[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010173049A - Grinding machine, carrier for grinding machine, and grinding method - Google Patents

Grinding machine, carrier for grinding machine, and grinding method Download PDF

Info

Publication number
JP2010173049A
JP2010173049A JP2009021372A JP2009021372A JP2010173049A JP 2010173049 A JP2010173049 A JP 2010173049A JP 2009021372 A JP2009021372 A JP 2009021372A JP 2009021372 A JP2009021372 A JP 2009021372A JP 2010173049 A JP2010173049 A JP 2010173049A
Authority
JP
Japan
Prior art keywords
workpiece
carrier
polishing machine
polishing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009021372A
Other languages
Japanese (ja)
Inventor
Masahiro Ihara
正博 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009021372A priority Critical patent/JP2010173049A/en
Publication of JP2010173049A publication Critical patent/JP2010173049A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding machine efficiently grinding an end surface of a columnar workpiece into a spherical shape even with a small radius of curvature; a carrier for the grinding machine; and a grinding method. <P>SOLUTION: In the carrier for the grinding machine, the columnar workpiece 30 is inserted into a through-hole having a narrowed portion 122 therein. By moving the carrier for the grinding machine with respect to upper and lower surface plates, one of which is driven to rotate with respect to the other, while allowing the carrier for the grinding machine to rotate on its axis between these surface plates, the workpiece 30 is irregularly swung with the narrowed portion 122 as a supporting point. By this swing, the end surface of the workpiece 30 can be uniformly rubbed against the surface plates, thereby grinding the end surface into the spherical surface. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学素子等を球面研磨するための研磨機、研磨機用キャリア及びそれらを用いた研磨方法に関する。   The present invention relates to a polishing machine for polishing spherical surfaces of optical elements and the like, a carrier for a polishing machine, and a polishing method using them.

従来よりレンズ等の光学素子を球面研磨するための研磨機としてオスカー式研磨機が知られている。図13にオスカー式研磨機50の主要部の概略構成を示す。オスカー式研磨機50はレンズ等のワーク51が上面に固定される固定皿52と、固定皿52に対向して配置される研磨皿53とを備える。固定皿52は下面中央から下方に突出する回転軸521を中心に回転する。研磨皿53の下面は所定の曲率を有しており、その面には研磨パッド54が取り付けられている。研磨皿53の上方には先端が水平面(紙面に垂直な面)内で揺動する揺動アーム55が配置され、その先端からカンザシ56と呼ばれる棒材が垂下している。研磨皿53はカンザシ56の下端に傾動自在に支持される。   Conventionally, an Oscar type polishing machine is known as a polishing machine for spherically polishing an optical element such as a lens. FIG. 13 shows a schematic configuration of a main part of the Oscar type polishing machine 50. The Oscar-type polishing machine 50 includes a fixed plate 52 on which a work 51 such as a lens is fixed on the upper surface, and a polishing plate 53 arranged to face the fixed plate 52. The fixed plate 52 rotates around a rotating shaft 521 protruding downward from the center of the lower surface. The lower surface of the polishing dish 53 has a predetermined curvature, and a polishing pad 54 is attached to the surface. A swing arm 55 whose tip is swung in a horizontal plane (a plane perpendicular to the paper surface) is disposed above the polishing dish 53, and a bar material called a kanzashi 56 is suspended from the tip. The polishing dish 53 is supported at the lower end of the canker 56 so as to be tiltable.

このようなオスカー式研磨機50を用いて球面研磨を行う際には、ワーク51を固定皿52にワックス等で固定した後、ワーク51と研磨パッド54の間に研磨剤を供給しながら、固定皿52の回転によってワーク51を回転させるとともに、揺動アーム55の揺動によって研磨皿53を往復運動させる。これにより、ワーク51の上面全体が球面に研磨される。   When performing spherical polishing using such an Oscar-type polishing machine 50, the work 51 is fixed to the fixing plate 52 with wax or the like, and then fixed while supplying an abrasive between the work 51 and the polishing pad 54. The workpiece 51 is rotated by the rotation of the plate 52 and the polishing plate 53 is reciprocated by the swing of the swing arm 55. Thereby, the entire upper surface of the workpiece 51 is polished into a spherical surface.

図13では固定皿52に一つのワーク51を固定する例を示したが、図14に示すように固定皿57に小型レンズ等の複数のワーク58を固定してもよい。これにより複数のワーク58を一度に球面研磨することができる。   Although FIG. 13 shows an example in which one workpiece 51 is fixed to the fixed plate 52, a plurality of workpieces 58 such as small lenses may be fixed to the fixed plate 57 as shown in FIG. Thereby, a plurality of workpieces 58 can be spherically polished at a time.

球面研磨するための研磨機はオスカー式研磨機以外にも提案されている。特許文献1に記載の研磨機は、回転可能な円板状の砥石の上に球状のワークを置き、そのワークを上方からホルダで覆いながら砥石を回転させることで、ワークを転がして球面研磨を行う。
特許文献2に記載の研磨機では、上下定盤の間に複数の貫通孔を有するキャリアを配置し、各貫通孔に孔の高さよりも大きい球状のワークを入れる。それらを上下定盤で押さえつつ、上下定盤を互いに反対方向に回転させるとともにキャリアを遊星運動させることで、ワーク全面を球面研磨する。
Other than the Oscar type polishing machine, a polishing machine for spherical polishing has been proposed. The polishing machine described in Patent Document 1 places a spherical work on a rotatable disc-shaped grindstone, rotates the grindstone while covering the work with a holder from above, and rolls the work to perform spherical polishing. Do.
In the polishing machine described in Patent Document 2, a carrier having a plurality of through holes is arranged between upper and lower surface plates, and a spherical work larger than the height of the hole is put in each through hole. The entire surface of the workpiece is polished by rotating the upper and lower surface plates in opposite directions and moving the carrier in a planetary motion while holding them with the upper and lower surface plates.

特開平6-31608号公報JP-A-6-31608 特開2002-326154号公報JP 2002-326154 A

近年、半導体励起固体レーザ素子の端面にレーザ共振器のミラーの機能を持たせることが行われており、例えば、レーザ素子の一方の端面と、他方の端面側に配置した凹面ミラーとでレーザ共振器を形成することが提案されている。さらに、より小型、高効率、低価格を目指して、レーザ素子又はレーザ素子と非線形光学素子を接合したものの両端面に球面加工を施し、それらの球面でレーザ共振器を形成したモノリシックレーザ素子と呼ばれるレーザ素子も提案されている。通常、モノリシックレーザ素子は長さ1〜2mm程度の柱状のものであり、その柱の軸はレーザ結晶の結晶軸と一致させる。   In recent years, the end face of a semiconductor-pumped solid-state laser element has been given the function of a mirror of a laser resonator. For example, laser resonance occurs between one end face of a laser element and a concave mirror disposed on the other end face side. It has been proposed to form a vessel. Furthermore, with the aim of further miniaturization, high efficiency, and low price, it is called a monolithic laser element in which both ends of a laser element or a laser element and a nonlinear optical element are subjected to spherical processing and a laser resonator is formed by these spherical surfaces. Laser elements have also been proposed. Usually, the monolithic laser element has a columnar shape with a length of about 1 to 2 mm, and the axis of the column coincides with the crystal axis of the laser crystal.

このような小型のレーザ素子の端面を小さな曲率半径(例えば数mm程度の曲率半径)で効率よく球面研磨することは従来の研磨機では容易ではない。オスカー式研磨機ではワーク端面を小さな曲率半径で研磨するためにはその曲率半径に対応した下面を有する研磨皿を用いなければならず、そのような研磨皿では一度に研磨することができるワークの個数が限られる。
オスカー式研磨機ではワックスによりワークを固定皿に固定する場合にも問題が生じる。柱状のレーザ素子を立てた状態で固定皿にワックスで固定する場合、多数のレーザ素子をその結晶軸が所定の方向を向くように精度よく固定することは容易ではない。また、ワークがワックス中において固定皿から浮いたような状態で固定された場合、研磨後のワークの長さに誤差が生ずる。
It is not easy for a conventional polishing machine to efficiently spherically polish the end face of such a small laser element with a small radius of curvature (for example, a radius of curvature of several millimeters). In order to polish the workpiece end face with a small radius of curvature in an Oscar type polishing machine, a polishing dish having a lower surface corresponding to the curvature radius must be used. With such a polishing dish, a workpiece that can be polished at one time is used. The number is limited.
In an Oscar-type polishing machine, a problem also arises when a workpiece is fixed to a fixed plate with wax. When fixing a columnar laser element in a standing position with wax, it is not easy to accurately fix a large number of laser elements so that their crystal axes are in a predetermined direction. Further, when the workpiece is fixed in a state where it floats from the fixed plate in the wax, an error occurs in the length of the workpiece after polishing.

特許文献1、2に記載の研磨機は球状のワークの全面を球面研磨するものであり、レーザ素子のように結晶軸の方向を管理しながらその端面を球面研磨する用途には用いることができない。   The polishing machines described in Patent Documents 1 and 2 are used for spherical polishing of the entire surface of a spherical workpiece, and cannot be used for applications in which the end surfaces of the spherical workpiece are polished while controlling the direction of the crystal axis as in a laser element. .

本発明は以上のような課題を解決するために成されたものであり、その目的は、柱状のワークの端面を小さな曲率半径でも効率よく球面研磨することができる研磨機、研磨機用キャリア及び研磨方法を提供することである。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a polishing machine, a polishing machine carrier capable of efficiently spherically polishing the end surface of a columnar workpiece with a small radius of curvature. It is to provide a polishing method.

上記課題を解決するために成された本発明に係る研磨機用キャリアは、
柱状のワークを挿入するための1又は複数の貫通孔を有し、対向して配置された、それぞれの対向面を平行にした状態で一方が他方に対して回転するように駆動される上下定盤の間で自転しながら該定盤に対して移動する研磨機用キャリアであって、
前記貫通孔の内部に、挿入されたワークの側面との間に所定の隙間が形成されるような内径の狭窄部を有し、前記運動の間に該貫通孔に挿入されたワークが該狭窄部を支点として揺動することにより該ワークの端面が球面研磨されるものであることを特徴とする。
A carrier for a polishing machine according to the present invention made to solve the above-mentioned problems,
Up-down adjustment that has one or a plurality of through holes for inserting columnar workpieces, and is driven so that one of them rotates relative to the other with the opposing surfaces arranged parallel to each other. A polishing machine carrier that moves relative to the surface plate while rotating between the plates,
Inside the through-hole, there is a narrowed portion with an inner diameter so that a predetermined gap is formed between the inserted workpiece and the side surface of the inserted workpiece, and the workpiece inserted into the through-hole during the movement is It is characterized in that the end surface of the workpiece is subjected to spherical polishing by swinging around the portion as a fulcrum.

また、上記課題を解決するために成された本発明に係る研磨機は、
a)対向して配置された、それぞれの対向面が平行である上下定盤と、
b)前記上下定盤を一方が他方に対して回転するように駆動させるための定盤駆動機構と、
c)柱状のワークを挿入するための1又は複数の貫通孔を有し、該貫通孔の内部に、挿入されたワークの側面との間に所定の隙間が形成されるような内径の狭窄部を有する研磨機用キャリアと、
d)前記研磨機用キャリアを前記上下定盤の間で自転させながら該定盤に対して移動させるためのキャリア駆動機構と、
を備え、前記研磨機用キャリアの運動の間に前記貫通孔に挿入されたワークが前記狭窄部を支点として揺動することにより該ワークの端面が球面研磨されるものであることを特徴とする。
Further, a polishing machine according to the present invention made to solve the above problems is
a) Upper and lower surface plates that are arranged facing each other and whose opposing surfaces are parallel to each other;
b) a surface plate driving mechanism for driving the upper and lower surface plates so that one rotates relative to the other;
c) A narrowed portion having an inner diameter so as to have one or a plurality of through holes for inserting a columnar workpiece, and a predetermined gap is formed between the through hole and the side surface of the inserted workpiece. A carrier for a polishing machine having
d) a carrier driving mechanism for moving the polishing machine carrier relative to the surface plate while rotating between the upper and lower surface plates;
And the workpiece inserted into the through-hole during the movement of the carrier for the polishing machine swings around the narrowed portion as a fulcrum, thereby polishing the end surface of the workpiece. .

更に、上記課題を解決するために成された本発明に係る研磨方法は、
対向して配置された、それぞれの対向面を平行にした状態で一方が他方に対して回転するように駆動されている上下定盤の間で、1又は複数の貫通孔に柱状のワークが挿入された研磨機用キャリアであって、該貫通孔の内部に、ワークの側面との間に所定の隙間が形成されるような内径の狭窄部を有する研磨機用キャリアを自転させながら該定盤に対して移動させて、該狭窄部を支点としてワークを揺動させることにより、該ワークの端面を球面研磨することを特徴とする。
Furthermore, the polishing method according to the present invention made to solve the above problems is
A columnar workpiece is inserted into one or more through-holes between the upper and lower surface plates that are arranged to face each other and are driven so that one of them faces the other in parallel. A polishing machine carrier, wherein the surface plate is rotated while rotating the polishing machine carrier having a narrowed portion with an inner diameter such that a predetermined gap is formed between the through hole and the side surface of the workpiece. The end surface of the workpiece is spherically polished by moving the workpiece with respect to the narrowed portion and using the narrow portion as a fulcrum.

本発明に係る研磨機、研磨機用キャリア及び研磨方法によれば、内部に狭窄部を有する貫通孔に柱状のワークが挿入された研磨機用キャリアが、互いに回転する上下定盤の間で自転しながら定盤に対して複雑な運動を行うことにより、貫通孔に挿入されたワークが狭窄部を支点として不規則に揺動する。この揺動により、ワークの端面が満遍なく定盤と擦り合わされ、該端面がほぼ球面に研磨される。   According to the polishing machine, the carrier for the polishing machine, and the polishing method according to the present invention, the carrier for the polishing machine in which the columnar workpiece is inserted into the through hole having the narrowed portion inside is rotated between the upper and lower surface plates that rotate with each other. However, by performing a complicated movement with respect to the surface plate, the workpiece inserted into the through hole swings irregularly with the narrow portion as a fulcrum. By this swinging, the end surface of the work is evenly rubbed against the surface plate, and the end surface is polished into a substantially spherical surface.

研磨されるワーク端面の曲率半径は、狭窄部からワーク端面までの距離によりほぼ定まる。従って、その距離を小さくすることにより、小さな曲率半径の端面研磨も容易となる。そのため、1枚の研磨機用キャリアに多数の貫通孔を設け、それぞれの貫通孔に短いワークを挿入しておけば、各ワークの端面を小さい曲率半径で一度に研磨することができる。
ワークはワックス等で固定する必要がなく貫通孔に挿入するだけでよい。端面はワークの主軸を中心として球面研磨されるため、ワークのセットに神経を使う必要がなく、短時間で容易にセットすることができる。また、ワークの研磨後の長さは上下定盤間の距離により定まるため、上記のように多数のワークを一度に研磨するときでも、各ワークの長さはほぼ一定となる
The radius of curvature of the workpiece end surface to be polished is substantially determined by the distance from the narrowed portion to the workpiece end surface. Therefore, by reducing the distance, end face polishing with a small radius of curvature is facilitated. Therefore, if a large number of through holes are provided in one carrier for a polishing machine and a short work is inserted into each through hole, the end face of each work can be polished at a time with a small curvature radius.
The workpiece does not need to be fixed with wax or the like, and only needs to be inserted into the through hole. Since the end surface is spherically polished around the main axis of the workpiece, it is not necessary to use a nerve to set the workpiece, and can be easily set in a short time. In addition, since the length of the workpiece after polishing is determined by the distance between the upper and lower surface plates, the length of each workpiece is substantially constant even when a large number of workpieces are polished at the same time as described above.

本発明の実施例1に係る研磨機用キャリアを説明する図であり、(a)は平面図、(b)は(a)のA−A矢視断面図である。It is a figure explaining the carrier for polishers concerning Example 1 of the present invention, (a) is a top view and (b) is an AA arrow sectional view of (a). 狭窄部を有する貫通孔の形成方法の一例を示す図。The figure which shows an example of the formation method of the through-hole which has a constriction part. 実施例1に係る研磨機用キャリアの分解斜視図。1 is an exploded perspective view of a carrier for a polishing machine according to Embodiment 1. FIG. 実施例1に係る研磨機用キャリアを説明する図であり、(a)は斜視図、(b)は貫通孔付近を切り出した断面斜視図である。It is a figure explaining the carrier for grinding machines concerning Example 1, (a) is a perspective view and (b) is a section perspective view which cut out the neighborhood of a penetration hole. 貫通孔にワークを挿入した状態を説明する図であり、(a)はワークが直立しているときの縦断面図、(b)はワークが傾斜しているときの縦断面図である。It is a figure explaining the state which inserted the workpiece | work in the through-hole, (a) is a longitudinal cross-sectional view when a workpiece | work stands upright, (b) is a longitudinal cross-sectional view when a workpiece | work inclines. 直立したワークを傾斜させたときのワークの側面図。A side view of a work when an upright work is inclined. 貫通孔内でワークが揺動する様子を示す縦断面図。The longitudinal cross-sectional view which shows a mode that a workpiece | work rock | fluctuates within a through-hole. 実施例1に係る研磨機において上定盤を持ち上げた状態を示す斜視図。FIG. 3 is a perspective view illustrating a state where the upper surface plate is lifted in the polishing machine according to the first embodiment. 実施例1に係る研磨方法を説明する図であり、(a)はレーザ結晶基板の斜視図、(b)は切断されたレーザ結晶基板の斜視図、(c)は切り出されたワークの斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure explaining the grinding | polishing method based on Example 1, (a) is a perspective view of a laser crystal substrate, (b) is a perspective view of the cut | disconnected laser crystal substrate, (c) is a perspective view of the cut-out workpiece | work. It is. 貫通孔内でのワークの揺動を説明する図であり、(a)はワークが直立しているときの縦断面図、(b)はワークが揺動しているときの縦断面図、(c)は研磨後の縦断面図である。It is a figure explaining the rocking | fluctuation of the workpiece | work within a through-hole, (a) is a longitudinal cross-sectional view when a workpiece | work stands upright, (b) is a longitudinal cross-sectional view when a workpiece | work is rocking | fluctuating, c) is a longitudinal sectional view after polishing. 実施例2に係る研磨方法を説明する図であり、(a)は貼り合わせ前のレーザ結晶基板の斜視図、(b)は切断されたレーザ結晶基板の斜視図、(c)は研磨前のワークの側面図、(d)は研磨後のワークの側面図、(e)はワークを分離して形成したレーザ素子の側面図である。It is a figure explaining the grinding | polishing method which concerns on Example 2, (a) is a perspective view of the laser crystal substrate before bonding, (b) is a perspective view of the cut | disconnected laser crystal substrate, (c) is before grinding | polishing. The side view of a workpiece | work, (d) is a side view of the workpiece | work after grinding | polishing, (e) is a side view of the laser element formed by isolate | separating a workpiece | work. 貫通孔内でのワークの揺動の変形例を説明する図であり、(a)はワークが揺動しているときの縦断面図、(b)は研磨後の縦断面図である。It is a figure explaining the modification of the rocking | fluctuation of the workpiece | work within a through-hole, (a) is a longitudinal cross-sectional view when the workpiece | work is rock | fluctuating, (b) is a longitudinal cross-sectional view after grinding | polishing. オスカー式研磨機の主要部の概略構成を示す図。The figure which shows schematic structure of the principal part of an Oscar type polisher. オスカー式研磨機の主要部の概略構成を示す図。The figure which shows schematic structure of the principal part of an Oscar type polisher.

以下、図面に基づき、本発明に係る研磨機、研磨機用キャリア及び研磨方法の実施例について説明する。   Embodiments of a polishing machine, a carrier for a polishing machine, and a polishing method according to the present invention will be described below with reference to the drawings.

図1に本発明の第1の実施例に係る研磨機用キャリア10の平面図(a)及び断面図(b)を示す。研磨機用キャリア10は外周にギア11を備えた円板であり、柱状のワークを挿入するための貫通孔12を有する。貫通孔12の個数は任意であるが、ここでは12個とする。貫通孔12の内部には、その開口部121よりも狭まっており、ワークの側面との間に所定の隙間が形成されるような内径の狭窄部122を設ける。本実施例では狭窄部122は貫通孔12の深さ方向の中央に形成する。   FIG. 1 shows a plan view (a) and a sectional view (b) of a carrier 10 for a polishing machine according to a first embodiment of the present invention. The carrier 10 for a polishing machine is a disc having a gear 11 on the outer periphery, and has a through-hole 12 for inserting a columnar workpiece. The number of through holes 12 is arbitrary, but is 12 here. Inside the through-hole 12, a narrowed portion 122 having an inner diameter that is narrower than the opening 121 and that forms a predetermined gap with the side surface of the workpiece is provided. In this embodiment, the narrowed portion 122 is formed in the center of the through hole 12 in the depth direction.

図2に、狭窄部122を有する貫通孔12の形成方法の一例を示す。この例では1枚の円板を加工することにより、狭窄部122を有する貫通孔12を作製する。まず所定の厚さの円板10Aに機械加工等で狭窄部122と一致する内径の貫通孔12Aを空け(図2(a))、次にその貫通孔12Aの両側から開口部121と一致する内径の座ぐり12Bを加工する(図2(b))。これにより、2つの座ぐり12Bの底面間が狭窄部122となる。   FIG. 2 shows an example of a method for forming the through hole 12 having the narrowed portion 122. In this example, the through-hole 12 having the narrowed portion 122 is produced by processing one disk. First, a through hole 12A having an inner diameter coinciding with the narrowed portion 122 is formed in the disk 10A having a predetermined thickness by machining or the like (FIG. 2A), and then coincides with the opening 121 from both sides of the through hole 12A. A counterbore 12B having an inner diameter is processed (FIG. 2B). Thereby, the narrow portion 122 is formed between the bottom surfaces of the two spot facings 12B.

狭窄部122を有する貫通孔12は図3に示すように3枚の円板を用いて形成することもできる。この方法では、機械加工やエッチング等で狭窄部122と一致する内径の開口を空けた中間円板14と、開口部121と一致する内径の開口を空けた2枚の外側円板13を用意し、中間円板14と外側円板13の各開口の中心が一致するように中間円板14の両面に外側円板13を接着等で固定する。これにより、図4に示すような三層構造の研磨機用キャリア10が得られる。この方法は精密な機械加工を必要としないため、研磨機用キャリアが薄い場合に適している。   The through-hole 12 having the narrowed portion 122 can also be formed using three disks as shown in FIG. In this method, an intermediate disk 14 having an inner diameter opening corresponding to the constriction 122 by machining or etching, and two outer disks 13 having an inner diameter opening corresponding to the opening 121 are prepared. The outer disk 13 is fixed to both surfaces of the intermediate disk 14 by bonding or the like so that the centers of the openings of the intermediate disk 14 and the outer disk 13 coincide. Thereby, a carrier 10 for a polishing machine having a three-layer structure as shown in FIG. 4 is obtained. Since this method does not require precise machining, it is suitable when the carrier for the polishing machine is thin.

外側円板13及び中間円板14の材料は機械的強度や耐摩耗性、加工の容易さ等を考慮して決めればよく、例えばステンレス等の金属や、エポキシ・塩ビ等のプラスチック等を用いることができる。
本実施例では外周のギアを外側円板13と中間円板14のいずれにも形成することで、ギア11側面の表面積をできる限り広くし、ギアの機械的強度や耐摩耗性を高めているが、ギアを一部の円板のみに形成することで加工コストを抑えてもよい。
The material of the outer disk 13 and the intermediate disk 14 may be determined in consideration of mechanical strength, wear resistance, ease of processing, etc. For example, a metal such as stainless steel or a plastic such as epoxy / vinyl chloride is used. Can do.
In this embodiment, the outer peripheral gear is formed on both the outer disk 13 and the intermediate disk 14 so that the surface area of the side surface of the gear 11 is made as wide as possible, and the mechanical strength and wear resistance of the gear are increased. However, the processing cost may be suppressed by forming the gear only on a part of the disks.

狭窄部122の高さや内径は次のように設定する。図5に、貫通孔12にワーク30を挿入したときの縦断面図を示す。ここでは、ワーク30は長さL、直径Dの円柱とし、狭窄部122は高さt、内径(D+2d)とする。dは図5(a)に示すように狭窄部122の開口の中央にワーク30を配置したときに狭窄部122とワーク30側面との間に形成される隙間の大きさである。
図6に、直立したワーク30をその下端面の縁の或る点を支点Pとして傾斜させたときのワーク30の側面図を示す。ワーク30は、支点Pを通る鉛直線上に重心Oがあるとき(図6(b))を分岐点として、それよりも傾きが小さければ直立した状態に戻ろうとし(図6(a))、それよりも傾きが大きければ横に倒れようとする(図6(c))。ワーク30にはこのような重力(の分力)よりも大きな摩擦力が上下定盤から与えられるが、端面全域をより満遍なく研磨するためには、ワーク30が図6(a)に示す状態であることが望ましい。ワーク30の最大傾斜は、ワーク30の上下端が開口部により規制される場合と、ワーク30の中央部が狭窄部122により規制される場合の2つの場合があり得る。いずれの場合にせよ、ワーク30の長さL、径Dに応じて開口部121の長さ及び内径、又は狭窄部122の高さ及び内径を適切に定めることにより、ワークの最大傾斜が図6(b)となるようにしておくことが望ましい。図6(b)の場合、その傾斜角θは次のように計算される。
θ=tan−1(D/L)
狭窄部122でワーク30の中央部を規制する場合、この最大傾斜角θと狭窄部122の高さt、隙間dの関係は次のように表すことができる。
t=2d/tanθ−(D/tanθ)・((1/cosθ)−1)
d=(t/2)・tanθ+(D/2)・((1/cosθ)−1)
例えば、ワーク30の長さLが2mm、直径Dが1mmであるとすると、ワーク30及び狭窄部122の加工精度等を考慮してまず隙間dを0.15mm(2d=0.3mm)と設定し、それから狭窄部122の高さtが0.36mmと決定される。同様に隙間dを0.15mmとする場合、狭窄部122の高さtはワーク30の長さLが3mm、直径Dが1mmであれば0.74mm、ワーク30の長さLが5mm、直径Dが2mmであれば0.36mmとなる。
The height and inner diameter of the narrowed portion 122 are set as follows. FIG. 5 shows a longitudinal sectional view when the work 30 is inserted into the through hole 12. Here, the workpiece 30 is a cylinder having a length L and a diameter D, and the narrow portion 122 is a height t and an inner diameter (D + 2d). d is the size of the gap formed between the narrowed portion 122 and the side surface of the workpiece 30 when the workpiece 30 is arranged at the center of the opening of the narrowed portion 122 as shown in FIG.
FIG. 6 shows a side view of the workpiece 30 when the upright workpiece 30 is inclined with a certain point at the edge of the lower end surface as a fulcrum P. FIG. When the workpiece 30 has a center of gravity O on the vertical line passing through the fulcrum P (FIG. 6B), the work 30 tries to return to an upright state if the inclination is smaller than that (FIG. 6A). If the inclination is larger than that, it tends to fall sideways (FIG. 6C). The work 30 is given a frictional force larger than the gravitational force (partial force) from the upper and lower surface plates. In order to polish the entire end face more uniformly, the work 30 is in the state shown in FIG. It is desirable to be. There are two cases where the maximum inclination of the work 30 is the case where the upper and lower ends of the work 30 are restricted by the opening and the case where the center part of the work 30 is restricted by the narrowed portion 122. In any case, the maximum inclination of the workpiece is shown in FIG. 6 by appropriately determining the length and inner diameter of the opening 121 or the height and inner diameter of the narrowed portion 122 according to the length L and diameter D of the workpiece 30. It is desirable that (b) be satisfied. In the case of FIG. 6B, the inclination angle θ is calculated as follows.
θ = tan −1 (D / L)
When the central portion of the workpiece 30 is regulated by the narrowed portion 122, the relationship between the maximum inclination angle θ, the height t of the narrowed portion 122, and the gap d can be expressed as follows.
t = 2d / tanθ− (D / tanθ) · ((1 / cosθ) −1)
d = (t / 2) · tan θ + (D / 2) · ((1 / cos θ) −1)
For example, if the length L of the workpiece 30 is 2 mm and the diameter D is 1 mm, the clearance d is first set to 0.15 mm (2d = 0.3 mm) in consideration of the machining accuracy of the workpiece 30 and the narrowed portion 122. Then, the height t of the constriction 122 is determined to be 0.36 mm. Similarly, when the gap d is 0.15 mm, the height t of the constricted portion 122 is 0.74 mm when the length L of the workpiece 30 is 3 mm and the diameter D is 1 mm, the length L of the workpiece 30 is 5 mm, and the diameter D is If it is 2mm, it becomes 0.36mm.

ワーク30の最大傾斜は、図7に示すように開口部121により規制するようにしてもよい。これにより、研磨時に狭窄部122の縁に加わる力が軽減され、狭窄部122の早期摩耗が防止される。   The maximum inclination of the work 30 may be regulated by the opening 121 as shown in FIG. Thereby, the force applied to the edge of the narrowed portion 122 during polishing is reduced, and early wear of the narrowed portion 122 is prevented.

図8に、上記研磨機用キャリア10が上定盤21と下定盤22の間に配置された研磨機20の斜視図を示す。この図は、上定盤21を持ち上げた状態を示す。上定盤21及び下定盤22は中央に円形の開口を有する円板であって互いに対向している。上定盤21の上面には各定盤の対向面(研磨面)に研磨剤を流し込むための周方向及び放射方向の流路211と、中央の開口の縁から中心方向に伸びる2本のフック212を設ける。
下定盤22の上には研磨機用キャリア10を載置する。図8では代表して3枚の研磨機用キャリア10を図示したが、実際はそれ以外の研磨機用キャリア10も下定盤22上に回転対称に配置し、上定盤21からの荷重が各研磨機用キャリア10内のワーク30に偏りなく加わるようにすることが望ましい。
FIG. 8 shows a perspective view of the polishing machine 20 in which the polishing machine carrier 10 is disposed between the upper surface plate 21 and the lower surface plate 22. This figure shows a state where the upper surface plate 21 is lifted. The upper surface plate 21 and the lower surface plate 22 are circular plates having a circular opening at the center and face each other. On the upper surface of the upper surface plate 21, circumferential and radial flow paths 211 for pouring the abrasive into the opposing surface (polishing surface) of each surface plate, and two hooks extending in the center direction from the edge of the central opening 212 is provided.
The carrier 10 for polishing machine is placed on the lower surface plate 22. In FIG. 8, three polishing machine carriers 10 are shown as representatives, but in reality, the other polishing machine carriers 10 are also arranged rotationally symmetrically on the lower surface plate 22, and the load from the upper surface plate 21 is subjected to each polishing. It is desirable that the workpiece 30 in the machine carrier 10 be applied without any bias.

上下定盤の外周側には内側にギアを有するリング状のインターナルギア23を配置し、上下定盤の中心側には外側にギアを有するリング状のエクスターナルギア24を配置する。これらのギアは研磨機用キャリア10のギア11に噛み合う。
エクスターナルギア24の中心側には、上面の縁にフック212と係合させるための切込251が設けられた上定盤駆動部25を配置する。上定盤21はこの上定盤駆動部25により回転駆動される。また、下定盤22、インターナルギア23及びエクスターナルギア24もモータ等の駆動機構により回転駆動される。
A ring-shaped internal gear 23 having a gear on the inner side is disposed on the outer peripheral side of the upper and lower surface plates, and a ring-shaped external gear 24 having a gear on the outer side is disposed on the center side of the upper and lower surface plates. These gears mesh with the gear 11 of the carrier 10 for the polishing machine.
On the center side of the external gear 24, an upper surface plate drive unit 25 provided with a notch 251 for engaging with the hook 212 at the edge of the upper surface is arranged. The upper surface plate 21 is rotated by the upper surface plate driving unit 25. The lower surface plate 22, the internal gear 23, and the external gear 24 are also rotationally driven by a drive mechanism such as a motor.

以下、上記研磨機用キャリア10及び研磨機20を用いたレーザ素子の研磨方法について説明する。まず結晶軸方向に直交する面で切り出されたレーザ結晶基板31(図9(a))をダイシングソー等で格子状に切断し(図9(b))、多数の柱状のレーザ素子(ワーク30)を切り出す。ワーク30は一般的には円柱状であることが望ましいが、狭窄部122が円状であれば、図9(c)に示すような角柱であってもかまわない。逆に、ワーク30が円柱状であれば、狭窄部122は多角形でもかまわない。
レーザ結晶基板31の代わりにレーザ結晶基板と非線形光学結晶基板の接合板を用い、その接合板からレーザ結晶と非線形光学結晶が接合したモノリシックレーザ素子を切り出してもよい。
Hereinafter, a method for polishing a laser element using the carrier 10 for polishing machine and the polishing machine 20 will be described. First, a laser crystal substrate 31 (FIG. 9A) cut out in a plane perpendicular to the crystal axis direction is cut into a lattice shape with a dicing saw or the like (FIG. 9B), and a number of columnar laser elements (work 30) are cut. ). In general, the workpiece 30 is preferably a columnar shape, but may be a prism as shown in FIG. 9C as long as the constricted portion 122 is circular. Conversely, if the workpiece 30 is cylindrical, the constricted portion 122 may be polygonal.
Instead of the laser crystal substrate 31, a bonding plate of a laser crystal substrate and a nonlinear optical crystal substrate may be used, and a monolithic laser element in which the laser crystal and the nonlinear optical crystal are bonded may be cut out from the bonding plate.

次に、切り出されたワーク30を図8に示した研磨機20上の研磨機用キャリア10の貫通孔12に挿入し、それらの上に上定盤21を載せる。そして、上定盤21の流路211から定盤間に研磨剤を供給しつつ、上定盤21と下定盤22をそれぞれの対向面を平行にした状態で互いに逆方向に回転駆動させる。また、インターナルギア23及びエクスターナルギア24を異なる回転速度で回転させて、研磨機用キャリア10を定盤間で自転させながら公転(遊星運動)させる。   Next, the cut workpiece 30 is inserted into the through hole 12 of the polishing machine carrier 10 on the polishing machine 20 shown in FIG. 8, and the upper surface plate 21 is placed thereon. And while supplying an abrasive | polishing agent between the surface plates from the flow path 211 of the upper surface plate 21, the upper surface plate 21 and the lower surface plate 22 are rotationally driven in the mutually opposite direction in the state which made each opposing surface parallel. Further, the internal gear 23 and the external gear 24 are rotated at different rotational speeds so that the polishing machine carrier 10 revolves (planetary motion) while rotating between the surface plates.

このときの貫通孔12内のワーク30の様子を図10に示す。貫通孔12に挿入されたワーク30(図10(a))は、上述した上下定盤及び研磨機用キャリア10の回転により、貫通孔12内で狭窄部122を支点として不規則に揺動する(図10(b))。この揺動によりワーク30の両端面は満遍なく上下定盤と擦れ合い、これにより端面が球面に研磨される(図10(c))。
このとき、研磨されたワーク端面の曲率半径は狭窄部122からその端面までの距離にほぼ一致する。本実施例では狭窄部122が貫通孔12の深さ方向の中央に設けられており、かつ、キャリア10が上下定盤間の中央に配置されているため、両端面の曲率半径は同じになる。
The state of the workpiece 30 in the through hole 12 at this time is shown in FIG. The workpiece 30 (FIG. 10A) inserted into the through-hole 12 swings irregularly around the narrowed portion 122 as a fulcrum in the through-hole 12 by the rotation of the upper and lower surface plate and the polishing machine carrier 10 described above. (FIG. 10 (b)). Due to this swinging, both end surfaces of the work 30 uniformly rub against the upper and lower surface plates, and the end surfaces are polished into spherical surfaces (FIG. 10C).
At this time, the radius of curvature of the polished work end face substantially matches the distance from the narrowed portion 122 to the end face. In this embodiment, the narrowed portion 122 is provided in the center of the through hole 12 in the depth direction, and the carrier 10 is disposed in the center between the upper and lower surface plates, so that the curvature radii of both end surfaces are the same. .

図11は本発明の第2の実施例に係る研磨方法を説明する図である。本実施例に係る研磨方法では次のようにして作製されたワーク40を、実施例1と同じ研磨機用キャリア10及び研磨機20を用いて研磨する。   FIG. 11 is a view for explaining a polishing method according to the second embodiment of the present invention. In the polishing method according to the present embodiment, the workpiece 40 produced as follows is polished using the same carrier 10 for polishing machine and the polishing machine 20 as in the first embodiment.

まず2枚のレーザ結晶基板41(図11(a))をワックス等で貼り合わせて一体化する。その一体となった接合板42を、ダイシングソー等を用いて接合面に交差する面で格子状に切断し(図11(b))、接合部44を有する柱状のワーク40を切り出す(図11(c))。そのワーク40を実施例1と同様に研磨機20にセットし、その両端面を球面研磨する(図11(d))。   First, two laser crystal substrates 41 (FIG. 11A) are bonded together with wax or the like and integrated. The integrated joining plate 42 is cut into a lattice shape on a surface intersecting the joining surface using a dicing saw or the like (FIG. 11B), and the columnar workpiece 40 having the joining portion 44 is cut out (FIG. 11). (C)). The workpiece 40 is set in the polishing machine 20 in the same manner as in the first embodiment, and both end surfaces thereof are polished to a spherical surface (FIG. 11 (d)).

研磨終了後、ワーク40を研磨機用キャリア10から取り出し、ワーク40の接合部44にて分離する(図11(e))。これにより、一面のみが球面研磨された被研磨物であるレーザ素子43を得ることができる。   After the polishing is completed, the workpiece 40 is taken out from the carrier 10 for the polishing machine and separated at the joint portion 44 of the workpiece 40 (FIG. 11E). As a result, it is possible to obtain the laser element 43, which is an object to be polished whose one surface is spherically polished.

本発明は上記実施例に限定されるものではなく、本発明の趣旨の範囲で適宜変更が許容される。例えば、ワークの両端面を異なる曲率で研磨するために、図12に示すように、狭窄部122を貫通孔12の深さ方向の中央からずれた位置に設けてもよい。ワーク30の端面の曲率半径は狭窄部122からその端面までの距離により定まるため、この例では一方の端面では曲率半径が大きく、他方の端面では小さくなる(図12(b))。またこの方法と実施例2に示した2枚の基板を貼り合わせる方法を組み合わせれば、一端面の曲率半径が異なる2種類の被研磨物を一度の研磨で作製することができる。   The present invention is not limited to the above-described embodiments, and appropriate modifications are allowed within the scope of the gist of the present invention. For example, in order to polish both end faces of the workpiece with different curvatures, the narrowed portion 122 may be provided at a position shifted from the center in the depth direction of the through hole 12 as shown in FIG. Since the radius of curvature of the end face of the work 30 is determined by the distance from the narrowed portion 122 to the end face, in this example, the radius of curvature is large on one end face and small on the other end face (FIG. 12B). Further, by combining this method with the method of bonding two substrates shown in Example 2, two types of objects to be polished having different curvature radii on one end face can be produced by one polishing.

被研磨物に所定の長さのダミー部材を固定し、被研磨物とダミー部材からなる柱状のワークの端面を球面研磨してもよい。これにより被研磨物の一面の曲率半径をダミー部材の長さによって調節することができる。また、被研磨物が貫通穴内で揺動しにくいような形状、例えば扁平である場合などに、被研磨物に所定の長さのダミー部材を固定し、被研磨物とダミー部材からなるワークを貫通穴内で揺動させれば、単体では球面研磨しにくい被研磨物の一面を容易に球面研磨することができる。   A dummy member having a predetermined length may be fixed to the object to be polished, and the end surface of the columnar workpiece made of the object to be polished and the dummy member may be spherically polished. Thus, the radius of curvature of one surface of the object to be polished can be adjusted by the length of the dummy member. In addition, when the object to be polished is difficult to swing in the through hole, for example, it is flat, a dummy member having a predetermined length is fixed to the object to be polished, and a workpiece made of the object to be polished and the dummy member is fixed. If it is swung in the through hole, one surface of the object to be polished which is difficult to be spherically polished can be easily spherically polished.

上下定盤間での研磨機用キャリアの運動は、貫通穴内でワークを不規則に揺動させることができるものあればよく、上記した遊星運動の他にも、例えば自転させながら定盤に対して不規則に揺動させるようなものでもよい。   The movement of the carrier for the polishing machine between the upper and lower surface plates is not limited as long as the workpiece can be rocked irregularly in the through hole. In addition to the planetary motion described above, for example, while rotating, It is also possible to make it swing irregularly.

ワークの大きさに応じて研磨機用キャリアの厚さや貫通孔の径等を適宜選択すれば、レーザ素子のような小型のワークに限らず、比較的大きなワークを研磨することもできる。   If the thickness of the carrier for the polishing machine, the diameter of the through hole, etc. are appropriately selected according to the size of the workpiece, not only a small workpiece such as a laser element but also a relatively large workpiece can be polished.

10…研磨機用キャリア
11…ギア
12…貫通孔
121…開口部
122…狭窄部
13…外側円板
14…中間円板
15…外側円板
20…研磨機
21…上定盤
211…流路
212…フック
22…下定盤
23…インターナルギア
24…エクスターナルギア
25…上定盤駆動部
251…切込
30、40、51、58…ワーク
31、41…レーザ結晶基板
42…接合板
43…レーザ素子
44…接合部
50…オスカー式研磨機
52…固定皿
521…回転軸
53…研磨皿
54…研磨パッド
55…揺動アーム
56…カンザシ
57…固定皿
DESCRIPTION OF SYMBOLS 10 ... Polishing machine carrier 11 ... Gear 12 ... Through-hole 121 ... Opening part 122 ... Constriction part 13 ... Outer disk 14 ... Intermediate disk 15 ... Outer disk 20 ... Polishing machine 21 ... Upper surface plate 211 ... Channel 212 ... Hook 22 ... Lower surface plate 23 ... Internal gear 24 ... External gear 25 ... Upper surface plate drive unit 251 ... Incisions 30, 40, 51, 58 ... Workpieces 31, 41 ... Laser crystal substrate 42 ... Junction plate 43 ... Laser element 44 ... Junction 50 ... Oscar type polishing machine 52 ... fixed plate 521 ... rotating shaft 53 ... polishing plate 54 ... polishing pad 55 ... oscillating arm 56 ... mountain 57 ... fixed plate

Claims (7)

柱状のワークを挿入するための1又は複数の貫通孔を有し、対向して配置された、それぞれの対向面を平行にした状態で一方が他方に対して回転するように駆動される上下定盤の間で自転しながら該定盤に対して移動する研磨機用キャリアであって、
前記貫通孔の内部に、挿入されたワークの側面との間に所定の隙間が形成されるような内径の狭窄部を有し、前記運動の間に該貫通孔に挿入されたワークが該狭窄部を支点として揺動することにより該ワークの端面が球面研磨されるものであることを特徴とする研磨機用キャリア。
Up-down adjustment that has one or a plurality of through holes for inserting columnar workpieces, and is driven so that one of them rotates relative to the other with the opposing surfaces arranged parallel to each other. A polishing machine carrier that moves relative to the surface plate while rotating between the plates,
Inside the through-hole, there is a narrowed portion with an inner diameter so that a predetermined gap is formed between the inserted workpiece and the side surface of the inserted workpiece, and the workpiece inserted into the through-hole during the movement is A carrier for a polishing machine, characterized in that the end surface of the workpiece is subjected to spherical polishing by swinging about a portion as a fulcrum.
前記研磨機用キャリアが、
a)前記狭窄部を有する中間円板と、
b)前記中間円板の両面に固定され、前記狭窄部に対応する位置に該狭窄部よりも大きい内径の開口を有する外側円板と、
を備えることを特徴とする請求項1に記載の研磨機用キャリア。
The polishing machine carrier is
a) an intermediate disc having the constriction,
b) an outer disk fixed to both surfaces of the intermediate disk and having an opening with an inner diameter larger than that of the constriction at a position corresponding to the constriction;
The carrier for a polishing machine according to claim 1, comprising:
柱状のワークの両端面を同じ曲率で研磨するために、前記狭窄部が前記貫通孔の深さ方向の中央に設けられていることを特徴とする請求項1又は2に記載の研磨機用キャリア。   3. The carrier for a polishing machine according to claim 1, wherein the narrowed portion is provided at the center in the depth direction of the through-hole in order to polish both end surfaces of the columnar workpiece with the same curvature. . 柱状のワークの両端面を異なる曲率で研磨するために、前記狭窄部が前記貫通孔の深さ方向の中央からずれた位置に設けられていることを特徴とする請求項1又は2に記載の研磨機用キャリア。   The said narrowing part is provided in the position shifted | deviated from the center of the depth direction of the said through-hole in order to grind | polish the both end surfaces of a columnar workpiece | work with a different curvature, The Claim 1 or 2 characterized by the above-mentioned. Carrier for polishing machine. a)対向して配置された、それぞれの対向面が平行である上下定盤と、
b)前記上下定盤を一方が他方に対して回転するように駆動させるための定盤駆動機構と、
c)柱状のワークを挿入するための1又は複数の貫通孔を有し、該貫通孔の内部に、挿入されたワークの側面との間に所定の隙間が形成されるような内径の狭窄部を有する研磨機用キャリアと、
d)前記研磨機用キャリアを前記上下定盤の間で自転させながら該定盤に対して移動させるためのキャリア駆動機構と、
を備え、前記研磨機用キャリアの運動の間に、前記貫通孔に挿入されたワークが前記狭窄部を支点として揺動することにより該ワークの端面が球面研磨されるものであることを特徴とする研磨機。
a) Upper and lower surface plates that are arranged facing each other and whose opposing surfaces are parallel to each other;
b) a surface plate driving mechanism for driving the upper and lower surface plates so that one rotates relative to the other;
c) A narrowed portion having an inner diameter so as to have one or a plurality of through holes for inserting a columnar workpiece, and a predetermined gap is formed between the through hole and the side surface of the inserted workpiece. A carrier for a polishing machine having
d) a carrier driving mechanism for moving the polishing machine carrier relative to the surface plate while rotating between the upper and lower surface plates;
And the workpiece inserted into the through-hole swings around the narrowed portion during the movement of the polishing machine carrier, whereby the end surface of the workpiece is spherically polished. Polishing machine.
1又は複数の貫通孔に柱状のワークが挿入された研磨機用キャリアであって、該貫通孔の内部に、ワークの側面との間に所定の隙間が形成されるような内径の狭窄部を有する研磨機用キャリアを、対向して配置された、それぞれの対向面を平行にした状態で一方が他方に対して回転するように駆動されている上下定盤の間で、自転させながら該定盤に対して移動させ、該狭窄部を支点としてワークを揺動させることにより、該ワークの端面を球面研磨することを特徴とする研磨方法。   A carrier for a polishing machine in which a columnar workpiece is inserted into one or a plurality of through holes, and a narrowed portion having an inner diameter such that a predetermined gap is formed between the through holes and a side surface of the workpiece. A carrier for a polishing machine having the surface of the polishing machine is rotated while rotating between upper and lower surface plates which are arranged to face each other and are rotated so that one of them is rotated with respect to the other. A polishing method comprising: spherically polishing an end surface of a workpiece by moving the workpiece with respect to a disc and swinging the workpiece with the narrow portion as a fulcrum. 複数の基板を貼り合わせた接合板をその接合面に交差する面で切断することにより作製された、接合部を有する柱状のワークを前記貫通孔に挿入し、ワークに対して前記球面研磨を行った後、ワークをその接合部にて分離することにより、一面のみ球面研磨された被研磨物を形成することを特徴とする請求項6に記載の研磨方法。   A columnar workpiece having a bonding portion, which is produced by cutting a bonding plate bonded with a plurality of substrates at a plane intersecting the bonding surface, is inserted into the through hole, and the spherical polishing is performed on the workpiece. 7. The polishing method according to claim 6, wherein after the workpiece is separated at the joint portion, the object to be polished whose surface is spherically polished is formed.
JP2009021372A 2009-02-02 2009-02-02 Grinding machine, carrier for grinding machine, and grinding method Pending JP2010173049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009021372A JP2010173049A (en) 2009-02-02 2009-02-02 Grinding machine, carrier for grinding machine, and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009021372A JP2010173049A (en) 2009-02-02 2009-02-02 Grinding machine, carrier for grinding machine, and grinding method

Publications (1)

Publication Number Publication Date
JP2010173049A true JP2010173049A (en) 2010-08-12

Family

ID=42704484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009021372A Pending JP2010173049A (en) 2009-02-02 2009-02-02 Grinding machine, carrier for grinding machine, and grinding method

Country Status (1)

Country Link
JP (1) JP2010173049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200945A (en) * 2010-03-24 2011-10-13 Jtekt Corp Grinding device and grinding method of pin for power transmission chain
JP2013129004A (en) * 2011-12-20 2013-07-04 Olympus Corp Apparatus and method for manufacturing optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200945A (en) * 2010-03-24 2011-10-13 Jtekt Corp Grinding device and grinding method of pin for power transmission chain
JP2013129004A (en) * 2011-12-20 2013-07-04 Olympus Corp Apparatus and method for manufacturing optical element

Similar Documents

Publication Publication Date Title
JP2009220226A (en) Spherical surface polishing device
TW201139058A (en) Apparatus for chamfering of disk-shaped workpiece
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
JP6829467B2 (en) Double-sided polishing device
JP2015044273A (en) Dressing device, chemical mechanical polishing apparatus having the same, and dresser disk used in the same
JP4521359B2 (en) Polishing method and polishing apparatus
JP2010173049A (en) Grinding machine, carrier for grinding machine, and grinding method
JP6725831B2 (en) Work processing device
JP3203023U (en) Deburring device
JP3613345B2 (en) Polishing apparatus and carrier for polishing apparatus
JP2008018520A (en) Ultrasonic polishing device
JP2019055452A (en) Convex lens processing device, convex lens processing method and grindstone
JP2005028542A (en) Visco-elastic polisher and polishing method using this polisher
JP6531034B2 (en) Wafer polisher
JP2007313620A (en) Double-head grinder
JP4851713B2 (en) Rotating tools for shaping the shape of mineral materials such as sapphire, especially shaping the optical surface of a watch crystal
JP5165460B2 (en) Work holder and work processing method
KR101173766B1 (en) Apparatus for receiving wafer, carrier and apparatus for polishing wafer
JPH08229795A (en) Workpiece holding device
JP7287761B2 (en) Bearing radius determination method for spherical bearings
JP3139753U (en) Double-side polishing machine
JP4352909B2 (en) Polishing apparatus, carrier for polishing apparatus and polishing method
JP2008168402A (en) Grinding device and grinding method of optical element
JP6229959B2 (en) Stylus and measuring method
JP2001150321A (en) Polishing tool retaining device and polishing device and setting method of fulclum height of slide member