JP2010173525A - Plated steel sheet for fuel tank of motorcycle, and fuel tank - Google Patents
Plated steel sheet for fuel tank of motorcycle, and fuel tank Download PDFInfo
- Publication number
- JP2010173525A JP2010173525A JP2009019579A JP2009019579A JP2010173525A JP 2010173525 A JP2010173525 A JP 2010173525A JP 2009019579 A JP2009019579 A JP 2009019579A JP 2009019579 A JP2009019579 A JP 2009019579A JP 2010173525 A JP2010173525 A JP 2010173525A
- Authority
- JP
- Japan
- Prior art keywords
- less
- mass
- fuel tank
- corrosion
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Coating With Molten Metal (AREA)
Abstract
Description
本発明はガソリン、メタノールを含有するガソリンや、バイオ燃料などを供給する、耐食性に優れた自動二輪車用燃料タンク用のめっき鋼板およびそれからなる燃料タンクに関するものである。 The present invention relates to a plated steel sheet for a motorcycle fuel tank excellent in corrosion resistance and supplying gasoline, gasoline containing methanol, biofuel, and the like, and a fuel tank comprising the same.
従来、自動二輪車用の燃料タンク用の素材としては、耐食性、加工性及び溶接性に優れたZn−Niめっき鋼板が用いられている。Zn−Niめっき鋼板は片面めっきであり、タンクの内面がめっき面となり、外側にはカチオン電着塗装を施した後にポリアミド系やポリウレタン系の樹脂などの上塗り塗装が施されている。
また、軽量化の為に樹脂のタンクも使用されている。
Resin tanks are also used to reduce weight.
燃料タンクの材料に関し、Zn―Niめっき鋼板では内面の腐食により腐食生成物が生成し、燃料補給弁などを詰まらせる問題がある。特に近年南米で用いられるようになったバイオ燃料では従来のガソリンより腐食性が強いために内面の耐食性の向上が求められる。 Regarding the material of the fuel tank, there is a problem that a corrosion product is generated by corrosion of the inner surface of the Zn—Ni plated steel plate and clogs the fuel supply valve. In particular, biofuels that have recently been used in South America are more corrosive than conventional gasoline, and therefore need to improve the internal corrosion resistance.
内面腐食に対する耐食性の観点からは、素材にステンレス鋼を用いることが好ましいといえるが、燃料タンクは外部に露出しているため、隙間部を構成する部位においては雨水が浸入し、隙間腐食が起こるという問題がある。更に、路面に融雪塩が撒かれる地域ではこの隙間部にも塩分が進入するため、乾燥濃縮によってきわめて厳しい腐食環境となる。場合によっては孔あき腐食を起こし、タンクとしての機能を損なう場合すら存在する。
また、夏季の直射日光に曝される時期においては、タンク表面の温度は50℃を超えこともあるため、オーステナイト系ステンレス鋼を適用した場合には、溶接施工時に生じた熱応力に起因する応力腐食割れが懸念される。一方、Cr含有量を高めたりMoを添加して耐食性を向上させたフェライト系ステンレス鋼の場合には、加工性が低下するという問題がある。
From the viewpoint of corrosion resistance against internal corrosion, it can be said that it is preferable to use stainless steel as the material. However, since the fuel tank is exposed to the outside, rainwater infiltrates at the site constituting the gap and crevice corrosion occurs. There is a problem. In addition, in areas where snow melting salt is drowned on the road surface, salt enters the gaps, so that the environment becomes extremely severe due to dry concentration. In some cases, there is even perforation corrosion and even the function of the tank is impaired.
In addition, when exposed to direct sunlight in summer, the temperature of the tank surface may exceed 50 ° C, so when austenitic stainless steel is applied, the stress caused by the thermal stress generated during welding There is concern about corrosion cracking. On the other hand, in the case of a ferritic stainless steel in which the Cr content is increased or the corrosion resistance is improved by adding Mo, there is a problem that workability is lowered.
したがって、耐食性の点で従来のめっき鋼板やステンレス鋼無垢材では不十分であった自動二輪車用燃料タンク用素材について、内面耐食性および加工性を有するものの開発に対する要求があった。 Therefore, there has been a demand for the development of a fuel tank material for motorcycles that has internal corrosion resistance and workability, which is insufficient with conventional plated steel plates and solid stainless steel materials in terms of corrosion resistance.
これらの課題を解決するため、本発明では自動二輪車燃料タンク素材として、表面にZnあるいはZnとFe,Ni,Co,MgおよびAlの一種以上からなる合金のめっき層を両面または片面に有する、平均結晶粒径が40μm以下のフェライト系ステンレス鋼を適用することとした。 In order to solve these problems, in the present invention, as a motorcycle fuel tank material, Zn or an alloy composed of one or more of Zn and Fe, Ni, Co, Mg and Al is formed on both surfaces or one surface as an average. Ferritic stainless steel having a crystal grain size of 40 μm or less was applied.
更に、タンクを構成するフェライト系ステンレス鋼の組成がCr:11.0〜23.0質量%、C:0.015%以下、Si:1.0質量%以下、Ti:0.05〜0.50質量%又はNb:0.10〜0.50質量%以下の一種又は二種を含有し、残部Feおよび不可避的不純物とすることにより、前述のめっきと組み合わせることで十分な耐食性と加工性が確保できる。
また、ステンレス鋼には更にMo:3.0質量%以下、Ni:2.0質量%、Cu:2.0質量%以下、B:0.0100質量%以下の一種又は二種以上を含有させても良い。
Furthermore, the composition of the ferritic stainless steel constituting the tank is Cr: 11.0 to 23.0% by mass, C: 0.015% or less, Si: 1.0% by mass or less, Ti: 0.05 to 0.00. 50% by mass or Nb: 0.10 to 0.50% by mass or less of one or two types, with the balance being Fe and unavoidable impurities, sufficient corrosion resistance and workability in combination with the aforementioned plating It can be secured.
Further, the stainless steel further contains Mo: 3.0% by mass or less, Ni: 2.0% by mass, Cu: 2.0% by mass or less, and B: 0.0100% by mass or less. May be.
また、燃料タンク形状への加工には素材の成型加工性が良好であることが必要であるが、深絞り加工性の指標である限界絞り比LDRを2.3以上とするためには、めっき原板であるステンレス鋼の平均結晶粒径を40μm以下とすればよい。 In addition, processing into a fuel tank shape requires good material moldability, but in order to make the limit drawing ratio LDR, which is an index of deep drawing workability, 2.3 or more, plating What is necessary is just to make the average crystal grain diameter of stainless steel which is an original plate into 40 micrometers or less.
本発明により、自動二輪車の燃料タンクに対して、劣化ガソリンやバイオガソリンなど燃料に対する耐食性を有し、外面腐食に対し、融雪塩などの塩素イオンが濃縮し、乾燥湿潤が繰り返される環境でも長期的な耐食性を有する材料の提供が可能となった。さらに自動二輪車への複雑な絞り加工にも対応可能である。 According to the present invention, the fuel tank of a motorcycle has corrosion resistance against fuel such as deteriorated gasoline and biogasoline, and chlorine ions such as snow melting salt are concentrated against external surface corrosion, and long-term even in an environment where dry and wet are repeated. It has become possible to provide a material having excellent corrosion resistance. It can also handle complex drawing on motorcycles.
以下、本発明鋼の防食機構について説明する。本発明においては、めっきの母材にステンレス鋼を用いるため、従来の亜鉛めっき鋼板では得られなかったZnの防食作用が期待できる。
従来の普通鋼に亜鉛めっきを施した鋼板の場合、金属亜鉛が鋼板上に存在しているうちは亜鉛の犠牲溶解により母材の腐食が抑制されているが、金属亜鉛が消失すると、母材の腐食が始まり、孔あきに至る。
Hereinafter, the anticorrosion mechanism of the steel of the present invention will be described. In the present invention, since stainless steel is used as a base material for plating, the anticorrosive action of Zn that could not be obtained with a conventional galvanized steel sheet can be expected.
In the case of a steel plate in which conventional plain steel is galvanized, while the metallic zinc is present on the steel plate, the corrosion of the base metal is suppressed by the sacrificial dissolution of the zinc. Corrosion begins and leads to perforation.
この亜鉛の腐食生成物に対する防食作用はステンレス鋼板の表面に付着した亜鉛の腐食生成物が腐食過程における陰極反応である酸素還元反応を抑制する作用と、水酸化亜鉛の解離によるpH緩衝作用である。この作用はめっき下地鋼にステンレス鋼を用いた場合に発現されるもので、普通鋼を用いた場合には観察されない。
また、水環境のみならず大気環境においても、腐食生成物が存在する限り、同様の防食作用が認められた。これらの防食作用は亜鉛単独の場合に限らず、亜鉛とFe,Ni,Co,MgおよびAlとの合金めっきとした場合にも同様な効果が認められる。
The anticorrosive action against the corrosion product of zinc is the action of the zinc corrosion product adhering to the surface of the stainless steel plate to suppress the oxygen reduction reaction, which is a cathodic reaction in the corrosion process, and the pH buffering action due to the dissociation of zinc hydroxide. . This effect is manifested when stainless steel is used as the plating base steel, and is not observed when ordinary steel is used.
Moreover, the same anticorrosive action was recognized not only in the water environment but also in the air environment as long as the corrosion product was present. These anticorrosive effects are not limited to the case of zinc alone, but the same effect is observed when alloy plating of zinc and Fe, Ni, Co, Mg, and Al is used.
Znの腐食生成物による防食作用は、ステンレス鋼の隙間腐食を抑制するのにきわめて有効である。Znの腐食生成物は取り巻く環境によって異なるが、主に酸化亜鉛と水酸化亜鉛よりなる。Znは中性の水溶液中でも容易に腐食が起こる金属であり、特にCl−が濃縮するような隙間環境では容易に腐食生成物が生成されるため、隙間環境でも有効である。
したがって、外面にZn系めっきを施すことは、塩化物が主体である融雪剤が路上にまかれる地域における、跳ね上がって付着した融雪剤が原因の隙間腐食の防止に有効である。
The anticorrosive action by the corrosion product of Zn is extremely effective for suppressing crevice corrosion of stainless steel. The corrosion product of Zn varies depending on the surrounding environment, but mainly consists of zinc oxide and zinc hydroxide. Zn is a metal that easily corrodes even in a neutral aqueous solution, and is particularly effective in a crevice environment because a corrosion product is easily generated in a crevice environment where Cl − is concentrated.
Therefore, applying the Zn-based plating to the outer surface is effective in preventing crevice corrosion caused by the snow melting agent that has jumped up and adhered in an area where the snow melting agent mainly composed of chloride is spread on the road.
一方、燃料タンクの内部はガソリンなどの燃料が存在する環境となる。ガソリンが劣化すると低級有機酸が生成し、これが結露水に移行して腐食環境が形成される。この内面環境に対しても、亜鉛めっきを施したステンレス鋼はZnの犠牲防食作用と腐食生成物の防食作用により、従来のめっき材料より劣化ガソリンに対して優れた耐食性を示す。
また素材がステンレス鋼であるためにめっき層が溶解し腐食生成物が生成しても、素材の腐食が進行せず、燃料噴射弁の目詰まりなども起こらない。
On the other hand, the inside of the fuel tank is an environment where fuel such as gasoline exists. When gasoline deteriorates, a lower organic acid is generated, which is transferred to condensed water and a corrosive environment is formed. Even in this internal environment, galvanized stainless steel exhibits superior corrosion resistance to deteriorated gasoline than conventional plating materials due to the sacrificial anticorrosive action of Zn and the anticorrosive action of corrosion products.
In addition, since the material is stainless steel, even if the plating layer dissolves and a corrosion product is generated, the material does not progress in corrosion and the fuel injection valve is not clogged.
めっき方法は電気めっき、溶融めっき、蒸着めっきのいずれの方法でもよい。燃料タンクはシーム溶接やスポット溶接により製造されるため、溶接によってZnが蒸散すると溶接隙間部に対する腐食生成物の防食作用がめっき層は5g/m2以上あることが望ましい。 The plating method may be any method of electroplating, hot dipping, and vapor deposition. Since the fuel tank is manufactured by seam welding or spot welding, it is desirable that the corrosion protection action of the corrosion product on the weld gap when the Zn evaporates by welding has a plating layer of 5 g / m 2 or more.
亜鉛めっきにおいてはその単独めっきのみでなく、めっき層にFe、Ni、Co、MgおよびAlを含有する場合も有効である。それらを含有させた場合にも腐食生成物としては亜鉛の水酸化物あるは酸化物が主となるため腐食生成物の生成後の防食効果には問題はない。むしろ、それらの金属元素を亜鉛めっき層中に含有させることにより、めっき層の耐食性が向上するため有効である。
また溶接性を考慮すると亜鉛めっき単独と比較すると融点が高くなるために、電極寿命が向上する。
In galvanization, not only the single plating but also the case where the plating layer contains Fe, Ni, Co, Mg and Al are effective. Even when they are contained, there is no problem in the anticorrosive effect after the formation of the corrosion product because the corrosion product is mainly a hydroxide or oxide of zinc. Rather, the inclusion of these metal elements in the galvanized layer is effective because the corrosion resistance of the plated layer is improved.
In consideration of weldability, the melting point is higher than that of galvanized alone, so that the electrode life is improved.
本発明の自動車二輪タンクは両面にめっきを施すことを基本とするが、想定される腐食環境に応じて内面あるいは外面を片面めっきしても良い。 Although the two-wheeled automobile tank of the present invention is basically plated on both sides, the inner surface or the outer surface may be plated on one side depending on the assumed corrosive environment.
本発明におけるステンレス鋼はCr:11.0〜23.0質量%、C:
0.015質量%以下、Si:1.0質量%以下、Ti:0.05〜0.50質量%あるいはNb:0.10〜0.50質量%を単独か複合、あるいはさらにMo:3.0質量%以下、N:0.020質量%以下、Ni:2.0質量%以下、Cu:2.0質量%以下、B:0.0100質量%以下を含有し、残部が実質的にFeの組成を有するフェライト系ステンレス鋼とする。
更にMo:3.0質量%以下、Ni:2.0質量%、Cu:2.0質量%以下、B:0.0100質量%以下の一種又は二種以上を含有させても良い。
The stainless steel in the present invention is Cr: 11.0-23.0% by mass, C:
0.015% by mass or less, Si: 1.0% by mass or less, Ti: 0.05 to 0.50% by mass or Nb: 0.10 to 0.50% by mass alone or in combination, or Mo: 3. 0% by mass or less, N: 0.020% by mass or less, Ni: 2.0% by mass or less, Cu: 2.0% by mass or less, B: 0.0100% by mass or less, with the balance being substantially Fe Ferritic stainless steel having the following composition:
Further, Mo: 3.0% by mass or less, Ni: 2.0% by mass, Cu: 2.0% by mass or less, and B: 0.0100% by mass or less may be contained.
C:0.015質量%以下
Cは炭化物を形成し、それが最終焼鈍での再結晶フェライトのランダム化の再結晶核として働く。しかしCは冷延焼鈍後の強度を上昇させる元素であり、あまり高いと延性の低下を招き燃料タンクの加工に対して不利となるため、0.015%以下とした。
C: 0.015 mass% or less C forms carbides, which serve as recrystallization nuclei for randomization of recrystallized ferrite in the final annealing. However, C is an element that increases the strength after cold rolling annealing, and if it is too high, the ductility is lowered and disadvantageous for the processing of the fuel tank.
合金元素の含有量と限定理由は以下の通りである。
Si:1.0質量%以下
Siは通常脱酸の目的のために使用するが、固溶強化能が高く、あまりその含有量が多いと材質が硬化し延性の低下を招くので、1.0%以下とした。
Mn:2.0質量%以下
オーステナイト形成元素であり、固溶強化能が小さく材質への悪影響が少ない。しかし、含有量が多いと溶製時にMnヒュームが生成する等、製造性が低下する。更には鋼中SとMnSを生成し腐食の貴店となりやすいので、望ましくは成分範囲を2.0%以下とする。
The content of the alloy element and the reason for limitation are as follows.
Si: 1.0% by mass or less Si is usually used for the purpose of deoxidation, but has a high solid solution strengthening ability, and if the content is too large, the material is hardened and the ductility is lowered. % Or less.
Mn: 2.0% by mass or less An austenite-forming element that has low solid solution strengthening ability and little adverse effect on the material. However, if the content is large, manufacturability decreases, such as Mn fume being generated during melting. Further, since S and MnS are produced in the steel and are likely to become a precious store for corrosion, the component range is desirably set to 2.0% or less.
Cr:11.0〜23.0質量%
Crは本発明において最も重要な元素である。Crが11%以上あれば、亜鉛めっき防食作用は認められる。しかし、Cr量の増加は加工性を低下させるために燃料タンクへの加工が困難となり、コストも上昇するためその上限を23.0%とする。
Cr: 11.0-23.0 mass%
Cr is the most important element in the present invention. If Cr is 11% or more, the galvanizing anticorrosive action is recognized. However, an increase in the Cr content makes it difficult to process the fuel tank due to a decrease in workability, and the cost increases, so the upper limit is made 23.0%.
N:0.020質量%以下
Nは窒化物を形成し、Cと同様にそれが最終焼鈍での再結晶フェライトの結晶方位ランダム化の再結晶核として働く。しかしNは冷延焼鈍材の強度を上昇させる元素であり、あまり高いと延性の低下を招くため、0.020%以下とした。
N: 0.020% by mass or less N forms a nitride, and like C, it acts as a recrystallization nucleus for randomizing the crystal orientation of the recrystallized ferrite in the final annealing. However, N is an element that increases the strength of the cold-rolled annealed material, and if it is too high, the ductility is lowered.
Al:0.2質量%以下
Alは溶鋼の脱酸のために0.2%を上限として添加する。0.2%を超えるとTiNなどの窒化物系介在物がクラスターを生成し、表面欠陥の原因となる。
鋼中の酸素をSiでコントロールする場合には、無添加でも構わない。
Al: 0.2% by mass or less Al is added at an upper limit of 0.2% for deoxidation of molten steel. If it exceeds 0.2%, nitride inclusions such as TiN form clusters and cause surface defects.
When the oxygen in the steel is controlled by Si, no addition is possible.
Ti:0.05〜0.50質量%
TiはC,Nを固定し、加工性および耐食性を向上させる元素であり、その効果がでる最低Ti含有量は0.05%である。しかし、Tiを添加すると、鋼材コストの増大を招き、Ti系介在物が原因の表面欠陥が問題となることから、Ti含有量の上限を0.50%に設定した。
Ti: 0.05 to 0.50 mass%
Ti is an element that fixes C and N and improves workability and corrosion resistance, and the minimum Ti content at which the effect can be obtained is 0.05%. However, when Ti is added, the steel material cost increases, and surface defects caused by Ti inclusions become a problem. Therefore, the upper limit of the Ti content is set to 0.50%.
Nb:0.10〜0.50質量%
NbはC,Nを固定し、耐衝撃特性や二次加工性を向上させる元素であり、かつ結晶粒を微細化するのに有効な元素である。これらの効果がでる最低量は0.10%である。しかし、Nbを添加しすぎると材料が硬化し加工性に悪影響をもたらす。また、再結晶温度を上げることから、上限を0.5%とする。
Nb: 0.10 to 0.50 mass%
Nb is an element that fixes C and N, improves impact resistance and secondary workability, and is an effective element for refining crystal grains. The minimum amount that produces these effects is 0.10%. However, when Nb is added too much, the material is cured and the workability is adversely affected. Further, since the recrystallization temperature is raised, the upper limit is made 0.5%.
B:0.0005〜0.0100質量%
Bは、Nを固定し、耐食性や加工性を改善する作用をもつ合金成分であり、必要に応じて添加される。上記作用を発揮させるためには0.0005%以上添加することが望ましい。しかし、過剰に添加すると熱間加工性の低下や溶接性の低下を招くため、上限を0.0100%に設定した。
B: 0.0005 to 0.0100 mass%
B is an alloy component that has the effect of fixing N and improving the corrosion resistance and workability, and is added as necessary. In order to exert the above action, it is desirable to add 0.0005% or more. However, if added excessively, the hot workability and weldability are reduced, so the upper limit was set to 0.0100%.
Mo:3.0質量%以下
Moは耐食性を改善するのに有効な元素であるが、過度の添加は高温での固溶強化や動的再結晶の遅滞により、熱間加工性の低下をもたらすので3.0%以下とした。
Mo: 3.0% by mass or less Mo is an element effective for improving the corrosion resistance. However, excessive addition causes a decrease in hot workability due to solid solution strengthening at high temperature and delay of dynamic recrystallization. Therefore, it was made 3.0% or less.
Ni:2.0質量%以下
Niは無添加でも構わない。Niはオーステナイト形成元素であり、2.0%を越える添加は硬質化やコスト上昇を招くため、耐酸性向上のために添加する場合は2.0%を上限とする。
Ni: 2.0% by mass or less Ni may not be added. Ni is an austenite forming element, and addition exceeding 2.0% leads to hardening and cost increase. Therefore, when added for improving acid resistance, the upper limit is 2.0%.
Cu:2.0質量%以下
Cuは無添加でも構わない。過度の添加は熱間加工性や耐食性を低下させるので、軟質化のために添加する場合は2.0%以下とする。
Cu: 2.0 mass% or less Cu may not be added. Excessive addition reduces hot workability and corrosion resistance, so when added for softening, the content is made 2.0% or less.
P:0.050質量%以下
Pは熱間加工性に有害な元素である。特に0.050%を超えるとその影響は顕著になるので、望ましくは0.050%以下に制限する。
P: 0.050 mass% or less
P is an element harmful to hot workability. In particular, when the content exceeds 0.050%, the influence becomes remarkable, so the content is desirably limited to 0.050% or less.
S:0.020質量%
Sは結晶粒界に偏析しやすく、粒界脆化により熱間加工性の低下等を促進する元素である。0.020%を超えるとその影響は顕著になるので望ましくは0.020%以下である。
S: 0.020 mass%
S is an element that easily segregates at the crystal grain boundary and promotes a decrease in hot workability due to grain boundary embrittlement. If it exceeds 0.020%, the effect becomes remarkable, so it is preferably 0.020% or less.
V,Zr:0.01〜0.30質量%
V及びZrは固溶Cを炭化物として析出させる効果による加工性を向上し、更にZrは鋼中の酸素を酸化物として捕えることによる加工性や靭性向上の面から有用な元素である。しかしながら、多量に添加すると製造性が低下するので、適正含有量はV、Zrは
0.01〜0.30%である。
V, Zr: 0.01-0.30 mass%
V and Zr improve workability due to the effect of precipitating solid solution C as carbides, and Zr is a useful element from the viewpoint of improving workability and toughness by capturing oxygen in steel as an oxide. However, if added in a large amount, the manufacturability is lowered, so the proper contents are V and Zr are 0.01 to 0.30%.
これら以外にもCa、Mg、Co、REMなどは原料であるスクラップや副原料より混入することもあるが、とりたてて多量に含まれる場合を除き、成形品の形状凍結性には影響ない。 In addition to these, Ca, Mg, Co, REM, and the like may be mixed from scraps and auxiliary materials as raw materials, but there is no effect on the shape freezing property of molded products unless they are contained in large amounts.
また、本発明のステンレス鋼においては仕上焼鈍後の結晶粒径を40μm以下にすることにより、燃料タンクヘの絞り加工性を向上させるとともに、良好な塗装外観を得ることができる。
タンク形状への絞り加工においては、リジング、肌荒れが原因で割れ、ネッキングを生じることがある。それらを抑制するために結晶粒を細粒化させることが有効である。細粒化による加工硬化現象により最も加工の厳しい部位の割れを抑制させることと、歪を分散させることによる。平均結晶粒径が40μm以下であればその作用が発現し、加工後の鋼板の肌荒れが防止できるため、塗装によって平滑で光沢のある塗膜を得ることができる。
Further, in the stainless steel of the present invention, by making the crystal grain size after finish annealing 40 μm or less, it is possible to improve the drawing processability to the fuel tank and to obtain a good paint appearance.
In drawing into a tank shape, cracking and necking may occur due to ridging and rough skin. In order to suppress them, it is effective to make the crystal grains fine. This is due to the suppression of cracking at the most severely processed parts and the dispersion of strains due to the work hardening phenomenon due to fine graining. If the average crystal grain size is 40 μm or less, the effect is exhibited, and roughening of the processed steel sheet can be prevented, so that a smooth and glossy coating film can be obtained by painting.
タンク外面はステンレス無垢でも構わないが、タンク外部からの耐食性や意匠性が求められる場合はカチオン電着塗装を施した後にポリアミド系やポリウレタン系の樹脂などの塗装を行う。 The outer surface of the tank may be made of solid stainless steel, but if corrosion resistance or design from the outside of the tank is required, it is coated with a polyamide or polyurethane resin after the cationic electrodeposition coating.
以下、実施例によって本発明を具体的に説明する。 Hereinafter, the present invention will be described specifically by way of examples.
真空溶解によりステンレス鋼を溶製した。それらを鍛造、熱延、冷延、焼鈍、酸洗することにより板厚1mmの試験片を作製した。表1に用いた供試材の明細を示す。その後、電気めっき法あるいは溶融めっき法により10g/m2のZnめっき、Zn−Niめっき、Zn−Feめっき、Zn−Coめっき(以上電気めっき)、Zn−MgめっきおよびZn−Alめっき(以上溶融めっき)したものを供試材とした。
めっきの前処理として、電気めっきの場合は硫酸還元電解を、溶融めっきの場合には鉄のフラッシュめっきを行った。比較材にはSn−Znめっき鋼板およびSUS304の2B仕上げ材を用いた。試験片はタンクの溶接施工を考慮して2枚の試験片にシーム溶接を施して溶接隙間を形成させた試験片と、タンク取り付け部の隙間を考慮して、ゴム製ガスケットで隙間を形成させた試験片の2種類を用いた。
Stainless steel was melted by vacuum melting. Test pieces with a plate thickness of 1 mm were produced by forging, hot rolling, cold rolling, annealing, and pickling. Table 1 shows the details of the test materials used. Then, 10g / m 2 of Zn plating, Zn-Ni plating, Zn-Fe plating, Zn-Co plating (more electroplating), Zn-Mg plating and Zn-Al plating (more molten) by electroplating or hot dipping. The sample was plated.
As pretreatment of plating, sulfuric acid reduction electrolysis was performed in the case of electroplating, and iron flash plating was performed in the case of hot dipping. Sn-Zn plated steel plate and SUS304 2B finish were used as comparative materials. For the test piece, the gap between the tank mounting part and the test piece in which the weld gap was formed by seam welding the two test pieces in consideration of the welding operation of the tank, and the rubber gasket was formed. Two types of test pieces were used.
外面に関する耐食性試験は塩乾湿複合サイクル試験により行った。試験の1サイクルは塩水噴霧(5%NaCl、15分)→乾燥(60℃,35%RH,60分)→湿潤(50℃,95%RH,180分)であり、300サイクル後の隙間腐食部の侵食深さから耐食性を評価した。また、内面に対する腐食試験は、市販のガソリンを水で70%に希釈し10ppmのギ酸を添加した試験液に40℃で1ヶ月間鋼板を浸漬した。試験後の侵食深さにより耐食性を評価した試験結果を表2に示す。 The corrosion resistance test on the outer surface was carried out by a combined salt / wet cycle test. One cycle of the test is salt spray (5% NaCl, 15 minutes) → drying (60 ° C., 35% RH, 60 minutes) → wet (50 ° C., 95% RH, 180 minutes), crevice corrosion after 300 cycles The corrosion resistance was evaluated from the erosion depth of the part. In the corrosion test on the inner surface, the steel plate was immersed at 40 ° C. for one month in a test solution in which commercially available gasoline was diluted to 70% with water and 10 ppm formic acid was added. Table 2 shows the test results for evaluating the corrosion resistance based on the erosion depth after the test.
比較例であるSn−Znめっき鋼板では、外面耐食性に関しては特に素地の侵食は認められなかったが、内面耐食性に関し、深い腐食が認められた。一方、SUS304では内面腐食は生じなかったものの、外面腐食試験において深い隙間腐食が認められ、シーム溶接試験片においては、溶接時の応力に起因する応力腐食割れが認められた。これに対し、本発明鋼であるNo.1〜No.6鋼に発明のめっきを施した鋼板に隙間腐食は認められず、内面腐食も認められなかった。しかし、本発明鋼の成分を外れるNo.7〜9鋼にめっきを施した鋼板では内面腐食は認められなかったものの、外面において隙間腐食が認められた。
以上の結果から、本発明鋼は隙間構造を有する場合でも塩害環境に対して優れた耐食性を有することがわかる。また、Zn−Niめっき、Zn−Feめっき、Zn−Coめっき、Zn−MgめっきおよびZn−Alめっきを施した試験片においても隙間腐食や内面腐食は認められず、防食作用が認められた。
In the Sn—Zn plated steel plate as a comparative example, no corrosion of the substrate was particularly observed with respect to the outer surface corrosion resistance, but deep corrosion was observed with respect to the inner surface corrosion resistance. On the other hand, although SUS304 did not cause internal corrosion, deep crevice corrosion was observed in the external corrosion test, and stress corrosion cracking due to stress during welding was observed in the seam weld specimen. On the other hand, No. which is steel of the present invention. 1-No. No crevice corrosion was observed on the steel plate in which the invention 6 was plated, and no internal corrosion was observed. However, no. Although internal corrosion was not observed in the steel sheets plated with 7-9 steel, crevice corrosion was observed on the outer surface.
From the above results, it can be seen that the steel of the present invention has excellent corrosion resistance against salt damage environments even when it has a gap structure. Moreover, crevice corrosion and internal corrosion were not recognized in the test piece which gave Zn-Ni plating, Zn-Fe plating, Zn-Co plating, Zn-Mg plating, and Zn-Al plating, but anticorrosive action was recognized.
燃料タンクへの加工性を評価するために表1で示した材料をさらに0.5mmに冷間圧延し、焼鈍温度を900〜1000℃の範囲で調整することにより粒径を変えたサンプルを作製し、深絞り試験を実施した。加工性はLDR試験を実施した。ポンチ=φ40R4、ダイ:φ41.92R3でLDRを評価した。LDRの測定結果を表3に示す。本発明鋼であるNo.1〜No.3鋼はLDR2.3以上を示した。しかし、比較材であるNo.8、9鋼はLDRがそれより小さかった。粒径が40μm以下であれば良好な絞り加工性を得られることがわかった。 In order to evaluate the processability to the fuel tank, the materials shown in Table 1 were further cold-rolled to 0.5 mm, and the samples were changed in particle size by adjusting the annealing temperature in the range of 900-1000 ° C. The deep drawing test was conducted. For the processability, an LDR test was performed. LDR was evaluated with punch = φ40R4 and die: φ41.92R3. The measurement results of LDR are shown in Table 3. No. which is steel of the present invention. 1-No. Three steels showed LDR 2.3 or higher. However, no. The 8 and 9 steels had a lower LDR. It was found that good drawability can be obtained when the particle diameter is 40 μm or less.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019579A JP2010173525A (en) | 2009-01-30 | 2009-01-30 | Plated steel sheet for fuel tank of motorcycle, and fuel tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009019579A JP2010173525A (en) | 2009-01-30 | 2009-01-30 | Plated steel sheet for fuel tank of motorcycle, and fuel tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010173525A true JP2010173525A (en) | 2010-08-12 |
Family
ID=42704903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009019579A Withdrawn JP2010173525A (en) | 2009-01-30 | 2009-01-30 | Plated steel sheet for fuel tank of motorcycle, and fuel tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010173525A (en) |
-
2009
- 2009-01-30 JP JP2009019579A patent/JP2010173525A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4014907B2 (en) | Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance | |
JP5258253B2 (en) | Surface-treated stainless steel plate for automobile fuel tanks and automobile fuel pipes with excellent salt corrosion resistance and welded part reliability, and surface-treated stainless steel welded pipes for automobile oil supply pipes with excellent pipe expansion workability | |
JP5058574B2 (en) | Anti-corrosion steel plate for ship ballast tanks to be anticorrosive and rust prevention method for ship ballast tanks | |
JP2002363711A (en) | Ferritic stainless steel sheet for fuel tank | |
JP5906733B2 (en) | Surface-treated steel sheet with excellent post-painting corrosion resistance and its manufacturing method | |
JP6529710B2 (en) | Hot press-formed member having high strength and high corrosion resistance | |
JP2015098620A (en) | Automobile steel plate having excellent chemical convertibility and corrosion resistance | |
JP6412596B2 (en) | Inexpensive automotive parts and oil pipes with excellent salt corrosion resistance | |
JP4023710B2 (en) | Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same | |
JP6782621B2 (en) | Automotive parts | |
JP4940813B2 (en) | Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more | |
JP3485457B2 (en) | Corrosion-resistant steel plates for fuel tanks with excellent corrosion resistance and weldability | |
JP6079074B2 (en) | Painted corrosion resistant steel for above-ground oil tanks | |
JP5862166B2 (en) | Corrosion-resistant steel for ship outfitting | |
JP6541992B2 (en) | Automotive parts and automotive fueling pipes excellent in puncture resistance utilizing painting and sacrificial corrosion protection effect | |
JP3941762B2 (en) | Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts | |
JP2010173525A (en) | Plated steel sheet for fuel tank of motorcycle, and fuel tank | |
JP2004277839A (en) | Zinc based metal-coated steel | |
JP4762104B2 (en) | Austenitic steel | |
JP6354915B1 (en) | Steel plate and fuel tank member for motorcycle fuel tank | |
JP2004330993A (en) | Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance | |
WO2024195860A1 (en) | Sn-zn based-alloy plated steel material, battery case and fuel tank | |
JP6136672B2 (en) | High strength galvannealed steel sheet and method for producing the same | |
JP6597947B1 (en) | Molten Sn-Zn alloy-plated steel sheet and method for producing the same | |
JP2005314737A (en) | Steel sheet for fuel tank having superior spot weldability, corrosion resistance and press workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20120403 |