回路構成により高い精度で検出することのできるモニタ機能を備え、平坦な波長特性を有するWDM光を安定して得ることのできる光増幅器を低コストで提供することを目的とする。   The present invention has been made paying attention to the above points, and has a monitor function capable of detecting noise light power, signal light power, etc. generated when amplifying signal light with high accuracy by a simple optical circuit configuration. An object of the present invention is to provide an optical amplifier that can stably obtain WDM light having a flat wavelength characteristic.

上記の目的を達成するため、本発明の光増幅器は、複数の信号光が波長多重されたWDM光を増幅する光増幅部と、前記光増幅部の出力側に接続された光ファイバ上に配置され、該光ファイバの軸方向に対して斜めにブラッグ回折格子を形成し、かつ、該ブラッグ回折格子の格子間隔を前記光ファイバの軸方向に沿って徐々に変化させたチルト・チャープ型ファイバグレーティングを有し、前記WDM光の信号帯域について前記光増幅部の利得波長特性を平坦化することが可能な透過波長特性に従って前記WDM光の一部を透過しつつ、前記透過波長特性に応じて前記WDM光の一部を前記光ファイバのコア外に反射することが可能な光反射媒体と、前記光反射媒体より前記光ファイバのコア外に反射される前記WDM光に含まれる前記複数の信号光を受光してパワーを検出する受光部と、前記受光部で検出された前記複数の信号光のパワーおよび前記光反射媒体の透過波長特性を基に、前記光増幅部から出力され前記光反射媒体を透過したWDM光の波長特性を求める演算部と、前記演算部で求められたWDM光の波長特性に基づいて前記光増幅部を制御する制御部と、を備える。   In order to achieve the above object, an optical amplifier according to the present invention is disposed on an optical amplifying unit that amplifies WDM light in which a plurality of signal lights are wavelength-multiplexed, and an optical fiber connected to an output side of the optical amplifying unit. A tilt-chirped fiber grating in which a Bragg diffraction grating is formed obliquely with respect to the axial direction of the optical fiber, and the lattice spacing of the Bragg diffraction grating is gradually changed along the axial direction of the optical fiber. And transmitting a part of the WDM light according to the transmission wavelength characteristic capable of flattening the gain wavelength characteristic of the optical amplification unit with respect to the signal band of the WDM light, and according to the transmission wavelength characteristic A light reflecting medium capable of reflecting a part of the WDM light outside the core of the optical fiber; and the plurality of light beams included in the WDM light reflected from the light reflecting medium outside the core of the optical fiber. A light receiving unit that receives signal light and detects power; and the light output from the light amplification unit based on the power of the plurality of signal lights detected by the light receiving unit and the transmission wavelength characteristics of the light reflecting medium. A calculation unit that obtains the wavelength characteristic of the WDM light that has passed through the reflection medium; and a control unit that controls the optical amplification unit based on the wavelength characteristic of the WDM light obtained by the calculation unit.

かかる構成の光増幅器では、光増幅部から出力され光ファイバを伝搬する光が、チルト・チャープ型ファイバグレーティングを用いた光反射媒体に与えられる。この光反射媒体では、光増幅部の利得波長特性を平坦化することが可能な透過波長特性に従って、信号帯域のWDM光の一部が透過され、残りの一部が光ファイバのコア外に放射される。光ファイバのコア外に放射されたWDM光は、受光部で受光されて複数の信号光のパワーが検出され、その検出結果が演算部に伝えられる。演算部では、受光部の検出結果を基に、光増幅部から出力され光反射媒体を透過したWDM光の波長特性が求められ、該演算結果に基づいて制御部により光増幅部が制御される。   In the optical amplifier having such a configuration, the light output from the optical amplifying unit and propagating through the optical fiber is given to the light reflection medium using the tilted chirped fiber grating. In this light reflection medium, part of the WDM light in the signal band is transmitted and the remaining part is emitted outside the core of the optical fiber according to the transmission wavelength characteristic that can flatten the gain wavelength characteristic of the optical amplification unit. Is done. The WDM light emitted outside the core of the optical fiber is received by the light receiving unit, the power of the plurality of signal lights is detected, and the detection results are transmitted to the calculation unit. In the arithmetic unit, the wavelength characteristic of the WDM light output from the optical amplifying unit and transmitted through the light reflecting medium is obtained based on the detection result of the light receiving unit, and the optical amplifying unit is controlled by the control unit based on the arithmetic result. .

本発明の光増幅器は、光増幅部からの出力光が伝搬する光ファイバ上に、光増幅部の利得等化機能を持つチルト・チャープ型ファイバグレーティングを用いた光反射媒体を形成し、該光反射媒体の透過波長特性に従って光ファイバのコア外に放射される信号帯域の光パワーを基に光反射媒体を透過したWDM光の波長特性を求めて光増幅部を制御するようにしたことで、各波長の信号光パワーが均一化された平坦な波長特性を有するWDM光の増幅出力を安定して得ることができる。   The optical amplifier of the present invention forms a light reflection medium using a tilted chirped fiber grating having a gain equalizing function of an optical amplifying unit on an optical fiber through which output light from the optical amplifying unit propagates. By determining the wavelength characteristics of the WDM light transmitted through the light reflection medium based on the optical power of the signal band radiated out of the core of the optical fiber according to the transmission wavelength characteristics of the reflection medium, the optical amplification unit is controlled. It is possible to stably obtain an amplified output of WDM light having flat wavelength characteristics in which the signal light power of each wavelength is made uniform.

なお、本発明の他の目的、特徴および効果については、以下の詳細な説明および添付図面によって明らかになるであろう。   Other objects, features, and effects of the present invention will become apparent from the following detailed description and the accompanying drawings.

本発明の第1実施形態による光増幅器の構成を示すブロック図である。1 is a block diagram showing a configuration of an optical amplifier according to a first embodiment of the present invention. 上記第1実施形態において光増幅回路から出力される光の波長特性の一例を示す図である。It is a figure which shows an example of the wavelength characteristic of the light output from the optical amplifier circuit in the said 1st Embodiment. 上記第1実施形態に用いられる光反射媒体の透過波長特性の一例を示す図である。It is a figure which shows an example of the transmission wavelength characteristic of the light reflection medium used for the said 1st Embodiment. 本発明の第2実施形態による光増幅器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical amplifier by 2nd Embodiment of this invention. 上記第2実施形態に用いられるGEQの透過波長特性の一例を示す図である。It is a figure which shows an example of the transmission wavelength characteristic of GEQ used for the said 2nd Embodiment. 上記第2実施形態に用いられるGEQの反射波長特性の一例を示す図である。It is a figure which shows an example of the reflective wavelength characteristic of GEQ used for the said 2nd Embodiment. チルト型FBGにおける反射光の放射角度およびグレーティング面の斜度を説明する図である。It is a figure explaining the radiation angle of the reflected light in the tilt type FBG, and the inclination of a grating surface. チルト・チャープ型FBGにおける反射光の集光位置を説明するための図である。It is a figure for demonstrating the condensing position of the reflected light in a tilt chirp type FBG. 上記第2実施形態における出力光の波長特性を示す図である。It is a figure which shows the wavelength characteristic of the output light in the said 2nd Embodiment. 本発明の第3実施形態による光増幅器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical amplifier by 3rd Embodiment of this invention. 本発明を適用した光モニタ回路の一例を示すブロック図である。It is a block diagram which shows an example of the optical monitor circuit to which this invention is applied. 従来の光増幅器における光パワーモニタの構成例を示す図である。It is a figure which shows the structural example of the optical power monitor in the conventional optical amplifier.

以下、本発明を実施するための最良の形態について添付図面を参照しながら説明する。なお、全図を通して同一の符号は同一または相当部分を示すものとする。
図1は、本発明の第1実施形態による光増幅器の構成を示すブロック図である。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings.
FIG. 1 is a block diagram showing the configuration of the optical amplifier according to the first embodiment of the present invention.

図1において、第1実施形態の光増幅器は、例えば、入力信号光LINを増幅する光増幅部としての光増幅回路1と、光増幅回路1に接続する光ファイバF上に形成された光反射媒体2と、光反射媒体2で反射されて光ファイバFのコア外に放射される光を受光してパワーを検出する受光部としての受光器3と、受光器3の検出結果に基づいて光増幅回路1で発生する雑音光のトータルパワーを演算する演算部としての演算回路4と、を備える。また、この光増幅器は、光増幅回路1から出力され光ファイバFを伝搬する光の一部を分岐する光分岐器5と、光分岐器5で分岐された光を受光してパワーを検出する受光器6と、演算回路4および受光器6からの出力信号に応じて光増幅回路1を制御する制御回路7と、を有する。 In FIG. 1, the optical amplifier according to the first embodiment includes, for example, an optical amplification circuit 1 as an optical amplification unit that amplifies input signal light LIN, and an optical fiber formed on an optical fiber F connected to the optical amplification circuit 1. Based on the reflection medium 2, the light receiver 3 that receives the light reflected by the light reflection medium 2 and emitted outside the core of the optical fiber F and detects the power, and the detection result of the light receiver 3. And an arithmetic circuit 4 as an arithmetic unit for calculating the total power of the noise light generated in the optical amplifier circuit 1. Further, this optical amplifier detects the power by receiving an optical branching device 5 that branches a part of the light output from the optical amplifier circuit 1 and propagating through the optical fiber F, and the light branched by the optical branching device 5. It has a light receiver 6 and a control circuit 7 that controls the optical amplifier circuit 1 in accordance with output signals from the arithmetic circuit 4 and the light receiver 6.

光増幅回路1は、例えば、希土類添加光ファイバ増幅器やラマン増幅器、半導体光増幅器などの公知の光増幅器を用いて構成され、光ファイバFを介して入力される信号光LINを所要のレベルに増幅して光ファイバFに出力する。この光増幅回路1では、入力信号光LINを増幅する際に自然放出光(ASE)等の雑音光が発生する。よって、光増幅回路1からは、例えば図2に示すように、増幅された信号光Lおよび雑音光Lを含んだ出力光Lが光ファイバFに出力されることになる。なお、ここでは波長の異なる複数の信号光を含んだWDM光が光増幅回路1で増幅される一例を示したが、単一波長の信号光が光増幅回路1で増幅される場合でも本発明は有効である。 The optical amplifying circuit 1 is, for example, rare earth-doped optical fiber amplifier or a Raman amplifier is configured using a known optical amplifier, such as a semiconductor optical amplifier, the signal light L IN input via an optical fiber F to the required level Amplified and output to the optical fiber F. In this optical amplifier circuit 1, noise light such as spontaneous emission light (ASE) is generated when the input signal light LIN is amplified. Therefore, the output light L 1 including the amplified signal light L S and noise light L N is output from the optical amplification circuit 1 to the optical fiber F as shown in FIG. Although an example in which WDM light including a plurality of signal lights having different wavelengths is amplified by the optical amplifier circuit 1 is shown here, the present invention is applicable even when single wavelength signal light is amplified by the optical amplifier circuit 1. Is valid.

光反射媒体2は、光増幅回路1で発生するASE等の雑音光Lのうちで信号帯域Δλ外の所定の波長領域Δλに存在する雑音光(図2参照)を予め設定した反射率に従って反射して光ファイバFのコア外に放射し、波長領域Δλ以外の光を透過することが可能な構造を有する。図3は、光反射媒体2の透過波長特性の一例を示したものである。この光反射媒体2の具体例としては、ファイバグレーティング、フォトニック結晶、誘電体多層膜、マッハツェンダ型デバイス等がある。なお、光反射媒体2の好ましい構成例については後述する他の実施形態において詳しく説明することにする。 The light reflecting medium 2 is a reflection in which noise light (see FIG. 2) existing in a predetermined wavelength region Δλ N outside the signal band Δλ S among noise light L N such as ASE generated in the optical amplifier circuit 1 is set in advance. was radiated to the outside of the core of the optical fiber F is reflected in accordance with the rate, it has a structure capable of transmitting light other than the wavelength region [Delta] [lambda] N. FIG. 3 shows an example of the transmission wavelength characteristic of the light reflecting medium 2. Specific examples of the light reflecting medium 2 include a fiber grating, a photonic crystal, a dielectric multilayer film, a Mach-Zehnder type device, and the like. Note that a preferable configuration example of the light reflecting medium 2 will be described in detail in other embodiments described later.

受光器3は、光反射媒体2で反射されて光ファイバFのコア外に放射される雑音光Lを受光可能な位置に配置され、その雑音光Lのパワーに応じてレベルの変化する電気信号を演算回路4に出力する。 Light receiver 3 is arranged to noise light L R that is reflected by the light reflecting medium 2 is radiated to the outside of the core of the optical fiber F to the light receiving position capable, changes in level according to the power of the noise light L R An electric signal is output to the arithmetic circuit 4.

演算回路4は、受光器3からの出力信号によって示される雑音光Lのパワーおよび光反射媒体2の波長領域Δλに対する反射率に基づいて、光増幅回路1で広い波長帯域に亘って発生する雑音光Lのトータルパワーを演算し、その演算結果を示す信号を制御回路7に出力する。上記の演算処理は、例えば、受光器3でモニタされる波長領域Δλの雑音光パワーと、光増幅回路1で発生する雑音光Lのトータルパワーとの関係を予め実験やシミュレーション等により求めたテーブルを参照して行われるものとする。また、このテーブルが良好な確度を有するようにするために、波長領域Δλの設定としては、光増幅回路1における利得係数の高い帯域が選択されるようにするのが望ましい。具体的な一例を挙げておくと、光増幅回路1にエルビウム添加光ファイバ増幅器(EDFA)を用い、信号帯域ΔλをC−バンド(1.55μm帯)とした場合には、波長領域Δλとして1.53μm帯付近を選択するのが好適である。また、信号帯域ΔλをL−バンド(1.58μm帯)とした場合には、波長領域Δλとして1.57μm帯付近を選択するのが好適である。 Arithmetic circuit 4, based on the reflectance to the noise light L R of the power and the light reflecting medium 2 in the wavelength region [Delta] [lambda] N indicated by the output signal from the light receiver 3, occurs over a wide wavelength band in the optical amplifying circuit 1 The total power of the noise light LN to be calculated is calculated, and a signal indicating the calculation result is output to the control circuit 7. In the above arithmetic processing, for example, the relationship between the noise light power in the wavelength region Δλ N monitored by the light receiver 3 and the total power of the noise light L N generated in the optical amplifier circuit 1 is obtained in advance through experiments or simulations. It shall be done with reference to the table. Also, in order for this table it is to have a good accuracy, as the setting of the wavelength region [Delta] [lambda] N, to such band high gain coefficient in the optical amplifying circuit 1 is selected is desirable. As a specific example, when an erbium-doped optical fiber amplifier (EDFA) is used for the optical amplifier circuit 1 and the signal band Δλ S is C-band (1.55 μm band), the wavelength region Δλ N It is preferable to select the vicinity of the 1.53 μm band. When the signal band Δλ S is an L-band (1.58 μm band), it is preferable to select the vicinity of the 1.57 μm band as the wavelength region Δλ N.

光分岐器5は、ここでは例えば、光反射媒体2後段の光ファイバF上に配置され、光反射媒体2を透過した光Lを予め設定された分岐比に従って2分岐し、一方の分岐光を出力光LOUTとして光増幅器の外部に出力すると共に、他方の分岐光をモニタ光Lとして受光器6に出力する。この光分岐器5は、上述の図12に示した従来構成における光分岐器101と同様に、主信号光のパワーの減少を抑えるために、モニタ光側の比率が低くなるように設定されている。光分岐器5で分岐されるモニタ光Lは、同じ分岐比で分岐された信号光L’および雑音光L’を含んだ光となる。 Optical splitter 5, here, for example, is disposed on the light reflecting medium second-stage on the optical fiber F, 2 branches according to a preset branching ratio of light L T which has passed through the light reflecting medium 2, one branched light and outputs to the outside of the optical amplifier as the output light L OUT, and it outputs the light receiver 6 the other branched light as a monitor light L M. This optical branching device 5 is set so that the ratio on the monitor light side is low in order to suppress the decrease in the power of the main signal light, similarly to the optical branching device 101 in the conventional configuration shown in FIG. Yes. Monitor light L M which is branched by the optical branching device 5 is a light including a branch signal light L S 'and a noise light L N' in the same branching ratio.

受光器6は、光分岐器5からのモニタ光Lを受光し、そのモニタ光Lのパワーに応じてレベルの変化する電気信号を制御回路7に出力する。
制御回路7は、受光器6からの出力信号を受けて出力光LOUTのトータルパワーを求めた後、演算回路4からの出力信号によって示される雑音光Lのトータルパワーを用いて雑音成分の補正を行い、信号光のみについての出力パワーを算出し、その結果に応じて光増幅回路1の動作を制御する。
Photodetector 6 receives the monitor light L M from the optical branching device 5, and outputs an electrical signal changes in level according to the power of the monitor light L M to the control circuit 7.
The control circuit 7 receives the output signal from the light receiver 6 and obtains the total power of the output light L OUT , and then uses the total power of the noise light L N indicated by the output signal from the arithmetic circuit 4 to generate a noise component. Correction is performed, the output power for only the signal light is calculated, and the operation of the optical amplifier circuit 1 is controlled according to the result.

上記のような構成の光増幅器では、一般的な光増幅器に既に備えられている光分岐器5および受光器6によってモニタされるトータル出力パワー(信号光+雑音光)に加えて、光増幅回路1で発生する雑音光Lのトータルパワーが光反射媒体2、受光器3および演算回路4によってモニタされるようになり、その雑音光Lのトータルパワーを用いてトータル出力パワーの補正を行うことで、信号光のみについての出力パワーを高い精度でモニタすることが可能になる。これにより、信号光のみの出力パワーを利用して光増幅回路1の制御(例えば、出力一定制御や利得一定制御など)を行うことで、信号光の増幅を高い精度で安定して行うことができるようになる。 In the optical amplifier configured as described above, in addition to the total output power (signal light + noise light) monitored by the optical branching device 5 and the light receiver 6 already provided in a general optical amplifier, an optical amplifier circuit 1 total power of the noise light L N generated in the optical reflection medium 2, will be monitored by the light receiver 3 and the computation circuit 4 corrects the total output power by using a total power of the noise light L N Thus, it becomes possible to monitor the output power of only the signal light with high accuracy. Thereby, by controlling the optical amplifier circuit 1 using the output power of only the signal light (for example, constant output control, constant gain control, etc.), the signal light can be stably amplified with high accuracy. become able to.

また、雑音光Lのトータルパワーをモニタするために光ファイバF上に形成される光反射媒体2は、信号帯域外の反射特性を付加するものであるため、光増幅器の本来の性能(例えば、利得や雑音指数(NF)等)を劣化させることがない。したがって、光反射媒体2における波長領域Δλの雑音光に対する反射量を、受光器3の受光感度に応じて任意に設計することができる。具体的には、光反射媒体2で反射される雑音光のパワーが、受光器3にて良好な受光感度が得られる受光レベル範囲(例えば、−30〜0dBm/ch)内に収まるように、光反射媒体2の反射特性を設計すればよい。よって、従来のように雑音光が光分岐器において信号光と同じ分岐比で分岐されることで雑音光パワーを十分な精度でモニタできないという課題を、簡略な光回路構成の付加により低コストで解決することが可能になる。 Further, since the light reflecting medium 2 formed on the optical fiber F for monitoring the total power of the noise light L N adds reflection characteristics outside the signal band, the original performance of the optical amplifier (for example, , Gain, noise figure (NF), etc.) are not deteriorated. Thus, the reflection amount with respect to the noise light in the wavelength range [Delta] [lambda] N of the optical reflection medium 2, can be arbitrarily designed depending on the light-receiving sensitivity of the light receiver 3. Specifically, the power of the noise light reflected by the light reflecting medium 2 falls within a light receiving level range (for example, −30 to 0 dBm / ch) in which good light receiving sensitivity is obtained by the light receiver 3. The reflection characteristics of the light reflecting medium 2 may be designed. Therefore, the problem that the noise light power cannot be monitored with sufficient accuracy due to the branching of the noise light with the same branching ratio as the signal light in the optical branching device as in the prior art is achieved at a low cost by adding a simple optical circuit configuration. It becomes possible to solve.

さらに、本実施形態の光増幅器を複数用いて構成した光通信システムにおいて、上流に配置される光増幅器の演算回路4で演算された雑音光Lのトータルパワーを下流に配置される光増幅器に伝達して、下流の光増幅器での信号光入力断検出における雑音光補正を行うようにすることも可能である。具体的には、下流の光増幅器において、例えば、上流の光増幅器から伝達される雑音光Lのトータルパワーをトータル出力光パワーから差し引いて信号光のみの光パワーを算出し、その算出結果に基づいて信号光の入力断を検出することができる。このようにすれば、上流の光増幅器で発生する雑音光の影響を殆ど受けることなく下流の光増幅器における入力シャットダウン制御を確実に実施することができる。 Further, in the optical communication system configured by using a plurality of optical amplifiers of the present embodiment, the total power of the noise light LN calculated by the arithmetic circuit 4 of the optical amplifier arranged upstream is used as the optical amplifier arranged downstream. It is also possible to transmit and perform noise light correction in detection of signal light input interruption in the downstream optical amplifier. Specifically, in the downstream optical amplifier, for example, the optical power of only the signal light is calculated by subtracting the total power of the noise light LN transmitted from the upstream optical amplifier from the total output optical power. Based on this, it is possible to detect the input interruption of the signal light. In this way, it is possible to reliably perform the input shutdown control in the downstream optical amplifier with almost no influence of noise light generated in the upstream optical amplifier.

加えて、受光器3でモニタされる波長領域Δλの雑音光パワーを利用して、光増幅器の発振動作を回避する制御を行うことも可能である。すなわち、波長領域Δλが光増幅回路1における利得係数のピーク波長付近に設定されていれば、この波長領域Δλの雑音光パワーをモニタして、そのモニタ値が予め設定した発振閾値を超えないように光増幅回路1の増幅動作を制御することで、発振現象の発生を未然に防ぐことができるようになる。 In addition, by utilizing the noise light power in the wavelength range [Delta] [lambda] N monitored by the light receiver 3, it is also possible to perform control to avoid oscillation of the optical amplifier. That is, if the wavelength region Δλ N is set near the peak wavelength of the gain coefficient in the optical amplifier circuit 1, the noise light power in this wavelength region Δλ N is monitored, and the monitored value exceeds the preset oscillation threshold value. By controlling the amplification operation of the optical amplifier circuit 1 so as not to occur, the occurrence of an oscillation phenomenon can be prevented in advance.

次に、本発明の第2実施形態について説明する。
図4は、第2実施形態の光増幅器の構成を示すブロック図である。この第2実施形態の光増幅器の特徴は、WDM光を一括増幅する公知の光増幅器に一般的に具備されている利得等化光フィルタ(GEQ)8について、上述した第1実施形態における光反射媒体2としての機能を兼ね備えさせるようにしたものである。
Next, a second embodiment of the present invention will be described.
FIG. 4 is a block diagram illustrating a configuration of the optical amplifier according to the second embodiment. The optical amplifier according to the second embodiment is characterized by the light reflection in the first embodiment described above with respect to the gain equalizing optical filter (GEQ) 8 that is generally provided in a known optical amplifier that collectively amplifies WDM light. The function as the medium 2 is also provided.

GEQ8は、例えば、光ファイバFの軸方向に対して斜めにブラッグ回折格子を形成したチルト型(tilted)の構成と、ブラッグ回折格子の格子間隔を光ファイバFの軸方向に沿って徐々に変化させたチャープ型(chirped)の構成とを組み合わせたファイバグレーティング(以下、チルト・チャープ型FBGと表記する)とする。このチルト・チャープ型FBGは、信号帯域Δλに対して光増幅回路1の利得波長特性を平坦化可能な透過波長特性を有し、かつ、信号帯域外の波長領域Δλに存在する雑音光Lを反射して光ファイバFのコア外に放射することが可能な特性を有するように設計されている。なお、上記のように設計されたチルト・チャープ型FBGでは、信号帯域Δλの光の一部も光ファイバFのコア外に放射されるようになる。 The GEQ 8 is, for example, a tilted configuration in which a Bragg diffraction grating is formed obliquely with respect to the axial direction of the optical fiber F, and the grating spacing of the Bragg diffraction grating is gradually changed along the axial direction of the optical fiber F. A fiber grating (hereinafter referred to as a tilted chirped FBG) is combined with the chirped configuration. This tilt-chirp type FBG has a transmission wavelength characteristic that can flatten the gain wavelength characteristic of the optical amplifier circuit 1 with respect to the signal band Δλ S , and noise light that exists in the wavelength region Δλ N outside the signal band. It is designed to have a characteristic capable of reflecting LN and radiating it out of the core of the optical fiber F. In the tilt and chirp type FBG designed as described above, part of the light in the signal band Δλ S is also emitted outside the core of the optical fiber F.

図5および図6は、上記のチルト・チャープ型FBGを用いたGEQ8の透過波長特性および反射波長特性の一例を示す図である。各図に示すように、信号帯域Δλの光については、透過率が光増幅回路1の利得波長特性(図2参照)とは逆の波長依存性を持つように設計され、この信号帯域Δλの透過波長特性に対応して光ファイバFのコア外に放射される信号帯域Δλの光の反射量も変化する。また、信号帯域外の波長領域Δλについては、反射率が信号帯域Δλの平均的な反射率よりも高くなるように設計され、単位微小波長域あたりの光パワーが信号光に比べて圧倒的に小さい雑音光であっても受光器3で確実にモニタできるようになっている。 5 and 6 are diagrams showing an example of the transmission wavelength characteristic and the reflection wavelength characteristic of the GEQ 8 using the tilt-chirp type FBG. As shown in each figure, the light of the signal band Δλ S is designed so that the transmittance has a wavelength dependency opposite to the gain wavelength characteristic of the optical amplifier circuit 1 (see FIG. 2). reflection amount of light in the signal band [Delta] [lambda] S, which is radiated to the outside of the core of the optical fiber F in correspondence with the transmission wavelength characteristics of S also changes. As for the wavelength region [Delta] [lambda] N outside the signal band is designed so that the reflectance is higher than the average reflectance of the signal band [Delta] [lambda] S, the optical power per unit micro-wavelength region as compared with the signal light overwhelmed Even if the noise light is extremely small, the light receiver 3 can reliably monitor the light.

受光器3は、GEQ8で反射され光ファイバFのコア外に放射される波長領域Δλの雑音光LRNを受光してパワーを測定するものであり、雑音光LRNの焦点に応じた位置に配置される。また、各受光器3〜3は、GEQ8で反射され光ファイバFのコア外に放射される各信号光波長に対応した光LR1〜LRMをそれぞれ受光してパワーを測定するものであり、各々の光の焦点に応じた位置にそれぞれ配置される。なお、前述の図6において細線で示した各波長帯域は、各受光器3,3〜3の受光範囲を概念的に表したものである。 The light receiver 3 N receives the noise light L RN in the wavelength region Δλ N that is reflected by the GEQ 8 and emitted outside the core of the optical fiber F, and measures the power, and corresponds to the focus of the noise light L RN . Placed in position. Each of the light receivers 3 1 to 3 M measures light by receiving light L R1 to L RM corresponding to each signal light wavelength reflected by the GEQ 8 and radiated outside the core of the optical fiber F. And are arranged at positions corresponding to the focal points of the respective lights. Each wavelength band indicated by a thin line in FIG. 6 described above conceptually represents the light receiving range of each of the light receivers 3 N and 3 1 to 3 M.

演算回路4は、上述した第1実施形態の場合と同様にして、受光器3で測定される波長領域Δλの雑音光LRNのパワーおよびGEQ8の反射特性を基に、光増幅回路1で発生する雑音光Lのトータルパワーを演算する。また、各受光器3〜3で測定される各信号光波長に対応した光LR1〜LRMのパワーおよびGEQ8の反射特性を基に、本光増幅器から出力される出力光LOUTの波長特性を求め、さらに、トータル出力パワー(信号光+雑音光)も演算する。この演算回路4での演算結果は制御回路7に伝えられる。制御回路7では、第1実施形態の場合と同様にして、雑音光Lのトータルパワーを用いてトータル出力パワーの補正を行って信号光のみについての出力パワーを求めて、光増幅回路1の制御が行われる。 ALU 4, as in the case of the first embodiment described above, based on the reflection characteristics of the power and GEQ8 of the noise light L RN in the wavelength range [Delta] [lambda] N measured by the light receiver 3 N, the optical amplifying circuit 1 The total power of the noise light LN generated in is calculated. Further, based on the power of the light L R1 to L RM corresponding to each signal light wavelength measured by each of the light receivers 3 1 to 3 M and the reflection characteristic of the GEQ 8, the output light L OUT output from the present optical amplifier The wavelength characteristic is obtained, and the total output power (signal light + noise light) is also calculated. The calculation result in the calculation circuit 4 is transmitted to the control circuit 7. In the control circuit 7, in the same manner as in the first embodiment, the total output power is corrected using the total power of the noise light LN to obtain the output power for only the signal light. Control is performed.

ここで、GEQ8に適用されるチルト・チャープ型FBGについて詳細に説明する。
まず、一般にファイバグレーティングとは、光ファイバのコアの紫外光誘起による屈折率変化を用いて、光ファイバ上にブラッグ回折格子(グレーティング)を形成したものであり、ブラッグ波長の光のみを反射(または遮断)する反射フィルタとして機能する。また、ファイバグレーティングは、光ファイバの長手方向に数万層もの格子を形成することにより、波長に対して反射率(または透過率)が急峻に変化するシャープなスペクトル特性を実現することができる。
Here, the tilt / chirp FBG applied to the GEQ 8 will be described in detail.
First, in general, a fiber grating is one in which a Bragg diffraction grating (grating) is formed on an optical fiber using a refractive index change induced by ultraviolet light at the core of the optical fiber, and reflects only the light of the Bragg wavelength (or Functions as a reflective filter. In addition, the fiber grating can realize sharp spectral characteristics in which the reflectance (or transmittance) changes sharply with respect to the wavelength by forming a lattice of tens of thousands of layers in the longitudinal direction of the optical fiber.

具体的に、ファイバグレーティングのブラッグ反射波長λは、光ファイバの伝搬モードに対する実屈折率nおよび格子間隔(グレーティングピッチ)Pを用いて、次の(1)式により表される。 Specifically, the Bragg reflection wavelength λ B of the fiber grating is expressed by the following equation (1) using the actual refractive index n and the grating interval (grating pitch) P for the propagation mode of the optical fiber.

λ=2nP…(1)
また、反射スペクトルの帯域幅Δλは、グレーティング長Lおよび屈折率変調の振幅Δnを用いて、(2)式により表される。
λ B = 2nP (1)
The bandwidth Δλ B of the reflection spectrum is expressed by equation (2) using the grating length L and the refractive index modulation amplitude Δn.

Δλ={λ /(πnL)}×{π+(πΔnL/λ1/2…(2)
さらに、グレーティング反射率Rは、コア領域に含まれる伝搬光エネルギーの割合γを用いて、(3)式により表される。
Δλ B = {λ B 2 / (πnL)} × {π 2 + (πΔnL / λ B ) 2 } 1/2 (2)
Furthermore, the grating reflectivity R B, using the ratio of the propagation light energy contained in the core region gamma, represented by equation (3).

=tanh(πLΔnγ/λ)…(3)
加えて、特定の波長の光を入射方向に反射するだけでなく、光ファイバの軸方向に対して斜めにグレーティングを作成することにより反射光をクラッド領域に放射させることができ、この後進クラッドモードへ結合した光は光ファイバ外に放出されることから、光スペクトルモニタや利得等化器等への応用例も報告されている(例えば、非特許文献1:C. K. Madsen et al., “Planar Waveguide Optical Spectrum Analyzer Using a UV-Induced Grating”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.4, No.6,NOVEMBER/DECEMBER 1998,925-929.や、非特許文献2:Jefferson L. Wagener et al., “Fiber Grating Optical Spectrum Analyzer Tap”, ECOC,1997,65-68,postdeadline paper V.5.、非特許文献3:小向哲郎外1名,「光ファイバグレーティング技術の最近の展開」,信学技報OPE95−114(1995−12)等参照)。
R B = tanh 2 (πLΔnγ / λ B ) (3)
In addition to reflecting light of a specific wavelength in the incident direction, the reflected light can be radiated to the cladding region by creating a grating oblique to the axial direction of the optical fiber. Since the light coupled to the optical fiber is emitted outside the optical fiber, application examples to an optical spectrum monitor, a gain equalizer, etc. have been reported (for example, Non-Patent Document 1: CK Madsen et al., “Planar Waveguide Optical Spectrum Analyzer Using a UV-Induced Grating ”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL.4, No.6, NOVEMBER / DECEMBER 1998,925-929. ., “Fiber Grating Optical Spectrum Analyzer Tap”, ECOC, 1997, 65-68, postdeadline paper V.5., Non-Patent Document 3: Tetsuro Komukai, 1 other, “Recent development of optical fiber grating technology”, Shin Academic Report OPE95-114 (1995-12) etc. reference).

このようなチルト型FBGの真空中における反射波長λ’は、上述の(1)式に示したブラッグ反射波長λ(グレーティング方向が光ファイバの軸方向に対して垂直の場合)よりもクラッドモード実効屈折率差分だけ短波長側にずれるため、光ファイバのコアの実効屈折率ncoreおよびクラッドの実効屈折率ncladを用いて、次の(4)式により表される。 The reflection wavelength λ B ′ of the tilt type FBG in vacuum is more clad than the Bragg reflection wavelength λ B (when the grating direction is perpendicular to the axial direction of the optical fiber) shown in the above equation (1). Since it shifts to the short wavelength side by the mode effective refractive index difference, it is expressed by the following equation (4) using the effective refractive index n core of the core of the optical fiber and the effective refractive index n clad of the cladding.

λ’=P(2ncore−nclad)…(4)
また、上記チルト型FBGの反射波長λ’と、図7に示すような反射光の放射角度θおよびグレーティング面の斜度θとの関係については、次の(5)式により表されることも知られている(前述の非特許文献1参照)。
λ B '= P (2n core -n clad ) (4)
Further, the relationship between the reflection wavelength λ B ′ of the tilt type FBG and the radiation angle θ 0 of the reflected light and the inclination angle θ T of the grating surface as shown in FIG. 7 is expressed by the following equation (5). It is also known (see Non-Patent Document 1 above).

λ’=λ(1+cosθ)/2cosθ…(5)
上記の(4)式および(5)式の関係より、反射光の放射角度θは、反射波長λ’とグレーティングピッチPに応じて決まることが分かる。反射波長λ’を固定した場合には、グレーティングピッチPが長いと放射角度θは大きな値になる。
λ B ′ = λ B (1 + cos θ 0 ) / 2 cos θ T (5)
From the relationship of the above equations (4) and (5), it is understood that the radiation angle θ 0 of the reflected light is determined according to the reflection wavelength λ B ′ and the grating pitch P. When the reflection wavelength λ B ′ is fixed, the radiation angle θ 0 becomes a large value when the grating pitch P is long.

さらに、チルト型FBGについて、グレーティングピッチPを光ファイバの長手方向に徐々に変化させてチャープ型の構成とすることで、反射光はその波長ごとに異なる位置に集光することが知られている(例えば、米国特許第5,061,032号等参照)。すなわち、チルト・チャープ型FBGは、チャープ設計を適切に行うことで所望の波長の反射光を光ファイバの長手方向に沿った所定の位置に集光させることができる。そこで、本実施形態のGEQ8は、チルト・チャープ型FBGの上記の特性を利用して、波長領域Δλの雑音光および各信号光波長に対応した光を光ファイバFのコア外の異なる位置に集光させる。 Further, it is known that the tilted FBG has a chirped configuration by gradually changing the grating pitch P in the longitudinal direction of the optical fiber, so that the reflected light is condensed at different positions for each wavelength. (For example, see US Pat. No. 5,061,032). That is, the tilt-chirp FBG can collect reflected light of a desired wavelength at a predetermined position along the longitudinal direction of the optical fiber by appropriately performing chirp design. Therefore, GEQ 8 in the present embodiment, by utilizing the above characteristics of the tilted and chirped FBG, the noise light and the light corresponding to each signal light wavelength of the wavelength region [Delta] [lambda] N to the core out of different locations of the optical fibers F Collect light.

チルト・チャープ型FBGの真空中における反射波長λ(z)は、図8に示すように、チルト・チャープ型FBGの形成される光ファイバの長手方向をZ軸とした場合に、位置zにおけるグレーティングピッチをP(z)として、次の(6)式により表されることが知られている(前述の非特許文献1参照)。 The reflection wavelength λ B (z) in the vacuum of the tilt-chirp type FBG is, as shown in FIG. 8, when the longitudinal direction of the optical fiber in which the tilt-chirp type FBG is formed is the Z axis. It is known that the grating pitch is P (z) and is expressed by the following equation (6) (see Non-Patent Document 1 above).

λ(z)=n{P(z)/cosθ}(1+cosθ)…(6)
また、上記の反射波長λ(z)は、チルト・チャープ型FBGのチャープ量(光ファイバの長手方向に対する単位長さあたりのグレーティングピッチ変化量)をc(z)、チャープ型FBGの中心位置Zから反射される光の波長をλB0として、次の(6)’式により表すこともできる。
λ B (z) = n {P (z) / cos θ T } (1 + cos θ 0 ) (6)
Further, the reflection wavelength λ B (z) is defined as c (z) where the chirp amount of the tilted chirped FBG (grating pitch change amount per unit length in the longitudinal direction of the optical fiber) is the center position of the chirped FBG. The wavelength of light reflected from Z 0 can be expressed by the following equation (6) ′, where λ B0 is used.

λ(z)=λB0+c(z)(z−z)…(6)’
この反射波長λ(z)の光のX軸方向(光ファイバの長手方向に直交する方向)の集光位置xおよび焦点距離fは、次の(7)式および(8)式で表すことができる。
λ B (z) = λ B0 + c (z) (z−z 0 ) (6) ′
Focusing position x 0 and the focal length f of the X-axis direction of the light of the reflection wavelength lambda B (z) (the direction perpendicular to the longitudinal direction of the optical fiber) is expressed by the following equation (7) and (8) be able to.

={z・tan[θ(z)]}|z=z0…(7)
f=z/cosθ…(8)
上述したようなチルト・チャープ型FBGの設計パラメータ(グレーティングピッチP(z)、実効屈折率n、屈折率変調量Δn、グレーティング面の斜度θ、チャープ量c(z)等)を適切な値に設定することにより、GEQとしての機能(信号帯域Δλについて光増幅回路1の利得波長特性を平坦化可能な透過波長特性)を備えつつ、信号帯域外の波長領域Δλの雑音光および各信号光波長に対応した光を反射して光ファイバFのコア外に集光させる分波光学系を形成することができるようになる。
x 0 = {z · tan [θ 0 (z)]} | z = z 0 (7)
f = z 0 / cos θ 0 (8)
The design parameters of the tilt / chirp FBG as described above (grating pitch P (z), effective refractive index n, refractive index modulation amount Δn, grating surface inclination θ T , chirp amount c (z), etc.) are appropriately set. By setting the value, noise light in the wavelength region Δλ N outside the signal band and a function as a GEQ (transmission wavelength characteristic that can flatten the gain wavelength characteristic of the optical amplifier circuit 1 for the signal band Δλ S ) and A demultiplexing optical system that reflects light corresponding to each signal light wavelength and collects it outside the core of the optical fiber F can be formed.

具体的には、信号帯域Δλについて所望の透過波長特性を実現するために、屈折率変調量Δnを調整して各波長に対する透過率の最適化を図ることが可能である(例えば、非特許文献4:丹羽敦彦外4名,「スラント型ファイバグレーティングを用いた利得等化器」,フジクラ技報,2002年10月参照)。 Specifically, in order to achieve a desired transmission wavelength characteristic for the signal band Δλ S , it is possible to optimize the transmittance for each wavelength by adjusting the refractive index modulation amount Δn (for example, non-patent) (Ref. 4: Niko Aba et al., “Gain equalizer using slant fiber grating”, Fujikura Technical Report, October 2002).

そして、GEQ本来の利得等化機能を損ねないようにするために、屈折率変調量Δn以外の設計パラメータを用いて、チルト・チャープ型FBGで反射させる光の波長λ(z)並びにその反射光の放射角度θおよび焦点距離fを最適化し、所望の波長帯の反射光が集光する位置に応じて各受光器3,3〜3の配置を決めるようにする。 Then, in order not to impair the original gain equalization function of GEQ, the wavelength λ B (z) of the light reflected by the tilt-chirp FBG and the reflection thereof using design parameters other than the refractive index modulation amount Δn. The light emission angle θ 0 and the focal length f are optimized, and the arrangement of the light receivers 3 N and 3 1 to 3 M is determined according to the position where the reflected light in the desired wavelength band is collected.

このようにして設計したチルト・チャープ型FBGの製作方法としては、FBGの長手方向の各位置における紫外線の照射時間および光量を制御することによって、各波長光に対する反射率(透過率)を変化させるのがよい。例えば、反射率を高くする場合、対象とする波長帯域の光の反射がなされるFBG長手方向の所定の位置にて、FBG形成時の紫外線照射時間または紫外線光量を増加させることで、屈折率変調量Δnを増加させるようにする。   As a manufacturing method of the tilt-chirp type FBG designed in this way, the reflectance (transmittance) with respect to each wavelength light is changed by controlling the irradiation time and light quantity of ultraviolet rays at each position in the longitudinal direction of the FBG. It is good. For example, when the reflectance is increased, the refractive index modulation is performed by increasing the ultraviolet irradiation time or the amount of ultraviolet light at the time of forming the FBG at a predetermined position in the longitudinal direction of the FBG where light in the target wavelength band is reflected. The amount Δn is increased.

チルト・チャープ型FBGにおける反射光の焦点距離fについては、実効屈折率n、チャープ量c(z)、グレーティング面の斜度θおよび屈折率変調量Δnに依存して変化することが知られている(例えば、前述の非特許文献2参照)。焦点距離fを短くすることは、高い波長分解能を有しつつチルト・チャープ型FBGの近くに受光器を配置できることと等価であるため、モニタ精度の向上および光増幅器の小型化に有効である。焦点距離fを短くする場合にも、GEQ本来の利得等化機能を損ねないようにするために、屈折率変調量Δn以外の設計パラメータを用いるようにするのがよい。望ましくはチャープ量c(z)を選択してこれを大きくすることで、GEQとしての機能に殆ど影響を及ぼすことなく焦点距離fを短くすることが可能になる。例えば、波長分解能として0.1nmを得るのに18cm程度の焦点距離が必要になる場合に、チャープ量を547nm/cmから273nm/cmにすることで、その焦点距離を半分の9cmにできることが計算により求められる。なお、この一例は、焦点距離fを短くするために選択される設計パラメータがチャープ量c(z)に限定されることを意味するものではない。 The focal length f of the reflected light in the tilted and chirped FBG, the effective refractive index n, the chirp amount c (z), is known to vary depending on the slope angle theta T and the refractive index modulation Δn of the grating surface (For example, see Non-Patent Document 2 described above). Shortening the focal length f is equivalent to being able to arrange a light receiver in the vicinity of the tilt-chirp type FBG while having a high wavelength resolution, and is therefore effective in improving monitor accuracy and downsizing the optical amplifier. Even when the focal length f is shortened, it is preferable to use design parameters other than the refractive index modulation amount Δn so as not to impair the original gain equalization function of GEQ. Desirably, by selecting and increasing the chirp amount c (z), the focal length f can be shortened with little influence on the function as the GEQ. For example, when a focal length of about 18 cm is required to obtain a wavelength resolution of 0.1 nm, it is calculated that the focal length can be reduced to half 9 cm by changing the chirp amount from 547 nm / cm to 273 nm / cm. Is required. Note that this example does not mean that the design parameter selected for shortening the focal length f is limited to the chirp amount c (z).

上記の一例では、反射光の焦点距離に対応させて受光器を配置することを基本に考えているが、これとは逆に、敢えて焦点距離より短い位置に受光器を配置することで、モニタの波長分解能を許容範囲内で粗くして、光増幅器の小型化と受光器数の削減による低コスト化と図るという設計も可能である。具体的には、チルト・チャープ型FBGの設計パラメータで決定される各波長の反射光の焦点距離fに対し、この焦点距離fよりも受光器の位置を所要の波長分解能が得られるところまで近づけて、波長分解能を敢えて粗くすることで、光増幅器の小型化および受光器数の削減を図るようにしてもよい。このように、モニタの波長分解能と受光器の配置および数とは、光増幅器の所要性能に応じて任意に設計することが可能である。また、受光部のアセンブリを簡易化するための応用例として、各波長帯に対応した複数の受光器が一直線上に並ぶように配置を決めて、アレイ化された受光器(PDアレイ)を使用することも有効である。このような構成を適用することにより、さらに低コストで簡略な構成の光増幅器を実現することが可能になる。   In the above example, the basic idea is to arrange the photoreceiver according to the focal length of the reflected light. On the other hand, the monitor is placed by deliberately placing the photoreceiver at a position shorter than the focal length. It is also possible to reduce the cost of the optical amplifier by reducing the size of the optical amplifier and reducing the number of light receivers. Specifically, with respect to the focal length f of the reflected light of each wavelength determined by the design parameter of the tilt / chirp type FBG, the position of the light receiver is brought closer to a point where the required wavelength resolution can be obtained than the focal length f. Thus, the wavelength resolution may be intentionally roughened to reduce the size of the optical amplifier and reduce the number of light receivers. Thus, the wavelength resolution of the monitor and the arrangement and number of light receivers can be arbitrarily designed according to the required performance of the optical amplifier. In addition, as an application example to simplify the assembly of the light receiving section, use an arrayed light receiver (PD array) that is arranged so that a plurality of light receivers corresponding to each wavelength band are aligned. It is also effective to do. By applying such a configuration, it is possible to realize an optical amplifier having a simple configuration at a lower cost.

上記のようにしてチルト・チャープ型FBGを用いたGEQ8の設計が行われた第2実施形態によれば、一般的なWDM用光増幅器に備えられているGEQを用いて、主信号光が伝搬する光ファイバF上にモニタ用の光分岐器等を挿入することなく、簡易な光回路構成のモニタ系を実現することができ、これにより、光増幅回路1で発生する雑音光Lのトータルパワーを高い精度でモニタすることが可能になると共に、各信号光波長に対応した光の出力パワーの波長特性もモニタすることが可能になる。これらのモニタ結果を用いて光増幅回路1の制御を行うことにより、例えば図9に示すように各波長の信号光パワーが所望のレベルで均一化された平坦な波長特性を有する光出力LOUTを安定して得ることができる。また、上記のGEQ8を利用したモニタ系は、基本的に、一般的なGEQについて信号帯域外に反射特性を付加したものに相当するため、GEQ本来の利得等化機能を損ねるようなこともない。さらに、信号帯域外の波長領域Δλに対するGEQ8の反射率は、信号帯域Δλの反射率に依存することなく、受光器3の性能等に応じて任意に設定することができるため、従来の光分岐器を用いたモニタ系に比べて大きなパワーの雑音光を受光して良好な精度で雑音光のモニタを行うことが可能になる。加えて、GEQ8に対する各受光器3,3〜3の配置に応じてモニタの波長分解能を変えることができるため、所要の性能に対して過不足のないモニタ機能を実現できるというフレキシブル性も有している。 According to the second embodiment in which the GEQ 8 is designed using the tilt-chirp FBG as described above, the main signal light is propagated using the GEQ provided in a general WDM optical amplifier. A monitoring system having a simple optical circuit configuration can be realized without inserting a monitoring optical branching device or the like on the optical fiber F to be transmitted. As a result, the total amount of noise light L N generated in the optical amplifier circuit 1 can be realized. The power can be monitored with high accuracy, and the wavelength characteristics of the output power of the light corresponding to each signal light wavelength can be monitored. By controlling the optical amplifier circuit 1 using these monitoring results, for example, as shown in FIG. 9, the optical output L OUT having a flat wavelength characteristic in which the signal light power of each wavelength is made uniform at a desired level. Can be obtained stably. Further, the monitor system using the GEQ 8 basically corresponds to a general GEQ having a reflection characteristic added outside the signal band, so that the original gain equalization function of the GEQ is not impaired. . Furthermore, since the reflectance of the GEQ 8 for the wavelength region Δλ N outside the signal band can be arbitrarily set according to the performance of the light receiver 3 N , etc., without depending on the reflectance of the signal band Δλ S. It is possible to monitor noise light with good accuracy by receiving noise light having a large power as compared with a monitor system using the optical branching device. In addition, since the wavelength resolution of the monitor can be changed in accordance with the arrangement of each of the light receivers 3 N and 3 1 to 3 M with respect to the GEQ 8, the flexibility that a monitor function can be realized without excess or deficiency with respect to the required performance. Also have.

また、第2実施形態の光増幅器においても、上述した第1実施形態の場合と同様に、上流の光増幅器でモニタされた雑音光Lのトータルパワーを下流の光増幅器に伝達して、下流の光増幅器での信号光入力断検出における雑音光補正を行うことや、受光器でモニタされる雑音光パワーを利用して光増幅器の発振動作を回避する制御を行うことも勿論可能である。 Also in the optical amplifier of the second embodiment, the total power of the noise light LN monitored by the upstream optical amplifier is transmitted to the downstream optical amplifier in the same way as in the first embodiment described above, and the downstream It is of course possible to perform noise light correction in the detection of signal light input interruption in the optical amplifier, and control to avoid the oscillation operation of the optical amplifier using the noise light power monitored by the light receiver.

なお、上記の第2実施形態では、チルト・チャープ型FBGを用いてGEQ8を構成する場合について詳しく説明したが、本発明はこれに限らず、例えば、非特許文献5:花泉修外2名,「多次元周期構造体を用いた波長選択性デバイス」,波長集積・操作フォトニクス−光スペクトル資源の極限利用に向けて−平成15年度公開シンポジウム,講演論文集p.85-88,平成16年1月21-22日,などに記載されているフォトニック結晶をFBGに代えて利用してチルト・チャープ型の回折格子を形成することも可能である。   In the second embodiment, the case where the GEQ 8 is configured using a tilt / chirp FBG has been described in detail. However, the present invention is not limited to this, and for example, Non-Patent Document 5: Two outside Shusen Izumi, "Wavelength-selective devices using multidimensional periodic structures", wavelength integration and manipulation photonics-Toward the ultimate use of optical spectrum resources-2003 Open Symposium, Proceedings, p.85-88, 20041 It is also possible to form a tilt-chirped diffraction grating by using photonic crystals described on Monday 21-22, etc. instead of FBG.

また、一般的なWDM用光増幅器に備えられているGEQについて光反射媒体としての機能を追加して雑音光パワー等のモニタを行うようにしたが、例えば、単一波長の信号光を増幅する光増幅器では、GEQの代わりに設けられる雑音光除去用の光フィルタについて、チルト型FBGを適用して光反射媒体としての機能を追加するようにしてもよい。   In addition, a function as a light reflection medium is added to a GEQ provided in a general WDM optical amplifier to monitor noise light power, etc., but, for example, a single wavelength signal light is amplified. In the optical amplifier, a function as a light reflection medium may be added by applying a tilt type FBG to an optical filter for removing noise light provided instead of the GEQ.

さらに、上記の第2実施形態では、信号帯域外の所定の波長領域Δλに存在する雑音光のモニタと、各信号光波長に対応した出力光の波長特性のモニタとを共通のGEQ8で同時に行うようにしたが、雑音光のモニタ機能を省略したチルト・チャープ型FBQを一般的なGEQに適用するようにしても本発明は有効である。この場合、従来の光分岐器等を用いた出力光のモニタ系に比べて簡易な光回路構成で出力光の波長特性をモニタすることが可能である。 Further, in the second embodiment, the monitoring of the noise light existing in the predetermined wavelength region Δλ N outside the signal band and the monitoring of the wavelength characteristic of the output light corresponding to each signal light wavelength are simultaneously performed by a common GEQ 8. However, the present invention is effective even when a tilt-chirp FBQ in which the noise light monitoring function is omitted is applied to a general GEQ. In this case, it is possible to monitor the wavelength characteristic of the output light with a simple optical circuit configuration as compared with the output light monitoring system using a conventional optical branching device or the like.

加えて、上記の第2実施形態では、GEQ8で反射され光ファイバFのコア外に放射された光を各受光器3,3〜3で直接受光する構成例を示したが、例えば、GEQ8と各受光器3,3〜3との間にレンズ媒体(具体例としては、ボールレンズ、非球面レンズ、シリンドリカルレンズ若しくはプリズムまたはこれらのレンズの組み合わせ等)を設けるようにして、各受光器3,3〜3に到達する反射光の集光性を向上させるようにしてもよい。また、モニタの波長分解能が許容範囲内であれば、GEQ8の形成された光ファイバFのクラッド外面に近接させて各受光器を配置するようにしても反射光の減衰を抑えることが可能である。 In addition, in the second embodiment, the configuration example in which the light reflected by the GEQ 8 and emitted outside the core of the optical fiber F is directly received by each of the light receivers 3 N and 3 1 to 3 M is shown. In addition, a lens medium (for example, a ball lens, an aspherical lens, a cylindrical lens or a prism, or a combination of these lenses) is provided between the GEQ 8 and each of the light receivers 3 N and 3 1 to 3 M. The light collecting property of the reflected light reaching each of the light receivers 3 N and 3 1 to 3 M may be improved. Further, if the wavelength resolution of the monitor is within an allowable range, it is possible to suppress the attenuation of reflected light even if each light receiver is arranged close to the outer surface of the clad of the optical fiber F on which the GEQ 8 is formed. .

次に、本発明の第3実施形態について説明する。
図10は、第3実施形態の光増幅器の構成を示すブロック図である。
図10において、第3実施形態の光増幅器は、分布ラマン増幅器(DRA)100およびエルビウム添加光ファイバ増幅器(EDFA)200を縦続接続した構成について本発明を適用した場合の具体例である。
Next, a third embodiment of the present invention will be described.
FIG. 10 is a block diagram showing the configuration of the optical amplifier according to the third embodiment.
In FIG. 10, the optical amplifier of the third embodiment is a specific example when the present invention is applied to a configuration in which a distributed Raman amplifier (DRA) 100 and an erbium-doped optical fiber amplifier (EDFA) 200 are connected in cascade.

前段のDRA100は、励起光源(LD)110で発生するラマン増幅用励起光LP1を光合波器111を介して入力側の伝送路(光増幅媒体)に供給することで、該伝送路を伝搬する信号光をラマン効果により増幅する。この伝送路における信号光のラマン増幅に伴って雑音光が発生し、その雑音光がラマン増幅された信号光と伴に光合波器111を通過してDRA用利得等化器(GEQ)120に入力される。なお、ここでは伝送路を光増幅媒体とする分布ラマン増幅器の一例を示したが、本発明はこれに限らず、例えば分散補償ファイバファイバ(DCF)などを光増幅媒体とし、それに励起光を注入して信号光をラマン増幅するDCFRA等を使用することも可能である。 DRA100 previous stage, by supplying the excitation light source (LD) transmission line 110 Raman amplification pumping light L P1 that generates through an optical multiplexer 111 on the input side (optical amplification medium), propagated through said transmission path Signal light to be amplified by the Raman effect. Noise light is generated along with the Raman amplification of the signal light in this transmission path, and the noise light passes through the optical multiplexer 111 together with the Raman amplified signal light to the DRA gain equalizer (GEQ) 120. Entered. Although an example of a distributed Raman amplifier having a transmission line as an optical amplification medium is shown here, the present invention is not limited to this. For example, a dispersion compensating fiber fiber (DCF) or the like is used as an optical amplification medium, and pumping light is injected therein. It is also possible to use DCFRA that Raman-amplifies the signal light.

DRA用GEQ120は、前述の第2実施形態におけるGEQ8と同様に、伝送路におけるラマン増幅の利得波長特性を平坦化する機能に加えて、信号帯域外の所定の波長領域に存在する雑音光および各信号光波長に対応した光を反射して光ファイバFのコア外に放射する機能を有する。DRA用GEQ120で反射されて光ファイバFのコア外に放射された各波長の光は、受光器(PD)130で受光されて各々のパワーが測定され、その測定結果に基づいてラマン増幅により発生する雑音光のトータルパワーおよびラマン増幅された各波長の信号光出力パワーの波長特性が演算回路140で演算される。演算回路140の演算結果は、励起光源110を制御するDRA制御回路170に伝えられると共に、後段のEDFA制御回路270にも伝えられる。また、DRA用GEQ120を通過して後段のEDFA200に入力される光の一部が光分岐器150でモニタ光LM1として分岐され、そのモニタ光LM1のパワーが受光器(PD)160で測定される。受光器160での測定結果は、DRA制御回路170およびEDFA制御回路270にそれぞれ伝えられる。 The DRA GEQ 120 is similar to the GEQ 8 in the second embodiment described above, in addition to the function of flattening the gain wavelength characteristic of Raman amplification in the transmission path, the noise light existing in a predetermined wavelength region outside the signal band, and each It has the function of reflecting light corresponding to the signal light wavelength and radiating it outside the core of the optical fiber F. The light of each wavelength reflected by the DRA GEQ 120 and radiated out of the core of the optical fiber F is received by the light receiver (PD) 130, and each power is measured, and generated by Raman amplification based on the measurement result. The calculation circuit 140 calculates the total power of the noise light and the wavelength characteristics of the signal light output power of each wavelength amplified by Raman amplification. The calculation result of the calculation circuit 140 is transmitted to the DRA control circuit 170 that controls the excitation light source 110 and is also transmitted to the EDFA control circuit 270 at the subsequent stage. A part of the light input to the subsequent EDFA200 through the DRA for GEQ120 is branched as a monitor light L M1 in the optical divider 150, the power of the monitor light L M1 is measured by the light receiver (PD) 160 Is done. The measurement result of the light receiver 160 is transmitted to the DRA control circuit 170 and the EDFA control circuit 270, respectively.

EDFA200は、励起光源(LD)210で発生する励起光LP2が光合波器211を介して供給される前段側のEDF212と、励起光源(LD)215で発生する励起光LP3が光合波器216を介して供給される後段側のEDF217とからなる2段構成を有し、EDF212,217の段間に出力レベル制御用の可変光減衰器(VOA)280を備えると共に、光合波器216後段の光ファイバF上にはEDFA用GEQ220および光分岐器250が設けられている。EDFA用GEQ220は、前述の第2実施形態におけるGEQ8と同様に、EDF212,217の全体における利得波長特性を平坦化する機能に加えて、信号帯域外の所定の波長領域に存在する雑音光および各信号光波長に対応した光を反射して光ファイバFのコア外に放射する機能を有する。EDFA用GEQ220で反射されて光ファイバFのコア外に放射された各波長の光は、受光器(PD)230で受光されて各々のパワーが測定され、その測定結果に基づいて各EDF212,217で発生する雑音光のトータルパワーおよび各EDF212,217で増幅された各波長の信号光出力パワーの波長特性が演算回路240で演算される。演算回路240の演算結果は、EDFA制御回路270に伝えられる。また、EDFA用GEQ220を通過した光の一部が光分岐器250でモニタ光LM2として分岐され、そのモニタ光LM2のパワーが受光器(PD)260で測定される。受光器260での測定結果は、EDFA制御回路270に伝えられる。EDFA制御回路270は、演算回路240および受光器160、260からの出力信号に基づいて、各励起光源210,215および可変光減衰器280をそれぞれ制御する。なお、図中のシステム監視制御回路300は、本光増幅器で増幅処理されるWDM光に含まれる信号光の波長数や波長配置等に関する信号光情報をDRA100およびEDFA200の各演算回路140,240に与えるものである。このシステム監視制御回路300からの信号光情報は、例えば、本光増幅器が用いられる光通信システムの運用状況(信号数や信号帯域等)の変化によりモニタ精度が劣化しないようにするために、各演算回路140,240で雑音光補正を行う際に参照される。 In the EDFA 200, the pump light L P2 generated by the pump light source (LD) 210 is supplied via the optical multiplexer 211, and the EDF 212 on the front stage side is supplied, and the pump light L P3 generated by the pump light source (LD) 215 is the optical multiplexer. The EDF 217 on the rear stage side supplied via the H.216 has a two-stage configuration, the variable optical attenuator (VOA) 280 for output level control is provided between the stages of the EDFs 212 and 217, and the rear stage of the optical multiplexer 216. On the optical fiber F, an EDFA GEQ 220 and an optical branching device 250 are provided. The EDFA GEQ 220 is similar to the GEQ 8 in the second embodiment described above, in addition to the function of flattening the gain wavelength characteristic of the entire EDF 212, 217, noise light existing in a predetermined wavelength region outside the signal band, and each It has the function of reflecting light corresponding to the signal light wavelength and radiating it outside the core of the optical fiber F. The light of each wavelength reflected by the EDFA GEQ 220 and radiated out of the core of the optical fiber F is received by the light receiver (PD) 230, and each power is measured, and each EDF 212, 217 is measured based on the measurement result. The calculation circuit 240 calculates the total power of the noise light generated in step S1 and the wavelength characteristics of the signal light output power of each wavelength amplified by the EDFs 212 and 217. The calculation result of the calculation circuit 240 is transmitted to the EDFA control circuit 270. Further, a portion of the light passing through the EDFA for GEQ220 is branched as a monitor light L M2 in the optical branching device 250, the power of the monitor light L M2 is measured by the light receiver (PD) 260. The measurement result at the light receiver 260 is transmitted to the EDFA control circuit 270. The EDFA control circuit 270 controls the excitation light sources 210 and 215 and the variable optical attenuator 280 based on the output signals from the arithmetic circuit 240 and the light receivers 160 and 260, respectively. Note that the system monitoring control circuit 300 in the figure sends signal light information relating to the number of wavelengths and wavelength arrangement of signal light included in the WDM light amplified by the optical amplifier to the arithmetic circuits 140 and 240 of the DRA 100 and the EDFA 200. To give. The signal light information from the system supervisory control circuit 300 includes, for example, each of the optical signals in order to prevent the monitor accuracy from deteriorating due to changes in the operation status (number of signals, signal band, etc.) of the optical communication system in which the present optical amplifier is used. Reference is made when noise light correction is performed by the arithmetic circuits 140 and 240.

上記のような構成を備えた本実施形態の光増幅器では、前段のDRA100において、DRA用GEQ120、受光器130および演算回路140によりモニタされる信号帯域のDRA出力パワーの波長特性を基に、ラマン増幅用励起光LP1の供給状態(例えば、複数の波長の励起光を伝送路に供給している場合の各波長の励起光パワーの比率など)がDRA制御回路170により制御されてDRAの利得波長特性が最適化される。これにより変化したDRA出力のトータルパワーは、光分岐器150および受光器160によるモニタ値を基にして、ラマン増幅用励起光LP1の供給パワー等を調整することで所望のレベルに制御される。また、演算回路140で求められたラマン増幅により発生する雑音光のトータルパワーに関する情報が、演算回路140からEDFA制御回路270に伝えられる。 In the optical amplifier of the present embodiment having the above-described configuration, in the previous DRA 100, the Raman characteristics are determined based on the wavelength characteristics of the DRA output power in the signal band monitored by the DRA GEQ 120, the light receiver 130, and the arithmetic circuit 140. The supply state of the amplifying pumping light L P1 (for example, the ratio of the pumping light power of each wavelength when pumping light of a plurality of wavelengths is supplied to the transmission line) is controlled by the DRA control circuit 170 to gain the DRA Wavelength characteristics are optimized. The total power of the DRA output thus changed is controlled to a desired level by adjusting the supply power of the Raman amplification pumping light L P1 and the like based on the monitor values by the optical branching device 150 and the light receiving device 160. . In addition, information regarding the total power of noise light generated by Raman amplification obtained by the arithmetic circuit 140 is transmitted from the arithmetic circuit 140 to the EDFA control circuit 270.

後段のEDFA200においては、EDFA用GEQ220、受光器230および演算回路240によりモニタされる、EDF212,217で発生する雑音光のトータルパワーおよび信号帯域の出力パワーの波長特性がEDFA制御回路270に伝えられると共に、光分岐器250および受光器260でモニタされる出力光LOUTのトータルパワーがEDFA制御回路270に伝えられる。そして、EDFA制御回路270では、EDF212,217で発生する雑音光だけでなく、前段のDRA100で発生した雑音光も加えて出力光LOUTについての雑音光補正が行われ、その結果に基づいて各励起光LP2,LP3の供給状態を調整することでEDFAの利得波長特性の制御が行われると共に、VOA280の減衰量を調整することで出力レベルの制御が行われる。また、EDFA制御回路270では、DRA100の演算回路140から伝えられる雑音光のトータルパワーを用いて、入力断検出のための閾値の雑音光補正が行われ、その閾値よりも受光器160のモニタ値が小さくなった場合に信号光の入力断を検出して、励起光源210,215等のシャットダウン制御が行われる。さらに、EDFA200が大きな利得係数を有する場合には、EDFA用GEQ220、受光器230および演算回路240により利得ピーク付近の波長領域の雑音光パワーをモニタするようにして、そのモニタ値が予め基準を設けておいた発振閾値を超えないように各励起光LP2,LP3のパワーが制御され、EDFA200の発振動作が回避される。 In the EDFA 200 at the subsequent stage, the wavelength characteristics of the total power of noise light generated by the EDFs 212 and 217 and the output power of the signal band monitored by the EDFA GEQ 220, the light receiver 230, and the arithmetic circuit 240 are transmitted to the EDFA control circuit 270. At the same time, the total power of the output light L OUT monitored by the optical splitter 250 and the optical receiver 260 is transmitted to the EDFA control circuit 270. Then, in the EDFA control circuit 270, not only the noise light generated in the EDFs 212 and 217 but also the noise light generated in the previous DRA 100 is added to perform the noise light correction on the output light L OUT , and based on the result, The gain wavelength characteristic of the EDFA is controlled by adjusting the supply state of the pumping lights L P2 and L P3 , and the output level is controlled by adjusting the attenuation amount of the VOA 280. Further, in the EDFA control circuit 270, the noise light correction of the threshold for detecting the input interruption is performed using the total power of the noise light transmitted from the arithmetic circuit 140 of the DRA 100, and the monitor value of the light receiver 160 is more than the threshold. Is detected, the shutdown of the excitation light sources 210 and 215 is controlled. Furthermore, when the EDFA 200 has a large gain coefficient, the noise light power in the wavelength region near the gain peak is monitored by the EDFA GEQ 220, the light receiver 230, and the arithmetic circuit 240, and the monitor value is set in advance as a reference. The power of each of the pumping lights L P2 and L P3 is controlled so as not to exceed the previously set oscillation threshold, and the oscillation operation of the EDFA 200 is avoided.

上記のように第3実施形態の光増幅器によれば、DRA100およびEDFA200でそれぞれ発生する雑音光並びにDRA100およびEDFA200の各出力パワーの波長特性を簡易な光回路構成により高い精度でモニタすることができ、そのモニタ結果に基づいてDRA100およびEDFA200の各種制御を行うことで、所望の出力レベルに制御された波長特性の平坦な信号光出力を安定して得ることができると同時に、雑音光の影響を受けることなく確実に入力シャットダウン制御を行うことが可能になる。   As described above, according to the optical amplifier of the third embodiment, noise light generated in the DRA 100 and the EDFA 200 and the wavelength characteristics of the output powers of the DRA 100 and the EDFA 200 can be monitored with high accuracy by a simple optical circuit configuration. By performing various controls of the DRA 100 and the EDFA 200 based on the monitoring results, a flat signal light output having a wavelength characteristic controlled to a desired output level can be stably obtained, and at the same time, the influence of noise light can be reduced. The input shutdown control can be surely performed without receiving it.

なお、上記の第3実施形態では、DRA100およびEDFA200を縦続接続した構成例を示したが、本発明の光増幅器の構成が上記の一例に限定されることを意味するものではなく、公知の構成の光増幅器に対して本発明のモニタ技術を適用することが可能である。   In the third embodiment, the configuration example in which the DRA 100 and the EDFA 200 are connected in cascade is shown. However, the configuration of the optical amplifier of the present invention is not limited to the above example, and a known configuration is used. It is possible to apply the monitoring technique of the present invention to this optical amplifier.

また、上述した第1〜第3実施形態では、光増幅器の内部に光反射媒体若しくは当該機能を付加したGEQ等の光フィルタを設けるようにしたが、本発明はこれに限らす、例えば図11に示すように、上流の光増幅器A1と下流の光増幅器A2の間を接続する伝送路上に光反射媒体2を配置し、その近傍に受光器3および演算回路4を設けて光モニタ回路を構成して、上流の光増幅器A1で発生する雑音光Lのパワーや信号光出力の波長特性などをモニタするようにしてもよい。このような光モニタ回路においても上述した各実施形態の場合と同様の効果を得ることが可能である。 In the first to third embodiments described above, an optical filter such as a light reflection medium or a GEQ to which the function is added is provided inside the optical amplifier. However, the present invention is not limited to this, for example, FIG. As shown in FIG. 2, the light reflection medium 2 is arranged on the transmission line connecting the upstream optical amplifier A1 and the downstream optical amplifier A2, and the optical receiver 3 and the arithmetic circuit 4 are provided in the vicinity thereof to constitute an optical monitor circuit. Then, the power of the noise light LN generated in the upstream optical amplifier A1 and the wavelength characteristics of the signal light output may be monitored. Even in such an optical monitor circuit, it is possible to obtain the same effect as in the above-described embodiments.

以上、本明細書で開示した主な発明について以下にまとめる。   The main inventions disclosed in this specification are summarized as follows.

(付記1)信号光を増幅する光増幅部と、
前記光増幅部に接続する光ファイバ上に配置され、前記光増幅部で発生する雑音光のうちで信号帯域外の所定の波長領域に存在する雑音光を反射して前記光ファイバのコア外に放射することが可能な光反射媒体と、
前記光反射媒体で反射されて前記光ファイバのコア外に放射される雑音光を受光してパワーを検出する受光部と、
前記受光部の検出結果に基づいて前記光増幅部で発生する雑音光のトータルパワーを演算する演算部と、
を備えて構成されたことを特徴とする光増幅器。
(Appendix 1) an optical amplifying unit for amplifying signal light;
Arranged on the optical fiber connected to the optical amplifying unit, out of the noise light generated in the optical amplifying unit, the noise light existing in a predetermined wavelength region outside the signal band is reflected to the outside of the core of the optical fiber A light reflecting medium capable of radiating;
A light receiving unit that receives noise light reflected by the light reflecting medium and radiated out of the core of the optical fiber, and detects power;
An arithmetic unit that calculates the total power of noise light generated in the optical amplification unit based on the detection result of the light receiving unit;
An optical amplifier characterized by comprising:

(付記2)付記1に記載の光増幅器であって、
前記光増幅部に接続する光ファイバ上に、予め設定した透過波長特性に従って信号光を透過する光フィルタデバイスを有するとき、該光フィルタデバイスに前記光反射媒体としての機能を具備させたことを特徴とする光増幅器。
(Appendix 2) The optical amplifier according to appendix 1,
When an optical filter device that transmits signal light according to a preset transmission wavelength characteristic is provided on an optical fiber connected to the optical amplification unit, the optical filter device is provided with a function as the light reflecting medium. An optical amplifier.

(付記3)付記2に記載の光増幅器であって、
前記光増幅部は、波長の異なる複数の信号光を含んだ波長多重光を増幅し、
前記光フィルタデバイスは、前記波長多重光の信号帯域について前記光増幅部の利得波長特性を平坦化することが可能な透過波長特性を有し、かつ、信号帯域外の所定の波長領域に存在する雑音光を反射して前記光ファイバのコア外に放射することが可能な反射特性を有する利得等化光フィルタであることを特徴とする光増幅器。
(Appendix 3) The optical amplifier according to appendix 2,
The optical amplification unit amplifies wavelength multiplexed light including a plurality of signal lights having different wavelengths,
The optical filter device has a transmission wavelength characteristic capable of flattening the gain wavelength characteristic of the optical amplifying unit with respect to the signal band of the wavelength multiplexed light, and exists in a predetermined wavelength region outside the signal band. An optical amplifier comprising a gain equalizing optical filter having a reflection characteristic capable of reflecting noise light and radiating it out of the core of the optical fiber.

(付記4)付記3に記載の光増幅器であって、
前記利得等化光フィルタは、前記各信号光の波長に対応した光を反射して前記光ファイバのコア外に放射することが可能な反射特性を有し、
前記受光部は、前記利得等化光フィルタで反射されて前記光ファイバのコア外に放射される雑音光を受光してパワーを検出する第1受光器と、前記利得等化光フィルタで反射されて前記光ファイバのコア外に放射される前記各信号光の波長に対応した光を受光してパワーを検出する少なくとも1つの第2受光器と、を有し、
前記演算部は、前記第1受光器の検出結果に基づいて前記光増幅部で発生する雑音光のトータルパワーを演算すると共に、前記第2受光器の検出結果に基づいて信号帯域の光パワーの波長特性を判断することを特徴とする光増幅器。
(Supplementary note 4) The optical amplifier according to supplementary note 3, wherein
The gain equalizing optical filter has a reflection characteristic capable of reflecting the light corresponding to the wavelength of each signal light and radiating it out of the core of the optical fiber,
The light receiving unit receives a noise light reflected from the gain equalizing optical filter and radiated out of the core of the optical fiber and detects power, and is reflected by the gain equalizing optical filter. And at least one second light receiver that detects light by receiving light corresponding to the wavelength of each signal light emitted outside the core of the optical fiber,
The calculation unit calculates the total power of noise light generated in the optical amplification unit based on the detection result of the first light receiver, and calculates the optical power of the signal band based on the detection result of the second light receiver. An optical amplifier characterized by determining wavelength characteristics.

(付記5)付記2に記載の光増幅器であって、
前記光増幅部は、単一波長の信号光を増幅し、
前記光フィルタデバイスは、前記信号光の波長を中心とする透過帯域を有し、かつ、該透過帯域外の所定の波長領域に存在する雑音光を反射して前記光ファイバのコア外に放射することが可能な反射特性を有する雑音光除去用光フィルタであることを特徴とする光増幅器。
(Appendix 5) The optical amplifier according to Appendix 2,
The optical amplification unit amplifies signal light having a single wavelength,
The optical filter device has a transmission band centered on the wavelength of the signal light, and reflects and emits noise light existing in a predetermined wavelength region outside the transmission band to the outside of the core of the optical fiber. An optical amplifier characterized by being an optical filter for removing noise light having a reflection characteristic capable of being reflected.

(付記6)付記1に記載の光増幅器であって、
前記光反射媒体は、前記光ファイバの軸方向に対して格子面の法線方向を傾けて配置した回折格子を有し、前記光ファイバを伝搬する光の一部を前記回折格子で反射して前記光ファイバのコア外に放射することを特徴とする光増幅器。
(Appendix 6) The optical amplifier according to appendix 1,
The light reflecting medium has a diffraction grating arranged with the normal direction of the grating plane inclined with respect to the axial direction of the optical fiber, and a part of the light propagating through the optical fiber is reflected by the diffraction grating. An optical amplifier that radiates out of the core of the optical fiber.

(付記7)付記6に記載の光増幅器であって、
前記光反射媒体は、前記光ファイバの軸方向に対して斜めにブラッグ回折格子を形成したチルト型ファイバグレーティングを有することを特徴とする光増幅器。
(Appendix 7) The optical amplifier according to appendix 6,
The optical amplifier includes a tilt type fiber grating in which a Bragg diffraction grating is formed obliquely with respect to the axial direction of the optical fiber.

(付記8)付記7に記載の光増幅器であって、
前記光反射媒体は、前記ブラッグ回折格子の格子間隔を前記光ファイバの軸方向に沿って徐々に変化させたチルト・チャープ型ファイバグレーティングを有することを特徴とする光増幅器。
(Supplementary note 8) The optical amplifier according to supplementary note 7,
The optical amplifier includes a tilt-chirped fiber grating in which a grating interval of the Bragg diffraction grating is gradually changed along an axial direction of the optical fiber.

(付記9)付記8に記載の光増幅器であって、
前記受光部は、前記光反射媒体で反射されて前記光ファイバのコア外に放射される光の焦点距離に応じた位置に配置されることを特徴とする光増幅器。
(Supplementary note 9) The optical amplifier according to supplementary note 8,
The optical amplifier, wherein the light receiving unit is arranged at a position corresponding to a focal length of light reflected by the light reflecting medium and emitted outside the core of the optical fiber.

(付記10)付記8に記載の光増幅器であって、
前記受光部は、前記光反射媒体で反射されて前記光ファイバのコア外に放射される光の焦点位置よりも前記光反射媒体側に配置されることを特徴とする光増幅器。
(Supplementary note 10) The optical amplifier according to supplementary note 8,
The optical amplifier according to claim 1, wherein the light receiving unit is disposed closer to the light reflecting medium than a focal position of light reflected by the light reflecting medium and emitted outside the core of the optical fiber.

(付記11)付記6に記載の光増幅器であって、
前記光反射媒体は、前記光ファイバ上にフォトニック結晶を配置して前記回折格子を形成したことを特徴とする光増幅器。
(Supplementary note 11) The optical amplifier according to supplementary note 6,
In the optical amplifier, the diffraction grating is formed by disposing a photonic crystal on the optical fiber.

(付記12)付記1に記載の光増幅器であって、
前記演算部で演算される雑音光のトータルパワーに基づいて、前記光増幅部の光出力パワーに含まれる雑音光パワーを補正することで信号光成分のみの光出力パワーを算出し、その算出結果に応じて前記光増幅部を制御する制御部を備えたことを特徴とする光増幅器。
(Supplementary note 12) The optical amplifier according to supplementary note 1, wherein
Based on the total power of the noise light calculated by the calculation unit, the optical output power of only the signal light component is calculated by correcting the noise light power included in the optical output power of the optical amplification unit, and the calculation result An optical amplifier comprising a control unit that controls the optical amplification unit according to

(付記13)付記1に記載の光増幅器であって、
前記演算部で演算される雑音光のトータルパワーを下流の光増幅器に伝え、該下流の光増幅器において、上流の光増幅器で発生する雑音光パワーをトータル出力光パワーから差し引いて算出した信号光のみの光パワーに基づいて信号光の入力断が検出されるようにしたことを特徴とする光増幅器。
(Supplementary note 13) The optical amplifier according to supplementary note 1, wherein
Only the signal light calculated by subtracting the noise light power generated in the upstream optical amplifier from the total output optical power in the downstream optical amplifier is transmitted to the downstream optical amplifier, and the total power of the noise light calculated in the calculation unit is transmitted. An optical amplifier characterized in that an input interruption of signal light is detected based on the optical power of.

(付記14)付記1に記載の光増幅器であって、
前記光反射媒体は、前記光増幅部の利得ピーク波長近傍の雑音光を反射して前記光ファイバのコア外に放射することが可能であり、
前記受光部で検出される前記利得ピーク波長近傍の雑音光パワーが予め設定した発振閾値よりも小さくなるように、前記光増幅部を制御する制御部を備えたことを特徴とする光増幅器。
(Supplementary note 14) The optical amplifier according to supplementary note 1, wherein
The light reflection medium is capable of reflecting noise light in the vicinity of the gain peak wavelength of the optical amplification unit and radiating it out of the core of the optical fiber,
An optical amplifier comprising: a control unit that controls the optical amplifying unit so that noise light power near the gain peak wavelength detected by the light receiving unit is smaller than a preset oscillation threshold value.

(付記15)付記1に記載の光増幅器であって、
前記光増幅部は、希土類添加ファイバ増幅器を含むことを特徴とする光増幅器。
(Supplementary note 15) The optical amplifier according to supplementary note 1, wherein
The optical amplifier includes a rare earth doped fiber amplifier.

(付記16)付記1に記載の光増幅器であって、
前記光増幅部は、光増幅媒体に励起光を注入して信号光をラマン増幅するラマン増幅器を含むことを特徴とする光増幅器。
(Supplementary note 16) The optical amplifier according to supplementary note 1, wherein
The optical amplifier includes a Raman amplifier that injects excitation light into an optical amplification medium to Raman-amplify signal light.

(付記17)付記1に記載の光増幅器であって、
前記光増幅部は、半導体光増幅器を含むことを特徴とする光増幅器。
(Supplementary note 17) The optical amplifier according to supplementary note 1, wherein
The optical amplifier includes a semiconductor optical amplifier.

(付記18)波長の異なる複数の光が伝搬する光ファイバ上に形成され、前記光ファイバの軸方向に対して格子面の法線方向を傾けて配置した回折格子を有し、前記光ファイバを伝搬する光のうちの第1波長帯域内の光に対する反射率と、前記第1波長帯域とは異なる第2波長帯域内の光に対する反射率とが相違するように、前記回折格子の反射特性が設計され、当該反射光を前記光ファイバのコア外に放射することが可能な光反射媒体と、
前記光反射媒体で反射され前記光ファイバのコア外に放射される前記第1波長帯域内の光を受光してパワーを検出する第1受光部と、
前記光反射媒体で反射され前記光ファイバのコア外に放射される前記第2波長帯域内の光を受光してパワーを検出する第2受光部と、
を備えて構成されたことを特徴とする光モニタ回路。
(Supplementary note 18) A diffraction grating is formed on an optical fiber through which a plurality of light beams having different wavelengths propagates, and is arranged with the normal direction of the grating plane inclined with respect to the axial direction of the optical fiber. The reflection characteristic of the diffraction grating is such that the reflectance of the propagating light with respect to the light within the first wavelength band differs from the reflectance with respect to the light in the second wavelength band different from the first wavelength band. A light reflection medium designed and capable of emitting the reflected light out of the core of the optical fiber;
A first light receiving unit that receives light in the first wavelength band reflected by the light reflecting medium and radiated out of the core of the optical fiber to detect power;
A second light receiving unit that receives light in the second wavelength band reflected by the light reflecting medium and radiated out of the core of the optical fiber to detect power;
An optical monitor circuit comprising:

(付記19)付記18に記載の光モニタ回路であって、
前記光ファイバを伝搬する光は、前記第1波長帯域内に信号光を含み、前記第2波長帯域内には雑音光のみが存在するものであり、
前記光反射媒体は、前記第1波長帯域内の光に対する反射率よりも前記第2波長帯域内の雑音光に対する反射率が高くなるように、前記回折格子の反射特性が設計されることを特徴とする光モニタ回路。
(Supplementary note 19) The optical monitor circuit according to supplementary note 18,
The light propagating through the optical fiber includes signal light in the first wavelength band, and only noise light exists in the second wavelength band,
The reflection characteristic of the diffraction grating is designed so that the light reflection medium has a higher reflectivity for noise light in the second wavelength band than a reflectivity for light in the first wavelength band. Optical monitor circuit.

(付記20)付記18に記載の光モニタ回路であって、
前記光反射媒体は、前記光ファイバの軸方向に対して斜めにブラッグ回折格子を形成したチルト型ファイバグレーティングを有することを特徴とする光モニタ回路。
(Supplementary note 20) The optical monitor circuit according to supplementary note 18,
The optical monitor circuit, wherein the light reflecting medium includes a tilt type fiber grating in which a Bragg diffraction grating is formed obliquely with respect to the axial direction of the optical fiber.

(付記21)付記20に記載の光モニタ回路であって、
前記光反射媒体は、前記ブラッグ回折格子の格子間隔を前記光ファイバの軸方向に沿って徐々に変化させたチルト・チャープ型ファイバグレーティングを有することを特徴とする光モニタ回路。
(Supplementary note 21) The optical monitor circuit according to supplementary note 20,
2. The optical monitor circuit according to claim 1, wherein the light reflecting medium includes a tilted and chirped fiber grating in which a grating interval of the Bragg diffraction grating is gradually changed along an axial direction of the optical fiber.

1…光増幅回路(AMP)
2…光反射媒体
3,3,3〜3,6…受光器(PD)
4…演算回路
5…光分岐器
7…制御回路
8…利得等化光フィルタ(GEQ)
F…光ファイバ
…信号光
…雑音光
,LRN,LR1〜LRM…反射光
Δλ…信号帯域
Δλ…信号帯域外の波長領域
100…分布ラマン増幅器(DRA)
200…エルビウム添加光ファイバ増幅器(EDFA)
1 ... Optical amplifier circuit (AMP)
2 ... Light reflection medium 3, 3 N , 3 1 to 3 M , 6 ... Light receiver (PD)
DESCRIPTION OF SYMBOLS 4 ... Arithmetic circuit 5 ... Optical branching device 7 ... Control circuit 8 ... Gain equalization optical filter (GEQ)
F ... Optical fiber L S ... Signal light L N ... Noise light L R , L RN , L R1 to L RM ... Reflected light Δλ S ... Signal band Δλ N ... Wavelength region outside signal band 100 ... Distributed Raman amplifier (DRA)
200: Erbium-doped fiber amplifier (EDFA)

Claims (1)

複数の信号光が波長多重されたWDM光を増幅する光増幅部と、
前記光増幅部の出力側に接続された光ファイバ上に配置され、該光ファイバの軸方向に対して斜めにブラッグ回折格子を形成し、かつ、該ブラッグ回折格子の格子間隔を前記光ファイバの軸方向に沿って徐々に変化させたチルト・チャープ型ファイバグレーティングを有し、前記WDM光の信号帯域について前記光増幅部の利得波長特性を平坦化することが可能な透過波長特性に従って前記WDM光の一部を透過しつつ、前記透過波長特性に応じて前記WDM光の一部を前記光ファイバのコア外に反射することが可能な光反射媒体と、
前記光反射媒体より前記光ファイバのコア外に反射される前記WDM光に含まれる前記複数の信号光を受光してパワーを検出する受光部と、
前記受光部で検出された前記複数の信号光のパワーおよび前記光反射媒体の透過波長特性を基に、前記光増幅部から出力され前記光反射媒体を透過したWDM光の波長特性を求める演算部と、
前記演算部で求められたWDM光の波長特性に基づいて前記光増幅部を制御する制御部と、を備えたことを特徴とする光増幅器。
An optical amplification unit that amplifies WDM light in which a plurality of signal lights are wavelength-multiplexed;
The optical fiber is disposed on an optical fiber connected to the output side of the optical amplifier, and forms a Bragg diffraction grating obliquely with respect to the axial direction of the optical fiber. The WDM light has a tilt-chirped fiber grating that is gradually changed along the axial direction, and the WDM light according to a transmission wavelength characteristic capable of flattening the gain wavelength characteristic of the optical amplification unit for the signal band of the WDM light. A light reflection medium capable of reflecting a part of the WDM light to the outside of the core of the optical fiber according to the transmission wavelength characteristic while transmitting a part of
A light receiving unit that detects the power by receiving the plurality of signal lights included in the WDM light reflected from the light reflection medium to the outside of the core of the optical fiber;
An arithmetic unit that obtains the wavelength characteristics of the WDM light output from the optical amplifying unit and transmitted through the light reflecting medium based on the power of the plurality of signal lights detected by the light receiving unit and the transmission wavelength characteristic of the light reflecting medium When,
An optical amplifier comprising: a control unit that controls the optical amplification unit based on a wavelength characteristic of WDM light obtained by the arithmetic unit.
JP2010102850A 2010-04-28 2010-04-28 Optical amplifier Expired - Fee Related JP5152248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010102850A JP5152248B2 (en) 2010-04-28 2010-04-28 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010102850A JP5152248B2 (en) 2010-04-28 2010-04-28 Optical amplifier

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008260112A Division JP2009065180A (en) 2008-10-06 2008-10-06 Light monitoring circuit

Publications (2)

Publication Number Publication Date
JP2010192929A true JP2010192929A (en) 2010-09-02
JP5152248B2 JP5152248B2 (en) 2013-02-27

Family

ID=42818552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010102850A Expired - Fee Related JP5152248B2 (en) 2010-04-28 2010-04-28 Optical amplifier

Country Status (1)

Country Link
JP (1) JP5152248B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068168A (en) * 2012-09-25 2014-04-17 Fujitsu Ltd Optical receiver, optical transmission system and span loss monitoring method
JP2020509432A (en) * 2017-02-21 2020-03-26 ファイセンス ゲーエムベーハー Apparatus for optical applications, spectrometer system, and method for manufacturing apparatus for optical applications

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132905A (en) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> Noise index monitoring device for linear repeater
JPH08330649A (en) * 1995-05-31 1996-12-13 Sumitomo Electric Ind Ltd Optical fiber amplifier
JPH1013345A (en) * 1996-06-27 1998-01-16 Sumitomo Electric Ind Ltd Wavelength multiplex optical signal monitoring device
JPH10133054A (en) * 1996-10-31 1998-05-22 Lucent Technol Inc Article that includes optical waveguide
JPH1168203A (en) * 1997-08-11 1999-03-09 Fujitsu Ltd Method and device for optical amplification, and system comprising the same
JP2000252923A (en) * 1999-03-02 2000-09-14 Fujitsu Ltd Optical amplifier for wavelength multiplexing and optical communication system
JP2003086875A (en) * 2001-09-11 2003-03-20 Sumitomo Osaka Cement Co Ltd Wavelength locker using fiber grating and optical communication system
JP2004056572A (en) * 2002-07-22 2004-02-19 Nec Corp Optical direct amplifier
JP2004070166A (en) * 2002-08-08 2004-03-04 Sumitomo Electric Ind Ltd Optical filter
US20040056183A1 (en) * 2002-09-24 2004-03-25 Eggleton Benjamin J. Wavelength monitoring optical fibers using detection in the near field

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06132905A (en) * 1992-10-21 1994-05-13 Nippon Telegr & Teleph Corp <Ntt> Noise index monitoring device for linear repeater
JPH08330649A (en) * 1995-05-31 1996-12-13 Sumitomo Electric Ind Ltd Optical fiber amplifier
JPH1013345A (en) * 1996-06-27 1998-01-16 Sumitomo Electric Ind Ltd Wavelength multiplex optical signal monitoring device
JPH10133054A (en) * 1996-10-31 1998-05-22 Lucent Technol Inc Article that includes optical waveguide
JPH1168203A (en) * 1997-08-11 1999-03-09 Fujitsu Ltd Method and device for optical amplification, and system comprising the same
JP2000252923A (en) * 1999-03-02 2000-09-14 Fujitsu Ltd Optical amplifier for wavelength multiplexing and optical communication system
JP2003086875A (en) * 2001-09-11 2003-03-20 Sumitomo Osaka Cement Co Ltd Wavelength locker using fiber grating and optical communication system
JP2004056572A (en) * 2002-07-22 2004-02-19 Nec Corp Optical direct amplifier
JP2004070166A (en) * 2002-08-08 2004-03-04 Sumitomo Electric Ind Ltd Optical filter
US20040056183A1 (en) * 2002-09-24 2004-03-25 Eggleton Benjamin J. Wavelength monitoring optical fibers using detection in the near field

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014068168A (en) * 2012-09-25 2014-04-17 Fujitsu Ltd Optical receiver, optical transmission system and span loss monitoring method
JP2020509432A (en) * 2017-02-21 2020-03-26 ファイセンス ゲーエムベーハー Apparatus for optical applications, spectrometer system, and method for manufacturing apparatus for optical applications
JP7042285B2 (en) 2017-02-21 2022-03-25 ファイセンス ゲーエムベーハー Equipment for Optical Applications, Spectrometer Systems, and Methods for Manufacturing Equipment for Optical Applications

Also Published As

Publication number Publication date
JP5152248B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
JP4425740B2 (en) Optical amplifier
JP3452768B2 (en) Method and apparatus for optical amplification and system with the same
US6775055B2 (en) Raman amplifier
US20010046083A1 (en) Raman amplifier, optical repeater, and raman amplification method
EP1569020B1 (en) Optical multiplexing method and optical multiplexer, and optical amplifier using the same
EP1309113A2 (en) Optical transmission link including raman amplifier
JP3848327B2 (en) Optical device having loss compensation function and optical amplifier for loss compensation
US8390923B2 (en) Optical amplifier and optical amplification method
EP1130712A2 (en) Optical amplifier monitor using a blazed grating
JP5152248B2 (en) Optical amplifier
US6424457B1 (en) Optical amplifiers and methods for manufacturing optical amplifiers
JP2009065180A (en) Light monitoring circuit
JP4337545B2 (en) Optical communication system
JP2011018944A (en) Gain flattening by two-stage erbium-based amplifier
JP5353582B2 (en) Optical amplifier
US8514484B2 (en) Optical amplifier and optical fiber
EP1206016A1 (en) Temperature-stabilized optical amplifier and method for temperature-stabilizing an optical amplifier
WO2013145142A1 (en) Dispersion compensator
US20050078357A1 (en) Optical amplifier and optical communication system including the same
JP5839092B2 (en) Optical amplification device and optical amplification medium
Chang Distributed Raman Amplification over SMF-28 Optical Fiber
JP2003234525A (en) Optical amplifying device and system including the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees