JP2010174393A - Urethan-reinforcing material - Google Patents
Urethan-reinforcing material Download PDFInfo
- Publication number
- JP2010174393A JP2010174393A JP2009016876A JP2009016876A JP2010174393A JP 2010174393 A JP2010174393 A JP 2010174393A JP 2009016876 A JP2009016876 A JP 2009016876A JP 2009016876 A JP2009016876 A JP 2009016876A JP 2010174393 A JP2010174393 A JP 2010174393A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- polyester
- melting point
- reinforcing material
- urethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
本発明は車両用シート等のクッション材として用いられるポリウレタン等の発泡成形品の底部に配設され、ポリウレタンフォームとバネ材間の摩擦により発生する異音を防止すると共に、成型時、発泡液の染み出しを阻止し、補強効果に優れたウレタン補強材に関するものである。 The present invention is disposed at the bottom of a foamed molded product such as polyurethane used as a cushioning material for vehicle seats, etc., and prevents abnormal noise generated by friction between the polyurethane foam and the spring material. The present invention relates to a urethane reinforcing material that prevents bleeding and has an excellent reinforcing effect.
車両用シート等のクッション材として軟質のポリウレタンフォーム等の発泡成形品が一般に使用されており、このような発泡成形品の底部には座受けバネと直接接触するときしみ音を発生し、局部的応力を受け、損傷することを避けるため、通常、補強材が配設されている。 Foam molded products such as soft polyurethane foam are generally used as cushioning materials for vehicle seats, etc., and the bottom of such foam molded products generates a squeak noise when in direct contact with a seat spring, resulting in local stress. In order to avoid damage and damage, a reinforcing material is usually provided.
このような補強材は従来、寒冷紗とスラブウレタンの組み合わせ、あるいは粗毛布が用いられ、発泡成形金型面に接するようにスラブウレタンを設置し、その内側に寒冷紗を設置した後、ウレタン液を注入し、加熱加圧して発泡させることにより補強層が裏付けされたポリウレタンフォーム型内発泡成形品として作成していた。 Conventionally, such a reinforcing material is a combination of cold chill and slab urethane, or a coarse blanket. The slab urethane is placed in contact with the foam molding die surface, and after the cold chill is placed inside, the urethane liquid is injected. However, it was produced as a polyurethane foam in-mold foam-molded product with a reinforcing layer backed by heating and pressurizing and foaming.
しかし、その後、寒冷紗が成形品の成形形状に沿い難いという難点があったことから不織布を補強布として使用することが開発され使用されて、繊維径の2〜20dの繊維で形成された目付量40〜70g/m2の粗で嵩高な基材と、繊維径2〜10dの繊維で形成され、目付量が40〜80g/m2の薄く緻密な不織布からなる補強材(特許文献1参照)や、スパンボンド不織布等を適用して目付量30〜200g/m2で空隙率90〜94%の嵩高な不織布を上下層とし、目付量20〜100g/m2で空隙率87〜91%の緻密な不織布を中間層として積層一体化した補強材(特許文献2参照)、更に捲縮長繊維で構成され、部分熱圧着された目付量50〜200g/m2、厚さ0.5〜2.0mmの不織布補強材(特許文献3参照)や、テープヤーンからなる織布に短繊維ウエブを積層しニードルパンチして積層一体化した補強材(特許文献4参照)などが提案されている。 However, since there was a difficulty that the cold chill was difficult to follow the molded shape of the molded product, the use of a nonwoven fabric as a reinforcing fabric was developed and used, and the basis weight formed with fibers having a fiber diameter of 2 to 20d. and 40~70g / m bulky substrates 2 coarse, is formed by fibers having a fiber diameter 2~10D, reinforcements basis weight consisting of a thin dense nonwoven 40 and 80 g / m 2 (see Patent Document 1) and, applying a spunbonded nonwoven fabric or the like porosity from 90 to 94% of the bulky nonwoven fabric and the upper and lower layer basis weight 30 to 200 g / m 2, the basis weight at 20 to 100 g / m 2 porosity of 87 to 91% Reinforcing material in which a dense nonwoven fabric is laminated and integrated as an intermediate layer (see Patent Document 2), and further comprises a crimped continuous fiber and is partially thermocompression bonded to a basis weight of 50 to 200 g / m 2 and a thickness of 0.5 to 2 0.0 mm non-woven reinforcing material (see Patent Document 3) Such as by laminating a short fiber web on fabric consisting tape yarn reinforcements laminated and integrated by needle punching (see Patent Document 4) have been proposed.
しかし、上記提案に係る各補強材は何れもそれなりの効果を有しているが、発泡ウレタンの成形加工における凹凸の大きな変形に対しては問題があって、夫々対応が異なり、例えばスパンボンド法による長繊維不織布基布では変形追従性に劣るため裁断加工で対応し、比較的変形追従性のよい短繊維構成によるものでは発泡ウレタン成形前に予め基布の成形加工を施した後、発泡ウレタンの成形加工を行っているのが現状である。 However, each of the reinforcing materials according to the above proposals has a certain effect, but there is a problem with large deformation of the irregularities in the molding process of urethane foam, and the correspondence is different, for example, the spunbond method The non-woven fabric base fabric made of the above is inferior in deformation followability, so it can be handled by cutting. In the case of the short fiber structure having relatively good deformation followability, the base fabric is molded before foaming urethane, and then foamed urethane. At present, the molding process is performed.
本発明は上述の如き実状に鑑み、特に発泡ウレタンの成形加工においても成型時に発泡ウレタンの染み出しがないこと、成型時に裁断加工や前成形加工を必要とせず、一度で一体成形ができるウレタン補強材を見出すべく開発を進め、これに適合した補強材を提供することを目的とするものである。 In view of the actual situation as described above, the present invention has a urethane reinforcement that can be integrally molded at one time without the need for a cutting or pre-molding process at the time of molding, especially in the molding process of urethane foam, without foaming out of the foamed urethane. The purpose of this project is to develop a material to find a material and to provide a reinforcing material suitable for it.
即ち、上記目的に適合する本発明は、捲縮性複合短繊維を主材としてなる不織布であって、目付質量が80〜300g/m2の範囲で、50%伸張応力が1.0〜15.0N/5cm、破断伸度が100%以上である特性を有していることを特徴とする。 That is, the present invention suitable for the above object is a non-woven fabric mainly composed of crimped composite short fibers, and has a weight per unit area of 80 to 300 g / m 2 and a 50% elongation stress of 1.0 to 15. It is characterized by having a property of 0.0 N / 5 cm and a breaking elongation of 100% or more.
ここで、上記本発明に用いる捲縮性複合短繊維としてはポリエステル樹脂の高融点成分と低融点成分の60/40〜40/60の配合からなる複合短繊維であることが好ましい。なお、一部撥水性短繊維など、他の短繊維を混繊させてもよい。 Here, the crimped composite short fiber used in the present invention is preferably a composite short fiber composed of 60/40 to 40/60 of a high melting point component and a low melting point component of a polyester resin. In addition, you may mix other short fibers, such as a part water-repellent short fiber.
上記本発明補強材を用い発泡成形金型面に接するように装着し、ウレタン原液を注入し加熱、加圧して発泡させるとき発泡液の染み出しがなく、金型に装着時、部分伸びを起こすこともなく、また、発泡の過程で凹凸の変形域に馴染んで把持性もよく、不織布のズレを生じることがなく、シート用クッションとして用いるときに座受けバネと直接接触してもきしみ音を発生することがないのみならず、目付質量が低い場合には撥水性短繊維などを混繊することによりウレタン液の染み出しの発生が防止され、摩耗性も良好となる効果を奏する。しかも成型にあたって裁断加工や前成形加工の必要もなく、一度で安定した一体成形ができる実施上の効果も期待される。 When the reinforcing material of the present invention is used so as to be in contact with the surface of the foam molding die, when the urethane stock solution is injected and heated and pressurized for foaming, the foaming liquid does not bleed out and causes partial elongation when mounted on the die. In addition, it fits into the deformation area of the unevenness in the process of foaming, has good gripping properties, does not cause the displacement of the nonwoven fabric, and produces a squeak noise even when directly contacting the seat receiving spring when used as a seat cushion. Not only does this occur, but when the weight per unit area is low, mixing of water-repellent short fibers prevents the occurrence of seepage of the urethane liquid and has the effect of improving wear. In addition, there is no need for cutting or pre-molding when molding, and an implementation effect is also expected that enables stable integral molding at once.
以下、更に上記本発明補強材の具体的実施形態を詳述する。本発明補強材は前述の如く捲縮性複合短繊維を主材とする不織布であって、目付質量が80〜300g/m2の範囲で、50%伸張応力が1.0〜15.0N/5cm,破断伸度が100%以上の特性を有する伸縮性不織布によって構成される。これらの場合、主材となる捲縮性複合短繊維は必らずしも同一種の繊維に限らず、異種の捲縮性複合短繊維の混繊であってもよく、特に混繊比率は限定されることはない。しかし、撥水性短繊維等を混繊する場合にはその混繊比率は精々3/97〜40/60の範囲とすることが好適である。なお、目付質量範囲は80〜300g/m2の範囲であるが、就中、撥水性短繊維など、他の短繊維を含む場合には80〜120g/m2の低目付質量範囲においても充分、効果を有する。以下、更に上記構成の各要素について夫々、順次説明する。
(1)捲縮性複合短繊維
本発明補強材の主材料をなす捲縮性複合短繊維はポリエステル,ナイロン,ポリエチレン,ポリプロピレンの各ポリマーの高融点成分と低融点成分との複合による繊維が使用可能であるが、とりわけポリエステル樹脂の高融点樹脂と、変性低融点ポリエステル樹脂の組み合わせによる配合が好適であり、また変性低融点樹脂の融点差による組み合わせ配合も可能である。具体例としては、ポリエステル樹脂(融点270℃程度)と低融点ポリエステル樹脂(融点差20〜100℃程度)の複合繊維が挙げられる。
Hereinafter, specific embodiments of the reinforcing material of the present invention will be described in detail. The reinforcing material of the present invention is a non-woven fabric mainly composed of crimped composite short fibers as described above, and has a weight per unit area of 80 to 300 g / m 2 and a 50% elongation stress of 1.0 to 15.0 N / It is composed of a stretchable nonwoven fabric having the characteristics of 5 cm and elongation at break of 100% or more. In these cases, the crimpable composite short fiber as the main material is not necessarily limited to the same type of fiber, and may be a mixed fiber of different types of crimped composite short fibers. There is no limit. However, when water-repellent short fibers and the like are mixed, the mixing ratio is preferably in the range of 3/97 to 40/60. The basis weight range is in the range of 80 to 300 g / m 2. However, when other short fibers such as water-repellent short fibers are included, a low basis weight range of 80 to 120 g / m 2 is sufficient. , Have an effect. Hereinafter, each element of the above configuration will be described in turn.
(1) Crimpable composite short fiber The crimpable composite short fiber, which is the main material of the reinforcing material of the present invention, is a composite fiber of polyester, nylon, polyethylene, and polypropylene with a high melting point component and a low melting point component. Although it is possible, blending by a combination of a high melting point resin of a polyester resin and a modified low melting point polyester resin is particularly suitable, and a combination blending by a melting point difference of the modified low melting point resin is also possible. Specific examples include composite fibers of a polyester resin (melting point of about 270 ° C.) and a low melting point polyester resin (melting point difference of about 20 to 100 ° C.).
これらはサイドバイサイド,偏芯芯鞘構造による複合繊維が通常であり、高融点成分と低融点成分との配合比率は60/40〜40/60の範囲が好ましく、繊維の繊度としては1.0〜10.0デシテックス(dtex)の範囲が好適である。繊度が1dtex未満であると繊維層が緻密になり、また10dtexを超えると繊維層が粗くなる。 These are usually composite fibers with a side-by-side, eccentric core-sheath structure, and the blending ratio of the high melting point component and the low melting point component is preferably in the range of 60/40 to 40/60, and the fineness of the fiber is 1.0 to A range of 10.0 decitex (dtex) is preferred. If the fineness is less than 1 dtex, the fiber layer becomes dense, and if it exceeds 10 dtex, the fiber layer becomes coarse.
なお、捲縮性複合短繊維に、該短繊維以外の単成分の短繊維、例えば後述の撥水性短繊維等を混繊すると、混繊した量だけ捲縮発現性や捲縮特性を低下させる傾向があるので、その混繊率は捲縮特性に応じた比率を選択する必要がある。
(2)混繊用撥水性短繊維
次に上記捲縮性複合短繊維に必要に応じ混繊される撥水性短繊維はポリエステル樹脂よりなる通常繊維をシリコンあるいはフッ素で撥水処理した繊維が用いられ、該処理により繊維は低摩擦係数を呈するようになる。従って、撥水性能の度合いは摩擦係数で代替することができ、その範囲としては通常、0.05〜0.20程度である。
In addition, when a single-component short fiber other than the short fiber, for example, a water-repellent short fiber to be described later, is mixed with the crimped composite short fiber, the crimp development property and crimp characteristics are reduced by the amount of the mixed fiber. Since there is a tendency, it is necessary to select the ratio according to the crimp characteristic for the fiber mixing ratio.
(2) Water-repellent short fibers for blended fibers Next, the water-repellent short fibers blended into the crimped composite staple fibers as necessary are fibers obtained by subjecting a normal fiber made of polyester resin to a water-repellent treatment with silicon or fluorine. And the treatment causes the fibers to exhibit a low coefficient of friction. Therefore, the degree of water repellency can be replaced by the coefficient of friction, and the range is usually about 0.05 to 0.20.
この場合、撥水性短繊維の繊度は前記捲縮性複合短繊維と同じく1.0〜10.0デシテックス(dtex)の範囲が好適である。なお、撥水能を補強材を構成する不織布に付与するには上記低摩擦係数を呈する撥水性短繊維の混繊割合を考慮する必要があり、通常、3〜40質量%の範囲の混繊量が好適である。混繊量が3質量%未満では折角の不織布の撥水能が低下するのでウレタンの染み出しを防ぐ効果が出にくくなり、一方、混繊量が40質量%を超えるとウレタンの染み出しを防ぐ効果は十分であるが、補強材としての不織布特性の50%伸張時の応力が1.0以下となり、成形性が悪くなるし、コストの点からも好ましくない。
(3)不織布の作成
上述した如く捲縮性複合短繊維又は異種の捲縮複合繊維との混繊短繊維を主材とし、必要に応じ撥水性短繊維を混繊して本発明補強材の基材となる不織布が作成されるが、作成にあたっては上記捲縮性複合短繊維あるいは異種の捲縮性複合短繊維を混繊した短繊維を主材とした繊維をカーディング加工処理してウエブを形成し、該ウエブをニードルパンチ加工により繊維間の交絡処理をした後、連続して熱処理機に通して熱処理することにより捲縮性複合短繊維の捲縮を発現し(ウエブ収縮を起こす)、その後、熱ロールを通して不織布の厚さを調整して捲縮が発現された所要の伸縮性不織布が得られる。
In this case, the fineness of the water-repellent short fibers is preferably in the range of 1.0 to 10.0 decitex (dtex) like the crimped composite short fibers. In addition, in order to impart water repellency to the nonwoven fabric constituting the reinforcing material, it is necessary to consider the mixing ratio of the water-repellent short fibers exhibiting the low friction coefficient, and the mixing ratio is usually in the range of 3 to 40% by mass. The amount is preferred. If the amount of mixed fibers is less than 3% by mass, the water repellency of the folded non-woven fabric will be reduced, so that it will be difficult to prevent the urethane from seeping out. Although the effect is sufficient, the stress at the time of 50% elongation of the nonwoven fabric characteristic as a reinforcing material is 1.0 or less, the moldability is deteriorated, and it is not preferable from the viewpoint of cost.
(3) Preparation of non-woven fabric As described above, the main component of the crimped composite short fiber or the mixed staple fiber of different types of crimped composite fiber is mixed with the water-repellent short fiber as necessary. A non-woven fabric used as a base material is prepared. In preparing the nonwoven fabric, a carding process is applied to the above-mentioned crimped composite short fiber or a staple fiber mixed with different types of crimped composite short fibers. After the web is entangled between the fibers by needle punching, the crimped composite short fiber is crimped by continuously heat-treating it through a heat treatment machine (causing web shrinkage). Then, the required stretchable nonwoven fabric in which crimps are expressed is obtained by adjusting the thickness of the nonwoven fabric through a heat roll.
ここで上記不織布の目付質量としては前述の如く80〜300g/m2の範囲がよく、目付質量が80g/m2未満であると、成形加工には問題ないが、発泡ウレタン樹脂の染み出しがその防止に有効な撥水性短繊維などと混繊しても効果が得られなくなるので好ましくない。なお、他の短繊維が殆ど含まれない捲縮性複合短繊維の場合は、目付質量範囲は100〜300g/m2で効果的であるが、捲縮性複合短繊維に一部、撥水性繊維などを混繊する場合は該繊維の混繊割合が3〜40質量%に制限されるが、目付質量範囲は80〜120g/m2としても充分、効果的である。
(4)不織布の特性
以上より得られた不織布は補強材として使用するにあたり、これに適した特性が考慮されるが、前記捲縮性複合短繊維を主材としてなる不織布では目付質量が80g/m2〜300g/m2の範囲において50%伸張応力が1.0〜15.0N/5cmで破断伸度が100%である特性を有することが肝要である。
Here, as the basis weight by weight of the nonwoven fabric good range of 80~300g / m 2 as described above, when the basis weight mass is less than 80 g / m 2, there is no problem in molding, but exudation of urethane foam resin Even if mixed with water-repellent short fibers that are effective in preventing this, the effect cannot be obtained, which is not preferable. In addition, in the case of a crimpable composite short fiber that hardly contains other short fibers, the basis weight range is 100 to 300 g / m 2 , which is effective, but a part of the crimpable composite short fiber is water-repellent. In the case of mixing fibers and the like, the mixing ratio of the fibers is limited to 3 to 40% by mass, but the basis weight range is 80 to 120 g / m 2 , which is sufficiently effective.
(4) Properties of the nonwoven fabric The nonwoven fabric obtained as described above is considered to have properties suitable for use as a reinforcing material. In the nonwoven fabric mainly composed of the crimped composite short fibers, the mass per unit area is 80 g / In the range of m 2 to 300 g / m 2 , it is important to have characteristics that 50% elongation stress is 1.0 to 15.0 N / 5 cm and elongation at break is 100%.
不織布の50%伸張応力が1.0N/5cm未満であると発泡ウレタンを金型成形するために金型に不織布を装着し発泡ウレタン液を注入し、金型成形加工する工程において不織布を装着するときに部分伸びを起こし取り扱い性が悪く、また金型加工でウレタンが発泡する過程で凹凸の変形域の把持性が悪くなり、不織布のズレ等を生じ易くなるので好ましくなく、不織布の50%伸張応力が15.0N/5cmを超えると金型への装着の取り扱い性は問題ないが、金型加工でウレタンが発泡する過程で凹凸の変形が不十分となり出来上がりの凹凸形状が悪くなるので好ましくない。また、不織布の破断伸度は100%以上がよく、この不織布の破断伸度が100%未満であると金型加工における全体の不織布の変形,凹凸の部分変形によって不均一な変形を起こし易くなるので好ましくない。以下、本発明の実施例を比較例と共に説明する。 When the 50% elongation stress of the nonwoven fabric is less than 1.0 N / 5 cm, in order to mold urethane foam, the nonwoven fabric is attached to the mold, the urethane foam liquid is injected, and the nonwoven fabric is attached in the molding process. Occasionally partial elongation causes poor handling, and in the process of urethane foaming during mold processing, the gripping property of the deformation area of the concaves and convexes is deteriorated, and the nonwoven fabric is liable to be displaced. If the stress exceeds 15.0 N / 5 cm, there is no problem in the handling property of mounting on the mold, but it is not preferable because the deformation of the unevenness becomes insufficient in the process of urethane foaming in the mold processing and the resulting uneven shape is deteriorated. . Also, the breaking elongation of the nonwoven fabric should be 100% or more, and if the breaking elongation of this nonwoven fabric is less than 100%, non-uniform deformation is likely to occur due to deformation of the entire nonwoven fabric and partial deformation of the unevenness in mold processing. Therefore, it is not preferable. Examples of the present invention will be described below together with comparative examples.
実施例1
繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:250℃)短繊維90質量%と、繊度2.2デシテックスで繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:232℃)短繊維10質量%を均一混合して(目付質量約70g/m2)、次いで、カーディング加工を施し、針深さで10mm、打ち込み本数110本/cm2のニードル加工をし、引き続き連続して熱処理機で温度170℃、滞留時間30秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が101g/m2で厚さが0.76mmであった。
Example 1
90% by mass of polyester / low-melting polyester composite fiber with a fineness of 2.2 decitex and a fiber length of 51 mm (melting point of the low-melting polyester: 250 ° C.), and a polyester / low-melting polyester composite with a fineness of 2.2 dtex and a fiber length of 51 mm Fiber (melting point of low-melting polyester: 232 ° C.) 10% by mass of short fibers are uniformly mixed (weight per unit area: about 70 g / m 2 ), then carded, needle depth of 10 mm, number of driven 110 / A cm 2 needle was processed, and subsequently a crimping treatment was continuously performed with a heat treatment machine at a temperature of 170 ° C. and a residence time of 30 seconds. The obtained non-woven fabric was highly stretchable and had a mass per unit area of 101 g / m 2 and a thickness of 0.76 mm.
実施例2
繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:250℃)短繊維30質量%と、繊度2.2デシテックスで繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:232℃)短繊維70質量%を均一混合して(目付質量約70g/m2)、 次いで、カーディング加工を施し、針深さで10mm、打ち込み本数120本/cm2のニードル加工をし、引き続き連続して熱処理機で温度160℃、滞留時間30秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が107g/m2で厚さが1.04mmであった。
Example 2
Polyester / low-melting polyester composite fiber with a fineness of 2.2 decitex and a fiber length of 51 mm / low-melting polyester composite fiber (melting point of the low-melting polyester: 250 ° C.) 30% by mass, and a polyester / low-melting polyester composite with a fineness of 2.2 dtex and a fiber length of 51 mm Fiber (melting point of low melting point polyester: 232 ° C.) 70% by mass of short fibers are uniformly mixed (weight per unit area: about 70 g / m 2 ), then carded, needle depth of 10 mm, number of driven 120 / A cm 2 needle was processed, and subsequently a crimping treatment was continuously performed with a heat treatment machine at a temperature of 160 ° C. and a residence time of 30 seconds. The obtained non-woven fabric was highly stretchable and had a mass per unit area of 107 g / m 2 and a thickness of 1.04 mm.
実施例3
繊度2.8デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:250℃)短繊維95質量%と、繊度2.2デシテックスで繊維長51mmの表面にシリコンを被覆した繊維−繊維間の靜摩擦係数μsが0.151のポリエステル繊維(融点:262℃)短繊維5質量%(目付質量66g/m2)を均一混合してカーディング加工を施し、次に針深さで10mm、打ち込み本数110本/cm2のニードル加工をし、引き続き連続して熱処理機で温度170℃、滞留時間30秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が107g/m2で厚さが1.00mmであった。
Example 3
A polyester / low-melting polyester composite fiber having a fineness of 2.8 decitex and a fiber length of 51 mm (low-melting polyester melting point: 250 ° C.) 95% by mass, and a surface of the fiber length of 51 mm was coated with silicon at a fineness of 2.2 decitex Polyester fiber (melting point: 262 ° C.) having a friction coefficient μs between the fibers of 0.151 (melting point: 262 ° C.) 5% by mass (basis mass: 66 g / m 2 ) is uniformly mixed and carded, and then the needle depth Was 10 mm and the number of driven needles was 110 / cm 2 , and subsequently a crimping treatment was continuously performed with a heat treatment machine at a temperature of 170 ° C. and a residence time of 30 seconds. The obtained non-woven fabric was highly stretchable and had a mass per unit area of 107 g / m 2 and a thickness of 1.00 mm.
実施例4
繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:250℃)短繊維90質量%と、繊度2.2デシテックスで繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:232℃)短繊維10質量%を均一混合して(目付質量約100g/m2)、次いで、カーディング加工を施し針深さで10mm、打ち込み本数120本/cm2のニードル加工をし、引き続き連続して熱処理機で温度170度、滞留時間30秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が141g/m2で厚さが1.01mmであった。
Example 4
90% by mass of polyester / low-melting polyester composite fiber with a fineness of 2.2 decitex and a fiber length of 51 mm (melting point of the low-melting polyester: 250 ° C.), and a polyester / low-melting polyester composite with a fineness of 2.2 dtex and a fiber length of 51 mm Fiber (melting point of low-melting polyester: 232 ° C.) 10% by mass of short fibers are uniformly mixed (weight per unit area: about 100 g / m 2 ), then carded to give a needle depth of 10 mm, and the number of driven 120 / cm The needle processing of No. 2 was performed, and subsequently, a crimping treatment process was performed with a heat treatment machine at a temperature of 170 ° C. and a residence time of 30 seconds. The obtained non-woven fabric was highly stretchable and had a basis weight of 141 g / m 2 and a thickness of 1.01 mm.
実施例5
繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:250℃)短繊維90質量%と、繊度2.2デシテックスで繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:232℃)短繊維10質量%を均一混合して(目付質量約146g/m2)、次いで、カーディング加工を施し針深さで10mm、打ち込み本数110本/cm2のニードル加工をし、引き続き連続して熱処理機で温度170℃、滞留時間30秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が204g/m2で厚さが2.13mmであった。
Example 5
90% by mass of polyester / low-melting polyester composite fiber with a fineness of 2.2 decitex and a fiber length of 51 mm (melting point of the low-melting polyester: 250 ° C.), and a polyester / low-melting polyester composite with a fineness of 2.2 dtex and a fiber length of 51 mm Fiber (melting point of low-melting polyester: 232 ° C.) 10% by mass of short fibers are uniformly mixed (weight per unit area: about 146 g / m 2 ), then carded to give a needle depth of 10 mm, and the number of driven wires is 110 / cm The needle processing of No. 2 was performed, and subsequently, a crimping treatment process was performed with a heat treatment machine at a temperature of 170 ° C. and a residence time of 30 seconds. The obtained non-woven fabric was highly stretchable and had a mass per unit area of 204 g / m 2 and a thickness of 2.13 mm.
比較例1
繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合短繊維(低融点ポリエステルの融点:250℃)50質量%と、繊度2.2デシテックスで繊維長51mmの表面にシリコンを被覆した繊維−繊維間の靜摩擦係数μsが0.151のポリエステル繊維(融点262℃)短繊維50質量%(目付質量42g/m2)を均一に混合してカーディング加工を施し、次に針深さで10mm、打ち込み本数110本/cm2にニードル加工をし、引き続き連続して熱処理機で温度170℃、滞留時間30秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が65g/m2で厚さが0.59mmであった。
Comparative Example 1
50% by mass of polyester / low melting point polyester composite short fiber having a fineness of 2.2 dtex and a fiber length of 51 mm (melting point of low melting polyester: 250 ° C.), and a fiber having a fineness of 2.2 dtex and a fiber length of 51 mm coated with silicon -Polyester fiber (melting point 262 ° C) having a coefficient of friction between fibers of 0.151 (melting point 262 ° C) 50% by mass (weight per unit mass 42g / m 2 ) is uniformly mixed and carded, and then at the needle depth Needle processing was performed to 10 mm and the number of driven electrodes was 110 / cm 2 , and subsequently, crimping treatment was continuously performed with a heat treatment machine at a temperature of 170 ° C. and a residence time of 30 seconds. The obtained non-woven fabric was highly stretchable and had a mass per unit area of 65 g / m 2 and a thickness of 0.59 mm.
比較例2
繊度2.2デシテックス、繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:250℃)短繊維90質量%と、繊度2.2デシテックスで繊維長51mmのポリエステル/低融点ポリエステル複合繊維(低融点ポリエステルの融点:232℃)短繊維10質量%を均一混合して(目付質量約271g/m2)、次いでカーディング加工を施し針深さで10mm、打ち込み本数120本/cm2のニードル加工をし、引き続き連続して熱処理機で温度170℃、滞留時間50秒間の捲縮発現処理を行った。得られた不織布は高伸縮性で目付質量が382g/m2で厚さが3.30mmであった。
Comparative Example 2
90% by mass of polyester / low-melting polyester composite fiber with a fineness of 2.2 decitex and a fiber length of 51 mm (melting point of the low-melting polyester: 250 ° C.), and a polyester / low-melting polyester composite with a fineness of 2.2 dtex and a fiber length of 51 mm Fiber (melting point of low-melting polyester: 232 ° C.) 10% by mass of short fibers are uniformly mixed (weight per unit area: about 271 g / m 2 ), then carded to give a needle depth of 10 mm, and the number of driven 120 / cm 2 Subsequently, the crimping treatment was performed continuously with a heat treatment machine at a temperature of 170 ° C. and a residence time of 50 seconds. The obtained non-woven fabric was highly stretchable, the basis weight was 382 g / m 2 , and the thickness was 3.30 mm.
比較例3
スパンボンド法により製造された繊度約3.0デシテックスのポリエステル繊維よりなるランダム組織の目付質量が72g/m2のウエブを170℃の熱ロールによるカーディング加工で仮熱圧着して不織布Aを得た。また、同じく同法で目付質量が40g/m2のウエブを200℃の熱ロールによるカレンダー加工で仮熱圧着して不織布Bを得た。得られた不織布A,Bを積層して針深さで14mm、打ち込み本数50本/cm2のニードル加工をし積層不織布を得た。得られた不織布の目付質量が114g/m2で厚さが1.20mmであった。
Comparative Example 3
A nonwoven fabric A is obtained by preliminarily thermocompression bonding a web having a basis weight of 72 g / m 2 made of polyester fiber having a fineness of about 3.0 dtex manufactured by the spunbond method by carding with a hot roll at 170 ° C. It was. Similarly, a nonwoven fabric B was obtained by preliminarily thermocompression bonding a web having a weight per unit area of 40 g / m 2 by calendering with a 200 ° C. hot roll. The obtained non-woven fabrics A and B were laminated, and needle processing was performed at a needle depth of 14 mm and the number of driven 50 / cm 2 to obtain a laminated non-woven fabric. The obtained nonwoven fabric had a basis weight of 114 g / m 2 and a thickness of 1.20 mm.
上記実施例及び比較例により得られた各不織布について常法に従って発泡ウレタン樹脂を注入、添加して発泡成形を行い、得られた成形品のポリウレタン樹脂の試料表面への染み出し、接着状態を観察して評価判定を行った。その結果を後記表1に示す。なお、評価に際し各試料ならびに特性及び発泡ウレタンの染み出し評価は下記測定方法に従って行った。 For each nonwoven fabric obtained by the above examples and comparative examples, urethane foam resin is injected and added according to a conventional method, and foam molding is performed. The obtained molded product exudes to the sample surface of the polyurethane resin and observes the adhesion state. The evaluation was determined. The results are shown in Table 1 below. In the evaluation, each sample, characteristics, and exudation of foamed urethane were evaluated according to the following measurement method.
測定方法
目付質量:g/m2
試料から500mm×500mmの試料片を切り出し、0.1gの単位まで質量を測定する。質量を4倍してg/m2で表す。N=3(3回測定)の平均値を四捨五入し整数で示す。
Measurement method Weight per unit area: g / m 2
A 500 mm × 500 mm sample piece is cut out from the sample, and the mass is measured to a unit of 0.1 g. The mass is quadrupled and expressed in g / m 2 . The average value of N = 3 (measured three times) is rounded off and expressed as an integer.
厚さ:mm
試料から50mm×50mmの試料片を切り出し、接触面積5cm2、押し圧20gのダイヤルゲージにて3点測定し、mmで表わす。N=3の平均値を四捨五入し小数点以下までで示す。
Thickness: mm
A 50 mm × 50 mm sample piece was cut out from the sample, measured at three points with a dial gauge having a contact area of 5 cm 2 and a pressing pressure of 20 g, and expressed in mm. The average value of N = 3 is rounded off to the nearest decimal point.
短繊維の摩擦係数:μs
JIS規格 JIS L1015−8.13に準拠して測定した。
Friction coefficient of short fiber: μs
Measured in accordance with JIS standard JIS L1015-8.13.
測定器:レーダー式摩擦試験機
円筒外径:8mm
計器:トウションバランス
靜摩擦係数(μs)=0.733log(W/(W−m))
W:繊維の両端にかけた荷重(N)
m:トウションバランスの読み(N)
破断強伸度
縦方向、横方向共に5cm×30cmの試料をn=3採取する。東洋ボールドイン社製テンシロンを用い、掴み間隔20cmで引っ張り速度20cm/minで破断強伸度を測定し、平均値で表わす。
Measuring instrument: Radar friction tester Cylinder outer diameter: 8mm
Instrument: Torsion balance 靜 Friction coefficient (μs) = 0.733log (W / (W-m))
W: Load applied to both ends of the fiber (N)
m: Reading of torsion balance (N)
Tensile strength at break n = 3 samples of 5 cm × 30 cm are taken in both the longitudinal and transverse directions. Using Tensilon manufactured by Toyo Bald-In Co., Ltd., the tensile strength at break was measured at a gripping interval of 20 cm and a pulling speed of 20 cm / min, and expressed as an average value.
50%伸張応力:N/5cm
縦方向、横方向共に5cm×30cmの試料をn=3採取する。東洋ボールドイン社製テンシロン用い、掴み間隔20cmで引っ張り速度20cm/minで10cm点の応力を測定し、平均値で表わす。
50% elongation stress: N / 5cm
N = 3 samples of 5 cm × 30 cm are taken in both the vertical and horizontal directions. Using Tensilon manufactured by Toyo Bald Inn Co., Ltd., the stress at the 10 cm point was measured at a gripping interval of 20 cm and a pulling speed of 20 cm / min, and expressed as an average value.
発泡ウレタンの染み出し評価
発泡成形用金型内(一部凹凸を含む)に試料をセットし、常法通り発泡ウレタン樹脂を添加し、加熱、加圧下でポリウレタンの発泡成形を行い、軟質ポリウレタンフォーム型内発泡成形品を作成した。得られた成形品のポリウレタン樹脂の試料表面への染み出し、接着状態を観察して下記評価判定を行った。
Evaluation of seepage of urethane foam Set a sample in a mold for foam molding (including some irregularities), add urethane foam as usual, and perform polyurethane foam molding under heat and pressure to form a flexible polyurethane foam. An in-mold foam molded product was created. The obtained molded article oozed out to the sample surface of the polyurethane resin and observed the adhesion state, and the following evaluation was determined.
試料の凹凸部の不織布の変形が均一、染み出しなく、接着問題ない ○
試料の染み出しはないが、凹凸の不織布の変形が不均一 △
試料の凹凸部の不織布の変形は均一であるが、染み出しがある △
試料の凹凸の不織布の変形が不均一で、染み出しもある。 ×
Uniform deformation of the non-woven fabric on the uneven surface of the sample, no bleeding, no adhesion problems ○
The sample does not exude, but the uneven nonwoven fabric does not deform uniformly △
The deformation of the non-woven fabric of the uneven part of the sample is uniform, but there is a seepage.
The deformation of the uneven nonwoven fabric of the sample is non-uniform and oozes out. ×
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016876A JP2010174393A (en) | 2009-01-28 | 2009-01-28 | Urethan-reinforcing material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009016876A JP2010174393A (en) | 2009-01-28 | 2009-01-28 | Urethan-reinforcing material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010174393A true JP2010174393A (en) | 2010-08-12 |
Family
ID=42705625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009016876A Pending JP2010174393A (en) | 2009-01-28 | 2009-01-28 | Urethan-reinforcing material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010174393A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012082548A (en) * | 2010-10-12 | 2012-04-26 | Toyobo Co Ltd | Nonwoven fabric for reinforcing material for foamed molded article and method for producing the same |
WO2013176176A1 (en) | 2012-05-22 | 2013-11-28 | 三井化学株式会社 | Nonwoven fabric laminate for foam molding, complex of urethane foam-molded body using said nonwoven fabric laminate, and method for manufacturing nonwoven fabric laminate for foam molding |
JP1563167S (en) * | 2015-09-04 | 2016-11-14 | ||
JP2017125439A (en) * | 2016-01-13 | 2017-07-20 | 日立オートモティブシステムズ株式会社 | Piston and method for manufacturing piston |
CN108312983A (en) * | 2018-02-12 | 2018-07-24 | 上海东杰高分子材料有限公司 | A kind of composite sound-absorbing material and its preparation process |
JP2020133051A (en) * | 2019-02-20 | 2020-08-31 | 東洋紡株式会社 | Nonwoven fabric for reinforcing foamed mold article |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06171003A (en) * | 1992-12-11 | 1994-06-21 | Toyobo Co Ltd | Reinforcing material for urethane from molding having unpleasant sound preventing capacity, production thereof and product |
JP2001314287A (en) * | 2000-05-12 | 2001-11-13 | Suminoe Textile Co Ltd | Cushion body for seat in vehicle |
JP2002275749A (en) * | 2001-03-21 | 2002-09-25 | Unitika Ltd | Laminated nonwoven fabric and urethane foam reinforced with nonwoven fabric |
JP2004121829A (en) * | 2002-08-02 | 2004-04-22 | Toray Ind Inc | Filling material |
JP2006104603A (en) * | 2004-10-04 | 2006-04-20 | Toray Ind Inc | Reinforcing material for expansion molding and method for producing the same |
JP2006263953A (en) * | 2005-03-22 | 2006-10-05 | Toyobo Co Ltd | Flocked stretchable sheet and its manufacturing method |
JP2007162181A (en) * | 2005-12-16 | 2007-06-28 | Kureha Ltd | Stretchable nonwoven fabric having designing property and method for producing the same |
JP2008529869A (en) * | 2005-02-07 | 2008-08-07 | リ アンド エス カンパニー リミテッド | Automotive ceiling materials |
-
2009
- 2009-01-28 JP JP2009016876A patent/JP2010174393A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06171003A (en) * | 1992-12-11 | 1994-06-21 | Toyobo Co Ltd | Reinforcing material for urethane from molding having unpleasant sound preventing capacity, production thereof and product |
JP2001314287A (en) * | 2000-05-12 | 2001-11-13 | Suminoe Textile Co Ltd | Cushion body for seat in vehicle |
JP2002275749A (en) * | 2001-03-21 | 2002-09-25 | Unitika Ltd | Laminated nonwoven fabric and urethane foam reinforced with nonwoven fabric |
JP2004121829A (en) * | 2002-08-02 | 2004-04-22 | Toray Ind Inc | Filling material |
JP2006104603A (en) * | 2004-10-04 | 2006-04-20 | Toray Ind Inc | Reinforcing material for expansion molding and method for producing the same |
JP2008529869A (en) * | 2005-02-07 | 2008-08-07 | リ アンド エス カンパニー リミテッド | Automotive ceiling materials |
JP2006263953A (en) * | 2005-03-22 | 2006-10-05 | Toyobo Co Ltd | Flocked stretchable sheet and its manufacturing method |
JP2007162181A (en) * | 2005-12-16 | 2007-06-28 | Kureha Ltd | Stretchable nonwoven fabric having designing property and method for producing the same |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012082548A (en) * | 2010-10-12 | 2012-04-26 | Toyobo Co Ltd | Nonwoven fabric for reinforcing material for foamed molded article and method for producing the same |
WO2013176176A1 (en) | 2012-05-22 | 2013-11-28 | 三井化学株式会社 | Nonwoven fabric laminate for foam molding, complex of urethane foam-molded body using said nonwoven fabric laminate, and method for manufacturing nonwoven fabric laminate for foam molding |
JP1563167S (en) * | 2015-09-04 | 2016-11-14 | ||
JP2017125439A (en) * | 2016-01-13 | 2017-07-20 | 日立オートモティブシステムズ株式会社 | Piston and method for manufacturing piston |
CN108312983A (en) * | 2018-02-12 | 2018-07-24 | 上海东杰高分子材料有限公司 | A kind of composite sound-absorbing material and its preparation process |
JP2020133051A (en) * | 2019-02-20 | 2020-08-31 | 東洋紡株式会社 | Nonwoven fabric for reinforcing foamed mold article |
JP7251201B2 (en) | 2019-02-20 | 2023-04-04 | 東洋紡株式会社 | Non-woven fabric for reinforcing foam molded products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010174393A (en) | Urethan-reinforcing material | |
US6548141B2 (en) | Carpet material and method of producing same | |
JP5003028B2 (en) | Urethane foam reinforcement | |
US5646077A (en) | Binder fiber and nonwoven fabrics using the fiber | |
KR101206821B1 (en) | Elastic fiber structure and method of fabricating the same | |
KR101251291B1 (en) | Felt material with recycled fiber for the vehicle interiors and method of the same | |
KR20200126369A (en) | Laminated nonwoven | |
WO2013047669A1 (en) | Non-woven fabric for reinforcing foam molding article | |
JP7173022B2 (en) | LAMINATED NONWOVEN FABRIC AND METHOD FOR MANUFACTURING SAME | |
JP3150605U (en) | Non-woven fabric for urethane reinforcement | |
KR101282296B1 (en) | Elastic cushion and method of fabricating the same | |
JP5605148B2 (en) | Non-woven fabric for foam molded article reinforcement and method for producing the same | |
US20070152488A1 (en) | Arm rest using vertical lapped fiber | |
CN1831228B (en) | Nonwoven | |
EP1025301B1 (en) | Reinforcing material for footwear | |
JP2004183179A (en) | Nonwoven fabric | |
JP5966472B2 (en) | Elastic network structure with high vibration absorption | |
EP0637642A1 (en) | Binder fiber and nonwoven fabric produced therefrom | |
GB2405646A (en) | Two layer filling for bed mattresses and upholstery | |
JP6450200B2 (en) | Reinforced base fabric for urethane foam molded products | |
JP2003053065A (en) | Cushion material improved in fire retardance and softness and method of manufacturing the same | |
JP2976081B2 (en) | Molding material using composite fiber and molding method thereof | |
JP3905813B2 (en) | Automotive interior skin material and manufacturing method thereof | |
JP4197280B2 (en) | Interior skin material with excellent design and texture | |
JP4450708B2 (en) | Monolithic skin material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20110822 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20120702 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130129 |