[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010192497A - Gold alloy thin wire for bonding and method of manufacturing the same - Google Patents

Gold alloy thin wire for bonding and method of manufacturing the same Download PDF

Info

Publication number
JP2010192497A
JP2010192497A JP2009032260A JP2009032260A JP2010192497A JP 2010192497 A JP2010192497 A JP 2010192497A JP 2009032260 A JP2009032260 A JP 2009032260A JP 2009032260 A JP2009032260 A JP 2009032260A JP 2010192497 A JP2010192497 A JP 2010192497A
Authority
JP
Japan
Prior art keywords
mass
bonding
gold alloy
wire
fine wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009032260A
Other languages
Japanese (ja)
Inventor
Masao Naito
雅夫 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009032260A priority Critical patent/JP2010192497A/en
Publication of JP2010192497A publication Critical patent/JP2010192497A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • H01L2224/48511Heat affected zone [HAZ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01064Gadolinium [Gd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a very thin wire for bonding which is stable, being suppressed for wire bending or leaning, and allowing electrode pads bonding with interval of ≤60 μm, with no special inspection or additional selection. <P>SOLUTION: Gold alloy thin wire for bonding contains Cu by 0.01-2.0 mass%, Pd by 0.01-1.0 mass%, at least one kind from among Zn, Al, Ga, In, Tl, Ge, and Sn by 0.0001-0.002 mass%, and at least one kind from among Ca, Be, Mg, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd by 0.0001-0.01 mass%, with remaining portion consisting of Au whose purity is 99.99 mass% or higher and inevitable impurities. In its manufacturing method, continuous molding is performed under the condition in which an interface relative movement speed between melt and solidified portion is 20 mm/min or faster. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体素子上のチップ電極と外部リードとの電気的接続に代表されるボンディング用金合金細線に関するものである。   The present invention relates to a gold alloy fine wire for bonding typified by electrical connection between a chip electrode on a semiconductor element and an external lead.

ボンディング用金合金細線はIC,LSIなどの半導体素子上の電極パッドと外部端子とを電気的にボンディングするために使用され、0.02〜0.03mmの直径を有するものが代表的である。
ボンディング作業の概略を説明すると、ワイヤーボンダー上でキャピラリーと呼ばれるセラミックス製の冶具に挿通された細線をまずスパーク放電によりボールに形成し、電極パッドに超音波と熱を併用して接合させ、キャピラリーを所定の動作のもとに外部端子まで移動させ、超音波と熱を併用して外部端子上で接合させることにより遂行している。
The gold alloy thin wire for bonding is used for electrically bonding an electrode pad on a semiconductor element such as an IC or LSI and an external terminal, and typically has a diameter of 0.02 to 0.03 mm.
To explain the outline of the bonding operation, a thin wire inserted into a ceramic jig called a capillary on a wire bonder is first formed into a ball by spark discharge, and is joined to an electrode pad using ultrasonic waves and heat together. This is accomplished by moving to an external terminal under a predetermined operation and joining on the external terminal using both ultrasonic waves and heat.

近年半導体実装の高密度化のニーズが高まりつつあり、それに伴いボンディング用細線に対する要求として、電極パッド間隔の縮小による線径低下を補うための細線自体の高強度化,電極パット近傍でのワイヤー倒れ(以降、リーニングと呼ぶ。)及び接合強度の確保、接続距離増大にともなう直進性の確保等があり、その要求レベルも電極パッド間隔が狭くなるほど厳しくなる傾向にある。
これらの要求に応えるために、Cu,Pd並びにCa等を添加した金合金細線が開示されている(例えば、特許文献1、特許文献2参照。)。
特許文献1に開示された技術では、CuとPdを複合添加することによりボール形成時の表面酸化の抑制,高強度で接合強度の向上,優れた直進性を発揮できるとしている。
一方特許文献2に開示された技術では、CuとCaの共存下における著しい高強度化及びPdの添加によるボール形成時の熱影響部の微細化が報告されている。
In recent years, there is a growing need for high-density semiconductor packaging, and as a result, the demand for fine wires for bonding increases the strength of the fine wires themselves to compensate for the decrease in wire diameter due to the reduction in electrode pad spacing, and wire collapses near the electrode pads (Hereinafter referred to as “leaning”) and securing of joining strength, securing of straightness as the connection distance increases, and the required level tends to become stricter as the electrode pad interval becomes narrower.
In order to meet these requirements, gold alloy thin wires added with Cu, Pd, Ca, and the like have been disclosed (see, for example, Patent Document 1 and Patent Document 2).
According to the technique disclosed in Patent Document 1, Cu and Pd are added together to suppress surface oxidation during ball formation, to improve bonding strength with high strength, and to exhibit excellent straightness.
On the other hand, in the technique disclosed in Patent Document 2, it has been reported that the strength is significantly increased in the coexistence of Cu and Ca and the heat-affected zone at the time of ball formation is reduced by the addition of Pd.

特開平8−199261号公報JP-A-8-199261 特開平9−198917号公報JP-A-9-198917

ところで、電極パッド間隔が60μm以下、想定されるボンディング用極細線の線径が25μm以下となると、今までは問題視されなかった10数μm程度のワイヤー曲がり、リーニングでもショートする危険性があり、ワイヤー曲がりやリーニングを防止する必要が出てきた。しかしながら、上記特許文献に開示された技術では、製造上のばらつきにより上記ワイヤー曲がり、リーニング等ルーピング性に総称される特性が顧客要求レベルを満たさない極細線が少なからず発生し、改善が必要となってきた。
そこで本発明の目的は特別な検査,選別を追加することなく、得られたボンディング用極細線が安定してワイヤー曲がりやリーニングが抑制され、60μm以下の電極パッド間隔ボンディングが可能となる極細線を提供することにある。
By the way, when the electrode pad spacing is 60 μm or less, and the expected wire diameter of the bonding fine wire is 25 μm or less, there is a risk that the wire bends of about a few dozen μm, which has not been regarded as a problem until now, and even during the leaning, There is a need to prevent wire bending and leaning. However, in the technique disclosed in the above-mentioned patent document, there are not a few ultra-thin wires that have characteristics that are collectively referred to as looping properties such as wire bending and leaning due to manufacturing variations, and need improvement. I came.
Therefore, an object of the present invention is to provide an extra fine wire that can be bonded with an electrode pad spacing of 60 μm or less, with the obtained extra fine wire for bonding stably suppressing wire bending and leaning without adding special inspection and sorting. It is to provide.

上記課題を解決するために本発明のボンディング用金合金細線は、Cuを0.01〜2.0質量%、Pdを0.01〜1.0質量%、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群から少なくとも1種以上を0.0001〜0.002質量%、及びCa,Be,Mg,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gdからなる元素群から少なくとも1種以上を0.0001〜0.01質量%とをそれぞれ含有し、残部が純度99.99質量%以上のAu及び不可避的不純物からなるボンディング用金合金細線とした。   In order to solve the above problems, the gold alloy wire for bonding according to the present invention has Cu of 0.01 to 2.0 mass%, Pd of 0.01 to 1.0 mass%, Zn, Al, Ga, In, and Tl. 0.0001 to 0.002 mass% of at least one element from the element group consisting of, Ge, Sn, and Ca, Be, Mg, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd A gold alloy fine wire for bonding comprising at least one element from the element group and 0.0001 to 0.01% by mass of Au, with the balance being Au having a purity of 99.99% by mass or more and inevitable impurities.

本発明のボンディング用金合金細線においては、Pdの含有量aと、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群の総含有量bの比が、at%で表した時に
a/b≦5000
であることが好ましい。
In the thin gold alloy wire for bonding according to the present invention, when the ratio of the Pd content a and the total content b of the element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is expressed in at%. a / b ≦ 5000
It is preferable that

また、このようなボンディング用金合金細線を得るために、本発明のボンディング用金合金細線の製造方法は、純度99.99質量%以上のAuと所定の添加合金元素とを溶解した後連続鋳造する際に、冷却時の溶湯と凝固部分の界面の相対移動速度を20mm/分以上の冷却条件で鋳造する製造方法を採用した。   Further, in order to obtain such a gold alloy thin wire for bonding, the method for producing a gold alloy thin wire for bonding according to the present invention comprises a continuous casting after melting Au having a purity of 99.99 mass% or more and a predetermined additive alloy element. In this case, a manufacturing method was adopted in which the relative moving speed of the interface between the molten metal and the solidified portion during cooling was cast under cooling conditions of 20 mm / min or more.

本発明により電極パッド間隔が60μm以下の高密度化に対応して、ルーピング性が良好であり、かつパッド電極とボールの接合性やパッドに亀裂を発生させないボンディング用金合金細線を提供することが可能となる。従って半導体素子の小型化,高密度化を達成される。   According to the present invention, it is possible to provide a gold alloy fine wire for bonding which has good looping property and does not cause cracks in the pad electrode and the ball, and does not generate cracks, corresponding to the high density of electrode pad spacing of 60 μm or less. It becomes possible. Therefore, miniaturization and high density of the semiconductor element can be achieved.

ボンディング後のボンディング用金合金細線を示す側面図である。It is a side view which shows the gold alloy fine wire for bonding after bonding.

製造上のばらつきによりルーピング性のばらつきが発生してしまう原因を追求した結果、特許文献1及び特許文献2よりもさらに限定された組成の極細金線において、比較的高濃度で添加されるPd及びCuのうち、Auよりも約500℃融点の高いPdがミクロ的には偏析し、微少な濃度のばらつきを起こしていると推測した。さらに調査した結果、このルーピング性のばらつきを抑制するためにはPd及びCuとの共存下において、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群から少なくとも1種類以上の元素と、Ca,Be,Mg,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gdからなる元素群から少なくとも1種以上とを添加すればよいことを見出し、本発明に至った。   As a result of pursuing the cause of variations in looping properties due to manufacturing variations, Pd added at a relatively high concentration in ultrafine gold wires having a composition more limited than those in Patent Document 1 and Patent Document 2 It was speculated that Pd having a melting point of about 500 ° C. higher than that of Au was segregated microscopically and caused a slight concentration variation. As a result of further investigation, in order to suppress this variation in looping property, at least one element selected from the group of elements consisting of Zn, Al, Ga, In, Tl, Ge, and Sn in the coexistence with Pd and Cu. , Ca, Be, Mg, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd have been found to be added, and the present invention has been found.

本発明のボンディング用金合金細線の組成限定理由を説明する。
Cuの含有量については、電極パッド間隔の更なる縮小化にともなうワイヤーボンダーの改良や封止樹脂の改良により、0.01質量%以上有ればPdとの共存下においてボール形成時の表面酸化の抑制,高強度で接合強度の向上,優れた直進性を発揮する等の効果を発揮することが判明した。機械的特性を向上させるためには下限は0.015質量%以上が好ましく、特に0.1質量%以上が好ましい。
Pdの含有量については、極細線の表面酸化の防止,表面が清浄で真球に近いボールの形成,ボールの結晶粒径の微細化,接合強度の向上等の効果が見られるためには、0.01質量%以上必要だからである。また、上限は接合強度のばらつき,ボール硬度の増大を抑制する観点から1.0質量%とした。
The reason for limiting the composition of the gold alloy thin wire for bonding according to the present invention will be described.
As for the Cu content, surface oxidation during ball formation in the presence of Pd in the presence of 0.01% by mass due to improvements in wire bonder and sealing resin due to further reduction in electrode pad spacing. It has been proved that it exhibits such effects as suppression of adhesion, improved strength at high strength, and excellent straightness. In order to improve mechanical properties, the lower limit is preferably 0.015% by mass or more, and particularly preferably 0.1% by mass or more.
As for the Pd content, in order to see effects such as prevention of surface oxidation of ultrafine wires, formation of balls that are clean and close to true spheres, refinement of the crystal grain size of balls, and improvement of bonding strength, It is because 0.01 mass% or more is required. The upper limit was set to 1.0% by mass from the viewpoint of suppressing variation in bonding strength and increase in ball hardness.

Pd及びCuとの共存下においてルーピング性のばらつきを抑制するためには、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群から少なくとも1種類以上の元素の添加が有効である。
Zn,Al,Ga,In,Tl,Ge,Snからなる元素群の添加量は、0.0001質量%未満ではルーピング性のばらつきを抑える効果が乏しい。これらの元素群の添加量が増えれば上記効果のほかに、ボール形成時の真球度が低下し狭パッド間隔ボンディング時に隣接パッド上のボールと接触する危険性が増したり、接合強度のばらつきが生じる等の悪影響を及ぼすことが分かっている。電極パッド間隔が100μmかそれ以上の場合はこれらの元素群の上限は0.01質量%であったが、本発明が解決すべき課題としているのは電極パッド間隔が60μm以下の領域である。電極パッド間隔が狭くなるほど、当然隣接するボールの間隔も狭くなり、かつ接合面積も小さくなるため以前よりも厳しい条件となる。発明者による調査の結果、これら元素群の上限を0.002質量%とすれば60μm以下の電極パッドピッチでも不具合を生じないことが判明した。よってこれらZn,Al,Ga,In,Tl,Ge,Snからなる元素群の添加量は合計でも0.0001〜0.002質量%とした。
Addition of at least one element from an element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is effective for suppressing variation in looping properties in the presence of Pd and Cu.
If the amount of the element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is less than 0.0001% by mass, the effect of suppressing variation in looping properties is poor. In addition to the above effects, the added amount of these element groups decreases the sphericity at the time of ball formation, increases the risk of contact with the ball on the adjacent pad at the time of narrow pad spacing bonding, and causes variations in bonding strength. It has been found to have adverse effects such as occurring. When the electrode pad interval is 100 μm or more, the upper limit of these element groups was 0.01% by mass. However, the problem to be solved by the present invention is the region where the electrode pad interval is 60 μm or less. As the electrode pad interval becomes narrower, naturally, the interval between adjacent balls also becomes narrower and the bonding area becomes smaller. As a result of the investigation by the inventor, it has been found that if the upper limit of these element groups is 0.002% by mass, no defect occurs even at an electrode pad pitch of 60 μm or less. Therefore, the addition amount of the element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is set to 0.0001 to 0.002% by mass in total.

当然のことながらZn,Al,Ga,In,Tl,Ge,Snからなる元素群の含有量がPd含有量と比較して少なければ、Pd濃度の微少なばらつきによって生じていると推察されるルーピング性の向上効果が減少してしまうことは容易に類推される。従って望むべくはPd含有量aとし、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群の含有量bとしたときに、aとbの比がat%で表した時にa/b≦5000とするのが良い。   As a matter of course, if the content of the element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is small as compared with the Pd content, the looping is assumed to be caused by a slight variation in the Pd concentration. It can be easily inferred that the effect of improving the property is reduced. Therefore, if desired, the Pd content is a, and the content of the element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is b. When the ratio of a to b is expressed as at%, a / It is preferable that b ≦ 5000.

Ca,Be,Mg,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gdからなる元素群の含有量は、0.0001質量%未満では接合強度を向上させる効果が十分ではなく、0.01質量%を超えるとボールの真球度が低下して接合強度のばらつきが増大したり、ボール硬度が高くなりすぎ半導体素子に亀裂を発生させる場合があるので、その範囲を0.0001〜0.01質量%とした。   If the content of the element group consisting of Ca, Be, Mg, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd is less than 0.0001% by mass, the effect of improving the bonding strength is not sufficient. If it exceeds 0.01% by mass, the sphericity of the ball will decrease and the dispersion of bonding strength will increase, or the ball hardness will become too high and cracks may occur in the semiconductor element. It was set to -0.01 mass%.

これらの添加元素のうち、特にMg,Y,Laは他のCa,Be,Ce,Pr,Nd,Pm,Sm,Eu,Gdよりも同一添加量でもボールの硬度が低い傾向があるため、特に好ましい元素である。   Among these additive elements, especially Mg, Y, and La tend to have lower ball hardness even with the same addition amount than other Ca, Be, Ce, Pr, Nd, Pm, Sm, Eu, and Gd. Preferred element.

ルーピング性のばらつきを抑えるためにはその原因がPd濃度の微少なばらつきにあると推察されるため、添加元素の制御だけでなく製造方法にも注意を払うのが望ましい。
すなわち、金合金細線中にPd原子を微細均一に分散させるためには、鋳造時の凝固速度、つまりインゴットの冷却速度が極めて重要となる。冷却速度が遅いと成分の偏析が生じやすく、鋳造組織も粗大化し易くなるからである。
一般に、ボンディングワイヤー用の金合金の凝固点は1060℃前後であり、合金溶湯は1150〜1400℃程度で保持されている。ボンディングワイヤー用の金合金インゴットは所望の合金溶湯を鋳型に注湯し、鋳型を下方から上部へと除令する一方向凝固鋳造法、あるいは合金溶湯を鋳型内で凝固させながら引き抜いていく連続鋳造法で製造される。連続鋳造法は一方向凝固と比較して溶湯の冷却速度が速いこと、後に続く圧延・線引き工程が容易となることから重用されている。
連続鋳造法における凝固時の冷却速度の正確な実測は極めて困難であるが、インゴットサイズと鋳造装置が定まれば熱容量が決まり、シミュレーション計算により凝固時の冷却速度を推測することが可能である。その結果に基づいてインゴットの引き抜き速度を調節することにより、経験的にインゴットの鋳造組織を制御することができる。
In order to suppress the variation in the looping property, it is assumed that the cause is a slight variation in the Pd concentration. Therefore, it is desirable to pay attention not only to the control of the additive element but also to the manufacturing method.
That is, in order to finely and uniformly disperse the Pd atoms in the gold alloy fine wire, the solidification rate during casting, that is, the cooling rate of the ingot is extremely important. This is because when the cooling rate is low, segregation of components tends to occur, and the cast structure tends to become coarse.
Generally, the freezing point of the gold alloy for bonding wires is around 1060 ° C., and the molten alloy is held at about 1150 to 1400 ° C. Gold alloy ingots for bonding wires are cast by pouring the desired molten alloy into the mold and then removing the mold from the bottom to the top, or by continuous casting in which the molten alloy is drawn while solidifying in the mold. Manufactured by the law. The continuous casting method is used because the cooling rate of the molten metal is faster than that of the unidirectional solidification, and the subsequent rolling / drawing process becomes easy.
Although it is extremely difficult to accurately measure the cooling rate during solidification in the continuous casting method, if the ingot size and casting apparatus are determined, the heat capacity is determined, and the cooling rate during solidification can be estimated by simulation calculation. By adjusting the drawing speed of the ingot based on the result, the cast structure of the ingot can be controlled empirically.

例えば、100mmの黒鉛鋳型に水冷ジャケットを接触させて冷却を行い直径10mmの金合金インゴットを連続鋳造法で使用する場合、溶湯と凝固部分の界面の相対移動速度を20mm/分以上とすることで添加元素を均一に分散させることができる。
相対移動速度が20mm/分未満では、凝固時に固体−液体間の組成に差異を生じ、後から凝固する部分にPdが濃縮される傾向にある。相対移動速度が20mm/分以上の速度で急冷すれば偏析に依る障害は起こらないが、あまり急激に移動させると未凝固部分を生じるので、実用的には300mm/分程度が限度である。
For example, when a gold alloy ingot having a diameter of 10 mm is used in a continuous casting method by bringing a water-cooled jacket into contact with a 100 mm graphite mold, the relative moving speed of the interface between the molten metal and the solidified portion is set to 20 mm / min or more. The additive element can be uniformly dispersed.
When the relative moving speed is less than 20 mm / min, there is a difference in the composition between the solid and the liquid at the time of solidification, and Pd tends to be concentrated in the portion that solidifies later. If the relative moving speed is rapidly cooled at a speed of 20 mm / min or more, no problem due to segregation occurs. However, if it is moved too rapidly, an unsolidified portion is generated, and practically about 300 mm / min is the limit.

(実施例1〜14,比較例1〜5)
高純度金にPd,Cu,Ca及びGe,Al,Sn,Mg,La,Ceから選ばれた元素を、表1に示すそれぞれの濃度となるように添加して溶湯と凝固部分の界面の相対移動速度を15mm/分の条件で溶解・鋳造し、順次縮径伸線加工と途中焼鈍を実施して最終線径を20μmとした。
その後常温での伸び率が4.0〜4.5%となるように最終焼鈍を行い、所定のスプールに巻取り、ボンディング用金合金細線を得た。
得られたボンディング用金合金細線と株式会社新川社製UTC−1000とを用いて以下の4評価を行った。
(Examples 1-14, Comparative Examples 1-5)
An element selected from Pd, Cu, Ca and Ge, Al, Sn, Mg, La, and Ce is added to high-purity gold so as to have the respective concentrations shown in Table 1, and the relative relationship between the molten metal and the solidified portion interface. Melting and casting were performed at a moving speed of 15 mm / min, and diameter reduction drawing and annealing were performed sequentially to make the final wire diameter 20 μm.
Thereafter, final annealing was performed so that the elongation at normal temperature was 4.0 to 4.5%, and the film was wound on a predetermined spool to obtain a thin gold alloy wire for bonding.
The following four evaluations were performed using the obtained gold alloy fine wire for bonding and UTC-1000 manufactured by Shinkawa Co., Ltd.

(1)ボール硬度評価:
ボール径38μmとなる条件でボールを作製し、その硬度を測定した。
(2)リーニング評価:
ループ長5.0mm,間隔を50μm,ループ高さ300μmの条件で平行に5000本ボンディングを行い、図1に示す通りループ上部の間隔が40μm以下をリーニング不良と判定した。
評価実施後500mワイヤーを巻ほぐし、再度同一条件でボンディングを行い、同一の判定基準でリーニング不良を判定し、この一連の評価を合計5回繰り返し、5回のリーニング不良率の平均値とその標準偏差を求めた。
(3)電極パッドとボールの接合力評価:
Al−0.5%Cuでメタライズされた開口部45μmの電極パッド上に、ボール径38μm,接合時のボール径42μmとなる条件で10000本ボンディングを行い、接合不良が発生する率を評価した。この条件は電極パッド間隔を48〜50μmと想定したものである。
(4)パッドダメージ評価:
上記(2)と同じ条件でボンディングを行い、パッドに亀裂が発生する率を評価した。
これらの結果を表1に合わせて示す。
(1) Ball hardness evaluation:
Balls were produced under the condition of a ball diameter of 38 μm, and the hardness was measured.
(2) Leaning evaluation:
Bonding of 5000 wires was performed in parallel under the conditions of a loop length of 5.0 mm, an interval of 50 μm, and a loop height of 300 μm. As shown in FIG.
After conducting the evaluation, unwind the 500m wire, perform bonding again under the same conditions, determine the leaning failure based on the same criteria, repeat this series of evaluations a total of 5 times, and the average value and standard of the 5 times of the failure rate Deviation was determined.
(3) Evaluation of bonding force between electrode pad and ball:
On the electrode pad having an opening of 45 μm metallized with Al-0.5% Cu, 10,000 bondings were performed under the conditions of a ball diameter of 38 μm and a ball diameter of 42 μm at the time of bonding, and the rate of occurrence of bonding failure was evaluated. This condition assumes that the electrode pad interval is 48 to 50 μm.
(4) Pad damage evaluation:
Bonding was performed under the same conditions as in (2) above, and the rate at which cracks occurred in the pads was evaluated.
These results are also shown in Table 1.

Figure 2010192497
Figure 2010192497

本発明の範囲内である実施例1〜14は、5回評価のリーニング不良の平均が0.12〜0.18%,標準偏差が0.02〜0.06%であり、電極パッドとボールの接合不良及びパッドダメージの発生は見られなかったのに対し、Zn,Al,Ga,In,Tl,Ge,Snからなる元素のいずれをも添加していない比較例1及び2は、5回評価のリーニング不良の標準偏差がそれぞれ0.22,0.34%と高く、平均値もそれぞれ0.32,0.30%と高くなった。
すなわちリーニング不良発生率にばらつきがあり、一部にリーニング不良発生率の高い試料が含まれていることを示した。
比較例3はCuが添加されていないため電極パッドとボールの接合不良が発生し、比較例4はPdの添加量が本発明の範囲外でありパッドとボールの接合不良及びパッドダメージの発生が見られ、比較例5はGeの添加量が本発明の範囲外でありパッドとボールの接合不良が発生した。
また実施例1と2及び実施例9と10はLaとCeどちらを添加したかの違いであるが、Laを添加したほうがCeを添加したよりもボール硬度は小さい。同じく実施例7と8及び実施例11と12はCaとMg合計の添加量及び他元素の添加量は同一であるが、Mgの有無が異なっている。Caの一部をMgに置換えた実施例の方がMgを添加していないよりもボール硬度は小さい。
In Examples 1 to 14 within the scope of the present invention, the average of the five-time leaning failures was 0.12 to 0.18% and the standard deviation was 0.02 to 0.06%. In Comparative Examples 1 and 2 in which none of the elements consisting of Zn, Al, Ga, In, Tl, Ge, and Sn were added, the bonding failure and the pad damage were not observed. The standard deviations of leaning evaluation defects were as high as 0.22 and 0.34%, respectively, and the average values were as high as 0.32 and 0.30%, respectively.
That is, there was variation in the occurrence rate of leaning defects, and it was shown that some samples with a high occurrence rate of leaning defects were included.
In Comparative Example 3, since Cu was not added, poor bonding between the electrode pad and the ball occurred. In Comparative Example 4, the amount of Pd added was outside the range of the present invention, and defective bonding between the pad and the ball and occurrence of pad damage occurred. As can be seen, in Comparative Example 5, the addition amount of Ge was outside the range of the present invention, and defective bonding between the pad and the ball occurred.
Further, Examples 1 and 2 and Examples 9 and 10 are different in which La or Ce is added, but the ball hardness is smaller when La is added than when Ce is added. Similarly, Examples 7 and 8 and Examples 11 and 12 have the same addition amount of Ca and Mg and the addition amount of other elements, but the presence or absence of Mg is different. In the example in which a part of Ca is replaced with Mg, the ball hardness is smaller than when no Mg is added.

実施例15、実施例16について表1に示す添加元素を高純度金に添加して、先の実施例1〜14と同一の評価を行った。なお結果を比較しやすくするために、表1の前述の実施例14のデータも参照されたい。表1において上から実施例14、実施例15、実施例16の順にPd(at%)/Sn(at%)の値は大きくなるが、この値が大きくなるに従いリーニング不良の平均,標準偏差が高くなる傾向にある。その値が11000である実施例16では標準偏差が0.13%と高い値を示し、リーニング不良の発生率が高く不安定になるものの、接合不良やパッドダメッジ不良は認められなかった。   About Example 15 and Example 16, the addition element shown in Table 1 was added to high purity gold, and the same evaluation as previous Examples 1-14 was performed. In order to facilitate the comparison of the results, refer to the data of Example 14 described above in Table 1. In Table 1, the values of Pd (at%) / Sn (at%) increase in the order of Example 14, Example 15, and Example 16 from the top. As this value increases, the mean and standard deviation of the leaning defects increase. It tends to be higher. In Example 16, whose value was 11000, the standard deviation was as high as 0.13%, and although the occurrence rate of leaning failure was high and unstable, no bonding failure or pad damage failure was observed.

実施例17について高純度金に表1に示す添加元素を添加して、溶解を溶湯と凝固部分の界面の相対移動速度を120mm/分とした連続鋳造で行い、先の実施例1〜14と同一の評価を行った。評価結果は表1に併記した。なお結果を比較しやすくするために、前述の実施例8のデータも参照されたい。
実施例8と実施例17は、溶解・鋳造時に溶湯と凝固部分の界面相対移動速度が20mm/分以上の製造条件で行ったか否かの違いであるが、この界面相対移動速度が20mm/分以上の製造条件で製造した実施例17は、明らかに実施例8よりも良好なリーニング不良率を示した。
For Example 17, the additive elements shown in Table 1 were added to high-purity gold, and dissolution was performed by continuous casting with a relative moving speed of the interface between the molten metal and the solidified part being 120 mm / min. The same evaluation was performed. The evaluation results are also shown in Table 1. In addition, in order to make it easy to compare the results, see the data of Example 8 described above.
Example 8 and Example 17 are the difference in whether the relative movement speed of the interface between the molten metal and the solidified part is 20 mm / min or more at the time of melting / casting. The relative movement speed of the interface is 20 mm / min. Example 17 manufactured under the above manufacturing conditions clearly showed a better leaning defect rate than Example 8.

1 ボンディング用金合金細線
1a,1b ループ上部
2 ボール
3 ボール直上部
4 半導体素子
DESCRIPTION OF SYMBOLS 1 Gold alloy thin wire for bonding 1a, 1b Upper part of loop 2 Ball 3 Upper part of ball 4 Semiconductor element

Claims (5)

Cuを0.01〜2.0質量%、Pdを0.01〜1.0質量%、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群から少なくとも1種以上を合計で0.0001〜0.002質量%、及びCa,Be,Mg,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gdからなる元素群から少なくとも1種以上を合計で0.0001〜0.01質量%とをそれぞれ含有し、残部が純度99.99質量%以上のAu及び不可避的不純物からなることを特徴とするボンディング用金合金細線。   Cu is 0.01 to 2.0% by mass, Pd is 0.01 to 1.0% by mass, and at least one element selected from the group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is 0 in total. 0.0001 to 0.002% by mass and at least one element from the group consisting of Ca, Be, Mg, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd A gold alloy fine wire for bonding, characterized by comprising 0.01% by mass of each and the balance consisting of Au having a purity of 99.99% by mass or more and inevitable impurities. Pdの含有量aと、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群の総含有量bの比がat%で表した時に
a/b≦5000
であることを特徴とする請求項1に記載のボンディング用金合金細線。
When the ratio of the Pd content a and the total content b of the element group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is expressed in at%, a / b ≦ 5000
The gold alloy fine wire for bonding according to claim 1, wherein:
純度99.99質量%以上のAuと所定の添加合金元素とを溶解して連続鋳造する際に、冷却時の溶湯と凝固部分の界面の相対移動速度を20mm/分以上の冷却条件で鋳造することを特徴とする請求項1または2に記載のボンディング用金合金細線の製造方法。   When continuous casting by melting 99.99 mass% or more of Au and a predetermined additive alloy element, casting is performed under a cooling condition in which the relative moving speed of the interface between the molten metal and the solidified portion during cooling is 20 mm / min or more. The method for producing a gold alloy fine wire for bonding according to claim 1 or 2. Cuを0.01〜2.0質量%、Pdを0.01〜1.0質量%、Zn,Al,Ga,In,Tl,Ge,Snからなる元素群から少なくとも1種以上を合計で0.0001〜0.002質量%、及びMg,Y,Laからなる元素群から少なくとも1種以上を合計で0.0001〜0.01質量%とをそれぞれ含有し、残部が純度99.99質量%以上のAu及び不可避的不純物からなることを特徴とするボンディング用金合金細線。   Cu is 0.01 to 2.0% by mass, Pd is 0.01 to 1.0% by mass, and at least one element selected from the group consisting of Zn, Al, Ga, In, Tl, Ge, and Sn is 0 in total. 0.0001 to 0.002 mass%, and at least one element from the element group consisting of Mg, Y, and La in total 0.0001 to 0.01 mass%, with the balance being 99.99 mass% in balance. A gold alloy fine wire for bonding comprising the above Au and inevitable impurities. 純度99.99質量%以上のAuと所定の添加合金元素とを溶解して連続鋳造する際に、冷却時の溶湯と凝固部分の界面の相対移動速度を20mm/分以上の冷却条件で鋳造することを特徴とする請求項4に記載のボンディング用金合金細線の製造方法。   When continuous casting by melting 99.99 mass% or more of Au and a predetermined additive alloy element, casting is performed under a cooling condition in which the relative moving speed of the interface between the molten metal and the solidified portion during cooling is 20 mm / min or more. The manufacturing method of the gold alloy fine wire for bonding according to claim 4 characterized by things.
JP2009032260A 2009-02-16 2009-02-16 Gold alloy thin wire for bonding and method of manufacturing the same Withdrawn JP2010192497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032260A JP2010192497A (en) 2009-02-16 2009-02-16 Gold alloy thin wire for bonding and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032260A JP2010192497A (en) 2009-02-16 2009-02-16 Gold alloy thin wire for bonding and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010192497A true JP2010192497A (en) 2010-09-02

Family

ID=42818252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032260A Withdrawn JP2010192497A (en) 2009-02-16 2009-02-16 Gold alloy thin wire for bonding and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010192497A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117512A1 (en) * 2011-03-01 2012-09-07 田中電子工業株式会社 BONDING WIRE OF GOLD (Au) ALLOY
RU2528924C1 (en) * 2013-12-12 2014-09-20 Юлия Алексеевна Щепочкина Jewellery alloy
CN114318045A (en) * 2021-12-31 2022-04-12 广东佳博电子科技有限公司 Fine bonding gold wire for enhancing crystal grain adhesion and preparation method thereof
CN116705745A (en) * 2023-08-04 2023-09-05 烟台一诺电子材料有限公司 Bond alloy wire and production process thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117512A1 (en) * 2011-03-01 2012-09-07 田中電子工業株式会社 BONDING WIRE OF GOLD (Au) ALLOY
TWI448568B (en) * 2011-03-01 2014-08-11 Tanaka Electronics Ind Gold (Au) alloy bonding wire
RU2528924C1 (en) * 2013-12-12 2014-09-20 Юлия Алексеевна Щепочкина Jewellery alloy
CN114318045A (en) * 2021-12-31 2022-04-12 广东佳博电子科技有限公司 Fine bonding gold wire for enhancing crystal grain adhesion and preparation method thereof
CN116705745A (en) * 2023-08-04 2023-09-05 烟台一诺电子材料有限公司 Bond alloy wire and production process thereof
CN116705745B (en) * 2023-08-04 2023-10-13 烟台一诺电子材料有限公司 Bond alloy wire and production process thereof

Similar Documents

Publication Publication Date Title
KR102090548B1 (en) Solder alloy
JP5246314B2 (en) Copper alloy bonding wire for semiconductors
JP2008085320A (en) Copper alloy bonding wire for semiconductor device
WO2010005086A1 (en) Bonding structure of bonding wire
JP4705078B2 (en) Copper alloy bonding wire for semiconductor devices
JP2010192497A (en) Gold alloy thin wire for bonding and method of manufacturing the same
JP5010495B2 (en) Gold wire for semiconductor element connection
JPH0964082A (en) Gold alloy fine bonding wire and its manufacture
WO2015041018A1 (en) Bi GROUP SOLDER ALLOY, METHOD FOR BONDING ELECTRONIC PART USING SAME, AND ELECTRONIC PART MOUNTING SUBSTRATE
JP5403702B2 (en) Copper bonding wire
JP2922388B2 (en) Gold alloy fine wire for bonding
JP2015098046A (en) Bi-BASE SOLDER ALLOY, AND BONDING METHOD OF ELECTRONIC PART AND ELECTRONIC PART MOUNTING SUBSTRATE USING THE SAME
JP4941065B2 (en) Manufacturing method of bonding wire base material and bonding wire
JP3810200B2 (en) Gold alloy wire for wire bonding
CN111656501A (en) Bonding wire
JP2005138113A (en) Method for casting ingot for bonding wire and bonding wire produced by using the method
KR100273702B1 (en) Process for preparing gold alloy wire for bonding
JP2830520B2 (en) Method of manufacturing bonding wire for semiconductor device
JP3426399B2 (en) Gold alloy fine wire for semiconductor devices
JP3747023B2 (en) Gold bonding wire for semiconductor
JP3059314B2 (en) Gold alloy fine wire for bonding
JPH06145842A (en) Bonding gold alloy thin wire
JP3639662B2 (en) Gold alloy fine wire for semiconductor devices
JP6136807B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board
JP6136853B2 (en) Bi-based solder alloy, method for manufacturing the same, electronic component bonding method using the same, and electronic component mounting board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111124

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120315