JP2010170062A - Zoom lens system, image capturing apparatus, and method of manufacturing the zoom lens system - Google Patents
Zoom lens system, image capturing apparatus, and method of manufacturing the zoom lens system Download PDFInfo
- Publication number
- JP2010170062A JP2010170062A JP2009014770A JP2009014770A JP2010170062A JP 2010170062 A JP2010170062 A JP 2010170062A JP 2009014770 A JP2009014770 A JP 2009014770A JP 2009014770 A JP2009014770 A JP 2009014770A JP 2010170062 A JP2010170062 A JP 2010170062A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- lens group
- optical system
- end state
- variable magnification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
Abstract
Description
本発明は、変倍光学系、撮像装置、変倍光学系の製造方法に関する。 The present invention relates to a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system.
従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適しており、防振機能を備えた変倍光学系が提案されている(例えば、特許文献1を参照。)。 Conventionally, there has been proposed a variable magnification optical system that is suitable for a photographic camera, an electronic still camera, a video camera, and the like and has an anti-vibration function (see, for example, Patent Document 1).
しかしながら従来の変倍光学系は、変倍比が小さく、高変倍化の要求を十分に満足することができないという問題があった。 However, the conventional zooming optical system has a problem that the zooming ratio is small and the demand for high zooming cannot be fully satisfied.
そこで本発明は上記問題点に鑑みてなされたものであり、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を備えた変倍光学系、撮像装置、変倍光学系の製造方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and has a lens that shifts to include a component in a direction orthogonal to the optical axis, and has a high zoom ratio and good optical performance. It is an object of the present invention to provide a manufacturing method of a system, an imaging device, and a variable magnification optical system.
上記課題を解決するために本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
前記第3レンズ群は、接合負レンズを有し、
広角端状態から望遠端状態まで変倍を行う際に、前記各レンズ群どうしの間隔が変化し、
前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフトし、
以下の条件式(1),(2)を満足することを特徴とする変倍光学系を提供する。
(1) 0.60<|f1|/√(fw・ft)<0.78
(2) 1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
The third lens group includes a cemented negative lens;
When zooming from the wide-angle end state to the telephoto end state, the distance between the lens groups changes,
Shifting so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis;
Provided is a variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2).
(1) 0.60 <| f1 | / √ (fw · ft) <0.78
(2) 1.80 <f3 / f1 <2.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group fw: Focal length of the zooming optical system in the wide-angle end state ft: Focal length of the zooming optical system in the telephoto end state
また本発明は、
前記変倍光学系を備えたことを特徴とする撮像装置を提供する。
The present invention also provides
An imaging apparatus comprising the variable magnification optical system is provided.
また本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群に接合負レンズを配置し、
前記変倍光学系の各レンズ群が以下の条件式(1),(2)を満足するようにし、
広角端状態から望遠端状態まで変倍を行う際に前記各レンズ群どうしの間隔を変化可能とし、
前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフト可能とすることを特徴とする変倍光学系の製造方法を提供する。
(1) 0.60<|f1|/√(fw・ft)<0.78
(2) 1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
The present invention also provides
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group,
A cemented negative lens is disposed in the third lens group;
Each lens group of the variable magnification optical system satisfies the following conditional expressions (1) and (2),
When changing the magnification from the wide-angle end state to the telephoto end state, the interval between the lens groups can be changed.
Provided is a variable magnification optical system manufacturing method characterized in that at least a part of the third lens group can be shifted so as to include a component in a direction orthogonal to the optical axis.
(1) 0.60 <| f1 | / √ (fw · ft) <0.78
(2) 1.80 <f3 / f1 <2.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group fw: Focal length of the zooming optical system in the wide-angle end state ft: Focal length of the zooming optical system in the telephoto end state
本発明によれば、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を備えた変倍光学系、撮像装置、変倍光学系の製造方法を提供することができる。 According to the present invention, a variable power optical system, an image pickup apparatus, and a variable power optical system having a lens that shifts so as to include a component in a direction orthogonal to the optical axis and having a high zoom ratio and good optical performance. A manufacturing method can be provided.
以下、本願の変倍光学系、撮像装置、変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、前記第3レンズ群は、接合負レンズを有し、広角端状態から望遠端状態まで変倍を行う際に、前記各レンズ群どうしの間隔が変化し、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフトし、以下の条件式(1),(2)を満足することを特徴とする。
(1) 0.60<|f1|/√(fw・ft)<0.78
(2) 1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
Hereinafter, a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, A fourth lens group having a refractive power of 5 mm, and the third lens group has a cemented negative lens, and when performing zooming from the wide-angle end state to the telephoto end state, the distance between the lens groups is Is changed, and at least a part of the third lens group is shifted to include a component in a direction orthogonal to the optical axis, and the following conditional expressions (1) and (2) are satisfied.
(1) 0.60 <| f1 | / √ (fw · ft) <0.78
(2) 1.80 <f3 / f1 <2.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group fw: Focal length of the zooming optical system in the wide-angle end state ft: Focal length of the zooming optical system in the telephoto end state
条件式(1)は、第1レンズ群の屈折力を設定するものであり、これによって本願の変倍光学系は良好な光学性能を保つことができる。
条件式(1)の下限値を下回ると、第1レンズ群の屈折力が大きくなり過ぎて、球面収差を良好に補正することができなくなってしまう。なお、条件式(1)の下限値を0.65に設定すれば、本発明の効果をより発揮することができる。
一方、条件式(1)の上限値を上回ると、第1レンズ群の屈折力が小さくなり過ぎて、高変倍を実現することができなくなってしまう。なお、条件式(1)の上限値を0.76に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (1) sets the refractive power of the first lens group, and the variable power optical system of the present application can thereby maintain good optical performance.
If the lower limit value of conditional expression (1) is not reached, the refractive power of the first lens group becomes too large and spherical aberration cannot be corrected well. In addition, if the lower limit of conditional expression (1) is set to 0.65, the effect of the present invention can be exhibited more.
On the other hand, if the upper limit value of conditional expression (1) is exceeded, the refractive power of the first lens group becomes too small, and high zoom ratio cannot be realized. In addition, if the upper limit of conditional expression (1) is set to 0.76, the effect of this invention can be exhibited more.
条件式(2)は、第1レンズ群と第3レンズ群の屈折力を設定するものである。これにより、所定の変倍比を効果的に確保しつつ良好な光学性能を確保しながら、第3レンズ群中の接合負レンズを光軸と直交する方向の成分を含むようにシフトした際(以下、単に「シフト時」という。)にも良好な光学性能を実現している。
条件式(2)の下限値を下回ると、第1レンズ群の屈折力が大きくなりすぎて、変倍時の球面収差変動を良好に補正することができない。なお、条件式(2)の下限値を1.82に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (2) sets the refractive power of the first lens group and the third lens group. Accordingly, when the cemented negative lens in the third lens group is shifted so as to include a component in a direction orthogonal to the optical axis while effectively securing a predetermined zoom ratio and ensuring good optical performance ( Hereinafter, it is also simply referred to as “at the time of shift”), and good optical performance is realized.
If the lower limit value of conditional expression (2) is not reached, the refractive power of the first lens group becomes too large, and the spherical aberration fluctuation at the time of zooming cannot be corrected well. In addition, if the lower limit of conditional expression (2) is set to 1.82, the effect of the present invention can be exhibited more.
一方、条件式(2)の上限値を上回ると、第1レンズ群の屈折力が小さくなりすぎて、高変倍比化を実現することができない。なお、条件式(2)の上限値を2.20に設定すれば、本発明の効果をより発揮することができる。
本願の変倍光学系は、第3レンズ群が接合負レンズを有することで、シフト時の色収差を良好に保つことができる。
また、第3レンズ群中の接合負レンズを光軸と直交する方向の成分を含むようにシフトすることで、振動に起因する画像ブレ発生時の像面補正を行うことができる。
以上の構成により、高変倍比と良好な光学性能を備えた変倍光学系を実現することができる。
On the other hand, if the upper limit of conditional expression (2) is exceeded, the refractive power of the first lens group becomes too small, and a high zoom ratio cannot be realized. In addition, if the upper limit of conditional expression (2) is set to 2.20, the effect of this invention can be exhibited more.
In the variable magnification optical system of the present application, the third lens group has a cemented negative lens, so that the chromatic aberration at the time of shifting can be kept good.
Further, by shifting the cemented negative lens in the third lens group so as to include a component in a direction orthogonal to the optical axis, it is possible to perform image plane correction when image blur due to vibration occurs.
With the above configuration, a variable power optical system having a high variable power ratio and good optical performance can be realized.
また本願の変倍光学系は、前記第1レンズ群は、以下の条件式(3)を満足するレンズを少なくとも2枚有することが望ましい。
(3) 1.750<n1<2.500
ただし、
n1:前記第1レンズ群中のレンズのd線(波長λ=587.6nm)に対する屈折率
In the variable magnification optical system of the present application, it is desirable that the first lens group has at least two lenses that satisfy the following conditional expression (3).
(3) 1.750 <n1 <2.500
However,
n1: Refractive index of the lens in the first lens group with respect to d-line (wavelength λ = 587.6 nm)
条件式(3)は、第1レンズ群中のレンズの屈折力を設定するものであり、これによって本願の変倍光学系は良好な光学性能を保つことができる。
条件式(3)の下限値を下回ると、第1レンズ群中の各レンズの曲率半径が小さくなり、球面収差、像面湾曲収差、コマ収差を良好に補正することができなくなってしまう。なお、条件式(3)の下限値を1.770に設定すれば、本発明の効果をより発揮することができる。また、条件式(3)の下限値を1.785に設定すれば、本発明の効果をより発揮することができる。
一方、条件式(3)の上限値を上回ると、可視域短波長光の透過率が低くなり、色付きが生ずるので好ましくない。なお、条件式(3)の上限値を2.250に設定すれば、本発明の効果をより発揮することができる。また、条件式(3)の上限値を2.150に設定すれば、本発明の効果をより発揮することができる。さらに、条件式(3)の上限値を2.000に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (3) sets the refracting power of the lenses in the first lens group, whereby the variable magnification optical system of the present application can maintain good optical performance.
If the lower limit of conditional expression (3) is not reached, the radius of curvature of each lens in the first lens group becomes small, and spherical aberration, field curvature aberration, and coma aberration cannot be corrected well. In addition, if the lower limit of conditional expression (3) is set to 1.770, the effect of the present invention can be exhibited more. Moreover, if the lower limit value of conditional expression (3) is set to 1.785, the effect of the present invention can be exhibited more.
On the other hand, if the value exceeds the upper limit value of conditional expression (3), the transmittance of short-wavelength light in the visible range is lowered and coloring is not preferable. In addition, if the upper limit of conditional expression (3) is set to 2.250, the effect of this invention can be exhibited more. Moreover, if the upper limit of conditional expression (3) is set to 2.150, the effect of this invention can be exhibited more. Furthermore, if the upper limit value of conditional expression (3) is set to 2.000, the effect of the present invention can be exhibited more.
また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 0.50<(Dt−Dw)/fw<1.50
ただし、
Dt:望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Dw:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
fw:広角端状態における前記変倍光学系の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 0.50 <(Dt−Dw) / fw <1.50
However,
Dt: Distance on the optical axis from the most object side lens surface in the zoom optical system to the image plane in the telephoto end state Dw: Image from the lens surface closest to the object in the zoom optical system in the wide angle end state Distance fw on the optical axis to the surface: focal length of the variable magnification optical system in the wide-angle end state
条件式(4)は、本願の変倍光学系中の最も物体側のレンズ面から像面までの距離を設定するものであり、これによって良好な光学性能を確保しながら高変倍比化を実現することができる。
条件式(4)の下限値を下回ると、変倍時の像面湾曲収差を良好に補正することができなくなってしまう。なお、条件式(4)の下限値を0.70に設定すれば、本発明の効果をより発揮することができる。
一方、条件式(4)の上限値を上回ると、望遠端状態における本願の変倍光学系の全長が大きくなりすぎてしまう。なお、条件式(4)の上限値を1.30に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (4) sets the distance from the lens surface closest to the object side to the image plane in the variable magnification optical system of the present application, thereby increasing the zoom ratio while ensuring good optical performance. Can be realized.
If the lower limit of conditional expression (4) is not reached, it becomes impossible to satisfactorily correct the field curvature aberration during zooming. In addition, if the lower limit of conditional expression (4) is set to 0.70, the effect of the present invention can be exhibited more.
On the other hand, if the upper limit of conditional expression (4) is exceeded, the total length of the variable magnification optical system of the present application in the telephoto end state becomes too large. In addition, if the upper limit of conditional expression (4) is set to 1.30, the effect of this invention can be exhibited more.
また本願の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.60<(Dt−Dw)/Ymax<1.60
ただし、
Dt :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Dw :広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Ymax:最大像高
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (5).
(5) 0.60 <(Dt−Dw) / Ymax <1.60
However,
Dt: Distance on the optical axis from the lens surface closest to the object side in the variable magnification optical system in the telephoto end state to the image plane Dw: Image from the lens surface closest to the object in the variable magnification optical system in the wide angle end state Distance on the optical axis to the surface Ymax: Maximum image height
条件式(5)は、本願の変倍光学系中の最も物体側のレンズ面から像面までの距離を設定するものであり、これによって良好な光学性能を確保しながら高変倍比化を実現することができる。
条件式(5)の下限値を下回ると、変倍時の像面湾曲収差を良好に補正することができなくなってしまう。なお、条件式(5)の下限値を0.80に設定すれば、本発明の効果をより発揮することができる。
一方、条件式(5)の上限値を上回ると、望遠端状態における本願の変倍光学系の全長が大きくなりすぎてしまう。なお、条件式(5)の上限値を1.40に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (5) sets the distance from the lens surface closest to the object side to the image plane in the variable magnification optical system of the present application, thereby achieving a high zoom ratio while ensuring good optical performance. Can be realized.
If the lower limit value of conditional expression (5) is not reached, it becomes impossible to satisfactorily correct the field curvature aberration at the time of zooming. In addition, if the lower limit of conditional expression (5) is set to 0.80, the effect of the present invention can be exhibited more.
On the other hand, if the upper limit value of conditional expression (5) is exceeded, the total length of the variable magnification optical system of the present application in the telephoto end state becomes too large. In addition, if the upper limit of conditional expression (5) is set to 1.40, the effect of this invention can be exhibited more.
また本願の変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6) 400<|RA・f1|<1300
ただし、
RA:前記変倍光学系中の最も物体側のレンズ面の曲率半径
f1:前記第1レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (6).
(6) 400 <| RA · f1 | <1300
However,
RA: radius of curvature of the lens surface closest to the object side in the variable magnification optical system f1: focal length of the first lens unit
条件式(6)は、本願の変倍光学系中の最も物体側のレンズ面の曲率半径と第1レンズ群の焦点距離を設定するものであり、これによって良好な光学性能を保つことができる。
条件式(6)の下限値を下回ると、最も物体側のレンズ面の曲率半径が小さくなりすぎる、若しくは第1レンズ群の屈折力が大きくなりすぎるため、変倍時の像面湾曲変動を良好に補正することができなくなってしまう。なお、条件式(6)の下限値を550に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (6) sets the radius of curvature of the lens surface closest to the object side in the variable magnification optical system of the present application and the focal length of the first lens group, thereby maintaining good optical performance. .
If the lower limit of conditional expression (6) is not reached, the radius of curvature of the lens surface closest to the object will be too small, or the refractive power of the first lens group will be too large, so that the field curvature fluctuation during zooming will be good. It will not be possible to correct it. In addition, if the lower limit of conditional expression (6) is set to 550, the effect of the present invention can be exhibited more.
条件式(6)の上限値を上回ると、最も物体側のレンズ面の曲率半径が大きくなりすぎる、若しくは第1レンズ群の屈折力が小さくなりすぎるため、コマ収差を良好に補正することができない、若しくは高変倍比化を実現することができなくなってしまう。なお、条件式(6)の上限値を1100に設定すれば、本発明の効果をより発揮することができる。 If the upper limit of conditional expression (6) is exceeded, the radius of curvature of the lens surface closest to the object side becomes too large, or the refractive power of the first lens group becomes too small, so that coma cannot be corrected well. Or, it becomes impossible to realize a high zoom ratio. In addition, if the upper limit of conditional expression (6) is set to 1100, the effect of this invention can be exhibited more.
また本願の変倍光学系は、前記第1レンズ群は、最も物体側に負レンズを有し、以下の条件式(7)を満足することが望ましい。
(7) 1.40<f11/f1<2.10
ただし、
f1 :前記第1レンズ群の焦点距離
f11:前記第1レンズ群における前記負レンズの焦点距離
In the variable magnification optical system of the present application, it is desirable that the first lens group has a negative lens closest to the object side and satisfies the following conditional expression (7).
(7) 1.40 <f11 / f1 <2.10
However,
f1: focal length of the first lens group f11: focal length of the negative lens in the first lens group
条件式(7)は、第1レンズ群中の最も物体側の負レンズの焦点距離と第1レンズ群の焦点距離を設定するものであり、これによって良好な光学性能を保つことができる。
条件式(7)の下限値を下回ると、第1レンズ群中の最も物体側の負レンズの屈折力が大きくなりすぎるため、コマ収差を良好に補正することができなくなってしまう。なお、条件式(7)の下限値を1.50に設定すれば、本発明の効果をより発揮することができる。
条件式(7)の上限値を上回ると、第1レンズ群中の最も物体側の負レンズの屈折力が小さくなりすぎるため、レンズ外径が大きくなってしまう。また、球面収差を良好に補正することができなくなってしまう。なお、条件式(7)の上限値を2.00に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (7) sets the focal length of the negative lens closest to the object side in the first lens group and the focal length of the first lens group, thereby maintaining good optical performance.
If the lower limit value of conditional expression (7) is not reached, the refractive power of the most object-side negative lens in the first lens group becomes too large, so that coma cannot be corrected well. In addition, if the lower limit of conditional expression (7) is set to 1.50, the effect of this invention can be exhibited more.
If the upper limit of conditional expression (7) is exceeded, the refractive power of the most object-side negative lens in the first lens group becomes too small, and the lens outer diameter becomes large. In addition, the spherical aberration cannot be corrected satisfactorily. In addition, if the upper limit of conditional expression (7) is set to 2.00, the effect of this invention can be exhibited more.
また本願の変倍光学系は、以下の条件式(8)を満足することが望ましい。
(8) 1.00<f4/f2<2.00
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (8).
(8) 1.00 <f4 / f2 <2.00
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group
条件式(8)は、第2レンズ群と第4レンズ群の屈折力を設定するものであり、これによって良好な光学性能を確保しながら、シフト時にも良好な光学性能を実現することができる。
条件式(8)の下限値を下回ると、第4レンズ群の屈折力が大きくなりすぎて、シフト時のコマ収差が悪化してしまう。なお、条件式(8)の下限値を1.20に設定すれば、本発明の効果をより発揮することができる。
一方、条件式(8)の上限値を上回ると、第4レンズ群の屈折力が小さくなりすぎて、シフト時のコマ収差が悪化してしまう。なお、条件式(8)の上限値を1.80に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (8) sets the refractive powers of the second lens group and the fourth lens group, and this makes it possible to achieve good optical performance even during shifting while ensuring good optical performance. .
If the lower limit value of conditional expression (8) is not reached, the refractive power of the fourth lens group becomes too large, and the coma aberration at the time of shifting is deteriorated. In addition, if the lower limit of conditional expression (8) is set to 1.20, the effect of the present invention can be exhibited more.
On the other hand, if the upper limit value of conditional expression (8) is exceeded, the refractive power of the fourth lens group becomes too small, and the coma aberration during shifting deteriorates. In addition, if the upper limit of conditional expression (8) is set to 1.80, the effect of this invention can be exhibited more.
また本願の変倍光学系は、以下の条件式(9)を満足することが望ましい。
(9) 0.80<f4/(−f3)<1.30
ただし、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (9).
(9) 0.80 <f4 / (− f3) <1.30
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group
条件式(9)は、第3レンズ群と第4レンズ群の屈折力を設定するものであり、これによって良好な光学性能を確保しながら、シフト時にも良好な光学性能を実現することができる。
条件式(9)の下限値を下回ると、第4レンズ群の屈折力が大きくなりすぎて、シフト時のコマ収差が悪化してしまう。なお、条件式(9)の下限値を0.90に設定すれば、本発明の効果をより発揮することができる。
一方、条件式(9)の上限値を上回ると、第4レンズ群の屈折力が小さくなりすぎて、シフト時のコマ収差が悪化してしまう。なお、条件式(9)の上限値を1.20に設定すれば、本発明の効果をより発揮することができる。
Conditional expression (9) sets the refractive powers of the third lens group and the fourth lens group, and this makes it possible to achieve good optical performance even during shifting while ensuring good optical performance. .
If the lower limit value of conditional expression (9) is not reached, the refractive power of the fourth lens group becomes too large, and the coma aberration at the time of shifting deteriorates. In addition, if the lower limit of conditional expression (9) is set to 0.90, the effect of the present invention can be exhibited more.
On the other hand, if the upper limit value of conditional expression (9) is exceeded, the refractive power of the fourth lens group becomes too small and the coma aberration at the time of shifting deteriorates. In addition, if the upper limit of conditional expression (9) is set to 1.20, the effect of this invention can be exhibited more.
また本願の変倍光学系は、前記第2レンズ群と前記第4レンズ群との間に、開口絞りを有することが望ましい。
この構成により、本願の変倍光学系では変倍時における光軸外のコマ収差を補正し、良好な光学性能を実現することができる。
Further, it is desirable that the variable magnification optical system of the present application has an aperture stop between the second lens group and the fourth lens group.
With this configuration, the variable magnification optical system of the present application can correct coma aberration outside the optical axis at the time of zooming, and can realize good optical performance.
また本願の変倍光学系は、前記第1レンズ群が、少なくとも2枚の負レンズと、少なくとも1枚の正レンズとから構成されていることが望ましい。
この構成により、本願の変倍光学系では変倍時における光軸外の色収差の変動を良好に補正することができる。
In the zoom optical system according to the present application, it is preferable that the first lens group includes at least two negative lenses and at least one positive lens.
With this configuration, the variable magnification optical system of the present application can satisfactorily correct variations in chromatic aberration outside the optical axis at the time of zooming.
また本願の変倍光学系は、前記第1レンズ群が、非球面レンズを有することが望ましい。
この構成により、本願の変倍光学系では歪曲収差を良好に補正することができる。
In the variable magnification optical system of the present application, it is desirable that the first lens group has an aspheric lens.
With this configuration, distortion can be favorably corrected in the variable magnification optical system of the present application.
また本願の変倍光学系は、広角端状態から望遠端状態まで変倍を行う際に、前記第2レンズ群と前記第4レンズ群とが一体となって移動することが望ましい。
この構成により、本願の変倍光学系では変倍時における像面湾曲収差を良好に補正することができる。
In the zoom optical system of the present application, it is desirable that the second lens group and the fourth lens group move together when zooming from the wide-angle end state to the telephoto end state.
With this configuration, it is possible to satisfactorily correct curvature of field aberration during zooming in the zooming optical system of the present application.
また本願の変倍光学系は、広角端状態から望遠端状態まで変倍を行う際に、前記第2レンズ群と前記第3レンズ群との間隔が増大し、前記第3レンズ群と前記第4レンズ群との間隔が減少することが望ましい。
この構成により、本願の変倍光学系では第1レンズ群の径を小さくすることができ、また、高変倍比化を図ることが容易となる。また、望遠端状態において球面収差を良好に補正することもできる。
In the zoom optical system of the present application, when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group is increased, and the third lens group and the third lens group are increased. It is desirable that the distance between the four lens groups is reduced.
With this configuration, in the variable magnification optical system of the present application, the diameter of the first lens group can be reduced, and a high zoom ratio can be easily achieved. In addition, spherical aberration can be corrected well in the telephoto end state.
また本願の撮像装置は、上述した構成の変倍光学系を備えていることを特徴とする。
これにより、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を備えた撮像装置を実現することができる。
The imaging apparatus of the present application includes the variable magnification optical system having the above-described configuration.
Thereby, it is possible to realize an imaging apparatus having a lens that shifts so as to include a component in a direction orthogonal to the optical axis and having a high zoom ratio and good optical performance.
また本願の変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第3レンズ群に接合負レンズを配置し、前記変倍光学系の各レンズ群が以下の条件式(1),(2)を満足するようにし、広角端状態から望遠端状態まで変倍を行う際に前記各レンズ群どうしの間隔を変化可能とし、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフト可能とすることを特徴とする。
(1) 0.60<|f1|/√(fw・ft)<0.78
(2) 1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
これにより、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を備えた変倍光学系を製造することができる。
Further, according to the manufacturing method of the variable magnification optical system of the present application, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens having a negative refractive power. And a fourth lens group having a positive refractive power, a variable magnification optical system, wherein a cemented negative lens is disposed in the third lens group, and each lens group of the variable magnification optical system includes: The following conditional expressions (1) and (2) are satisfied, and when changing magnification from the wide-angle end state to the telephoto end state, the interval between the lens groups can be changed, and at least the third lens group It is possible to shift so that a part includes a component in a direction orthogonal to the optical axis.
(1) 0.60 <| f1 | / √ (fw · ft) <0.78
(2) 1.80 <f3 / f1 <2.50
However,
f1: focal length of the first lens group f3: focal length of the third lens group fw: focal length of the variable magnification optical system in the wide-angle end state ft: focal length of the variable magnification optical system in the telephoto end state A zooming optical system having a lens that shifts so as to include a component in a direction orthogonal to the optical axis and having a high zooming ratio and good optical performance can be manufactured.
以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係る変倍光学系の広角端状態におけるレンズ断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a lens cross-sectional view in the wide-angle end state of the variable magnification optical system according to the first example of the present application.
The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。なお、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凸面を向けた正メニスカスレンズL23とからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. Become.
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合負レンズからなる。
第4レンズ群G4は、物体側から順に、像面I側に凸面を向けた平凸形状の正レンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。
The third lens group G3 is composed of, in order from the object side, a cemented negative lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32.
The fourth lens group G4 includes, in order from the object side, a planoconvex positive lens L41 having a convex surface directed toward the image plane I, a biconvex positive lens L42, and a negative meniscus lens having a convex surface directed toward the image plane I. It consists of a cemented lens with L43.
本実施例に係る変倍光学系では、第2レンズ群G2と第3レンズ群G3との間に開口絞りSが配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と一体となって移動する。
本実施例に係る変倍光学系では、広角端状態から望遠端状態まで変倍を行う際に、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1が像面I側へ移動した後に物体側へ移動する、即ち移動軌跡が像面I側へ凸形状となるように光軸に沿って移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4が物体側へ光軸に沿って移動する。なお、このとき第2レンズ群G2と第4レンズ群G4は一体となって移動する。
本実施例に係る変倍光学系では、第3レンズ群G3中の上記接合負レンズが光軸と直交する方向の成分を含むようにシフトする。
In the zoom optical system according to the present embodiment, an aperture stop S is disposed between the second lens group G2 and the third lens group G3, and the third lens is used for zooming from the wide-angle end state to the telephoto end state. Move together with the group G3.
In the zoom optical system according to the present embodiment, when zooming is performed from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and The first lens group G1 is moved to the object side after moving to the image plane I side so that the distance from the fourth lens group G4 is reduced. The second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis along the optical axis. At this time, the second lens group G2 and the fourth lens group G4 move together.
In the variable magnification optical system according to this example, the cemented negative lens in the third lens group G3 is shifted so as to include a component in a direction orthogonal to the optical axis.
以下の表1に、本願の第1実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカスを示す。
[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径rの「∞」は平面を示し、空気の屈折率nd=1.00000の記載は省略している。また、レンズ面が非球面である場合には面番号に*印を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists values of specifications of the variable magnification optical system according to the first example of the present application.
In Table 1, f indicates the focal length, and BF indicates the back focus.
In [Surface data], the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surfaces, d is the distance between the lens surfaces, nd is the refractive index with respect to the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). Further, the object plane indicates the object plane, the variable indicates the variable plane spacing, the (aperture S) indicates the aperture stop S, and the image plane indicates the image plane I. Note that “∞” of the radius of curvature r indicates a plane, and the description of the refractive index of air nd = 1.0000 is omitted. When the lens surface is an aspheric surface, the surface number is marked with * and the paraxial radius of curvature is shown in the column of the radius of curvature r.
[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数を示す。
x=(h2/r)/[1+{1−K(h/r)2}1/2]
+A4h4+A6h6+A8h8+A10h10
ここで、xは光軸から垂直方向の高さhにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)、Kを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。また、「E−n」(n:整数)は「×10−n」を示し、例えば「1.234E−05」は「1.234×10−5」を示す。
[Aspherical data] shows the aspherical coefficient when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−K (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, x is a distance (sag amount) along the optical axis direction from the tangent plane of each aspherical surface at a height h in the vertical direction from the optical axis, K is a conic constant, and A4, A6, A8, and A10 are non- The spherical coefficient r is defined as the radius of curvature of the reference spherical surface (paraxial radius of curvature). “E−n” (n: integer) represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”.
[各種データ]において、FNOはFナンバー、2ωは画角、Yは像高、TLは光学系全長、di(i:整数)は第i面の可変の面間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。 In [various data], FNO is the F number, 2ω is the angle of view, Y is the image height, TL is the total length of the optical system, and di (i: integer) is the variable surface interval of the i-th surface. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, “mm” is generally used as a unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.
(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1) 33.333 1.90 1.79500 45.30
2) 16.100 0.17 1.55389 38.09
*3) 13.600 10.60
4) -102.031 1.50 1.72916 54.66
5) 27.621 2.30
6) 28.541 3.45 1.84666 23.78
7) 82.554 可変
8) 27.300 0.90 1.80518 25.43
9) 15.551 4.60 1.51823 58.89
10) -37.422 0.10
11) 25.246 2.45 1.51823 58.89
12) 55.309 可変
13)(絞りS) ∞ 2.90
14) -32.302 2.75 1.85026 32.35
15) -11.682 0.80 1.77250 49.61
16) 161.664 可変
17) ∞ 3.00 1.51823 58.89
18) -23.681 0.10
19) 114.651 5.00 1.49782 82.56
20) -16.345 1.00 1.85026 32.35
21) -46.453 BF
像面 ∞
[非球面データ]
第3面
K = 1
A4 = 2.54910E-05
A6 = 5.94080E-08
A8 = -1.06500E-10
A10 = 7.27750E-13
[各種データ]
ズーム比 3.22
W M T
f 16.5 32.8 53.3
FNO 3.5 4.8 6.0
2ω 84.4 47.2 29.9
Y 14.25 14.25 14.25
TL 130.18 128.00 147.05
BF 38.29 57.79 84.31
d7 31.23 9.55 2.07
d12 1.61 7.22 11.15
d16 15.53 9.92 5.99
[レンズ群データ]
群 始面 f
1 1 -21.64
2 8 27.99
3 13 -40.96
4 17 43.13
[条件式対応値]
(1) |f1|/√(fw・ft)= 0.729
(2) f3/f1= 1.89
(3) n1= 1.79500, 1.84666
(4) (Dt−Dw)/fw= 1.02
(5) (Dt−Dw)/Ymax= 1.18
(6) |RA・f1|= 721
(7) f11/f1= 1.52
(8) f4/f2= 1.54
(9) f4/(−f3)= 1.05
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
1) 33.333 1.90 1.79500 45.30
2) 16.100 0.17 1.55389 38.09
* 3) 13.600 10.60
4) -102.031 1.50 1.72916 54.66
5) 27.621 2.30
6) 28.541 3.45 1.84666 23.78
7) 82.554 variable
8) 27.300 0.90 1.80518 25.43
9) 15.551 4.60 1.51823 58.89
10) -37.422 0.10
11) 25.246 2.45 1.51823 58.89
12) 55.309 Variable
13) (Aperture S) ∞ 2.90
14) -32.302 2.75 1.85026 32.35
15) -11.682 0.80 1.77250 49.61
16) 161.664 Variable
17) ∞ 3.00 1.51823 58.89
18) -23.681 0.10
19) 114.651 5.00 1.49782 82.56
20) -16.345 1.00 1.85026 32.35
21) -46.453 BF
Image plane ∞
[Aspherical data]
Third side K = 1
A4 = 2.54910E-05
A6 = 5.94080E-08
A8 = -1.06500E-10
A10 = 7.27750E-13
[Various data]
Zoom ratio 3.22
W M T
f 16.5 32.8 53.3
FNO 3.5 4.8 6.0
2ω 84.4 47.2 29.9
Y 14.25 14.25 14.25
TL 130.18 128.00 147.05
BF 38.29 57.79 84.31
d7 31.23 9.55 2.07
d12 1.61 7.22 11.15
d16 15.53 9.92 5.99
[Lens group data]
Group start surface f
1 1 -21.64
2 8 27.99
3 13 -40.96
4 17 43.13
[Conditional expression values]
(1) | f1 | / √ (fw · ft) = 0.729
(2) f3 / f1 = 1.89
(3) n1 = 1.79500, 1.84666
(4) (Dt−Dw) /fw=1.02
(5) (Dt−Dw) /Ymax=1.18
(6) | RA · f1 | = 721
(7) f11 / f1 = 1.52
(8) f4 / f2 = 1.54
(9) f4 / (− f3) = 1.05
図2(a)及び図2(b)は、本願の第1実施例に係る変倍光学系の広角端状態における諸収差図及びシフト時のコマ収差図である。図3は、本願の第1実施例に係る変倍光学系の中間焦点距離状態における諸収差図である。図4(a)及び図4(b)は、本願の第1実施例に係る変倍光学系の望遠端状態における諸収差図及びシフト時のコマ収差図である。 FIGS. 2A and 2B are diagrams showing various aberrations in the wide-angle end state of the zoom optical system according to the first example of the present application and a coma aberration diagram at the time of shift. FIG. 3 is a diagram illustrating various aberrations in the intermediate focal length state of the variable magnification optical system according to the first example of the present application. FIGS. 4A and 4B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to Example 1 of the present application and coma aberration during shift.
図2〜図4の各収差図において、FNOはFナンバー、Aは半画角をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では半画角の最大値をそれぞれ示し、コマ収差図では各半画角の値を示す。またdはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。そして非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。
なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。
2 to 4, FNO indicates an F number, and A indicates a half angle of view. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum half field angle, and the coma diagram shows the half field value. D represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.
Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below.
図2〜図4より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらにシフト時にも優れた結像性能を有していることがわかる。 2 to 4, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state, and also excellent during shifting. It can be seen that it has imaging performance.
(第2実施例)
図5は、本願の第2実施例に係る変倍光学系の広角端状態におけるレンズ断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
(Second embodiment)
FIG. 5 is a lens cross-sectional view in the wide-angle end state of the variable magnification optical system according to the second example of the present application.
The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とからなる。なお、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凸面を向けた正メニスカスレンズL23とからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合負レンズからなる。
第4レンズ群G4は、物体側から順に、像面I側に凸面を向けた平凸形状の正レンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, a biconcave negative lens L12, a negative meniscus lens L13 having a convex surface directed toward the object side, and an object side. And a positive meniscus lens L14 having a convex surface. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. Become.
The third lens group G3 is composed of, in order from the object side, a cemented negative lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32.
The fourth lens group G4 includes, in order from the object side, a planoconvex positive lens L41 having a convex surface directed toward the image plane I, a biconvex positive lens L42, and a negative meniscus lens having a convex surface directed toward the image plane I. It consists of a cemented lens with L43.
本実施例に係る変倍光学系では、第2レンズ群G2と第3レンズ群G3との間に開口絞りSが配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と一体となって移動する。
本実施例に係る変倍光学系では、広角端状態から望遠端状態まで変倍を行う際に、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1が像面I側へ移動した後に物体側へ移動する、即ち移動軌跡が像面I側へ凸形状となるように光軸に沿って移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4が物体側へ光軸に沿って移動する。なお、このとき第2レンズ群G2と第4レンズ群G4は一体となって移動する。
本実施例に係る変倍光学系では、第3レンズ群G3中の上記接合負レンズが光軸と直交する方向の成分を含むようにシフトする。
以下の表2に、本願の第2実施例に係る変倍光学系の諸元の値を掲げる。
In the zoom optical system according to the present embodiment, an aperture stop S is disposed between the second lens group G2 and the third lens group G3, and the third lens is used for zooming from the wide-angle end state to the telephoto end state. Move together with the group G3.
In the zoom optical system according to the present embodiment, when zooming is performed from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and The first lens group G1 is moved to the object side after moving to the image plane I side so that the distance from the fourth lens group G4 is reduced. The second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis along the optical axis. At this time, the second lens group G2 and the fourth lens group G4 move together.
In the variable magnification optical system according to this example, the cemented negative lens in the third lens group G3 is shifted so as to include a component in a direction orthogonal to the optical axis.
Table 2 below lists values of specifications of the variable magnification optical system according to the second example of the present application.
(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1) 40.043 1.90 1.51680 64.12
2) 16.100 0.17 1.55389 38.09
*3) 13.900 11.00
4) -114.885 1.40 1.80400 46.58
5) 32.203 3.00
6) 123.629 1.28 1.80400 46.58
7) 45.051 0.10
8) 32.378 3.50 1.80518 25.43
9) 838.071 可変
10) 31.539 0.90 1.75520 27.51
11) 16.577 4.30 1.51680 64.12
12) -44.059 2.16
13) 21.883 2.10 1.51823 58.89
14) 52.902 可変
15)(絞りS) ∞ 2.90
16) -36.742 2.75 1.85026 32.35
17) -12.426 0.80 1.77250 49.61
18) 104.520 可変
19) ∞ 2.75 1.48749 70.45
20) -23.444 0.10
21) 116.161 5.26 1.49782 82.56
22) -15.151 1.00 1.80100 34.96
23) -41.509 BF
像面 ∞
[非球面データ]
第3面
K = 1
A4 = 2.65560E-05
A6 = 5.94080E-08
A8 = -1.00010E-10
A10 = 9.63140E-13
[各種データ]
ズーム比 3.24
W M T
f 16.5 32.6 53.3
FNO 3.7 4.8 5.9
2ω 84.6 47.4 29.9
Y 14.25 14.25 14.25
TL 130.85 128.70 148.00
BF 38.56 57.90 84.68
d9 29.65 8.16 0.69
d14 1.69 7.40 11.23
d18 13.58 7.87 4.04
[レンズ群データ]
群 始面 f
1 1 -21.90
2 10 29.17
3 15 -41.04
4 19 41.07
[条件式対応値]
(1) |f1|/√(fw・ft)= 0.739
(2) f3/f1= 1.87
(3) n1= 1.80400, 1.80400, 1.80518
(4) (Dt−Dw)/fw= 1.04
(5) (Dt−Dw)/Ymax= 1.20
(6) |RA・f1|= 885
(7) f11/f1= 1.91
(8) f4/f2= 1.41
(9) f4/(−f3)= 1.00
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
1) 40.043 1.90 1.51680 64.12
2) 16.100 0.17 1.55389 38.09
* 3) 13.900 11.00
4) -114.885 1.40 1.80400 46.58
5) 32.203 3.00
6) 123.629 1.28 1.80400 46.58
7) 45.051 0.10
8) 32.378 3.50 1.80518 25.43
9) 838.071 variable
10) 31.539 0.90 1.75520 27.51
11) 16.577 4.30 1.51680 64.12
12) -44.059 2.16
13) 21.883 2.10 1.51823 58.89
14) 52.902 Variable
15) (Aperture S) ∞ 2.90
16) -36.742 2.75 1.85026 32.35
17) -12.426 0.80 1.77250 49.61
18) 104.520 variable
19) ∞ 2.75 1.48749 70.45
20) -23.444 0.10
21) 116.161 5.26 1.49782 82.56
22) -15.151 1.00 1.80 100 34.96
23) -41.509 BF
Image plane ∞
[Aspherical data]
Third side K = 1
A4 = 2.65560E-05
A6 = 5.94080E-08
A8 = -1.00010E-10
A10 = 9.63140E-13
[Various data]
Zoom ratio 3.24
W M T
f 16.5 32.6 53.3
FNO 3.7 4.8 5.9
2ω 84.6 47.4 29.9
Y 14.25 14.25 14.25
TL 130.85 128.70 148.00
BF 38.56 57.90 84.68
d9 29.65 8.16 0.69
d14 1.69 7.40 11.23
d18 13.58 7.87 4.04
[Lens group data]
Group start surface f
1 1 -21.90
2 10 29.17
3 15 -41.04
4 19 41.07
[Conditional expression values]
(1) | f1 | / √ (fw · ft) = 0.739
(2) f3 / f1 = 1.87
(3) n1 = 1.80400, 1.80400, 1.80518
(4) (Dt−Dw) /fw=1.04
(5) (Dt−Dw) /Ymax=1.20
(6) | RA · f1 | = 885
(7) f11 / f1 = 1.91
(8) f4 / f2 = 1.41
(9) f4 / (− f3) = 1.00
図6(a)及び図6(b)は、本願の第2実施例に係る変倍光学系の広角端状態における諸収差図及びシフト時のコマ収差図である。図7は、本願の第2実施例に係る変倍光学系の中間焦点距離状態における諸収差図である。図8(a)及び図8(b)は、本願の第2実施例に係る変倍光学系の望遠端状態における諸収差図及びシフト時のコマ収差図である。
図6〜図8より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらにシフト時にも優れた結像性能を有していることがわかる。
FIGS. 6A and 6B are graphs showing various aberrations in the wide-angle end state of the zoom optical system according to Example 2 of the present application and coma aberration during shift. FIG. 7 is a diagram of various aberrations in the intermediate focal length state of the variable magnification optical system according to the second example of the present application. FIGS. 8A and 8B are graphs showing various aberrations in the telephoto end state of the variable magnification optical system according to Example 2 of the present application, and coma aberration diagrams at the time of shifting.
6 to 8, the variable power optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state, and also excellent during shifting. It can be seen that it has imaging performance.
(第3実施例)
図9は、本願の第3実施例に係る変倍光学系の広角端状態におけるレンズ断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
(Third embodiment)
FIG. 9 is a lens cross-sectional view in the wide-angle end state of the variable magnification optical system according to the third example of the present application.
The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、両凸形状の正レンズL14とからなる。なお、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、両凸形状の正レンズL23とからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合負レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, a negative lens L12 having a biconcave shape, a negative meniscus lens L13 having a convex surface directed toward the object side, and a biconvex shape. Positive lens L14. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface directed toward the object side and a biconvex positive lens L22, and a biconvex positive lens L23.
The third lens group G3 is composed of, in order from the object side, a cemented negative lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32.
The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, a cemented lens of a biconvex positive lens L42 and a negative meniscus lens L43 having a convex surface directed toward the image surface I. It consists of.
本実施例に係る変倍光学系では、第2レンズ群G2と第3レンズ群G3との間に開口絞りSが配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と一体となって移動する。
本実施例に係る変倍光学系では、広角端状態から望遠端状態まで変倍を行う際に、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1が像面I側へ移動した後に物体側へ移動する、即ち移動軌跡が像面I側へ凸形状となるように光軸に沿って移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4が物体側へ光軸に沿って移動する。なお、このとき第2レンズ群G2と第4レンズ群G4は一体となって移動する。
本実施例に係る変倍光学系では、第3レンズ群G3中の上記接合負レンズが光軸と直交する方向の成分を含むようにシフトする。
以下の表3に、本願の第3実施例に係る変倍光学系の諸元の値を掲げる。
In the zoom optical system according to the present embodiment, an aperture stop S is disposed between the second lens group G2 and the third lens group G3, and the third lens is used for zooming from the wide-angle end state to the telephoto end state. Move together with the group G3.
In the zoom optical system according to the present embodiment, when zooming is performed from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and The first lens group G1 is moved to the object side after moving to the image plane I side so that the distance from the fourth lens group G4 is reduced. The second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis along the optical axis. At this time, the second lens group G2 and the fourth lens group G4 move together.
In the variable magnification optical system according to this example, the cemented negative lens in the third lens group G3 is shifted so as to include a component in a direction orthogonal to the optical axis.
Table 3 below lists values of specifications of the variable magnification optical system according to the third example of the present application.
(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1) 48.776 1.90 1.51680 64.12
2) 16.100 0.17 1.55389 38.09
*3) 13.900 11.00
4) -114.885 1.40 1.80400 46.58
5) 28.378 3.20
6) 486.611 1.28 1.80400 46.58
7) 87.125 0.10
8) 36.548 3.50 1.80518 25.43
9) -893.698 可変
10) 31.539 0.90 1.80518 25.43
11) 17.844 2.89 1.51823 58.89
12) -80.458 4.24
13) 29.000 2.30 1.51823 58.89
14) -257.990 可変
15)(絞りS) ∞ 2.90
16) -42.033 2.75 1.85026 32.35
17) -14.348 0.80 1.77250 49.61
18) 92.894 可変
19) -1000.000 2.75 1.48749 70.45
20) -23.091 0.10
21) 113.640 5.88 1.49782 82.56
22) -15.170 1.00 1.80100 34.96
23) -45.654 BF
像面 ∞
[非球面データ]
第3面
K = 1
A4 = 2.59080E-05
A6 = 5.94080E-08
A8 = -1.85780E-10
A10 = 9.08510E-13
[各種データ]
ズーム比 3.12
W M T
f 16.0 31.2 49.9
FNO 3.6 4.8 5.9
2ω 87.6 49.7 31.9
Y 14.25 14.25 14.25
TL 132.45 130.09 147.53
BF 38.56 57.70 82.60
d9 29.65 8.16 0.69
d14 1.89 7.40 11.23
d18 10.88 5.37 1.54
[レンズ群データ]
群 始面 f
1 1 -20.95
2 10 29.66
3 15 -42.98
4 19 43.95
[条件式対応値]
(1) |f1|/√(fw・ft)= 0.741
(2) f3/f1= 2.05
(3) n1= 1.80400, 1.80400, 1.80518
(4) (Dt−Dw)/fw= 1.04
(5) (Dt−Dw)/Ymax= 1.21
(6) |RA・f1|= 879
(7) f11/f1= 1.90
(8) f4/f2= 1.48
(9) f4/(−f3)= 1.02
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞
1) 48.776 1.90 1.51680 64.12
2) 16.100 0.17 1.55389 38.09
* 3) 13.900 11.00
4) -114.885 1.40 1.80400 46.58
5) 28.378 3.20
6) 486.611 1.28 1.80400 46.58
7) 87.125 0.10
8) 36.548 3.50 1.80518 25.43
9) -893.698 variable
10) 31.539 0.90 1.80518 25.43
11) 17.844 2.89 1.51823 58.89
12) -80.458 4.24
13) 29.000 2.30 1.51823 58.89
14) -257.990 Variable
15) (Aperture S) ∞ 2.90
16) -42.033 2.75 1.85026 32.35
17) -14.348 0.80 1.77250 49.61
18) 92.894 Variable
19) -1000.000 2.75 1.48749 70.45
20) -23.091 0.10
21) 113.640 5.88 1.49782 82.56
22) -15.170 1.00 1.80 100 34.96
23) -45.654 BF
Image plane ∞
[Aspherical data]
Third side K = 1
A4 = 2.59080E-05
A6 = 5.94080E-08
A8 = -1.85780E-10
A10 = 9.08510E-13
[Various data]
Zoom ratio 3.12
W M T
f 16.0 31.2 49.9
FNO 3.6 4.8 5.9
2ω 87.6 49.7 31.9
Y 14.25 14.25 14.25
TL 132.45 130.09 147.53
BF 38.56 57.70 82.60
d9 29.65 8.16 0.69
d14 1.89 7.40 11.23
d18 10.88 5.37 1.54
[Lens group data]
Group start surface f
1 1 -20.95
2 10 29.66
3 15 -42.98
4 19 43.95
[Conditional expression values]
(1) | f1 | / √ (fw · ft) = 0.741
(2) f3 / f1 = 2.05
(3) n1 = 1.80400, 1.80400, 1.80518
(4) (Dt−Dw) /fw=1.04
(5) (Dt−Dw) /Ymax=1.21
(6) | RA · f1 | = 879
(7) f11 / f1 = 1.90
(8) f4 / f2 = 1.48
(9) f4 / (− f3) = 1.02
図10(a)及び図10(b)は、本願の第3実施例に係る変倍光学系の広角端状態における諸収差図及びシフト時のコマ収差図である。図11は、本願の第3実施例に係る変倍光学系の中間焦点距離状態における諸収差図である。図12(a)及び図12(b)は、本願の第3実施例に係る変倍光学系の望遠端状態における諸収差図及びシフト時のコマ収差図である。
図10〜図12より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらにシフト時にも優れた結像性能を有していることがわかる。
FIGS. 10A and 10B are diagrams showing various aberrations in the wide-angle end state of the zoom optical system according to the third example of the present application and coma aberration during shift. FIG. 11 is a diagram illustrating various aberrations in the intermediate focal length state of the variable magnification optical system according to the third example of the present application. 12 (a) and 12 (b) are graphs showing various aberrations in the telephoto end state of the zoom optical system according to the third example of the present application and coma aberration diagrams at the time of shift.
10 to 12, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state, and also excellent during shifting. It can be seen that it has imaging performance.
(第4実施例)
図13は、本願の第4実施例に係る変倍光学系の広角端状態におけるレンズ断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
(Fourth embodiment)
FIG. 13 is a lens cross-sectional view of the zoom optical system according to the fourth example of the present application in the wide-angle end state.
The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens having a negative refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14とからなる。なお、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面を形成した非球面レンズである。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凸面を向けた正メニスカスレンズL23とからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合負レンズと、像面I側に凹面を向けた平凹形状の負レンズL33とからなる。
第4レンズ群G4は、物体側から順に、像面I側に凸面を向けた平凸形状の正レンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。
The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface directed toward the object side, a biconcave negative lens L12, a negative meniscus lens L13 having a convex surface directed toward the object side, and an object side. And a positive meniscus lens L14 having a convex surface. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.
The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. Become.
The third lens group G3 includes, in order from the object side, a cemented negative lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32, and a plano-concave shape having a concave surface directed toward the image surface I. Negative lens L33.
The fourth lens group G4 includes, in order from the object side, a planoconvex positive lens L41 having a convex surface directed toward the image plane I, a biconvex positive lens L42, and a negative meniscus lens having a convex surface directed toward the image plane I. It consists of a cemented lens with L43.
本実施例に係る変倍光学系では、第2レンズ群G2と第3レンズ群G3との間に開口絞りSが配置されており、広角端状態から望遠端状態への変倍に際して第3レンズ群G3と一体となって移動する。
本実施例に係る変倍光学系では、広角端状態から望遠端状態まで変倍を行う際に、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1が像面I側へ移動した後に物体側へ移動する、即ち移動軌跡が像面I側へ凸形状となるように光軸に沿って移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4が物体側へ光軸に沿って移動する。なお、このとき第2レンズ群G2と第4レンズ群G4は一体となって移動する。
本実施例に係る変倍光学系では、第3レンズ群G3中の上記接合負レンズが光軸と直交する方向の成分を含むようにシフトする。
以下の表4に、本願の第4実施例に係る変倍光学系の諸元の値を掲げる。
In the zoom optical system according to the present embodiment, an aperture stop S is disposed between the second lens group G2 and the third lens group G3, and the third lens is used for zooming from the wide-angle end state to the telephoto end state. Move together with the group G3.
In the zoom optical system according to the present embodiment, when zooming is performed from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and The first lens group G1 is moved to the object side after moving to the image plane I side so that the distance from the fourth lens group G4 is reduced. The second lens group G2, the third lens group G3, and the fourth lens group G4 move along the optical axis along the optical axis. At this time, the second lens group G2 and the fourth lens group G4 move together.
In the variable magnification optical system according to this example, the cemented negative lens in the third lens group G3 is shifted so as to include a component in a direction orthogonal to the optical axis.
Table 4 below lists values of specifications of the variable magnification optical system according to the fourth example of the present application.
(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
1) 40.043 1.90 1.51680 64.12
2) 16.100 0.17 1.55389 38.09
3) 13.900 11.00
4) -114.885 1.40 1.80400 46.58
5) 30.106 3.00
6) 120.351 1.28 1.80400 46.58
7) 50.332 0.10
8) 33.144 3.50 1.80518 25.43
9) 838.075 可変
10) 31.539 0.90 1.75520 27.51
11) 16.806 4.30 1.51680 64.12
12) -57.150 2.06
13) 24.603 2.10 1.51823 58.89
14) 107.987 可変
15)(絞りS) ∞ 2.90
16) -50.100 2.75 1.85026 32.35
17) -14.650 0.80 1.77250 49.61
18) 104.520 2.50
19) ∞ 1.20 1.51680 64.12
20) 100.452 可変
21) 0.000 2.75 1.48749 70.45
22) -24.078 0.10
23) 74.578 4.72 1.49782 82.56
24) -16.452 1.00 1.80100 34.96
25) -49.260 BF
像面 ∞
[非球面データ]
第3面
K = 1
A4 = 2.47620E-05
A6 = 5.94080E-08
A8 = -7.24100E-11
A10 = 6.81200E-13
[各種データ]
ズーム比 3.24
W M T
f 16.5 32.5 53.3
FNO 3.6 4.9 5.9
2ω 84.6 47.4 29.8
Y 14.25 14.25 14.25
TL 131.41 129.27 148.63
BF 38.56 57.91 84.73
d9 29.65 8.16 0.69
d14 1.69 7.40 11.23
d20 11.08 5.37 1.54
[レンズ群データ]
群 始面 f
1 1 -21.94
2 10 29.55
3 15 -40.37
4 21 40.26
[条件式対応値]
(1) |f1|/√(fw・ft)= 0.740
(2) f3/f1= 1.84
(3) n1= 1.80400, 1.80400, 1.80518
(4) (Dt−Dw)/fw= 0.94
(5) (Dt−Dw)/Ymax= 1.06
(6) |RA・f1|= 1022
(7) f11/f1= 1.81
(8) f4/f2= 1.36
(9) f4/(−f3)= 1.00
(Table 4) Fourth Example
[Surface data]
Surface number r d nd νd
Object ∞
1) 40.043 1.90 1.51680 64.12
2) 16.100 0.17 1.55389 38.09
3) 13.900 11.00
4) -114.885 1.40 1.80400 46.58
5) 30.106 3.00
6) 120.351 1.28 1.80400 46.58
7) 50.332 0.10
8) 33.144 3.50 1.80518 25.43
9) 838.075 variable
10) 31.539 0.90 1.75520 27.51
11) 16.806 4.30 1.51680 64.12
12) -57.150 2.06
13) 24.603 2.10 1.51823 58.89
14) 107.987 Variable
15) (Aperture S) ∞ 2.90
16) -50.100 2.75 1.85026 32.35
17) -14.650 0.80 1.77250 49.61
18) 104.520 2.50
19) ∞ 1.20 1.51680 64.12
20) 100.452 variable
21) 0.000 2.75 1.48749 70.45
22) -24.078 0.10
23) 74.578 4.72 1.49782 82.56
24) -16.452 1.00 1.80 100 34.96
25) -49.260 BF
Image plane ∞
[Aspherical data]
Third side K = 1
A4 = 2.47620E-05
A6 = 5.94080E-08
A8 = -7.24100E-11
A10 = 6.81200E-13
[Various data]
Zoom ratio 3.24
W M T
f 16.5 32.5 53.3
FNO 3.6 4.9 5.9
2ω 84.6 47.4 29.8
Y 14.25 14.25 14.25
TL 131.41 129.27 148.63
BF 38.56 57.91 84.73
d9 29.65 8.16 0.69
d14 1.69 7.40 11.23
d20 11.08 5.37 1.54
[Lens group data]
Group start surface f
1 1 -21.94
2 10 29.55
3 15 -40.37
4 21 40.26
[Conditional expression values]
(1) | f1 | / √ (fw · ft) = 0.740
(2) f3 / f1 = 1.84
(3) n1 = 1.80400, 1.80400, 1.80518
(4) (Dt−Dw) /fw=0.94
(5) (Dt−Dw) /Ymax=1.06
(6) | RA · f1 | = 1022
(7) f11 / f1 = 1.81
(8) f4 / f2 = 1.36
(9) f4 / (− f3) = 1.00
図14(a)及び図14(b)は、本願の第4実施例に係る変倍光学系の広角端状態における諸収差図及びシフト時のコマ収差図である。図15は、本願の第4実施例に係る変倍光学系の中間焦点距離状態における諸収差図である。図16(a)及び図16(b)は、本願の第4実施例に係る変倍光学系の望遠端状態における諸収差図及びシフト時のコマ収差図である。
図14〜図16より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらにシフト時にも優れた結像性能を有していることがわかる。
FIGS. 14A and 14B are graphs showing various aberrations in the wide-angle end state of the zoom optical system according to the fourth example of the present application and coma aberration during shift. FIG. 15 is a diagram of various aberrations in the intermediate focal length state of the variable magnification optical system according to the fourth example of the present application. FIGS. 16A and 16B are graphs showing various aberrations in the telephoto end state of the zoom optical system according to the fourth example of the present application and coma aberration during shift.
14 to 16, the variable magnification optical system according to the present example has excellent imaging performance by properly correcting various aberrations from the wide-angle end state to the telephoto end state, and also excellent during shifting. It can be seen that it has imaging performance.
上記各実施例によれば、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を備えた変倍光学系を実現することができる。ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。 According to each of the above embodiments, it is possible to realize a variable magnification optical system having a lens that shifts so as to include a component in a direction orthogonal to the optical axis and having a high variable magnification ratio and good optical performance. Here, each said Example has shown one specific example of this invention, and this invention is not limited to these.
なお、以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
In addition, the following content can be appropriately employed as long as the optical performance of the variable magnification optical system of the present application is not impaired.
Although a four-group configuration is shown as a numerical example of the variable magnification optical system of the present application, the present application is not limited to this, and a variable magnification optical system of another group configuration (for example, five groups) can also be configured. . Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、又は複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第1レンズ群の少なくとも一部又は第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に垂直な成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることで、手ブレによって生じる像ブレを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to an object at a short distance. It may be configured to move in the axial direction. In particular, it is preferable that at least a part of the first lens group or at least a part of the second lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
In the zoom optical system of the present application, either the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component perpendicular to the optical axis, or rotated in an in-plane direction including the optical axis. It can also be configured to correct image blur caused by camera shake by moving (swinging). In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group is an anti-vibration lens group.
また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。 The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
また、本願の変倍光学系において開口絞りは第3レンズ群の内部又は近傍に配置されることが好ましいが、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the variable magnification optical system of the present application, it is preferable that the aperture stop is disposed in or near the third lens group. However, a lens frame may be used instead of providing a member as the aperture stop.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
また、本願の変倍光学系は、変倍比が2〜5倍程度である。
また、本願の変倍光学系は、第1レンズ群が正のレンズ成分を1つと負のレンズ成分を2つ、又は、正のレンズ成分を1つと負のレンズ成分を3つ有することが好ましい。また、第1レンズ群はこれらのレンズ成分を、物体側から負負正、又は、負負負正の順に空気間隔を介在させて配置することが好ましい。
また、本願の変倍光学系は、第2レンズ群が正のレンズ成分を2つ、又は、正のレンズ成分を2つと負のレンズ成分を1つ有することが好ましい。また後者の場合、第2レンズ群はこれらのレンズ成分を、物体側から負正正の順に空気間隔を介在させて配置することが好ましい。
The variable magnification optical system of the present application has a variable magnification ratio of about 2 to 5 times.
In the variable power optical system of the present application, it is preferable that the first lens group has one positive lens component and two negative lens components, or one positive lens component and three negative lens components. . In the first lens group, it is preferable to dispose these lens components in the order of negative / negative / positive or negative / negative / positive from the object side with an air gap therebetween.
In the variable power optical system of the present application, it is preferable that the second lens group has two positive lens components, or two positive lens components and one negative lens component. In the latter case, it is preferable that the second lens group arranges these lens components in the order of negative positive / negative from the object side with an air gap interposed therebetween.
また、本願の変倍光学系は、第3レンズ群が負のレンズ成分を1つ、又は、負のレンズ成分を2つ有することが好ましい。
また、本願の変倍光学系は、第4レンズ群が正のレンズ成分を2つ、又は、正のレンズ成分を2つと負のレンズ成分を1つ有することが好ましい。また後者の場合、第2レンズ群はこれらのレンズ成分を、物体側から正正負の順に空気間隔を介在させて配置することが好ましい。
In the variable magnification optical system of the present application, it is preferable that the third lens group has one negative lens component or two negative lens components.
In the variable power optical system of the present application, it is preferable that the fourth lens group has two positive lens components, or two positive lens components and one negative lens component. In the latter case, it is preferable that the second lens group arranges these lens components in the order of positive and negative from the object side with an air gap therebetween.
次に、本願の変倍光学系を備えたカメラを図17に基づいて説明する。
図17は、本願の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、図17に示すように撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 17 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
This
In the
また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
以上の構成により、上記第1実施例に係る変倍光学系を撮影レンズ2として搭載した本カメラ1は、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を実現することができる。なお、上記第2〜第4実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。
When the release button (not shown) is pressed by the photographer, the
With the above configuration, the
以下、本願の変倍光学系の製造方法の概略を図18に基づいて説明する。
図18は、本願の変倍光学系の製造方法を示す図である。
本願の変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、図18に示す各ステップS1〜S3を含むものである。
Hereinafter, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
FIG. 18 is a diagram showing a manufacturing method of the variable magnification optical system of the present application.
The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. , And a fourth lens group having a positive refractive power, which includes steps S1 to S3 shown in FIG.
ステップS1:以下の条件式(1),(2)を満足するように、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、前記第3レンズ群と、正の屈折力を有する第4レンズ群とを用意し、円筒状の鏡筒内に物体側から配置する。
(1) 0.60<|f1|/√(fw・ft)<0.78
(2) 1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離
Step S1: A first lens group having a negative refractive power, a second lens group having a positive refractive power, and the third lens group so as to satisfy the following conditional expressions (1) and (2): And a fourth lens group having a positive refractive power are arranged from the object side in a cylindrical barrel.
(1) 0.60 <| f1 | / √ (fw · ft) <0.78
(2) 1.80 <f3 / f1 <2.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group fw: Focal length of the zooming optical system in the wide-angle end state ft: Focal length of the zooming optical system in the telephoto end state
ステップS2:前記各レンズ群に公知の移動機構を設ける等することで、広角端状態から望遠端状態まで変倍を行う際に前記各レンズ群どうしの光軸上の間隔を変化可能とする。
ステップS3:前記第3レンズ群の少なくとも一部に公知の移動機構を設ける等することで、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフト可能とする。
Step S2: By providing a known moving mechanism in each lens group, the distance between the lens groups on the optical axis can be changed when zooming from the wide-angle end state to the telephoto end state.
Step S3: By providing a known moving mechanism in at least a part of the third lens group, it is possible to shift so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis. .
斯かる本願の変倍光学系の製造方法によれば、光軸と直交する方向の成分を含むようにシフトするレンズを有し、高変倍比と良好な光学性能を備えた変倍光学系を製造することができる。 According to such a variable magnification optical system manufacturing method of the present application, the variable magnification optical system has a lens that shifts so as to include a component in a direction orthogonal to the optical axis, and has a high zoom ratio and good optical performance. Can be manufactured.
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
I 像面
W 広角端状態
T 望遠端状態
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop I Image surface W Wide-angle end state T Telephoto end state
Claims (15)
前記第3レンズ群は、接合負レンズを有し、
広角端状態から望遠端状態まで変倍を行う際に、前記各レンズ群どうしの間隔が変化し、
前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフトし、
以下の条件式を満足することを特徴とする変倍光学系。
0.60<|f1|/√(fw・ft)<0.78
1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離 In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power And having a group
The third lens group includes a cemented negative lens;
When zooming from the wide-angle end state to the telephoto end state, the distance between the lens groups changes,
Shifting so that at least a part of the third lens group includes a component in a direction orthogonal to the optical axis;
A zoom optical system characterized by satisfying the following conditional expression:
0.60 <| f1 | / √ (fw · ft) <0.78
1.80 <f3 / f1 <2.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group fw: Focal length of the zooming optical system in the wide-angle end state ft: Focal length of the zooming optical system in the telephoto end state
1.750<n1<2.500
ただし、
n1:前記第1レンズ群中のレンズのd線(波長λ=587.6nm)に対する屈折率 2. The variable magnification optical system according to claim 1, wherein the first lens group includes at least two lenses that satisfy the following conditional expression.
1.750 <n1 <2.500
However,
n1: Refractive index of the lens in the first lens group with respect to d-line (wavelength λ = 587.6 nm)
0.50<(Dt−Dw)/fw<1.50
ただし、
Dt:望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Dw:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
fw:広角端状態における前記変倍光学系の焦点距離 The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.50 <(Dt−Dw) / fw <1.50
However,
Dt: Distance on the optical axis from the most object side lens surface in the zoom optical system to the image plane in the telephoto end state Dw: Image from the lens surface closest to the object in the zoom optical system in the wide angle end state Distance fw on the optical axis to the surface: focal length of the variable magnification optical system in the wide-angle end state
0.60<(Dt−Dw)/Ymax<1.60
ただし、
Dt :望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Dw :広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Ymax:最大像高 The zoom lens system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.60 <(Dt−Dw) / Ymax <1.60
However,
Dt: Distance on the optical axis from the lens surface closest to the object side in the variable magnification optical system in the telephoto end state to the image plane Dw: Image from the lens surface closest to the object in the variable magnification optical system in the wide angle end state Distance on the optical axis to the surface Ymax: Maximum image height
400<|RA・f1|<1300
ただし、
RA:前記変倍光学系中の最も物体側のレンズ面の曲率半径
f1:前記第1レンズ群の焦点距離 The zoom lens system according to claim 1, wherein the following conditional expression is satisfied.
400 <| RA · f1 | <1300
However,
RA: radius of curvature of the lens surface closest to the object side in the variable magnification optical system f1: focal length of the first lens unit
以下の条件式を満足することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。
1.40<f11/f1<2.10
ただし、
f1 :前記第1レンズ群の焦点距離
f11:前記第1レンズ群における前記負レンズの焦点距離 The first lens group has a negative lens closest to the object side,
The zoom lens system according to any one of claims 1 to 5, wherein the following conditional expression is satisfied.
1.40 <f11 / f1 <2.10
However,
f1: focal length of the first lens group f11: focal length of the negative lens in the first lens group
1.00<f4/f2<2.00
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離 The zoom lens system according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
1.00 <f4 / f2 <2.00
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group
0.80<f4/(−f3)<1.30
ただし、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離 The zoom lens system according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
0.80 <f4 / (− f3) <1.30
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group
前記第3レンズ群に接合負レンズを配置し、
前記変倍光学系の各レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態まで変倍を行う際に前記各レンズ群どうしの間隔を変化可能とし、
前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むようにシフト可能とすることを特徴とする変倍光学系の製造方法。
0.60<|f1|/√(fw・ft)<0.78
1.80<f3/f1<2.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
ft:望遠端状態における前記変倍光学系の焦点距離 In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group,
A cemented negative lens is disposed in the third lens group;
Each lens group of the variable magnification optical system satisfies the following conditional expression,
When changing the magnification from the wide-angle end state to the telephoto end state, the interval between the lens groups can be changed.
A method for manufacturing a variable magnification optical system, wherein at least a part of the third lens group can be shifted so as to include a component in a direction orthogonal to the optical axis.
0.60 <| f1 | / √ (fw · ft) <0.78
1.80 <f3 / f1 <2.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group fw: Focal length of the zooming optical system in the wide-angle end state ft: Focal length of the zooming optical system in the telephoto end state
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009014770A JP5407364B2 (en) | 2009-01-26 | 2009-01-26 | Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method |
US12/625,358 US8259400B2 (en) | 2009-01-26 | 2009-11-24 | Zoom lens system, imaging apparatus, and method for manufacturing zoom lens system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009014770A JP5407364B2 (en) | 2009-01-26 | 2009-01-26 | Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010170062A true JP2010170062A (en) | 2010-08-05 |
JP5407364B2 JP5407364B2 (en) | 2014-02-05 |
Family
ID=42702245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009014770A Expired - Fee Related JP5407364B2 (en) | 2009-01-26 | 2009-01-26 | Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5407364B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015028530A (en) * | 2013-07-30 | 2015-02-12 | キヤノン株式会社 | Zoom lens and imaging apparatus including the same |
WO2016121903A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社ニコン | Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1039210A (en) * | 1996-07-24 | 1998-02-13 | Nikon Corp | Zoom lens |
JP2001318314A (en) * | 2000-05-11 | 2001-11-16 | Canon Inc | Zoom lens and optical apparatus using it |
JP2008176271A (en) * | 2006-12-19 | 2008-07-31 | Nikon Corp | Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system |
JP2008281917A (en) * | 2007-05-14 | 2008-11-20 | Canon Inc | Zoom lens and imaging apparatus equipped with same |
JP2008304777A (en) * | 2007-06-08 | 2008-12-18 | Konica Minolta Opto Inc | Variable power optical system, image pickup apparatus, and digital equipment |
JP2009014766A (en) * | 2007-06-29 | 2009-01-22 | Nikon Corp | Variable power optical system, optical apparatus, and power changing method for variable power optical system |
JP2010152145A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, imaging apparatus, and camera |
JP2010152148A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152147A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152146A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152143A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152144A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010160198A (en) * | 2009-01-06 | 2010-07-22 | Sony Corp | Zoom lens and image capture apparatus |
-
2009
- 2009-01-26 JP JP2009014770A patent/JP5407364B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1039210A (en) * | 1996-07-24 | 1998-02-13 | Nikon Corp | Zoom lens |
JP2001318314A (en) * | 2000-05-11 | 2001-11-16 | Canon Inc | Zoom lens and optical apparatus using it |
JP2008176271A (en) * | 2006-12-19 | 2008-07-31 | Nikon Corp | Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system |
JP2008281917A (en) * | 2007-05-14 | 2008-11-20 | Canon Inc | Zoom lens and imaging apparatus equipped with same |
JP2008304777A (en) * | 2007-06-08 | 2008-12-18 | Konica Minolta Opto Inc | Variable power optical system, image pickup apparatus, and digital equipment |
JP2009014766A (en) * | 2007-06-29 | 2009-01-22 | Nikon Corp | Variable power optical system, optical apparatus, and power changing method for variable power optical system |
JP2010152145A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, imaging apparatus, and camera |
JP2010152148A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152147A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152146A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152143A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010152144A (en) * | 2008-12-25 | 2010-07-08 | Panasonic Corp | Zoom lens system, image capturing apparatus, and camera |
JP2010160198A (en) * | 2009-01-06 | 2010-07-22 | Sony Corp | Zoom lens and image capture apparatus |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015028530A (en) * | 2013-07-30 | 2015-02-12 | キヤノン株式会社 | Zoom lens and imaging apparatus including the same |
WO2016121903A1 (en) * | 2015-01-30 | 2016-08-04 | 株式会社ニコン | Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system |
JPWO2016121903A1 (en) * | 2015-01-30 | 2017-10-12 | 株式会社ニコン | Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method |
CN107407795A (en) * | 2015-01-30 | 2017-11-28 | 株式会社尼康 | The manufacture method of variable-power optical system, optical device and variable-power optical system |
EP3252516A4 (en) * | 2015-01-30 | 2018-10-24 | Nikon Corporation | Variable magnification optical system, optical instrument and method of manufacturing variable magnification optical system |
JP2019049727A (en) * | 2015-01-30 | 2019-03-28 | 株式会社ニコン | Variable power optical system |
US10606047B2 (en) | 2015-01-30 | 2020-03-31 | Nikon Corporation | Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system |
US11415787B2 (en) | 2015-01-30 | 2022-08-16 | Nikon Corporation | Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system |
Also Published As
Publication number | Publication date |
---|---|
JP5407364B2 (en) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5130806B2 (en) | Magnification optical system, image pickup device, and magnifying optical system magnifying method | |
JP5273184B2 (en) | Zoom lens, optical device, and zoom lens manufacturing method | |
JP5458477B2 (en) | Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method | |
JP5176410B2 (en) | Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method | |
JP5151529B2 (en) | Close-up lens, image-taking apparatus, and focusing method for close-up lens | |
JP2008176271A (en) | Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system | |
JP5887708B2 (en) | Zoom lens, imaging device | |
JP6669281B2 (en) | Zoom lens and optical equipment | |
JP2019148827A (en) | Zoom lens and optical device | |
JP5407363B2 (en) | Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method | |
JP5344291B2 (en) | Zoom lens, optical device, and method of manufacturing zoom lens | |
JP5821698B2 (en) | OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD | |
JP2011102871A (en) | Wide angle lens, image pickup device, and method for manufacturing the wide angle lens | |
JP2020034946A (en) | Zoom lens and optical device | |
JP2010117677A (en) | Zoom lens, optical apparatus, and method for manufacturing zoom lens | |
JP5201460B2 (en) | Zoom lens, optical apparatus having the same, and zooming method | |
JP5407365B2 (en) | Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method | |
JP5510114B2 (en) | Zoom lens, imaging device, and zoom lens manufacturing method | |
JP5212813B2 (en) | Zoom lens, optical device including the same, and manufacturing method | |
JP5407364B2 (en) | Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method | |
JP6070055B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP7420200B2 (en) | Variable magnification optics and optical equipment | |
JP6191246B2 (en) | Zoom lens, optical device | |
JP6070054B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP5305177B2 (en) | Zoom lens, imaging apparatus, and zoom lens manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5407364 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |