JP2010175903A - Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system - Google Patents
Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system Download PDFInfo
- Publication number
- JP2010175903A JP2010175903A JP2009019335A JP2009019335A JP2010175903A JP 2010175903 A JP2010175903 A JP 2010175903A JP 2009019335 A JP2009019335 A JP 2009019335A JP 2009019335 A JP2009019335 A JP 2009019335A JP 2010175903 A JP2010175903 A JP 2010175903A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- optical system
- object side
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
本発明は、変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法に関する。 The present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。 Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).
しかしながら、従来の変倍光学系よりも、より良い光学性能が求められている。 However, better optical performance is required than conventional variable power optical systems.
本発明はこのような課題に鑑みてなされたものであり、良好な光学性能を達成することができる変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法を提供することを目的とする。 The present invention has been made in view of such problems, and a variable magnification optical system capable of achieving good optical performance, an optical apparatus having the variable magnification optical system, and a method of manufacturing the variable magnification optical system The purpose is to provide.
前記課題を解決するため、本発明の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する後群と、を有し、第2レンズ群は、少なくとも1つ以上の正レンズと、正レンズのうち最も屈折力の大きい正レンズの物体側に隣接して配置される負レンズと、を有し、第2レンズ群の最も像側のレンズ面は、非球面形状である。そして、広角端状態から望遠端状態まで変倍する際に、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と後群との間隔が変化し、無限遠から近距離物点への合焦に際して、第2レンズ群が光軸上を移動し、第2レンズ群内の負レンズの物体側の面の曲率半径をr1とし、当該負レンズの像側の面の曲率半径をr2とし、広角端状態における全系の焦点距離をfwとし、第2レンズ群の焦点距離をf2としたとき、次式
0.80 < (r2+r1)/(r2−r1) < 3.50
0.50 < (−f2)/fw < 0.90
の条件を満足する。
In order to solve the above-described problem, the variable magnification optical system of the present invention has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. And the second lens group includes at least one positive lens and a negative lens disposed adjacent to the object side of the positive lens having the largest refractive power among the positive lenses. And the most image side lens surface of the second lens unit has an aspherical shape. When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, the distance between the second lens group and the rear group changes, and the distance from infinity to a short distance When focusing on an object point, the second lens unit moves on the optical axis, the radius of curvature of the object side surface of the negative lens in the second lens unit is r1, and the curvature of the image side surface of the negative lens is When the radius is r2, the focal length of the entire system in the wide-angle end state is fw, and the focal length of the second lens group is f2, the following formula 0.80 <(r2 + r1) / (r2-r1) <3.50
0.50 <(− f2) / fw <0.90
Satisfy the conditions.
このような変倍光学系は、無限遠から近距離物点への合焦に際して、第2レンズ群が光軸上を移動することが好ましい。 In such a variable magnification optical system, it is preferable that the second lens group moves on the optical axis when focusing from infinity to a short-distance object point.
また、このような変倍光学系において、後群は、物体側から順に、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群と、を有することが好ましい。 In such a variable magnification optical system, the rear group has, in order from the object side, a third lens group having a positive refractive power, a fourth lens group having a negative refractive power, and a positive refractive power. And a fifth lens group.
または、このような変倍光学系において、後群は、物体側から順に、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有することが好ましい。 Alternatively, in such a variable magnification optical system, it is preferable that the rear group includes, in order from the object side, a third lens group having a positive refractive power and a fourth lens group having a positive refractive power.
また、このような変倍光学系において、第2レンズ群の最も像側のレンズ面は、非球面形状であることが好ましい。 In such a variable magnification optical system, it is preferable that the most image side lens surface of the second lens group has an aspherical shape.
また、このような変倍光学系は、第1レンズ群の焦点距離をf1とし、第4レンズ群の焦点距離をf4としたとき、次式
2.00 < f1/|f4| < 6.00
の条件を満足することが好ましい。
Further, in such a variable magnification optical system, when the focal length of the first lens group is f1 and the focal length of the fourth lens group is f4, the following expression 2.00 <f1 / | f4 | <6.00
It is preferable to satisfy the following conditions.
また、このような変倍光学系において、後群の一部は、光軸と略垂直方向の成分を持つように移動することが好ましい。 In such a variable magnification optical system, it is preferable that a part of the rear group moves so as to have a component in a direction substantially perpendicular to the optical axis.
また、このような変倍光学系において、第4レンズ群の少なくとも一部は、光軸と略垂直方向の成分を持つように移動することが好ましい。 In such a variable magnification optical system, it is preferable that at least a part of the fourth lens group moves so as to have a component in a direction substantially perpendicular to the optical axis.
また、このような変倍光学系において、第2レンズ群の最も物体側のレンズ面は、非球面形状であることが好ましい。 In such a variable magnification optical system, it is preferable that the most object side lens surface of the second lens group has an aspherical shape.
また、このような変倍光学系は、広角端状態から望遠端状態まで変倍する際に、第1レンズ群と第2レンズ群との間隔は増大し、第2レンズ群と後群との間隔は減少することが好ましい。 Further, in such a variable magnification optical system, when changing the magnification from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is increased, and the second lens group and the rear group are separated from each other. The spacing is preferably reduced.
また、本発明に係る光学機器は、物体の像を所定の像面上に結像させる上述の変倍光学系のいずれかを有して構成される。 An optical apparatus according to the present invention includes any one of the above-described variable magnification optical systems that forms an image of an object on a predetermined image plane.
また、本発明に係る変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する後群と、を有する変倍光学系の製造方法であって、少なくとも1つ以上の正レンズと、正レンズのうち最も屈折力の大きい正レンズの物体側に隣接する負レンズと、を第2レンズ群に配置し、第2レンズ群の最も像側のレンズ面は、非球面形状に形成し、広角端状態から望遠端状態まで変倍する際に、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と後群との間隔が変化するように配置し、第2レンズ群内の負レンズの物体側の面の曲率半径をr1とし、当該負レンズの像側の面の曲率半径をr2とし、広角端状態における全系の焦点距離をfwとし、第2レンズ群の焦点距離をf2としたとき、次式
0.80 < (r2+r1)/(r2−r1) < 3.50
0.50 < (−f2)/fw < 0.90
の条件を満足するように配置する。
The variable magnification optical system manufacturing method according to the present invention has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A variable magnification optical system having a rear group, comprising: at least one positive lens; and a negative lens adjacent to the object side of the positive lens having the largest refractive power among the positive lenses. The lens surface disposed in the lens group, the most image-side lens surface of the second lens group is formed in an aspheric shape, and when zooming from the wide-angle end state to the telephoto end state, the first lens group and the second lens group The distance between the second lens group and the rear group is changed so that the radius of curvature of the object side surface of the negative lens in the second lens group is r1, and the image side of the negative lens The radius of curvature of the surface of the second lens group is r2, the focal length of the entire system in the wide-angle end state is fw, and the second lens group When the focal length was set to f2, the following formula 0.80 <(r2 + r1) / (r2-r1) <3.50
0.50 <(− f2) / fw <0.90
Arrange to satisfy the conditions of
本発明に係る変倍光学系、この変倍光学系を有する光学機器、及び、変倍光学系の製造方法を以上のように構成すると、良好な光学性能を達成することができる。 When the variable magnification optical system according to the present invention, the optical apparatus having the variable magnification optical system, and the method for manufacturing the variable magnification optical system are configured as described above, good optical performance can be achieved.
以下、本願の好ましい実施形態について図面を参照して説明する。図1に示すように、本変倍光学系ZLは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する後群GRと、を有して構成される。第2レンズ群G2は、少なくとも1つ以上の正レンズと、これらの正レンズのうち最も屈折力の大きい正レンズの物体側に隣接して配置される負レンズと、を有して構成される。このような構成により、鏡筒の小型化と変倍時の球面収差等の収差変動の良好な補正とが可能となる。 Hereinafter, preferred embodiments of the present application will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power. And a rear group GR. The second lens group G2 includes at least one positive lens and a negative lens arranged adjacent to the object side of the positive lens having the largest refractive power among these positive lenses. . With such a configuration, it is possible to reduce the size of the lens barrel and to satisfactorily correct aberration fluctuations such as spherical aberration during zooming.
また、本変倍光学系ZLにおいて、第2レンズ群G2の最も像側のレンズ面は、非球面形状であることが望ましい。この構成により、望遠端状態における球面収差を良好に補正することができる。 In the variable magnification optical system ZL, the most image side lens surface of the second lens group G2 is preferably aspheric. With this configuration, spherical aberration in the telephoto end state can be corrected well.
それでは、このような変倍光学系ZLを構成するための条件について説明する。まず、この変倍光学系ZLは、第2レンズ群G2内の負レンズの物体側の面の曲率半径をr1とし、当該負レンズの像側の面の曲率半径をr2とし、広角端状態における全系の焦点距離をfwとし、第2レンズ群G2の焦点距離をf2としたとき、以下に示す条件式(1)及び(2)を満足することが望ましい。 Now, conditions for constructing such a variable magnification optical system ZL will be described. First, in this variable magnification optical system ZL, the radius of curvature of the object side surface of the negative lens in the second lens group G2 is r1, and the radius of curvature of the image side surface of the negative lens is r2. When the focal length of the entire system is fw and the focal length of the second lens group G2 is f2, it is desirable to satisfy the following conditional expressions (1) and (2).
0.80 < (r2+r1)/(r2−r1) < 3.50 (1)
0.50 < (−f2)/fw < 0.90 (2)
0.80 <(r2 + r1) / (r2-r1) <3.50 (1)
0.50 <(− f2) / fw <0.90 (2)
条件式(1)は、第2レンズ群G2内の最も屈折力の大きい正レンズの物体側に隣接する負レンズの形状を規定するための条件式である。本変倍光学系ZLは、この条件式(1)を満足することで良好な光学性能を実現することができる。条件式(1)の上限値を上回ると、負レンズの物体側レンズ面の曲率半径が大きくなり、広角端状態におけるコマ収差を補正することが困難になるため好ましくない。なお、本願の効果を確実にするために、条件式(1)の上限値を3.00にすることが好ましい。反対に、条件式(1)の下限値を下回ると、負レンズの物体側レンズ面の曲率半径が小さくなり、望遠端状態における球面収差の補正が困難になると共に、負レンズと正レンズの間隔の製造誤差の影響が大きくなるため好ましくない。なお、本願の効果を確実にするために、条件式(1)の下限値を0.90にすることが好ましい。 Conditional expression (1) is a conditional expression for defining the shape of the negative lens adjacent to the object side of the positive lens having the largest refractive power in the second lens group G2. The present variable magnification optical system ZL can realize good optical performance by satisfying the conditional expression (1). Exceeding the upper limit of conditional expression (1) is not preferable because the radius of curvature of the object-side lens surface of the negative lens increases and it becomes difficult to correct coma in the wide-angle end state. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (1) to 3.00. On the other hand, if the lower limit value of conditional expression (1) is not reached, the radius of curvature of the object side lens surface of the negative lens becomes small, making it difficult to correct spherical aberration in the telephoto end state, and the distance between the negative lens and the positive lens. This is not preferable because the influence of the manufacturing error increases. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (1) to 0.90.
条件式(2)は、第2レンズ群G2の焦点距離f2と広角端状態における全系の焦点距離fwとの比を規定するための条件式である。本変倍光学系ZLは、この条件式(2)を満足することで良好な光学性能と所定の変倍比を実現することができる。条件式(2)の上限値を上回ると、第2レンズ群G2の屈折力が弱くなり、所定の変倍比を得るために他のレンズ群の屈折力を強くすることになり、球面収差や像面湾曲が劣化するため好ましくない。なお、本願の効果を確実にするために、条件式(2)の上限値を0.85にすることが好ましい。反対に、条件式(2)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、望遠端状態における球面収差とコマ収差との補正が困難になるため好ましくない。なお、本願の効果を確実にするために、条件式(2)の下限値を0.60にすることが好ましい。 Conditional expression (2) is a conditional expression for defining the ratio between the focal length f2 of the second lens group G2 and the focal length fw of the entire system in the wide-angle end state. The present zoom optical system ZL can realize good optical performance and a predetermined zoom ratio by satisfying the conditional expression (2). If the upper limit value of conditional expression (2) is exceeded, the refractive power of the second lens group G2 will be weak, and the refractive power of other lens groups will be strengthened in order to obtain a predetermined zoom ratio. This is not preferable because field curvature deteriorates. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (2) to 0.85. On the other hand, if the lower limit of conditional expression (2) is not reached, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct spherical aberration and coma in the telephoto end state, which is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (2) to 0.60.
また、本変倍光学系ZLは、無限遠から近距離物点への合焦に際して、第2レンズ群G2の少なくとも一部が光軸上を移動するよう構成することが望ましい。このような構成により、鏡筒の小型化と合焦時の球面収差等の収差変動の良好な補正とが可能となる。 In addition, it is desirable that the variable magnification optical system ZL is configured such that at least a part of the second lens group G2 moves on the optical axis when focusing from infinity to a short-distance object point. With this configuration, it is possible to reduce the size of the lens barrel and correct aberration variations such as spherical aberration during focusing.
また、本変倍光学系ZLは、広角端状態から望遠端状態まで変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と後群GRとの間隔は減少することが好ましい。この構成により、球面収差と像面湾曲との変動を効果的に補正しつつ、所定の変倍比を確保することができる。 Further, when the zooming optical system ZL zooms from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases, and the second lens group G2 and the rear group The distance from the GR is preferably reduced. With this configuration, it is possible to ensure a predetermined zoom ratio while effectively correcting variations between spherical aberration and field curvature.
また、本変倍光学系ZLにおいて、後群GRは、物体側から順に、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5と、を有することが望ましい。この構成により、球面収差と像面湾曲との変動を効果的に補正しつつ、所定の変倍比を確保することができる。 In the variable magnification optical system ZL, the rear group GR includes, in order from the object side, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a negative refractive power, and a positive refractive power. And a fifth lens group G5. With this configuration, it is possible to ensure a predetermined zoom ratio while effectively correcting variations between spherical aberration and field curvature.
また、本変倍光学系ZLにおいて、後群GRは、物体側から順に、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、を有することが好ましい。この構成により、球面収差と像面湾曲との変動を効果的に補正しつつ、所定の変倍比を確保することができる。 In the variable magnification optical system ZL, the rear group GR includes, in order from the object side, a third lens group G3 having a positive refractive power and a fourth lens group G4 having a positive refractive power. preferable. With this configuration, it is possible to ensure a predetermined zoom ratio while effectively correcting variations between spherical aberration and field curvature.
また、本変倍光学系ZLは、第1レンズ群G1の焦点距離をf1とし、第4レンズ群G4の焦点距離をf4としたとき、以下に示す条件式(3)を満足することが望ましい。 In the zoom optical system ZL, it is preferable that the following conditional expression (3) is satisfied when the focal length of the first lens group G1 is f1 and the focal length of the fourth lens group G4 is f4. .
2.00 < f1/|f4| < 6.00 (3) 2.00 <f1 / | f4 | <6.00 (3)
条件式(3)は、第1レンズ群G1の焦点距離f1に対する第4レンズ群G4の焦点距離f4を規定するための条件式である。本変倍光学系ZLは、この条件式(3)を満足することで像ブレ補正時の光学性能の確保しつつ、所定の変倍比を確保することができる。条件式(3)の上限値を上回ると、第4レンズ群G4の屈折力が強くなり、像ブレ補正時の像面湾曲の変動と、偏芯コマ収差の変動を同時に補正することが困難になるため好ましくない。なお、本願の効果を確実にするために、条件式(3)の上限値を5.54にすることが好ましい。反対に、条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、望遠端状態における球面収差の補正が困難となる。また、広角端状態における倍率色収差の劣化も顕著となるため好ましくない。なお、本願の効果を確実にするために、条件式(3)の下限値を3.55にすることが好ましい。 Conditional expression (3) is a conditional expression for defining the focal length f4 of the fourth lens group G4 with respect to the focal length f1 of the first lens group G1. By satisfying the conditional expression (3), the zooming optical system ZL can secure a predetermined zooming ratio while securing optical performance during image blur correction. If the upper limit value of conditional expression (3) is exceeded, the refractive power of the fourth lens group G4 becomes strong, making it difficult to simultaneously correct fluctuations in field curvature and decentration coma during correction of image blur. Therefore, it is not preferable. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (3) to 5.54. On the other hand, if the lower limit of conditional expression (3) is not reached, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct spherical aberration in the telephoto end state. Further, the deterioration of lateral chromatic aberration in the wide-angle end state becomes remarkable, which is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (3) to 3.55.
また、本変倍光学系ZLにおいて、後群GRの一部は、光軸と略垂直方向の成分を持つように移動することが好ましい。この構成により、像ブレ補正時の像面湾曲の変動と、偏芯コマ収差の変動とを同時に補正することができる。 In the variable magnification optical system ZL, it is preferable that a part of the rear group GR moves so as to have a component substantially perpendicular to the optical axis. With this configuration, it is possible to simultaneously correct fluctuations in curvature of field during image blur correction and fluctuations in eccentric coma.
また、本変倍光学系ZLにおいて、第4レンズ群G4の少なくとも一部は、光軸と略垂直方向の成分を持つように移動することが好ましい。この構成により、鏡筒を小型化しつつ、像ブレ補正時の像面湾曲の変動と、偏芯コマ収差の変動とを同時に補正することができる。 In the zoom optical system ZL, it is preferable that at least a part of the fourth lens group G4 moves so as to have a component substantially perpendicular to the optical axis. With this configuration, it is possible to simultaneously correct the fluctuations in the curvature of field during the image blur correction and the fluctuations in the eccentric coma aberration while reducing the size of the lens barrel.
また、本変倍光学系ZLにおいて、第2レンズ群G2の最も物体側のレンズ面は、非球面形状であることが好ましい。この構成により、広角端状態における像面湾曲と歪曲収差とを良好に補正することができる。 In the zoom optical system ZL, it is preferable that the most object side lens surface of the second lens group G2 has an aspherical shape. With this configuration, it is possible to satisfactorily correct field curvature and distortion in the wide-angle end state.
図13に、上述の変倍光学系ZLを備える光学機器として、デジタル一眼レフカメラ1(以後、単にカメラと記す)の略断面図を示す。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2(変倍光学系ZL)で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。
FIG. 13 shows a schematic cross-sectional view of a digital single-lens reflex camera 1 (hereinafter simply referred to as a camera) as an optical apparatus including the above-described variable magnification optical system ZL. In this
また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ2で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による物体(被写体)の撮影を行うことができる。なお、図13に記載のカメラ1は、変倍光学系ZLを着脱可能に保持するものでも良く、変倍光学系ZLと一体に成形されるものでも良い。また、カメラ1は、いわゆる一眼レフカメラでも良く、クイックリターンミラー等を有さないコンパクトカメラでも良い。
Further, when a release button (not shown) is pressed by the photographer, the
なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。 The contents described below can be appropriately adopted as long as the optical performance is not impaired.
本実施形態では、4群または5群構成の変倍光学系ZLを示したが、以上の構成条件等は、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。 In the present embodiment, the variable magnification optical system ZL having a four-group or five-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as six groups. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group indicates a portion having at least one lens separated by an air interval that changes at the time of zooming.
また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠から近距離物点への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、第2レンズ群G2の少なくとも一部を合焦レンズ群とするのが好ましい。 Alternatively, a single lens group or a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an infinite distance to a short-distance object point. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that at least a part of the second lens group G2 is a focusing lens group.
また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3の少なくとも一部、または第4レンズ群G4の少なくとも一部を防振レンズ群とするのが好ましい。 In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the third lens group G3 or at least a part of the fourth lens group G4 is an anti-vibration lens group.
また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。 Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
開口絞りSは、第3レンズ群G3近傍または第3レンズ群G3の内部に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。 The aperture stop S is preferably arranged in the vicinity of the third lens group G3 or in the third lens group G3. However, the role of the aperture stop may be substituted by a lens frame without providing a member as an aperture stop. .
さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。 Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.
本実施形態の変倍光学系ZLは、変倍比が3.5〜15程度である。 The variable magnification optical system ZL of the present embodiment has a variable magnification ratio of about 3.5 to 15.
本実施形態の変倍光学系ZLは、第1レンズ群G1が正のレンズ成分を2つ有するのが好ましい。また、第1レンズ群G1は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。または、第1レンズ群G1が正のレンズ成分を2つと負のレンズ成分を1つ有するのが好ましい。また、第1レンズ群G1は、物体側から順に、負正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。 In the variable magnification optical system ZL of the present embodiment, it is preferable that the first lens group G1 has two positive lens components. In the first lens group G1, it is preferable that lens components are arranged in order of positive and negative in order from the object side with an air gap interposed therebetween. Alternatively, the first lens group G1 preferably has two positive lens components and one negative lens component. In the first lens group G1, it is preferable to dispose the lens components in the order of negative positive / negative in order from the object side with an air gap interposed therebetween.
また、本実施形態の変倍光学系ZLは、第2レンズ群G2が正のレンズ成分を1つと負のレンズ成分を3つ有するのが好ましい。また、第2レンズ群G2は、物体側から順に、負負正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。または、第2レンズ群G2が正のレンズ成分を1つと負のレンズ成分を2つ有するのが好ましい。また、第2レンズ群G2は、物体側から順に、負負正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。 In the variable magnification optical system ZL of the present embodiment, it is preferable that the second lens group G2 has one positive lens component and three negative lens components. In the second lens group G2, it is preferable to dispose the lens components in the order of negative, positive and negative in order from the object side with an air gap interposed therebetween. Alternatively, it is preferable that the second lens group G2 has one positive lens component and two negative lens components. In the second lens group G2, it is preferable to arrange the lens components in order of negative and positive in order from the object side with an air gap interposed therebetween.
また、本実施形態の変倍光学系ZLは、第3レンズ群G3が正のレンズ成分を1つと負のレンズ成分を1つ有するのが好ましい。また、第3レンズ群G3は、物体側から順に、正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。または、第3レンズ群G3が正のレンズ成分を2つ有するのが好ましい。また、第3レンズ群G3は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。 In the variable magnification optical system ZL of the present embodiment, it is preferable that the third lens group G3 has one positive lens component and one negative lens component. In the third lens group G3, it is preferable to arrange the lens components in order of positive and negative in order from the object side with an air gap interposed therebetween. Alternatively, it is preferable that the third lens group G3 has two positive lens components. In the third lens group G3, it is preferable that lens components are arranged in order of positive and negative in order from the object side with an air gap interposed therebetween.
本実施形態の変倍光学系ZLは、第4レンズ群G4が負のレンズ成分を1つ有するのが好ましい。 In the variable magnification optical system ZL of the present embodiment, it is preferable that the fourth lens group G4 has one negative lens component.
また、本実施形態の変倍光学系ZLは、第5レンズ群G5が正のレンズ成分を2つ有するのが好ましい。また、第5レンズ群G5は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。 In the variable magnification optical system ZL of the present embodiment, it is preferable that the fifth lens group G5 has two positive lens components. In the fifth lens group G5, it is preferable to arrange the lens components in order of positive and negative in order from the object side with an air gap interposed therebetween.
なお、本願を分かり易く説明するために実施形態の構成要件を付して説明したが、本願がこれに限定されるものではないことは言うまでもない。 In addition, in order to explain this application in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present application is not limited to this.
以下、本実施形態の変倍光学系ZLの製造方法の概略を、図14を参照して説明する。まず、各レンズを配置してレンズ群をそれぞれ準備する(ステップS100)。その際に、少なくとも1つ以上の正レンズと、前記正レンズのうち最も屈折力の大きい正レンズの物体側に隣接する負レンズとを、第2レンズ群G2に配置する。具体的に、本実施形態では、例えば、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側から順に、物体側に凸面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、両凸レンズL23、及び、像側レンズ面に非球面を有する非球面両凹レンズL24を配置して第2レンズ群G2とし、物体側から順に、両凸レンズL31、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33との接合によりなる接合正レンズ、及び、両凸レンズL34を配置して第3レンズ群G3とし、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズ、及び、物体側に凹面を向けた負メニスカスレンズL43を配置して第4レンズ群G4とし、物体側から順に、物体側に非球面を有する両凸レンズL51、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合正レンズを配置して第5レンズ群G5とする。 Hereinafter, the outline of the manufacturing method of the variable magnification optical system ZL of this embodiment is demonstrated with reference to FIG. First, each lens is arranged and a lens group is prepared (step S100). At this time, at least one positive lens and a negative lens adjacent to the object side of the positive lens having the largest refractive power among the positive lenses are arranged in the second lens group G2. Specifically, in this embodiment, for example, in order from the object side, a cemented positive lens formed by cementing a negative meniscus lens L11 having a convex surface toward the object side and a biconvex lens L12, and a positive surface having a convex surface directed toward the object side. A meniscus lens L13 is arranged to form the first lens group G1, and in order from the object side, an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side lens surface, and a negative surface having a concave surface on the object side. A meniscus lens L22, a biconvex lens L23, and an aspherical biconcave lens L24 having an aspheric surface on the image side lens surface are arranged as a second lens group G2, and in order from the object side, the biconvex lens L31 and the convex surface are directed to the object side. Further, a positive cemented lens formed by cementing the negative meniscus lens L32 and the biconvex lens L33, and a biconvex lens L34 are arranged to form the third lens group G3. In order, a fourth lens group G4 is formed by disposing a cemented negative lens formed by cementing a positive meniscus lens L41 having a concave surface facing the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. In order from the object side, a biconvex lens L51 having an aspheric surface on the object side, and a cemented positive lens formed by cementing a positive meniscus lens L52 having a concave surface on the object side and a negative meniscus lens L53 having a concave surface on the object side are arranged. The fifth lens group G5.
この際、第2レンズ群G2の最も像側のレンズ面を、非球面形状に形成する(ステップS200)。また、広角端状態から望遠端状態まで変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と後群GRとの間隔が変化するように配置する(ステップS300)。 At this time, the most image side lens surface of the second lens group G2 is formed in an aspherical shape (step S200). Further, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the rear group GR changes. (Step S300).
更に、第2レンズ群G2内の負レンズの物体側の面の曲率半径をr1とし、当該負レンズの像側の面の曲率半径をr2とし、広角端状態における全系の焦点距離をfwとし、第2レンズ群G2の焦点距離をf2としたとき、以下に示す条件式(1)及び(2)を満足するよう配置する(ステップS400)。 Furthermore, the radius of curvature of the object side surface of the negative lens in the second lens group G2 is r1, the radius of curvature of the image side surface of the negative lens is r2, and the focal length of the entire system in the wide-angle end state is fw. When the focal length of the second lens group G2 is f2, they are arranged so as to satisfy the following conditional expressions (1) and (2) (step S400).
0.80 < (r2+r1)/(r2−r1) < 3.50 (1)
0.50 < (−f2)/fw < 0.90 (2)
0.80 <(r2 + r1) / (r2-r1) <3.50 (1)
0.50 <(− f2) / fw <0.90 (2)
以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図4、図7及び図10は、各実施例に係る撮影レンズSL(SL1〜SL4)の構成及び屈折力配分並びに無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズ群の移動の様子を示す断面図である。図1、図4、図7に示すように、第1〜第3実施例に係る変倍光学系ZL1〜ZL3は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。そして、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が増大し、第4レンズ群G4と第5レンズ群G5との空気間隔が減少するように、各レンズ群の間隔が変化する。また、図10に示すように、第4実施例に係る変倍光学系ZL4は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。そして、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少するように、各レンズ群の間隔が変化する。 Hereinafter, each example of the present application will be described with reference to the drawings. 1, 4, 7, and 10 show the configuration and refractive power distribution of the photographic lenses SL (SL1 to SL4) according to each embodiment, and focusing from the infinitely focused state to the short-distance focused state. It is sectional drawing which shows the mode of the movement of each lens group in the change of a state. As shown in FIGS. 1, 4, and 7, the variable magnification optical systems ZL <b> 1 to ZL <b> 3 according to the first to third examples are, in order from the object side, the first lens group G <b> 1 having a positive refractive power, A second lens group G2 having negative refractive power, a third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power It is composed of When zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 is increased. The distance between the lens groups changes so that the air distance between the third lens group G3 and the fourth lens group G4 increases and the air distance between the fourth lens group G4 and the fifth lens group G5 decreases. To do. As shown in FIG. 10, the variable magnification optical system ZL4 according to the fourth example includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group having a negative refractive power. G2 includes a third lens group G3 having a positive refractive power and a fourth lens group G4 having a positive refractive power. When zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 is increased. The distance between the lens groups is changed so that the air distance between the third lens group G3 and the fourth lens group G4 is decreased.
各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。なお、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ is the conic constant, and An is the nth-order aspheric coefficient, and is expressed by the following equation (a). . In the following examples, “E−n” indicates “× 10 −n ”.
S(y)=(y2/r)/{1+(1−κ×y2/r2)1/2}
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1−κ × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 ×
なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の左側に*印を付している。 In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the left side of the surface number.
〔第1実施例〕
図1は、本願の第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1の変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL21、物体側に凹面を向けた負メニスカスレンズL22、両凸レンズL23、及び、像側レンズ面に非球面を有する非球面両凹レンズL24から構成されている。第3レンズ群G3は、物体側から順に、両凸レンズL31、物体側に凸面を向けた負メニスカスレンズL32と両凸レンズL33との接合によりなる接合正レンズ、及び、両凸レンズL34から構成されている。第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と両凹レンズL42との接合によりなる接合負レンズ、及び、物体側に凹面を向けた負メニスカスレンズL43から構成されている。第5レンズ群G5は、物体側から順に、物体側に非球面を有する両凸レンズL51、物体側に凹面を向けた正メニスカスレンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合正レンズから構成されている。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example of the present application. In the variable magnification optical system ZL1 of FIG. 1, the first lens group G1 includes, in order from the object side, a cemented positive lens formed by cementing a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and an object It is composed of a positive meniscus lens L13 having a convex surface facing the side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side lens surface, a negative meniscus lens L22 having a concave surface on the object side, and a biconvex lens L23. , And an aspherical biconcave lens L24 having an aspherical surface on the image side lens surface. The third lens group G3 includes, in order from the object side, a biconvex lens L31, a cemented positive lens formed by cementing a negative meniscus lens L32 having a convex surface toward the object side, and a biconvex lens L33, and a biconvex lens L34. . The fourth lens group G4 includes, in order from the object side, a cemented negative lens formed by cementing a positive meniscus lens L41 having a concave surface directed toward the object side and a biconcave lens L42, and a negative meniscus lens L43 having a concave surface directed toward the object side. It is configured. The fifth lens group G5 includes, in order from the object side, a biconvex lens L51 having an aspheric surface on the object side, a positive meniscus lens L52 having a concave surface facing the object side, and a negative meniscus lens L53 having a concave surface facing the object side. This is composed of a cemented positive lens.
また、開口絞りSは、第3レンズ群G3内部、すなわち両凸レンズL31と負メニスカスレンズL32との間に位置し、広角端状態から望遠端状態への変倍に際して、第3レンズ群G3とともに移動する。無限遠から近距離物点への合焦は、第2レンズ群G2を物体方向に移動させることにより行う。像ブレ補正(防振)は、第4レンズ群G4の接合負レンズを光軸と略垂直方向の成分を持つように移動させることにより行う。 The aperture stop S is located inside the third lens group G3, that is, between the biconvex lens L31 and the negative meniscus lens L32, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. To do. Focusing from infinity to a short-distance object point is performed by moving the second lens group G2 in the object direction. Image blur correction (anti-vibration) is performed by moving the cemented negative lens of the fourth lens group G4 so as to have a component in a direction substantially perpendicular to the optical axis.
以下の表1に、第1実施例の諸元の値を掲げる。この表1において、fは焦点距離、FNOはFナンバー、2ωは画角、Bfはバックフォーカスをそれぞれ表している。さらに、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、面間隔は各光学面から次の光学面までの光軸上の間隔を、屈折率及びアッベ数はそれぞれd線(λ=587.6nm)に対する値を示している。全長は、無限遠合焦時のレンズ面の第1面から像面Iまでの光軸上の距離を表している。ここで、以下の全ての諸元値において掲載されている焦点距離、曲率半径、面間隔、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。なお、曲率半径0.0000は平面を示し、空気の屈折率1.00000は省略してある。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。 Table 1 below lists values of specifications of the first embodiment. In Table 1, f represents the focal length, FNO represents the F number, 2ω represents the angle of view, and Bf represents the back focus. Furthermore, the surface number is the order of the lens surfaces from the object side along the direction of travel of the light beam, the surface interval is the distance on the optical axis from each optical surface to the next optical surface, and the refractive index and Abbe number are each The value for the d-line (λ = 587.6 nm) is shown. The total length represents the distance on the optical axis from the first surface of the lens surface to the image plane I when focusing on infinity. Here, “mm” is generally used for the focal length, the radius of curvature, the surface interval, and other length units listed in all the following specifications, but the optical system is proportionally enlarged or reduced. However, the same optical performance can be obtained, and the present invention is not limited to this. The radius of curvature of 0.0000 indicates a plane, and the refractive index of air of 1.0000 is omitted. The description of these symbols and the description of the specification table are the same in the following embodiments.
(表1)
広角端 中間焦点距離 望遠端
f = 24.70 〜 45.75 〜 116.39
FNO = 4.12 〜 4.13 〜 4.14
2ω = 85.24 〜 48.96 〜 20.28
像高 = 21.6 〜 21.6 〜 21.6
全長 =146.351 〜 158.339 〜 190.957
Bf = 38.496 〜 48.783 〜 64.317
面番号 曲率半径 面間隔 アッベ数 屈折率
1 207.8010 2.000 23.77 1.846660
2 84.2787 7.595 67.87 1.593189
3 -1502.5800 0.100
4 57.9483 5.600 52.29 1.755000
5 142.1986 (d1)
*6 1030.3484 1.200 46.63 1.816000
7 15.8302 8.018
8 -31.9349 1.000 45.30 1.795000
9 -78.0281 0.100
10 60.0996 4.200 23.77 1.846660
11 -33.4080 0.537
12 -28.4260 1.000 40.94 1.806100
*13 1638.3373 (d2)
14 51.6280 2.600 52.29 1.755000
15 -725.4606 1.400
16 0.0000 0.500 開口絞り
17 30.6214 3.000 23.77 1.846660
18 17.0593 6.600 70.45 1.487490
19 -88.0490 0.100
20 42.1543 3.400 67.87 1.593189
21 -433.2258 (d3)
22 -54.3056 3.500 32.35 1.850260
23 -17.0745 1.000 52.29 1.755000
24 85.6576 3.000
25 -54.2304 1.000 53.89 1.713000
26 -943.5177 (d4)
*27 88.1343 5.734 61.18 1.589130
28 -24.2775 0.100
29 -207.7437 6.509 70.45 1.487490
30 -19.8055 1.000 32.35 1.850260
31 -73.8800 (Bf)
[各レンズ群の焦点距離]
レンズ群 始面 焦点距離
G1 1 106.848
G2 6 -17.844
G3 14 25.331
G4 22 -30.712
G5 27 45.007
(Table 1)
Wide angle end Intermediate focal length Telephoto end
f = 24.70 to 45.75 to 116.39
FNO = 4.12 to 4.13 to 4.14
2ω = 85.24 to 48.96 to 20.28
Image height = 21.6 to 21.6 to 21.6
Overall length = 146.351 to 158.339 to 190.957
Bf = 38.496 to 48.783 to 64.317
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 207.8010 2.000 23.77 1.846660
2 84.2787 7.595 67.87 1.593189
3 -1502.5800 0.100
4 57.9483 5.600 52.29 1.755000
5 142.1986 (d1)
* 6 1030.3484 1.200 46.63 1.816000
7 15.8302 8.018
8 -31.9349 1.000 45.30 1.795000
9 -78.0281 0.100
10 60.0996 4.200 23.77 1.846660
11 -33.4080 0.537
12 -28.4260 1.000 40.94 1.806100
* 13 1638.3373 (d2)
14 51.6280 2.600 52.29 1.755000
15 -725.4606 1.400
16 0.0000 0.500 Aperture stop
17 30.6214 3.000 23.77 1.846660
18 17.0593 6.600 70.45 1.487490
19 -88.0490 0.100
20 42.1543 3.400 67.87 1.593189
21 -433.2258 (d3)
22 -54.3056 3.500 32.35 1.850 260
23 -17.0745 1.000 52.29 1.755000
24 85.6576 3.000
25 -54.2304 1.000 53.89 1.713000
26 -943.5177 (d4)
* 27 88.1343 5.734 61.18 1.589130
28 -24.2775 0.100
29 -207.7437 6.509 70.45 1.487490
30 -19.8055 1.000 32.35 1.850 260
31 -73.8800 (Bf)
[Focal length of each lens group]
Lens group Start surface
G2 6 -17.844
G4 22 -30.712
この第1実施例において、第6面、第13面、及び、第27面の各レンズ面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。 In the first embodiment, the lens surfaces of the sixth surface, the thirteenth surface, and the twenty-seventh surface are formed in an aspherical shape. The following Table 2 shows the data of aspheric surfaces, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.
(表2)
κ A4 A6 A8 A10
第6面 1.0000 1.31870E-05 -3.10490E-08 4.74440E-11 -3.43860E-14
第13面 1.0000 -9.26690E-07 -2.12150E-08 8.52640E-12 -8.74630E-14
第27面 -30.0000 -7.12220E-06 -3.55240E-09 4.19740E-11 -1.12730E-13
(Table 2)
κ A4 A6 A8 A10
6th surface 1.0000 1.31870E-05 -3.10490E-08 4.74440E-11 -3.43860E-14
13th surface 1.0000 -9.26690E-07 -2.12150E-08 8.52640E-12 -8.74630E-14
27th surface -30.0000 -7.12220E-06 -3.55240E-09 4.19740E-11 -1.12730E-13
この第1実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は、変倍に際して変化する。次の表3に、無限遠及び近距離物点での広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔を示す。 In the first embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air gap d3 between the fourth lens group G4 and the on-axis air gap d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 3 below shows variable intervals at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state at infinity and near-distance object points.
(表3)
無限遠
広角端 中間焦点距離 望遠端
d1 2.899 17.248 44.501
d2 24.017 11.369 1.199
d3 1.779 5.564 8.842
d4 8.342 4.578 1.300
近距離
広角端 中間焦点距離 望遠端
d1 2.077 16.566 43.557
d2 24.840 12.051 2.143
d3 1.799 5.564 8.842
d4 8.342 4.578 1.300
(Table 3)
Infinity Wide angle end Intermediate focal length Telephoto end
d1 2.899 17.248 44.501
d2 24.017 11.369 1.199
d3 1.779 5.564 8.842
d4 8.342 4.578 1.300
Short distance Wide angle end Intermediate focal length Telephoto end
d1 2.077 16.566 43.557
d2 24.840 12.051 2.143
d3 1.799 5.564 8.842
d4 8.342 4.578 1.300
次の表4に、この第1実施例における各条件式対応値を示す。なおこの表4において、r1は第2レンズ群G2内の負レンズL22の物体側の面の曲率半径を、r2は当該負レンズL22の像側の面の曲率半径を、fwは広角端状態における変倍光学系ZL全系の焦点距離を、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f4は第4レンズ群G4の焦点距離をそれぞれ表している。以上の符号の説明は以降の実施例においても同様である。 Table 4 below shows values corresponding to the conditional expressions in the first embodiment. In Table 4, r1 is the radius of curvature of the object side surface of the negative lens L22 in the second lens group G2, r2 is the radius of curvature of the image side surface of the negative lens L22, and fw is in the wide-angle end state. F1 represents the focal length of the first lens group G1, f2 represents the focal length of the second lens group G2, and f4 represents the focal length of the fourth lens group G4. Yes. The description of the above symbols is the same in the following embodiments.
(表4)
(1)(r2+r1)/(r2−r1)=2.386
(2)(−f2)/fw=0.722
(3)f1/|f4|=3.479
(Table 4)
(1) (r2 + r1) / (r2-r1) = 2.386
(2) (−f2) /fw=0.722
(3) f1 / | f4 | = 3.479
この第1実施例の広角端状態での無限遠合焦状態の収差図を図2(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図2(b)に示し、望遠端状態での無限遠合焦状態の収差図を図2(c)に示す。また、第1実施例の広角端状態での近距離合焦状態の収差図を図3(a)に示し、中間焦点距離状態での近距離合焦状態の収差図を図3(b)に示し、望遠端状態での近距離合焦状態の収差図を図3(c)に示す。各収差図において、FNOはFナンバーを、Yは像高を、dはd線(λ=587.6nm)を、gはg線(λ=435.6nm)を、それぞれ示している。また、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。 FIG. 2A shows an aberration diagram in the infinite focus state in the wide-angle end state of the first embodiment, and FIG. 2B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 2C shows an aberration diagram in the infinitely focused state in the telephoto end state. Further, FIG. 3A shows an aberration diagram in the short-distance focusing state in the wide-angle end state of the first embodiment, and FIG. 3B shows an aberration diagram in the short-distance focusing state in the intermediate focal length state. FIG. 3C shows an aberration diagram in the short-distance in-focus state in the telephoto end state. In each aberration diagram, FNO represents an F number, Y represents an image height, d represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.6 nm). In the aberration diagrams showing astigmatism, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane. As is apparent from the respective aberration diagrams, in the first embodiment, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.
〔第2実施例〕
図4は、本願の第2実施例に係る変倍光学系ZL2の構成を示す図である。この図4の変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL21、像側に凸面を向けた負メニスカスレンズL22、両凸レンズL23、及び、両凹レンズL24から構成されている。第3レンズ群G3は、物体側から順に、両凸レンズL31、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合によりなる接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL34と両凸レンズL35との接合によりなる接合正レンズから構成されている。第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合によりなる接合負レンズ、及び、物体側に凹面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL43から構成されている。第5レンズ群G5は、物体側から順に、両凸レンズL51、両凸レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合によりなる接合正レンズ、及び、物体側に凹面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL54から構成されている。
[Second Embodiment]
FIG. 4 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example of the present application. In the variable magnification optical system ZL2 of FIG. 4, the first lens group G1 includes, in order from the object side, a cemented positive lens formed by cementing a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and an object It is composed of a positive meniscus lens L13 having a convex surface facing the side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side lens surface, a negative meniscus lens L22 having a convex surface on the image side, and a biconvex lens L23. And a biconcave lens L24. The third lens group G3 includes, in order from the object side, a biconvex lens L31, a cemented positive lens formed by cementing the biconvex lens L32 and a negative meniscus lens L33 having a concave surface on the object side, and a positive surface having a convex surface directed to the object side. It is composed of a cemented positive lens formed by cementing a meniscus lens L34 and a biconvex lens L35. The fourth lens group G4 includes, in order from the object side, a cemented negative lens formed by cementing a biconcave lens L41 and a positive meniscus lens L42 having a convex surface directed toward the object side, and a concave surface directed toward the object side toward the object side lens surface. It is composed of an aspheric negative meniscus lens L43 having an aspheric surface. The fifth lens group G5 includes, in order from the object side, a biconvex lens L51, a cemented positive lens formed by cementing the biconvex lens L52 and a negative meniscus lens L53 having a concave surface facing the object side, and a concave surface facing the object side. It is composed of an aspheric negative meniscus lens L54 having an aspheric surface on the side lens surface.
また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して、第3レンズ群G3とともに移動する。無限遠から近距離物点への合焦は、第2レンズ群G2を物体方向に移動させることにより行う。像ブレ補正(防振)は、第4レンズ群G4の接合負レンズを光軸と略垂直方向の成分を持つように移動させることにより行う。 The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. Focusing from infinity to a short-distance object point is performed by moving the second lens group G2 in the object direction. Image blur correction (anti-vibration) is performed by moving the cemented negative lens of the fourth lens group G4 so as to have a component in a direction substantially perpendicular to the optical axis.
以下の表5に、この第2実施例の諸元の値を掲げる。 Table 5 below shows values of specifications of the second embodiment.
(表5)
広角端 中間焦点距離 望遠端
f = 28.79 〜 100.00 〜 292.00
FNO = 3.57 〜 5.34 〜 5.96
2ω = 76.52 〜 23.32 〜 8.16
像高 = 21.6 〜 21.6 〜 21.6
全長 =159.888 〜 205.193 〜 232.653
Bf = 38.422 〜 65.896 〜 79.261
面番号 曲率半径 面間隔 アッベ数 屈折率
1 125.8687 2.000 31.27 1.903660
2 68.2116 9.300 82.56 1.497820
3 -1478.5570 0.100
4 68.1452 6.700 65.47 1.603000
5 484.4905 (d1)
*6 590.8560 1.300 46.73 1.765460
7 18.5437 7.000
8 -38.3401 1.000 46.58 1.804000
9 -310.1534 0.100
10 38.1237 4.850 23.78 1.846660
11 -44.8791 0.950
12 -29.4340 1.000 46.58 1.804000
*13 99.9238 (d2)
14 0.0000 0.500 開口絞り
15 53.3960 3.400 54.66 1.729160
16 -92.1030 0.100
17 39.7508 5.000 82.56 1.497820
18 -41.4651 1.000 23.78 1.846660
19 -356.7126 0.100
20 32.9053 1.400 46.63 1.816000
21 15.5333 6.600 58.89 1.518230
22 -67.2953 (d3)
23 -79.1792 1.000 49.61 1.772500
24 15.8779 3.000 32.34 1.850260
25 51.8482 2.586
26 -23.4054 0.190 38.09 1.553890
*27 -23.4054 1.200 54.66 1.729160
28 -47.5480 (d4)
29 83.9836 5.600 60.69 1.563840
30 -26.4280 0.300
31 59.3963 6.900 45.79 1.548140
32 -21.2296 1.100 31.27 1.903660
33 -43.5914 1.600
34 -28.9812 1.300 42.64 1.820800
*35 -136.6351 (Bf)
[各レンズ群の焦点距離]
レンズ群 始面 焦点距離
G1 1 109.348
G2 6 -17.324
G3 14 25.755
G4 23 -25.979
G5 29 43.376
(Table 5)
Wide angle end Intermediate focal length Telephoto end
f = 28.79 to 100.00 to 292.00
FNO = 3.57 to 5.34 to 5.96
2ω = 76.52 to 23.32 to 8.16
Image height = 21.6 to 21.6 to 21.6
Total length = 159.888 to 205.193 to 232.653
Bf = 38.422 to 65.896 to 79.261
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 125.8687 2.000 31.27 1.903660
2 68.2116 9.300 82.56 1.497820
3 -1478.5570 0.100
4 68.1452 6.700 65.47 1.603000
5 484.4905 (d1)
* 6 590.8560 1.300 46.73 1.765460
7 18.5437 7.000
8 -38.3401 1.000 46.58 1.804000
9 -310.1534 0.100
10 38.1237 4.850 23.78 1.846660
11 -44.8791 0.950
12 -29.4340 1.000 46.58 1.804000
* 13 99.9238 (d2)
14 0.0000 0.500 Aperture stop
15 53.3960 3.400 54.66 1.729160
16 -92.1030 0.100
17 39.7508 5.000 82.56 1.497820
18 -41.4651 1.000 23.78 1.846660
19 -356.7126 0.100
20 32.9053 1.400 46.63 1.816000
21 15.5333 6.600 58.89 1.518230
22 -67.2953 (d3)
23 -79.1792 1.000 49.61 1.772500
24 15.8779 3.000 32.34 1.850 260
25 51.8482 2.586
26 -23.4054 0.190 38.09 1.553890
* 27 -23.4054 1.200 54.66 1.729160
28 -47.5480 (d4)
29 83.9836 5.600 60.69 1.563840
30 -26.4280 0.300
31 59.3963 6.900 45.79 1.548140
32 -21.2296 1.100 31.27 1.903660
33 -43.5914 1.600
34 -28.9812 1.300 42.64 1.820800
* 35 -136.6351 (Bf)
[Focal length of each lens group]
Lens group Start surface
G2 6 -17.324
G4 23 -25.979
この第2実施例において、第6面、第13面、第27面、及び、第35面の各レンズ面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。 In the second embodiment, the sixth, thirteenth, twenty-seventh and thirty-fifth lens surfaces are aspherical. Table 6 below shows the aspheric data, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.
(表6)
κ A4 A6 A8 A10
第6面 -9.1146 6.35640E-06 -7.76870E-09 -2.54380E-11 1.93540E-13
第13面 1.0000 1.00450E-06 -1.40860E-08 9.73830E-12 0.00000E+00
第27面 -0.2178 1.55140E-06 2.93820E-08 1.09380E-10 0.00000E+00
第35面 1.0000 -8.52260E-06 1.10900E-08 -4.80970E-11 1.46300E-13
(Table 6)
κ A4 A6 A8 A10
6th surface -9.1146 6.35640E-06 -7.76870E-09 -2.54380E-11 1.93540E-13
27th surface -0.2178 1.55140E-06 2.93820E-08 1.09380E-10 0.00000E + 00
35th surface 1.0000 -8.52260E-06 1.10900E-08 -4.80970E-11 1.46300E-13
この第2実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は、変倍に際して変化する。次の表7に、無限遠及び近距離物点での広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔を示す。 In the second embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air gap d3 between the fourth lens group G4 and the on-axis air gap d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 7 below shows variable intervals at the focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state at infinity and near-distance object points.
(表7)
無限遠
広角端 中間焦点距離 望遠端
d1 2.534 37.442 63.214
d2 30.341 13.263 1.585
d3 2.961 6.701 7.803
d4 6.152 2.412 1.310
近距離
広角端 中間焦点距離 望遠端
d1 1.853 36.751 59.870
d2 31.022 13.954 4.929
d3 2.961 6.701 7.803
d4 6.152 2.412 1.310
(Table 7)
Infinity Wide angle end Intermediate focal length Telephoto end
d1 2.534 37.442 63.214
d2 30.341 13.263 1.585
d3 2.961 6.701 7.803
d4 6.152 2.412 1.310
Short distance Wide angle end Intermediate focal length Telephoto end
d1 1.853 36.751 59.870
d2 31.022 13.954 4.929
d3 2.961 6.701 7.803
d4 6.152 2.412 1.310
次の表8に、この第2実施例における各条件式対応値を示す。 Table 8 below shows values corresponding to the conditional expressions in the second embodiment.
(表8)
(1)(r2+r1)/(r2−r1)=1.282
(2)(−f2)/fw=0.601
(3)f1/|f4|=4.209
(Table 8)
(1) (r2 + r1) / (r2-r1) = 1.282
(2) (−f2) /fw=0.601
(3) f1 / | f4 | = 4.209
この第2実施例の広角端状態での無限遠合焦状態の収差図を図5(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図5(b)に示し、望遠端状態での無限遠合焦状態の収差図を図5(c)に示す。また、第2実施例の広角端状態での近距離合焦状態の収差図を図6(a)に示し、中間焦点距離状態での近距離合焦状態の収差図を図6(b)に示し、望遠端状態での近距離合焦状態の収差図を図6(c)に示す。各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。 FIG. 5A shows an aberration diagram in the infinite focus state in the wide-angle end state of the second embodiment, and FIG. 5B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 5C shows an aberration diagram in the infinitely focused state in the telephoto end state. Further, FIG. 6A shows an aberration diagram in the short distance focusing state in the wide-angle end state of the second embodiment, and FIG. 6B shows an aberration diagram in the short distance focusing state in the intermediate focal length state. FIG. 6C shows an aberration diagram in the short-distance in-focus state in the telephoto end state. As is apparent from the respective aberration diagrams, in the second example, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.
〔第3実施例〕
図7は、本願の第3実施例に係る変倍光学系ZL3の構成を示す図である。この図7の変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL21、像側に凸面を向けた負メニスカスレンズL22、及び両凸レンズL23と像側レンズ面に非球面を有する非球面両凹レンズL24との接合によりなる接合正レンズから構成されている。第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸レンズL32との接合によりなる接合正レンズ、及び、両凸レンズL33と両凹レンズL34との接合によりなる接合正レンズから構成されている。第4レンズ群G4は、物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合によりなる接合負レンズから構成されている。第5レンズ群G5は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL51、及び、両凸レンズL52と物体側に凸面を向けた負メニスカスレンズL53との接合によりなる接合正レンズから構成されている。
[Third embodiment]
FIG. 7 is a diagram showing the configuration of the variable magnification optical system ZL3 according to the third example of the present application. In the variable magnification optical system ZL3 of FIG. 7, the first lens group G1 includes, in order from the object side, a cemented positive lens formed by cementing a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and an object It is composed of a positive meniscus lens L13 having a convex surface facing the side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side lens surface, a negative meniscus lens L22 having a convex surface on the image side, and a biconvex lens It is composed of a cemented positive lens formed by cementing L23 and an aspherical biconcave lens L24 having an aspheric surface on the image side lens surface. The third lens group G3 is composed of, in order from the object side, a cemented positive lens formed by bonding a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex lens L32, and a biconvex lens L33 and a biconcave lens L34. It consists of a cemented positive lens. The fourth lens group G4 includes, in order from the object side, a cemented negative lens formed by cementing a biconcave lens L41 and a positive meniscus lens L42 having a convex surface directed toward the object side. The fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a convex surface facing the object side, and a cemented positive lens formed by cementing a biconvex lens L52 and a negative meniscus lens L53 having a convex surface facing the object side. It is configured.
また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して、第3レンズ群G3とともに移動する。フレアカット絞りFSは、第4レンズ群G4と第5レンズ群G5との間に位置する。無限遠から近距離物点への合焦は、第2レンズ群G2を物体方向に移動させることにより行う。像ブレ補正(防振)は、第4レンズ群G4を光軸と略垂直方向の成分を持つように移動させることにより行う。 The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. The flare cut stop FS is located between the fourth lens group G4 and the fifth lens group G5. Focusing from infinity to a short-distance object point is performed by moving the second lens group G2 in the object direction. Image blur correction (anti-vibration) is performed by moving the fourth lens group G4 so as to have a component in a direction substantially perpendicular to the optical axis.
以下の表9に、この第3実施例の諸元の値を掲げる。 Table 9 below shows values of specifications of the third embodiment.
(表9)
広角端 中間焦点距離 望遠端
f = 18.39 〜 56.02 〜 101.99
FNO = 3.63 〜 5.21 〜 5.84
2ω = 80.32 〜 28.58 〜 16.00
像高 = 14.5 〜 14.5 〜 14.5
全長 =134.064 〜 160.538 〜 177.708
Bf = 39.008 〜 57.868 〜 66.008
面番号 曲率半径 面間隔 アッベ数 屈折率
1 209.4337 1.800 23.78 1.846660
2 79.9301 6.400 60.68 1.603110
3 -294.0880 0.100
4 53.0478 4.200 53.89 1.713000
5 124.9384 (d1)
*6 154.1371 0.200 38.09 1.553890
7 130.0000 1.200 42.72 1.834807
8 13.9274 6.800
9 -43.5879 1.000 42.72 1.834807
10 -519.1937 0.300
11 40.9980 5.000 23.78 1.846660
12 -26.4284 1.000 42.72 1.834810
*13 68.0402 (d2)
14 0.0000 0.600 開口絞り
15 64.4076 0.900 28.69 1.795040
16 34.1145 3.600 82.52 1.497820
17 -31.0643 0.100
18 25.1181 2.800 49.61 1.772500
19 -25.1181 0.800 32.35 1.850260
20 120.6588 (d3)
21 -58.6499 0.800 54.66 1.729157
22 12.6352 2.400 32.35 1.850260
23 34.1595 3.343
24 0.0000 (d4) フレアカット開口絞り
25 -1531.4175 3.600 64.10 1.516800
26 -24.8933 0.100
27 55.6770 6.000 64.12 1.516800
28 -17.1260 1.200 32.35 1.850260
29 -64.8623 (Bf)
[各レンズ群の焦点距離]
レンズ群 始面 焦点距離
G1 1 91.398
G2 6 -14.923
G3 14 24.587
G4 21 -35.820
G5 25 41.672
(Table 9)
Wide angle end Intermediate focal length Telephoto end
f = 18.39 to 56.02 to 101.99
FNO = 3.63 to 5.21 to 5.84
2ω = 80.32 to 28.58 to 16.00
Image height = 14.5 to 14.5 to 14.5
Total length = 134.064 to 160.538 to 177.708
Bf = 39.008 to 57.868 to 66.008
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 209.4337 1.800 23.78 1.846660
2 79.9301 6.400 60.68 1.603110
3 -294.0880 0.100
4 53.0478 4.200 53.89 1.713000
5 124.9384 (d1)
* 6 154.1371 0.200 38.09 1.553890
7 130.0000 1.200 42.72 1.834807
8 13.9274 6.800
9 -43.5879 1.000 42.72 1.834807
10 -519.1937 0.300
11 40.9980 5.000 23.78 1.846660
12 -26.4284 1.000 42.72 1.834810
* 13 68.0402 (d2)
14 0.0000 0.600 Aperture stop
15 64.4076 0.900 28.69 1.795040
16 34.1145 3.600 82.52 1.497820
17 -31.0643 0.100
18 25.1181 2.800 49.61 1.772500
19 -25.1181 0.800 32.35 1.850 260
20 120.6588 (d3)
21 -58.6499 0.800 54.66 1.729157
22 12.6352 2.400 32.35 1.850 260
23 34.1595 3.343
24 0.0000 (d4) Flare cut aperture stop
25 -1531.4175 3.600 64.10 1.516800
26 -24.8933 0.100
27 55.6770 6.000 64.12 1.516800
28 -17.1260 1.200 32.35 1.850 260
29 -64.8623 (Bf)
[Focal length of each lens group]
Lens group Start surface
G2 6 -14.923
G4 21 -35.820
この第3実施例において、第6面、及び、第13面の各レンズ面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。 In the third embodiment, the sixth and thirteenth lens surfaces are aspherical. Table 10 below shows the data of the aspheric surface, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.
(表10)
κ A4 A6 A8 A10
第6面 93.3168 5.89740E-06 -7.29460E-08 2.86340E-10 -7.78550E-13
第13面 1.0000 -6.55200E-06 -7.75620E-09 -1.44920E-10 0.00000E+00
(Table 10)
κ A4 A6 A8 A10
6th surface 93.3168 5.89740E-06 -7.29460E-08 2.86340E-10 -7.78550E-13
13th surface 1.0000 -6.55200E-06 -7.75620E-09 -1.44920E-10 0.00000E + 00
この第3実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3、第4レンズ群G4と第5レンズ群G5との軸上空気間隔d4は、変倍に際して変化する。次の表11に、無限遠及び近距離物点での広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔を示す。 In the third example, the axial air gap d1 between the first lens group G1 and the second lens group G2, the axial air gap d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air gap d3 between the fourth lens group G4 and the on-axis air gap d4 between the fourth lens group G4 and the fifth lens group G5 changes during zooming. Table 11 below shows variable intervals at the focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state at infinity and near-distance object points.
(表11)
無限遠
広角端 中間焦点距離 望遠端
d1 2.284 27.418 41.691
d2 25.740 8.221 2.978
d3 2.124 7.010 8.712
d4 10.662 5.776 4.074
近距離
広角端 中間焦点距離 望遠端
d1 1.518 26.731 40.680
d2 26.506 8.908 3.989
d3 2.124 7.010 8.712
d4 10.662 5.776 4.074
(Table 11)
Infinity Wide angle end Intermediate focal length Telephoto end
d1 2.284 27.418 41.691
d2 25.740 8.221 2.978
d3 2.124 7.010 8.712
d4 10.662 5.776 4.074
Short distance Wide angle end Intermediate focal length Telephoto end
d1 1.518 26.731 40.680
d2 26.506 8.908 3.989
d3 2.124 7.010 8.712
d4 10.662 5.776 4.074
次の表12に、この第3実施例における各条件式対応値を示す。 Table 12 below shows values corresponding to the conditional expressions in the third embodiment.
(表12)
(1)(r2+r1)/(r2−r1)=1.181
(2)(−f2)/fw=0.811
(3)f1/|f4|=2.552
(Table 12)
(1) (r2 + r1) / (r2-r1) = 1.181
(2) (−f2) /fw=0.911
(3) f1 / | f4 | = 2.552
この第3実施例の広角端状態での無限遠合焦状態の収差図を図8(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図8(b)に示し、望遠端状態での無限遠合焦状態の収差図を図8(c)に示す。また、第3実施例の広角端状態での近距離合焦状態の収差図を図9(a)に示し、中間焦点距離状態での近距離合焦状態の収差図を図9(b)に示し、望遠端状態での近距離合焦状態の収差図を図9(c)に示す。各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。 FIG. 8A shows an aberration diagram in the infinite focus state in the wide-angle end state of this third embodiment, and FIG. 8B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 8C shows an aberration diagram in the infinitely focused state in the telephoto end state. Further, FIG. 9A shows an aberration diagram in the short-distance focusing state in the wide-angle end state of the third embodiment, and FIG. 9B shows an aberration diagram in the short-distance focusing state in the intermediate focal length state. FIG. 9C shows an aberration diagram in the short-distance in-focus state in the telephoto end state. As is apparent from the respective aberration diagrams, in the third example, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.
〔第4実施例〕
図10は、本願の第4実施例に係る変倍光学系ZL4の構成を示す図である。この図10の変倍光学系ZL4において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合によりなる接合正レンズ、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。第2レンズ群G2は、物体側から順に、物体側に凸面を向け、物体側レンズ面に非球面を有する非球面負メニスカスレンズL21、両凹レンズL22、両凸レンズL23、及び、像側レンズ面に非球面を有する非球面両凹レンズL24から構成されている。第3レンズ群G3は、物体側から順に、両凸レンズL31、両凸レンズL32と両凹レンズL33との接合によりなる接合正レンズ、及び、物体側レンズ面に非球面を有する非球面両凹レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合によりなる接合負レンズから構成されている。第4レンズ群G4は、物体側から順に、物体側レンズ面に非球面を有する両凸レンズL41、両凸レンズL42と両凹レンズL43との接合によりなる接合負レンズ、及び、物体側に凸面を向けた正メニスカスレンズL44から構成されている。
[Fourth embodiment]
FIG. 10 is a diagram showing the configuration of the variable magnification optical system ZL4 according to the fourth example of the present application. In the variable magnification optical system ZL4 of FIG. 10, the first lens group G1 includes, in order from the object side, a cemented positive lens formed by cementing a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and an object It is composed of a positive meniscus lens L13 having a convex surface facing the side. The second lens group G2, in order from the object side, has an aspheric negative meniscus lens L21 having a convex surface on the object side and an aspheric surface on the object side lens surface, a biconcave lens L22, a biconvex lens L23, and an image side lens surface. It is composed of an aspherical biconcave lens L24 having an aspherical surface. The third lens group G3 includes, in order from the object side, a biconvex lens L31, a cemented positive lens formed by cementing the biconvex lens L32 and the biconcave lens L33, an aspheric biconcave lens L34 having an aspheric surface on the object side lens surface, and the object. It is composed of a cemented negative lens formed by cementing with a positive meniscus lens L35 having a convex surface on the side. The fourth lens group G4 has, in order from the object side, a biconvex lens L41 having an aspheric surface on the object side lens surface, a cemented negative lens formed by cementing the biconvex lens L42 and the biconcave lens L43, and a convex surface facing the object side. It is composed of a positive meniscus lens L44.
また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して、第3レンズ群G3とともに移動する。フレアカット絞りFSは、第3レンズ群G3と第4レンズ群G4との間に位置する。無限遠から近距離物点への合焦は、第2レンズ群G2を物体方向に移動させることにより行う。像ブレ補正(防振)は、第3レンズ群G3の接合負レンズを光軸と略垂直方向の成分を持つように移動させることにより行う。 The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state to the telephoto end state. The flare cut stop FS is located between the third lens group G3 and the fourth lens group G4. Focusing from infinity to a short-distance object point is performed by moving the second lens group G2 in the object direction. Image blur correction (anti-vibration) is performed by moving the cemented negative lens of the third lens group G3 so as to have a component in a direction substantially perpendicular to the optical axis.
以下の表13に、この第4実施例の諸元の値を掲げる。 Table 13 below lists values of specifications of the fourth embodiment.
(表13)
広角端 中間焦点距離 望遠端
f = 18.50 〜 70.24 〜 195.00
FNO = 3.58 〜 5.11 〜 5.89
2ω = 79.78 〜 22.88 〜 8.44
像高 = 14.5 〜 14.5 〜 14.5
全長 =141.720 〜 183.030 〜 207.403
Bf = 38.000 〜 67.280 〜 80.450
面番号 曲率半径 面間隔 アッベ数 屈折率
1 131.6264 2.000 32.35 1.850260
2 64.5215 8.800 81.61 1.497000
3 -502.5306 0.100
4 60.4775 6.300 65.47 1.603000
5 295.9384 (d1)
*6 757.8898 0.150 38.09 1.553890
7 150.0000 1.200 46.63 1.816000
8 14.7418 6.500
9 -37.4285 1.000 46.63 1.816000
10 855.9338 0.100
11 36.4002 4.800 23.78 1.846660
12 -38.2802 0.900
13 -25.9865 1.000 47.38 1.788000
*14 250.1396 (d2)
15 0.0000 0.500 開口絞り
16 39.9769 3.000 65.47 1.603000
17 -39.9769 0.100
18 27.0291 3.600 81.61 1.497000
19 -30.9025 1.000 32.35 1.850260
20 15022.6378 3.000
*21 -47.6472 0.100 38.09 1.553890
22 -54.8674 1.000 49.61 1.772500
23 28.9153 1.800 25.43 1.805180
24 77.8261 2.600
25 0.0000 (d3) フレアカット開口絞り
*26 74.7506 4.400 54.52 1.676974
27 -32.8683 0.600
28 113.7229 4.000 70.24 1.487490
29 -31.3823 1.400 37.17 1.834000
30 57.5744 1.500
31 -127.9425 3.300 64.12 1.516800
32 -27.8519 (Bf)
[各レンズ群の焦点距離]
レンズ群 始面 焦点距離
G1 1 100.784
G2 6 -14.519
G3 15 49.281
G4 26 43.229
(Table 13)
Wide angle end Intermediate focal length Telephoto end
f = 18.50 to 70.24 to 195.00
FNO = 3.58 to 5.11 to 5.89
2ω = 79.78-22.88-8.44
Image height = 14.5 to 14.5 to 14.5
Total length = 141.720 to 183.030 to 207.403
Bf = 38.000 to 67.280 to 80.450
Surface number Curvature radius Surface spacing Abbe number Refractive index
1 131.6264 2.000 32.35 1.850 260
2 64.5215 8.800 81.61 1.497000
3 -502.5306 0.100
4 60.4775 6.300 65.47 1.603000
5 295.9384 (d1)
* 6 757.8898 0.150 38.09 1.553890
7 150.0000 1.200 46.63 1.816000
8 14.7418 6.500
9 -37.4285 1.000 46.63 1.816000
10 855.9338 0.100
11 36.4002 4.800 23.78 1.846660
12 -38.2802 0.900
13 -25.9865 1.000 47.38 1.788000
* 14 250.1396 (d2)
15 0.0000 0.500 Aperture stop
16 39.9769 3.000 65.47 1.603000
17 -39.9769 0.100
18 27.0291 3.600 81.61 1.497000
19 -30.9025 1.000 32.35 1.850 260
20 15022.6378 3.000
* 21 -47.6472 0.100 38.09 1.553890
22 -54.8674 1.000 49.61 1.772500
23 28.9153 1.800 25.43 1.805180
24 77.8261 2.600
25 0.0000 (d3) Flare cut aperture stop
* 26 74.7506 4.400 54.52 1.676974
27 -32.8683 0.600
28 113.7229 4.000 70.24 1.487490
29 -31.3823 1.400 37.17 1.834000
30 57.5744 1.500
31 -127.9425 3.300 64.12 1.516800
32 -27.8519 (Bf)
[Focal length of each lens group]
Lens group Start surface
G2 6 -14.519
この第4実施例において、第6面、第14面、第21面、及び、第26面の各レンズ面は非球面形状に形成されている。次の表14に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。 In the fourth embodiment, the lens surfaces of the sixth surface, the fourteenth surface, the twenty-first surface, and the twenty-sixth surface are formed in an aspherical shape. Table 14 below shows the data of aspheric surfaces, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.
(表14)
κ A4 A6 A8 A10
第6面 1.0000 1.85064E-05 -5.88122E-08 1.30157E-10 -1.19816E-13
第14面 1.0000 6.90787E-07 -1.55867E-08 -1.21063E-10 7.07360E-13
第21面 1.0000 8.67713E-06 2.45288E-09 0.00000E+00 0.00000E+00
第26面 1.0000 -1.85346E-05 3.98364E-09 0.00000E+00 0.00000E+00
(Table 14)
κ A4 A6 A8 A10
6th surface 1.0000 1.85064E-05 -5.88122E-08 1.30157E-10 -1.19816E-13
14th surface 1.0000 6.90787E-07 -1.55867E-08 -1.21063E-10 7.07360E-13
26th surface 1.0000 -1.85346E-05 3.98364E-09 0.00000E + 00 0.00000E + 00
この第4実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d1、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d2、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d3は、変倍に際して変化する。次の表15に、無限遠及び近距離物点での広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔を示す。 In the fourth embodiment, the axial air distance d1 between the first lens group G1 and the second lens group G2, the axial air distance d2 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air gap d3 between the first lens group G4 and the fourth lens group G4 changes upon zooming. Table 15 below shows variable intervals at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state at infinity and near-distance object points.
(表15)
無限遠
広角端 中間焦点距離 望遠端
d1 2.070 38.000 60.000
d2 29.400 11.000 1.800
d3 7.500 2.000 0.400
近距離
広角端 中間焦点距離 望遠端
d1 3.280 37.822 58.174
d2 28.189 11.177 3.625
d3 7.500 2.000 0.400
(Table 15)
Infinity Wide angle end Intermediate focal length Telephoto end
d1 2.070 38.000 60.000
d2 29.400 11.000 1.800
d3 7.500 2.000 0.400
Short distance Wide angle end Intermediate focal length Telephoto end
d1 3.280 37.822 58.174
d2 28.189 11.177 3.625
d3 7.500 2.000 0.400
次の表16に、この第4実施例における各条件式対応値を示す。 Table 16 below shows values corresponding to the conditional expressions in the fourth embodiment.
(表16)
(1)(r2+r1)/(r2−r1)=0.916
(2)(−f2)/fw=0.783
(3)f1/|f4|=2.275
(Table 16)
(1) (r2 + r1) / (r2-r1) = 0.916
(2) (−f2) /fw=0.833
(3) f1 / | f4 | = 2.275
この第4実施例の広角端状態での無限遠合焦状態の収差図を図11(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図11(b)に示し、望遠端状態での無限遠合焦状態の収差図を図11(c)に示す。また、第4実施例の広角端状態での近距離合焦状態の収差図を図12(a)に示し、中間焦点距離状態での近距離合焦状態の収差図を図12(b)に示し、望遠端状態での近距離合焦状態の収差図を図12(c)に示す。各収差図から明らかなように、第4実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することがわかる。 FIG. 11A shows an aberration diagram in the infinite focus state in the wide-angle end state of the fourth embodiment, and FIG. 11B shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 11C shows an aberration diagram in the infinitely focused state in the telephoto end state. Further, FIG. 12A shows an aberration diagram in the short-distance focusing state in the wide-angle end state of the fourth embodiment, and FIG. 12B shows an aberration diagram in the short-distance focusing state in the intermediate focal length state. FIG. 12C shows an aberration diagram in the short-distance in-focus state in the telephoto end state. As is apparent from the respective aberration diagrams, in the fourth example, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.
ZL(ZL1〜ZL4) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群
G3 第3レンズ群 G4 第4レンズ群
G5 第5レンズ群
S 開口絞り
1 デジタル一眼レフカメラ(光学機器)
ZL (ZL1 to ZL4) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G5 Fifth lens group S Aperture stop 1 Digital single-lens reflex camera (optical apparatus)
Claims (11)
正の屈折力を有する第1レンズ群と、
負の屈折力を有する第2レンズ群と、
正の屈折力を有する後群と、を有し、
前記第2レンズ群は、少なくとも1つ以上の正レンズと、前記正レンズのうち最も屈折力の大きい正レンズの物体側に隣接して配置される負レンズと、を有し、
前記第2レンズ群の最も像側のレンズ面は、非球面形状であり、
広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記後群との間隔が変化し、
前記第2レンズ群内の前記負レンズの物体側の面の曲率半径をr1とし、当該負レンズの像側の面の曲率半径をr2とし、広角端状態における全系の焦点距離をfwとし、前記第2レンズ群の焦点距離をf2としたとき、次式
0.80 < (r2+r1)/(r2−r1) < 3.50
0.50 < (−f2)/fw < 0.90
の条件を満足する変倍光学系。 From the object side,
A first lens group having a positive refractive power;
A second lens group having negative refractive power;
A rear group having a positive refractive power,
The second lens group includes at least one positive lens and a negative lens disposed adjacent to the object side of the positive lens having the largest refractive power among the positive lenses,
The most image side lens surface of the second lens group has an aspheric shape,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the rear group changes,
The radius of curvature of the object side surface of the negative lens in the second lens group is r1, the radius of curvature of the image side surface of the negative lens is r2, and the focal length of the entire system in the wide-angle end state is fw. When the focal length of the second lens group is f2, the following formula 0.80 <(r2 + r1) / (r2-r1) <3.50
0.50 <(− f2) / fw <0.90
Variable magnification optical system that satisfies the above conditions.
物体側から順に、
正の屈折力を有する第3レンズ群と、
負の屈折力を有する第4レンズ群と、
正の屈折力を有する第5レンズ群と、を有する請求項1または2に記載の変倍光学系。 The rear group is
From the object side,
A third lens group having positive refractive power;
A fourth lens group having negative refractive power;
The zoom optical system according to claim 1, further comprising a fifth lens group having a positive refractive power.
物体側から順に、
正の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有する請求項1または2に記載の変倍光学系。 The rear group is
From the object side,
A third lens group having positive refractive power;
The zoom optical system according to claim 1, further comprising a fourth lens group having a positive refractive power.
2.00 < f1/|f4| < 6.00
の条件を満足する請求項2〜4いずれか一項に記載の変倍光学系。 When the focal length of the first lens group is f1, and the focal length of the fourth lens group is f4, the following formula 2.00 <f1 / | f4 |
The zoom lens system according to any one of claims 2 to 4, which satisfies the following condition.
少なくとも1つ以上の正レンズと、前記正レンズのうち最も屈折力の大きい正レンズの物体側に隣接する負レンズと、を前記第2レンズ群に配置し、
前記第2レンズ群の最も像側のレンズ面は、非球面形状に形成し、
広角端状態から望遠端状態まで変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記後群との間隔が変化するように配置し、
前記第2レンズ群内の前記負レンズの物体側の面の曲率半径をr1とし、当該負レンズの像側の面の曲率半径をr2とし、広角端状態における全系の焦点距離をfwとし、前記第2レンズ群の焦点距離をf2としたとき、次式
0.80 < (r2+r1)/(r2−r1) < 3.50
0.50 < (−f2)/fw < 0.90
の条件を満足するように配置する変倍光学系の製造方法。 A manufacturing method of a variable magnification optical system having, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a rear group having a positive refractive power. And
Disposing at least one positive lens and a negative lens adjacent to the object side of the positive lens having the largest refractive power among the positive lenses in the second lens group;
The most image side lens surface of the second lens group is formed in an aspheric shape,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is changed, and the distance between the second lens group and the rear group is changed. And
The radius of curvature of the object side surface of the negative lens in the second lens group is r1, the radius of curvature of the image side surface of the negative lens is r2, and the focal length of the entire system in the wide-angle end state is fw. When the focal length of the second lens group is f2, the following formula 0.80 <(r2 + r1) / (r2-r1) <3.50
0.50 <(− f2) / fw <0.90
A method for manufacturing a variable magnification optical system arranged so as to satisfy the above condition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019335A JP2010175903A (en) | 2009-01-30 | 2009-01-30 | Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019335A JP2010175903A (en) | 2009-01-30 | 2009-01-30 | Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010175903A true JP2010175903A (en) | 2010-08-12 |
Family
ID=42706947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009019335A Withdrawn JP2010175903A (en) | 2009-01-30 | 2009-01-30 | Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010175903A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011237588A (en) * | 2010-05-10 | 2011-11-24 | Sony Corp | Zoom lens and imaging device |
JP2013142782A (en) * | 2012-01-11 | 2013-07-22 | Canon Inc | Optical system and imaging apparatus including the same |
JP2016128930A (en) * | 2016-02-24 | 2016-07-14 | リコーイメージング株式会社 | Zoom lens system and electronic image capturing device having the same |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61258219A (en) * | 1986-05-23 | 1986-11-15 | Konishiroku Photo Ind Co Ltd | Compact zoom lens |
JPH1164728A (en) * | 1997-08-19 | 1999-03-05 | Minolta Co Ltd | Zoom lens having camera shake correction function |
JP2000121821A (en) * | 1998-10-20 | 2000-04-28 | Canon Inc | Rear focusing zoom lens having diffraction optical elements |
JP2001330777A (en) * | 2000-05-23 | 2001-11-30 | Olympus Optical Co Ltd | Zoom lens |
JP2002228927A (en) * | 2001-02-07 | 2002-08-14 | Tochigi Nikon Corp | Zoom lens |
WO2003071332A1 (en) * | 2002-02-25 | 2003-08-28 | Matsushita Electric Industrial Co., Ltd. | Zoom lens, and video camera and digital still camera using the zoom lens |
JP2006133631A (en) * | 2004-11-09 | 2006-05-25 | Olympus Corp | Zoom lens |
JP2007219315A (en) * | 2006-02-17 | 2007-08-30 | Nikon Corp | Zoom lens with vibration proof function and imaging apparatus equipped with the same |
JP2008033069A (en) * | 2006-07-31 | 2008-02-14 | Casio Comput Co Ltd | Zoom lens and projector device |
-
2009
- 2009-01-30 JP JP2009019335A patent/JP2010175903A/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61258219A (en) * | 1986-05-23 | 1986-11-15 | Konishiroku Photo Ind Co Ltd | Compact zoom lens |
JPH1164728A (en) * | 1997-08-19 | 1999-03-05 | Minolta Co Ltd | Zoom lens having camera shake correction function |
JP2000121821A (en) * | 1998-10-20 | 2000-04-28 | Canon Inc | Rear focusing zoom lens having diffraction optical elements |
JP2001330777A (en) * | 2000-05-23 | 2001-11-30 | Olympus Optical Co Ltd | Zoom lens |
JP2002228927A (en) * | 2001-02-07 | 2002-08-14 | Tochigi Nikon Corp | Zoom lens |
WO2003071332A1 (en) * | 2002-02-25 | 2003-08-28 | Matsushita Electric Industrial Co., Ltd. | Zoom lens, and video camera and digital still camera using the zoom lens |
JP2006133631A (en) * | 2004-11-09 | 2006-05-25 | Olympus Corp | Zoom lens |
JP2007219315A (en) * | 2006-02-17 | 2007-08-30 | Nikon Corp | Zoom lens with vibration proof function and imaging apparatus equipped with the same |
JP2008033069A (en) * | 2006-07-31 | 2008-02-14 | Casio Comput Co Ltd | Zoom lens and projector device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011237588A (en) * | 2010-05-10 | 2011-11-24 | Sony Corp | Zoom lens and imaging device |
JP2013142782A (en) * | 2012-01-11 | 2013-07-22 | Canon Inc | Optical system and imaging apparatus including the same |
JP2016128930A (en) * | 2016-02-24 | 2016-07-14 | リコーイメージング株式会社 | Zoom lens system and electronic image capturing device having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5257734B2 (en) | Zoom lens, optical apparatus including the same, and imaging method | |
JP5678424B2 (en) | Variable magnification optical system, optical apparatus equipped with the variable magnification optical system, and method of manufacturing the variable magnification optical system | |
JP5540512B2 (en) | Variable magnification optical system and optical apparatus having the variable magnification optical system | |
WO2009139253A1 (en) | Variable power optical system, optical apparatus equipped with the variable power optical system, and method for manufacturing variable power optical system | |
JP2010145759A (en) | Zoom lens, optical apparatus with the zoom lens and method for producing the zoom lens | |
JP2018010219A (en) | Variable power optical system, optical instrument, and manufacturing method for variable power optical system | |
JP2017156428A (en) | Variable power optical system, optical apparatus and method for manufacturing variable power optical system | |
JP2012042549A (en) | Variable power optical system, optical apparatus having the same and method for manufacturing variable power optical system | |
JP2017156507A (en) | Fisheye zoom lens, optical apparatus and method for manufacturing fisheye zoom lens | |
JP6467804B2 (en) | Zoom lens and optical apparatus | |
JP5885026B2 (en) | Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system | |
JP5326434B2 (en) | Variable magnification optical system and optical apparatus equipped with the variable magnification optical system | |
JP2011221422A (en) | Zoom optical system, optical apparatus equipped with zoom optical system and method for manufacturing zoom optical system | |
JP2010175903A (en) | Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system | |
JP6281200B2 (en) | Variable magnification optical system and optical apparatus | |
JP6620998B2 (en) | Variable magnification optical system and optical apparatus | |
JP5540513B2 (en) | Variable magnification optical system and optical apparatus having the variable magnification optical system | |
JP2017068115A (en) | Fisheye zoom lens, optical device, method for manufacturing the fisheye zoom lens | |
JP5540515B2 (en) | Variable magnification optical system and optical apparatus having the variable magnification optical system | |
JP5871163B2 (en) | Variable magnification optical system, optical apparatus having the variable magnification optical system, and method for manufacturing the variable magnification optical system | |
JP6232806B2 (en) | Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method | |
JP6232805B2 (en) | Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method | |
JP6119953B2 (en) | Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system | |
JP6601471B2 (en) | Variable magnification optical system and optical apparatus | |
JP5540514B2 (en) | Variable magnification optical system and optical apparatus having the variable magnification optical system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120119 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130327 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20130527 |