[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010169131A - Pilot type flow control valve - Google Patents

Pilot type flow control valve Download PDF

Info

Publication number
JP2010169131A
JP2010169131A JP2009010421A JP2009010421A JP2010169131A JP 2010169131 A JP2010169131 A JP 2010169131A JP 2009010421 A JP2009010421 A JP 2009010421A JP 2009010421 A JP2009010421 A JP 2009010421A JP 2010169131 A JP2010169131 A JP 2010169131A
Authority
JP
Japan
Prior art keywords
valve
main valve
water
pilot
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009010421A
Other languages
Japanese (ja)
Other versions
JP5132589B2 (en
Inventor
Mamoru Hashimoto
衛 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2009010421A priority Critical patent/JP5132589B2/en
Publication of JP2010169131A publication Critical patent/JP2010169131A/en
Application granted granted Critical
Publication of JP5132589B2 publication Critical patent/JP5132589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)
  • Temperature-Responsive Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pilot type flow control valve having a further reduced size as a whole by reducing the diameter of a main valve while securing a greater flow amount than conventional one or keeping a flow amount constant. <P>SOLUTION: The pilot type flow control valve has: the main valve 16; a back pressure chamber 42, an introduction small hole 44 for introducing primary side liquid into the back pressure chamber 42 to raise pressure therein; a pilot flow path 46 as a depressure flow path; and a pilot valve 48 for moving the main valve 16 forward/backward along with a change in the opening of the pilot flow path 46. The main valve 16 is moved in accordance with differential pressure between pressure in the back pressure chamber 42 to operate on the main valve 16 in the valve closing direction and primary side and secondary side pressure to operate thereon in the valve opening direction. The main valve 16 has: a differential pressure driving part 34 which has not a valve function of receiving the differential pressure to generate driving force; and a flow control valve part 36 as a valve function part which is integrally moved forward/backward with the driving force of the differential pressure driving part 34 to change a clearance between a main valve seat 14 and itself to be smaller and larger while eliminating the influences of the differential pressure, separately from the differential pressure driving part 34. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、パイロット弁の移動により主弁を追従して移動させることで流量制御を行うパイロット式流量制御バルブに関する。   The present invention relates to a pilot flow control valve that performs flow control by moving a pilot valve following a pilot valve.

従来より、水栓として各種のものが用いられているが、これら水栓は主流路の開度を変化させる主弁を主弁座に対して接近離間方向に進退移動させる際に大きな力を要し、操作が重いといった問題があった。   Conventionally, various types of faucets have been used, but these faucets require a large force when moving the main valve that changes the opening of the main flow passage in the approaching and separating direction with respect to the main valve seat. However, there was a problem that operation was heavy.

そこで水栓における流量制御バルブをパイロット式流量制御バルブ、即ちパイロット弁を進退移動させることによって、主弁をこれに追従して進退移動させ、主流路の開度を変化させるパイロット式流量制御バルブとして構成することが行われている。   Therefore, the flow control valve in the faucet is a pilot-type flow control valve, that is, a pilot-type flow control valve that changes the opening of the main flow path by moving the main valve forward and backward by moving the pilot valve forward and backward. It has been made up.

このパイロット式流量制御バルブとして、(イ)主流路上に設けられ、主弁座に向けて進退移動して弁開度を変化させる主弁と、(ロ)主弁の背後に形成され、内部の圧力を主弁に対して閉弁方向の押圧力として作用させる背圧室と、(ハ)背圧室に連通し、主流路の主弁よりも上流側の1次側の液を背圧室に導入して圧力上昇させる導入小孔と、(ニ)背圧室に連通して設けられ、背圧室の液を主流路の主弁よりも下流側の2次側に抜いて圧力低下させる圧抜流路としてのパイロット流路と、(ホ)主弁の進退移動方向に進退移動し、パイロット流路の開度を変化させることによって主弁を追従して同方向に進退移動させるパイロット弁と、を有し、背圧室の圧力と、主弁に対して開弁方向に作用する1次側圧力及び2次側圧力との差圧に基づいて主弁を進退移動させるようになしたパイロット式流量制御バルブが知られている。
例えば下記特許文献1に、この種のパイロット式流量制御バルブを単水栓用の制御バルブに適用した例が、また下記特許文献2に混合水栓用の湯水混合バルブに適用した例がそれぞれ開示されている。
As this pilot-type flow control valve, (a) a main valve provided on the main flow path, moving forward and backward toward the main valve seat to change the valve opening, and (b) formed behind the main valve, A back pressure chamber that acts on the main valve as a pressing force in the valve closing direction; and (c) a back pressure chamber that communicates with the back pressure chamber and that is upstream of the main valve in the main flow path. And (d) the back pressure chamber is provided in communication with the back pressure chamber, and the pressure in the back pressure chamber is reduced to the secondary side downstream from the main valve of the main flow path. A pilot flow path as a pressure release flow path and (e) a pilot valve that moves forward and backward in the forward / backward movement direction of the main valve and moves the main valve forward and backward in the same direction by changing the opening of the pilot flow path And the main valve based on the differential pressure between the pressure in the back pressure chamber and the primary side pressure and the secondary side pressure acting in the valve opening direction with respect to the main valve. A pilot type flow control valve adapted to move forward and backward is known.
For example, the following Patent Document 1 discloses an example in which this type of pilot flow control valve is applied to a control valve for a single faucet, and the following Patent Document 2 discloses an example in which the pilot type flow control valve is applied to a hot water mixing valve for a mixing faucet. Has been.

このパイロット式流量制御バルブにあっては、パイロット弁を進退移動させると、例えばパイロット流路の開度を大きくする方向にパイロット弁を後退移動させると、背圧室の液が下流側の2次側に抜け出ることによって、主弁を閉弁方向に押圧する背圧室の圧力が低下し、そのことによって主弁がパイロット弁に追従して開弁方向に後退移動する。   In this pilot type flow control valve, when the pilot valve is moved forward and backward, for example, when the pilot valve is moved backward in the direction of increasing the opening of the pilot flow path, the liquid in the back pressure chamber is moved to the downstream secondary side. The pressure in the back pressure chamber that presses the main valve in the valve closing direction decreases due to the escape to the side, and thereby the main valve moves backward in the valve opening direction following the pilot valve.

また逆にパイロット流路の開度を小さくする方向にパイロット弁を前進移動させると、背圧室の圧力が増大することによって、主弁がパイロット弁に追従して閉弁方向に前進移動する。   Conversely, when the pilot valve is moved forward in the direction of decreasing the opening of the pilot flow path, the pressure in the back pressure chamber increases, so that the main valve moves forward in the valve closing direction following the pilot valve.

ところで、従来この種のパイロット式流量制御バルブにあっては、流量を多く確保することが難しい問題があり、或いは流量を多く確保しようとすると主弁が大径化し、制御バルブが大型化してしまうといった固有の問題を有していた。   By the way, in this type of pilot type flow control valve, there is a problem that it is difficult to secure a large flow rate, or when trying to secure a large flow rate, the main valve becomes large in diameter and the control valve becomes large. It had the inherent problem.

以下にその理由を、図8の具体例に基づいて詳しく説明する。
図8において、200はバルブボデー(バルブケース)201に設けられた主流路で、200-1は流入口に続く上流側の1次側の流路、200-2は流出口に到る下流側の2次側の流路を表している。
The reason will be described in detail below based on the specific example of FIG.
In FIG. 8, 200 is a main flow path provided in the valve body (valve case) 201, 200-1 is an upstream-side primary flow path following the inflow port, and 200-2 is a downstream side reaching the outflow port. The secondary side flow path is shown.

202は、主流路200上に設けられたダイヤフラム弁から成る主弁で、円筒部の先端にて構成された主弁座208に向けて図中上下方向に進退移動する。
主弁202は、その進退移動につれて主弁座208との間の間隙を変化させ、即ち弁開度を変化させ、1次側の流路200-1から2次側の流路200-2への液の流入量、即ち制御バルブにおける流量を変化させ調節する。
ここで主弁202は、ゴム製のダイヤフラム膜204と、これを保持する硬質の保持部材206とから成っている。
A main valve 202 is a diaphragm valve provided on the main flow path 200, and moves forward and backward in the vertical direction in the figure toward the main valve seat 208 formed at the tip of the cylindrical portion.
The main valve 202 changes the gap between the main valve seat 208 and the main valve seat 208 as it advances and retreats, that is, the valve opening degree is changed to change from the primary flow path 200-1 to the secondary flow path 200-2. The amount of liquid flowing in, that is, the flow rate in the control valve is changed and adjusted.
Here, the main valve 202 includes a rubber diaphragm film 204 and a hard holding member 206 that holds the diaphragm film 204.

210は、主弁202の背後(図中上側)に形成された背圧室で、211は主弁202を貫通して設けられた導入小孔である。
導入小孔211は、主流路200における1次側の流路200-1の液を背圧室210へと流入させて、背圧室210の圧力を増大させる。
210 is a back pressure chamber formed behind the main valve 202 (upper side in the figure), and 211 is a small introduction hole provided through the main valve 202.
The introduction small hole 211 increases the pressure of the back pressure chamber 210 by causing the liquid in the primary side channel 200-1 in the main channel 200 to flow into the back pressure chamber 210.

212は、主弁202を貫通して設けられたパイロット流路で、このパイロット流路212は、背圧室210の液を2次側の流路200-2に抜いて背圧室210の圧力を減少させる。   Reference numeral 212 denotes a pilot flow path provided through the main valve 202. This pilot flow path 212 draws the liquid in the back pressure chamber 210 to the flow path 200-2 on the secondary side, and the pressure in the back pressure chamber 210 is reduced. Decrease.

216は、主弁202に設けられたパイロット弁座214に向けて進退移動し、パイロット流路212の開度を変化させるパイロット弁である。
パイロット弁216は、その進退移動によってパイロット流路212を通じて背圧室210から抜ける液の量を変化させ、以て背圧室210の圧力を増減変化させる。
216 is a pilot valve that moves forward and backward toward the pilot valve seat 214 provided in the main valve 202 to change the opening degree of the pilot flow path 212.
The pilot valve 216 changes the amount of liquid that escapes from the back pressure chamber 210 through the pilot flow path 212 due to its forward / backward movement, thereby increasing or decreasing the pressure in the back pressure chamber 210.

このパイロット式制御バルブにあっては、主弁202の図中上面に対して、背圧室210の圧力が図中下向きの閉弁方向の押圧力として作用する。
一方その下面に対しては、主弁座208より外周側の部分において1次側の流路200-1の圧力(1次側圧力)が図中上向きの開弁方向の押圧力として作用する。
In this pilot control valve, the pressure in the back pressure chamber 210 acts as a pressing force in the valve closing direction downward in the figure on the upper surface of the main valve 202 in the figure.
On the other hand, on the lower surface, the pressure (primary side pressure) of the primary flow path 200-1 acts as a pressing force in the upward valve opening direction in the figure at the outer peripheral side of the main valve seat 208.

また主弁座208より内側の部分において2次側の流路200-2の圧力(2次側圧力)が、同じく図中上向きの開弁方向の押圧力として作用する。
主弁202は、その背圧室の圧力とこれとは反対方向に作用する1次側圧力及び2次側圧力の差圧を駆動力として図中上下方向に進退移動する。
Further, in the portion inside the main valve seat 208, the pressure in the secondary flow path 200-2 (secondary pressure) also acts as a pressing force in the upward valve opening direction in the figure.
The main valve 202 moves back and forth in the vertical direction in the figure using a differential pressure between the pressure in the back pressure chamber and the primary side pressure and the secondary side pressure acting in the opposite direction as the driving force.

而して背圧室210の圧力は、パイロット弁216の進退移動により増減変化せしめられ、その結果として主弁202はパイロット弁216の図中上下方向の進退移動に追従して、これと同方向に且つ同じ距離だけ進退移動し、弁開度を変化させる。   Thus, the pressure in the back pressure chamber 210 is increased or decreased by the forward / backward movement of the pilot valve 216. As a result, the main valve 202 follows the forward / backward movement of the pilot valve 216 in the figure in the same direction as this. Further, the valve moves forward and backward by the same distance to change the valve opening.

このパイロット式制御バルブにあっては、主弁202の下面が外周部の1次側圧力の受圧面と、それより内側の部分即ち主弁座208よりも径方向内側の2次側圧力の受圧面とに分かれる。
図中Sはその1次側圧力の受圧面積を表し、またSは2次側圧力の受圧面積を表している(但しパイロット流路212,導入小孔211の面積分も影響してくるが、これらは微小であるため便宜上ここではそれらについては無視する)。
一方、Aは主弁座208の内側に形成される流路(2次側の流路200-2)の流路面積を表しており、この流路面積Aは2次側圧力の受圧面積Sと等しい。
In this pilot-type control valve, the lower surface of the main valve 202 is the pressure receiving surface of the primary pressure on the outer peripheral portion, and the pressure receiving surface of the secondary side pressure radially inward from the inner portion, that is, the main valve seat 208. Divided into planes.
In the figure, S 1 represents the pressure receiving area of the primary pressure, and S 2 represents the pressure receiving area of the secondary pressure (however, the area of the pilot flow path 212 and the introduction small hole 211 is also affected. However, since these are minute, they are ignored here for convenience).
On the other hand, A represents the flow path area of the flow path (secondary flow path 200-2) formed inside the main valve seat 208, and this flow path area A is the pressure receiving area S of the secondary pressure. equal to 2.

このパイロット式制御バルブにおいては、主弁202の下面の2次側圧力の受圧面積Sを除いた部分が1次側圧力の受圧面積Sとなるが、このパイロット式制御バルブでは、主弁202に対する図中上向きの開弁方向の駆動力を得るために、1次側圧力の受圧面積Sを一定以上確保することが必要である。 In this pilot-type control valve, although the lower surface of the secondary part excluding the pressure receiving area S 2 of the pressure of the main valve 202 is pressure-receiving area S 1 of the primary pressure, in this pilot-type control valve, the main valve to obtain a driving force of the upward opening direction in the drawing with respect to 202, it is necessary to ensure a pressure receiving area S 1 of the primary pressure constant or more.

その結果、2次側圧力の受圧面積S、即ち流路面積Aが主弁202の径に対して一定以下に小径とならざるを得ず、その結果として流路面積Aを流れる液の流量を多く確保することが難しいといった問題を生ずるのである。
或いは流量を多く確保しようとすると、これに伴って主弁202の径が大径化してしまい、パイロット式制御バルブそのものが大型化してしまう。
As a result, the pressure receiving area S 2 of the secondary side pressure, i.e. the flow channel area A is inevitably small-diameter below a certain level relative to the diameter of the main valve 202, the flow rate of the liquid flowing through the flow channel area A as a result This causes a problem that it is difficult to secure a large amount.
Alternatively, if it is attempted to secure a large flow rate, the diameter of the main valve 202 increases accordingly, and the pilot control valve itself increases in size.

特開2006−214480号公報JP 2006-214480 A 特開2008−133860号公報JP 2008-133860 A

本発明は以上のような事情を背景とし、従来に増して流量を多く確保でき、或いは流量を一定に保持したまま主弁を小径化でき、以て全体のサイズをよりコンパクト化することのできるパイロット式流量制御バルブを提供することを目的としてなされたものである。   The present invention is based on the circumstances as described above, and it is possible to secure a larger flow rate than before, or to reduce the diameter of the main valve while keeping the flow rate constant, thereby making the overall size more compact. The purpose is to provide a pilot-type flow control valve.

而して請求項1のものは、(イ)主流路上に設けられ、主弁座に向けて進退移動して弁開度を変化させる主弁と、(ロ)該主弁の背後に形成され、内部の圧力を該主弁に対して閉弁方向の押圧力として作用させる背圧室と、(ハ)該背圧室に連通し、前記主流路の前記主弁よりも上流側の1次側の液を該背圧室に導入して圧力上昇させる導入小孔と、(ニ)該背圧室に連通して設けられ、該背圧室の液を前記主流路の該主弁よりも下流側の2次側に抜いて圧力低下させる圧抜流路としてのパイロット流路と、(ホ)前記主弁の進退移動方向に進退移動し、前記パイロット流路の開度を変化させることによって該主弁を追従して同方向に進退移動させるパイロット弁と、を有し、前記背圧室の圧力と、該主弁に対して開弁方向に作用する1次側圧力及び2次側圧力との差圧に基づいて該主弁を進退移動させるようになしたパイロット式流量制御バルブにおいて、前記主弁には、前記差圧を受けて主弁移動のための駆動力を発生させる弁機能をもたない差圧駆動部を設けるとともに、該差圧駆動部とは別途に、前記差圧の影響を排除し、該差圧駆動部の駆動力によって該差圧駆動部と一体に前記主弁座に向けて進退移動し、該主弁座との間の間隙を大小変化させて流量調節を行う弁機能部としての流調弁部を設けたことを特徴とする。   Thus, according to the first aspect of the present invention, (a) a main valve provided on the main flow path and moving forward and backward toward the main valve seat to change the valve opening, and (b) formed behind the main valve. A back pressure chamber that causes the internal pressure to act on the main valve as a pressing force in the valve closing direction; and (c) a primary pressure upstream of the main valve in the main flow path that communicates with the back pressure chamber. A small introduction hole for introducing a liquid on the side into the back pressure chamber to increase the pressure, and (d) communicating with the back pressure chamber, and the liquid in the back pressure chamber is more than the main valve of the main flow path. A pilot flow path as a pressure release flow path that is pulled down to the secondary side on the downstream side, and (e) moving forward and backward in the forward and backward movement direction of the main valve, and changing the opening of the pilot flow path A pilot valve that follows and moves the main valve back and forth in the same direction, and the pressure of the back pressure chamber, the primary side pressure and the secondary side acting on the main valve in the valve opening direction A pilot-type flow control valve configured to move the main valve forward and backward based on a differential pressure with respect to the pressure, wherein the main valve receives the differential pressure and generates a driving force for moving the main valve A differential pressure drive unit having no function is provided, and separately from the differential pressure drive unit, the influence of the differential pressure is eliminated, and the differential pressure drive unit is integrated with the differential pressure drive unit by the driving force of the differential pressure drive unit. A flow control valve portion is provided as a valve function portion that moves forward and backward toward the main valve seat and adjusts the flow rate by changing the gap between the main valve seat and the main valve seat.

請求項2のものは、請求項1において、前記差圧駆動部は軸部を有していて該軸部が、2次側空間を画成する仕切壁の嵌合孔に前記主弁の進退移動方向に液密且つ摺動可能に嵌合しているとともに、前記流調弁部は該2次側空間に設けてあって、前記2次側圧力を前進方向と後退方向との両方に同じ圧力で受けていることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the differential pressure driving portion has a shaft portion, and the shaft portion is advanced and retracted in the fitting hole of the partition wall that defines the secondary side space. It is fitted fluid-tightly and slidably in the moving direction, and the flow control valve portion is provided in the secondary space, and the secondary pressure is the same in both the forward and reverse directions. It is characterized by receiving pressure.

請求項3のものは、請求項1,2の何れかにおいて、前記流調弁部及び前記主弁座は、前記差圧駆動部における前記2次側圧力の受圧面よりも大径となしてあることを特徴とする。   According to a third aspect of the present invention, in any one of the first and second aspects, the flow control valve portion and the main valve seat have a larger diameter than a pressure receiving surface of the secondary pressure in the differential pressure drive portion. It is characterized by being.

請求項4のものは、請求項1〜3の何れかにおいて、前記制御バルブは単水栓用の制御バルブであることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the control valve is a control valve for a single water faucet.

請求項5のものは、請求項1〜3の何れかにおいて、前記制御バルブは混合水栓用の湯水混合バルブであることを特徴とする。   According to a fifth aspect of the present invention, in any one of the first to third aspects, the control valve is a hot and cold water mixing valve for a mixing faucet.

請求項6のものは、請求項5において、前記制御バルブが、(a)弁開度を互い逆の関係で大小変化させる水側主弁及び湯側主弁と、(b)混合水温度に感応して軸方向に伸縮し、該混合水温度が設定温度よりも高くなったときに前記水側主弁を開き、前記湯側主弁を閉じる方向にそれら水側主弁及び湯側主弁を移動させる感温動作部材と、(c)該水側主弁及び湯側主弁に対し該感温動作部材による移動方向と逆方向の付勢力を作用させるばねと、を有し、前記水側及び湯側の各主弁の下流側の混合水温度を自動調節する自動温度調節機能付きの湯水混合バルブであって、前記背圧室が、前記水側主弁又は/及び湯側主弁に対して内部の圧力を閉弁方向の押圧力として作用させるものとなしてあるとともに、該背圧室の圧力を受ける該水側主弁,湯側主弁の少なくとも一方の主弁に前記差圧駆動部と流調弁部とが設けてあり、前記パイロット弁が該感温動作部材の伸縮動作により前記混合水温度に感応して進退移動し、前記背圧室の圧力を増減させることで前記水側主弁又は/及び湯側主弁を開閉方向に移動させ、前記混合水温度を自動調節するものとなしてあることを特徴とする。   According to a sixth aspect of the present invention, the control valve according to the fifth aspect of the present invention includes: (a) a water-side main valve and a hot water-side main valve that change the valve opening in a reverse relationship; and (b) a mixed water temperature. In response to the expansion and contraction in the axial direction, when the temperature of the mixed water becomes higher than the set temperature, the water side main valve is opened and the water side main valve and the hot water side main valve are closed in the direction to close the hot water side main valve. A temperature-sensitive operation member that moves the water-side main valve and the hot water-side main valve, and a spring that applies an urging force in a direction opposite to the moving direction of the temperature-sensitive operation member. A hot water mixing valve with an automatic temperature adjustment function for automatically adjusting the temperature of the mixed water downstream of each of the main and hot water main valves, wherein the back pressure chamber is the water main valve or / and the hot water main valve The water-side main valve, hot water that receives the pressure of the back pressure chamber At least one main valve of the main valve is provided with the differential pressure drive unit and the flow control valve unit, and the pilot valve moves forward and backward in response to the mixed water temperature by the expansion and contraction operation of the temperature sensitive operation member, By increasing or decreasing the pressure in the back pressure chamber, the water side main valve or / and the hot water side main valve are moved in the opening / closing direction to automatically adjust the mixed water temperature.

請求項7のものは、請求項6において、前記水側主弁と湯側主弁との一方の主弁が、対応して設けられた水側背圧室,湯側背圧室の一方の背圧室の圧力を受けて駆動される水圧駆動又は湯圧駆動の弁となしてあるとともに、それら水側主弁及び湯側主弁は一体に移動する弁となしてあり、前記一方の主弁に、前記差圧駆動部と流調弁部とが設けてあるとともに、他方の主弁が該流調弁部に一体に構成してあることを特徴とする。   According to a seventh aspect of the present invention, in the sixth aspect, one of the water side main valve and the hot water side main valve is a water side back pressure chamber or a hot water side back pressure chamber provided correspondingly. A water pressure driven or hot water pressure driven valve is driven by receiving the pressure in the back pressure chamber, and the water side main valve and the hot water side main valve are integrally moved valves. The valve is provided with the differential pressure drive unit and the flow control valve unit, and the other main valve is integrally formed with the flow control valve unit.

発明の作用・効果Effects and effects of the invention

以上のように本発明は、主弁に対して閉弁方向に作用する背圧室の圧力と、主弁に対して開弁方向に作用する1次側圧力及び2次側圧力との差圧を受けて、主弁移動のための駆動力を発生させる弁機能をもたない差圧駆動部を主弁に設けるとともに、その差圧の影響を排除し、差圧駆動部の駆動力によって差圧駆動部と一体に主弁座に向けて進退移動し、主弁座との間の間隙を大小変化させて流量調節を行う弁機能部としての流調弁部を差圧駆動部とは別途に主弁に設けたものである。   As described above, the present invention provides a differential pressure between the pressure of the back pressure chamber acting on the main valve in the valve closing direction and the primary pressure and the secondary pressure acting on the main valve in the valve opening direction. In response, the main valve is provided with a differential pressure drive unit that does not have a valve function to generate a drive force for moving the main valve, and the influence of the differential pressure is eliminated. Separately from the differential pressure drive unit, the flow control valve unit is a valve function unit that moves forward and backward toward the main valve seat together with the pressure drive unit, and adjusts the flow rate by changing the gap between the pressure valve unit and the main valve seat. Are provided in the main valve.

即ち、従来のパイロット式制御バルブにあっては主弁の全体が背圧室,1次側圧力及び2次側圧力を受ける差圧駆動部をなしていたのに対し、本発明のパイロット式制御バルブにあっては、その一部にて差圧駆動部を構成し、そしてこの差圧駆動部とは別途に、差圧の影響を排除し、差圧駆動部の駆動力にて進退移動する流調弁部を設けたもので、かかる本発明によれば、主弁における2次側圧力の受圧面の径、詳しくは差圧駆動部における2次側圧力の受圧面の径に拘束されることなく、流調弁部の径を自由に設定することが可能であり、かかる流調弁部の径を2次側圧力の受圧面に対して大径化することができる(請求項3)。   That is, in the conventional pilot type control valve, the whole main valve has a back pressure chamber, a primary side pressure, and a differential pressure drive unit that receives the secondary side pressure. In the valve, a part of the differential pressure drive unit is configured, and separately from the differential pressure drive unit, the influence of the differential pressure is eliminated and the differential pressure drive unit moves forward and backward. According to the present invention, the flow regulating valve portion is provided, and is restricted by the diameter of the pressure receiving surface of the secondary pressure in the main valve, more specifically, the diameter of the pressure receiving surface of the secondary pressure in the differential pressure driving portion. Therefore, it is possible to freely set the diameter of the flow control valve portion, and it is possible to increase the diameter of the flow control valve portion with respect to the pressure receiving surface of the secondary side pressure (Claim 3). .

そしてこのことにより、主弁の径を一定に維持しつつ即ちパイロット式制御バルブのサイズを大型化することなく、流量を従来に増して多く確保することが可能となる。
或いは流量を一定に維持しつつ主弁の径を従来より小径化でき、パイロット式制御バルブのサイズを従来よりも小型化、コンパクト化することができる。
As a result, while maintaining the diameter of the main valve constant, that is, without increasing the size of the pilot type control valve, it is possible to secure a larger flow rate than before.
Alternatively, the diameter of the main valve can be made smaller than before while maintaining the flow rate constant, and the size of the pilot control valve can be made smaller and more compact than before.

この場合において、上記差圧駆動部には軸部を設けてその軸部を、2次側空間を画成する仕切壁の嵌合孔に主弁の進退移動方向に液密且つ摺動可能に嵌合するとともに、流調弁部を2次側空間に設けて、その2次側空間の圧力を前進方向と後退方向との両方に同じ圧力で受けるように構成しておくことができる(請求項2)。
このようにすれば背圧室,1次側圧力及び2次側圧力の影響が排除された上記の流調弁部を容易に且つ簡単な構造で構成することが可能となる。
In this case, the differential pressure drive part is provided with a shaft part, and the shaft part can be liquid-tight and slidable in the forward / backward movement direction of the main valve in the fitting hole of the partition wall defining the secondary side space. In addition to being fitted, a flow control valve portion can be provided in the secondary space, and the pressure in the secondary space can be received by the same pressure in both the forward direction and the backward direction. Item 2).
In this way, it is possible to easily and simply configure the above-described flow control valve portion from which the influence of the back pressure chamber, the primary side pressure, and the secondary side pressure is eliminated.

本発明のパイロット式制御バルブは、単水栓用制御バルブとして好適に適用することができ(請求項4)、或いは混合水栓における湯水混合バルブとして好適に適用することができる(請求項5)。   The pilot type control valve of the present invention can be suitably applied as a control valve for a single faucet (Claim 4), or can be suitably applied as a hot water mixing valve in a mixing faucet (Claim 5). .

この場合において、本発明をハンドルの操作量に応じて水側主弁,湯側主弁の位置を定め、その後それら水側主弁,湯側主弁の位置を固定状態として水と湯との混合量を決定する、所謂ミキシングタイプの湯水混合バルブ(ミキシングバルブ)に適用することも可能であるが、本発明は、請求項6に従ってこれを自動温度調節機能付きのパイロット式湯水混合バルブとして構成することができる。   In this case, according to the present invention, the positions of the water-side main valve and the hot water-side main valve are determined according to the operation amount of the handle. Although the present invention can be applied to a so-called mixing type hot and cold water mixing valve (mixing valve) for determining the mixing amount, the present invention is configured as a pilot type hot and cold water mixing valve with an automatic temperature control function according to claim 6. can do.

而して本発明のパイロット式流量制御バルブを請求項6従ってパイロット式湯水混合バルブとして構成するに際し、これを様々な形態のパイロット式バルブとなすことができる。
例えばパイロット式湯水混合バルブを、以下の(A),(B),(C)の構成を有するパイロット式バルブとして構成することができる。
Therefore, when the pilot type flow control valve of the present invention is constructed as the pilot type hot and cold water mixing valve according to the sixth aspect, it can be made into various types of pilot type valves.
For example, the pilot-type hot / cold water mixing valve can be configured as a pilot-type valve having the following configurations (A), (B), and (C).

(A)(イ)水側主弁の背後に形成され、内部の圧力を水側主弁に対して閉弁方向の押圧力として作用させる背圧室としての水側背圧室と、(ロ)水流入口からの1次側の水を水側背圧室の内部に導入して圧力上昇させる水側導入小孔と、(ハ)水側背圧室の水を水側主弁の下流側の2次側に抜いて圧力低下させる圧抜流路としての水側パイロット流路と、(ニ)水側主弁の進退移動方向に進退移動し、水側パイロット流路の開度を変化させることによって水側主弁を同方向に追従して進退移動させる水側パイロット弁とを有するものとなすとともに、湯側主弁を水側主弁と一体に構成して、水側主弁を水圧駆動弁として湯側主弁を一体に移動させるようになしたパイロット式湯水混合バルブ。   (A) (A) A water-side back pressure chamber formed as a back pressure chamber formed behind the water-side main valve and acting as a pressing force in the valve closing direction against the water-side main valve; ) Water side introduction small holes for increasing pressure by introducing primary water from the water inlet into the water side back pressure chamber, and (c) Water in the water side back pressure chamber downstream of the water side main valve. The water side pilot flow path as a pressure release flow path that is pulled out to the secondary side of the valve and (d) the water side main valve moves back and forth in the forward / backward movement direction to change the opening degree of the water side pilot flow path Therefore, the water-side main valve is integrated with the water-side main valve so that the water-side main valve is integrated with the water-side main valve. A pilot-type hot water mixing valve that moves the hot water main valve as a drive valve.

(B)(イ)湯側主弁の背後に形成され、内部の圧力を湯側主弁に対して閉弁方向の押圧力として作用させる背圧室としての湯側背圧室と、(ロ)湯流入口からの1次側の湯を湯側背圧室の内部に導入して圧力上昇させる湯側導入小孔と、(ハ)湯側背圧室の湯を湯側主弁の下流側の2次側に抜いて圧力低下させる圧抜流路としての湯側パイロット通路と、(ニ)湯側主弁の進退移動方向に進退移動し、湯側パイロット流路の開度を変化させることによって湯側主弁を同方向に追従して進退移動させる湯側パイロット弁とを有するものとなすとともに、水側主弁を湯側主弁と一体に構成して、湯側主弁を湯圧駆動弁として水側主弁を一体に移動させるようになしたパイロット式湯水混合バルブ。   (B) (a) A hot water side back pressure chamber as a back pressure chamber formed behind the hot water side main valve and acting as a pressing force in the valve closing direction on the hot water side main valve; ) A hot water introduction small hole that introduces primary hot water from the hot water inlet into the hot water back pressure chamber and raises the pressure, and (c) hot water in the hot water back pressure chamber is downstream of the hot water main valve. The hot water side pilot passage as a pressure release flow passage that is pulled out to the secondary side of the water side, and (d) the hot water side main valve moves back and forth in the forward and backward movement direction to change the opening degree of the hot water side pilot flow passage. Therefore, the hot water side main valve is integrated with the hot water side main valve so that the hot water side main valve is integrated with the hot water side main valve. A pilot-type hot / cold water mixing valve that moves the water-side main valve together as a pressure-driven valve.

(C)水側主弁と湯側主弁とが互いに別体且つ独立して移動可能とされているとともに(イ)水側主弁,湯側主弁の背後に形成され、内部の圧力を水側主弁,湯側主弁に対して閉弁方向の押圧力としてそれぞれ作用させる背圧室としての水側背圧室,湯側背圧室と、(ロ)水流入口,湯流入口からの1次側の水,湯をそれら背圧室の内部に導入して圧力上昇させる水側導入小孔,湯側導入小孔と、(ハ)水側,湯側の各背圧室の水,湯を水側主弁,湯側主弁の各下流側の2次側に抜いて圧力低下させる圧抜流路としての水側パイロット流路,湯側パイロット流路と、(ニ)水側主弁,湯側主弁の各進退移動方向に進退移動し、各パイロット流路の開度を変化させることで水側主弁,湯側主弁をそれぞれ同方向に追従して進退移動させる水側パイロット弁,湯側パイロット弁と、を有するものとなしてあるパイロット式湯水混合バルブ。   (C) The water-side main valve and the hot water-side main valve can be moved separately and independently. (A) The water-side main valve and the hot water-side main valve are formed behind the From the water back pressure chamber and the hot water side back pressure chamber as back pressure chambers that act as a pressing force in the closing direction on the water side main valve and the hot water side main valve, respectively, and (b) from the water inlet and the hot water inlet Water side hot water and hot water introduced into these back pressure chambers to raise the pressure, water side introduction small holes, hot water side introduction small holes, and (c) water in the water and hot water side back pressure chambers. Water side main valve, water side pilot flow path as pressure release flow path to reduce pressure by extracting to the downstream side of each downstream side of the water side main valve, hot water side main valve, and (d) water side Water that moves forward and backward in each forward and backward movement direction of the main valve and hot water main valve, and moves the water side main valve and hot water side main valve in the same direction by changing the opening of each pilot flow path. Side pilot valve Pilot hot and cold water mixing valve that is none as having a hot side pilot valve, the.

更にこの請求項6において、水側主弁と湯側主弁との一方の主弁を、対応して設けた水側背圧室,湯側背圧室の一方の背圧室の圧力を受けて駆動される水圧駆動又は湯圧駆動の弁となしておくとともに、それら水側主弁及び湯側主弁を一体に移動するものとなしておき、そして一方の主弁に上記の差圧駆動部と流調弁部とを設けておくとともに、他方の主弁をその流調弁部に一体に構成しておくことができる(請求項7)。   Further, in this sixth aspect, one main valve of the water side main valve and the hot water side main valve is subjected to the pressure of one of the water back pressure chamber and the back pressure chamber of the hot water side back pressure chamber. The water side main valve and the hot water side main valve are moved together, and the above differential pressure drive is applied to one main valve. And the flow control valve part, and the other main valve can be integrated with the flow control valve part (Claim 7).

本発明の一実施形態であるパイロット式流量制御バルブの図である。It is a figure of the pilot type flow control valve which is one embodiment of the present invention. 同実施形態の作用説明図である。It is operation | movement explanatory drawing of the embodiment. 図2に続く作用説明図である。FIG. 3 is an operation explanatory diagram following FIG. 2. 本発明の他の実施形態の図である。It is a figure of other embodiment of this invention. 図4の要部拡大図である。It is a principal part enlarged view of FIG. 図4におけるパイロット弁ユニットの図である。It is a figure of the pilot valve unit in FIG. 同実施形態の作用説明図である。It is operation | movement explanatory drawing of the embodiment. 従来のパイロット式流量制御バルブの一例を示した図である。It is the figure which showed an example of the conventional pilot type flow control valve.

次に本発明の実施形態を図面に基づいて詳しく説明する。
図1は、本発明のパイロット式流量制御バルブを単水栓用に構成した場合の実施形態を示したもので、図中10はバルブボデー(バルブケース)12に形成された主流路で、10-1,10-2はそれぞれ主流路10における上流側の1次側の流路,下流側の2次側の流路をそれぞれ表している。
また14は、主流路10上に設けられた円筒部の先端部にて構成された主弁座を表している。
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows an embodiment in which the pilot flow control valve of the present invention is configured for a single water faucet. In FIG. 1, reference numeral 10 denotes a main flow path formed in a valve body (valve case) 12. Reference numerals -1 and 10-2 denote an upstream primary flow path and a downstream secondary flow path in the main flow path 10, respectively.
Reference numeral 14 denotes a main valve seat constituted by a tip portion of a cylindrical portion provided on the main flow path 10.

16は、主流路10上に設けられたダイヤフラム弁から成る主弁で、ゴム製のダイヤフラム膜18と、これよりも硬質の樹脂製の保持部材20とを有しており、そのダイヤフラム膜18の外周部が全周に亘りバルブボデー12に固定されている。   Reference numeral 16 denotes a main valve formed of a diaphragm valve provided on the main flow path 10. The main valve 16 includes a rubber diaphragm film 18 and a holding member 20 made of a resin that is harder than the rubber diaphragm film 18. The outer peripheral portion is fixed to the valve body 12 over the entire circumference.

22はバルブボデー12に一体に構成された仕切壁で、この仕切壁22は、バルブケース12内部を軸直角方向に横切る状態に設けられた第1部分24と、その外周端部で図中下向きに軸方向に延びる第2部分26とを有している。
この仕切壁22は、図中下側(内側)に2次側空間を形成する。
Reference numeral 22 denotes a partition wall integrally formed with the valve body 12, and the partition wall 22 has a first portion 24 provided so as to cross the inside of the valve case 12 in a direction perpendicular to the axis, and an outer peripheral end portion thereof facing downward in the figure. And a second portion 26 extending in the axial direction.
The partition wall 22 forms a secondary space on the lower side (inner side) in the figure.

上記主弁16は、中心部に断面円形の中心軸部28を有しており、この中心軸部28が仕切壁22、詳しくは第1部分24の中心部に形成された円形の嵌合孔30に挿通されている。
中心軸部28は、シール部材32による水密(液密)シール状態の下でこの嵌合孔30に対し図中上下方向、即ち主弁16の進退移動方向に摺動可能に嵌合している。
The main valve 16 has a central shaft portion 28 having a circular cross section at the central portion, and the central shaft portion 28 is formed in a circular fitting hole formed in the partition wall 22, specifically, the central portion of the first portion 24. 30 is inserted.
The center shaft portion 28 is fitted in the fitting hole 30 so as to be slidable in the vertical direction in the figure, that is, in the forward / backward movement direction of the main valve 16 under a watertight (liquid tight) seal state by the seal member 32. .

この実施形態において、主弁16は、中心軸部28及び仕切壁22の上側の部分が弁機能をもたない差圧駆動部34をなしている。
また仕切壁22の図中下側の内側において、中心軸部28から径方向外方に張り出した部分が弁機能部としての流調弁部36をなしている。
In this embodiment, the main valve 16 forms a differential pressure drive unit 34 in which the central shaft portion 28 and the upper portion of the partition wall 22 do not have a valve function.
Further, on the inner side of the lower side of the partition wall 22 in the figure, a portion projecting radially outward from the central shaft portion 28 forms a flow control valve portion 36 as a valve function portion.

ここで流調弁部36の外周面及び仕切壁22における第2部分26の内周面は何れも円形をなしており、その第2部分26の内周面に対して、流調弁部36の外周面がシール部材38による水密シール状態の下で図中上下方向、即ち主弁16の進退移動方向に摺動可能に嵌合している。
尚この流調弁部36の、上記の主弁座14に対して上下に対向する部分は弾性のシール部材40にて構成されている。
Here, both of the outer peripheral surface of the flow control valve portion 36 and the inner peripheral surface of the second portion 26 in the partition wall 22 are circular, and the flow control valve portion 36 with respect to the inner peripheral surface of the second portion 26. The outer peripheral surface of the main valve 16 is slidably fitted in the vertical direction in the figure, that is, in the forward / backward movement direction of the main valve 16 under a watertight seal state by the seal member 38.
A portion of the flow regulating portion 36 that is vertically opposed to the main valve seat 14 is constituted by an elastic seal member 40.

42は主弁16の図中上側の背後に形成された背圧室で、この背圧室42は、内部の圧力を主弁16に対して図中下向きの閉弁方向の押圧力として作用させる。   Reference numeral 42 denotes a back pressure chamber formed behind the upper side of the main valve 16 in the figure. The back pressure chamber 42 causes the internal pressure to act on the main valve 16 as a pressing force in the downward valve closing direction in the figure. .

主弁16には、差圧駆動部34を図中上下方向に貫通する導入小孔44が設けられている。
この導入小孔44は、1次側の流路10-1の水(液)を背圧室42に導入して背圧室42の圧力を上昇せしめる。
主弁16にはまた、その全体を図中上下に貫通する状態でパイロット流路46がその中心部に設けられている。
The main valve 16 is provided with an introduction small hole 44 that penetrates the differential pressure drive unit 34 in the vertical direction in the figure.
The introduction small hole 44 introduces water (liquid) in the primary side flow passage 10-1 into the back pressure chamber 42 and raises the pressure in the back pressure chamber 42.
The main valve 16 is also provided with a pilot channel 46 at the center thereof so as to penetrate the entire main valve 16 up and down in the drawing.

このパイロット流路46は、背圧室42内の水(液)を2次側の流路10-2に流出させる水抜流路(圧抜流路)としてのもので、背圧室42内の水がこのパイロット流路46を通じて2次側の流路10-2に流出することで、背圧室42の圧力が減少せしめられる。   The pilot flow path 46 is a drainage flow path (pressure release flow path) through which water (liquid) in the back pressure chamber 42 flows out to the flow path 10-2 on the secondary side. The water flows out to the secondary flow path 10-2 through the pilot flow path 46, whereby the pressure in the back pressure chamber 42 is reduced.

48はパイロット弁で、その先端部(図中下端部)に弾性のシール部材50が設けられている。
このパイロット弁48は、主弁16に設けられたパイロット弁座52に向けて図中上下方向(軸方向)に進退移動し、パイロット流路46の開度を増減変化させる。
Reference numeral 48 denotes a pilot valve, and an elastic seal member 50 is provided at the tip (lower end in the figure).
The pilot valve 48 moves back and forth in the vertical direction (axial direction) in the figure toward the pilot valve seat 52 provided in the main valve 16 to increase or decrease the opening degree of the pilot flow path 46.

このパイロット弁48には軸部54が一体に構成されており、その軸部54が、バルブボデー12に対してねじ結合され、回転操作によってパイロット弁48が図中上下方向に進退移動せしめられるようになっている。   A shaft portion 54 is integrally formed with the pilot valve 48, and the shaft portion 54 is screwed to the valve body 12 so that the pilot valve 48 can be moved back and forth in the vertical direction in the figure by a rotating operation. It has become.

主弁16における上記の中心軸部28には横孔56が設けられており、この横孔56を介して、2次側の流路10-2の2次側圧力が仕切壁22と流調弁部36との間に形成される2次圧室58に導入されている。
即ちこの実施形態において、流調弁部36は仕切壁22の図中下側に形成される2次側空間に設けてある。
A lateral hole 56 is provided in the central shaft portion 28 of the main valve 16, and the secondary side pressure of the secondary side flow passage 10-2 is flow-regulated with the partition wall 22 through the lateral hole 56. It is introduced into a secondary pressure chamber 58 formed between the valve portion 36.
That is, in this embodiment, the flow control valve part 36 is provided in the secondary side space formed in the lower side of the partition wall 22 in the figure.

この実施形態において、仕切壁22における第2部分26の内周面の径は、主弁座14の径と同径且つ径方向の同一位置に位置させてあり、従って流調弁部36は、2次側圧力を図中下向きの閉弁方向即ち前進方向と、図中上向きの開弁方向即ち後退方向との両方向に同じ圧力で受けており、それら逆向きの2次側圧力は互いに相殺されている。
即ち流調弁部36は背圧室42の圧力,1次側圧力,2次側圧力の何れの圧力の影響も排除した形で設けられている。
In this embodiment, the diameter of the inner peripheral surface of the second portion 26 in the partition wall 22 is located at the same position as the diameter of the main valve seat 14 and in the radial direction. The secondary side pressure is received at the same pressure in both the downward valve closing direction, i.e., the forward direction, and the upward valve opening direction, i.e., the reverse direction, in the figure, and the opposite secondary side pressures cancel each other. ing.
In other words, the flow control valve 36 is provided in a form that eliminates the influence of any of the pressure in the back pressure chamber 42, the primary side pressure, and the secondary side pressure.

一方差圧駆動部34は、その上面において背圧室42の圧力を図中下向きの閉弁方向即ち前進方向の圧力として受けており、またその下面の中心軸部28の外周側の部分において、1次側圧力を図中上向きの開弁方向即ち後退方向の圧力として受けている。
更に中心軸部28の下面において2次側圧力を図中上向きの開弁方向即ち後退方向の圧力として受けている。
On the other hand, the differential pressure drive unit 34 receives the pressure of the back pressure chamber 42 on its upper surface as the pressure in the downward valve closing direction, that is, the forward direction in the figure, and on the outer peripheral side portion of the central shaft portion 28 on the lower surface thereof, The primary side pressure is received as a pressure in the upward valve opening direction, that is, the backward direction in the figure.
Further, the secondary side pressure is received on the lower surface of the central shaft portion 28 as pressure in the upward valve opening direction, that is, in the backward direction in the figure.

差圧駆動部34は、これら背圧室42の図中下向きの閉弁方向の圧力と、図中上向きの開弁方向の1次側圧力及び2次側圧力との差圧を受けて、主弁16移動のための駆動力を発生させる。
図1中S′は差圧駆動部34における1次側圧力の受圧面積を表しており、またS′は2次側圧力の受圧面積を表している。
一方Aは主弁座14の内側に形成される流路の流路面積を表している。
The differential pressure drive unit 34 receives the pressure difference between the downward pressure in the back pressure chamber 42 in the figure and the primary pressure and secondary pressure in the upward valve opening direction in the figure, A driving force for moving the valve 16 is generated.
In FIG. 1, S 1 ′ represents the pressure receiving area of the primary pressure in the differential pressure drive unit 34, and S 2 ′ represents the pressure receiving area of the secondary pressure.
On the other hand, A represents the channel area of the channel formed inside the main valve seat 14.

この図から明らかなように、この実施形態では図8に示した従来のパイロット式制御バルブのように2次側圧力の受圧面積と流路面積とが等しいものではなく、流路が2次側圧力の受圧面よりも大径をなしていて流路面積Aが2次側圧力の受圧面積S′に対して大きくされており、2次側圧力の受圧面積による制限を受けることなく流路面積Aが大きく確保されている。 As is apparent from this figure, in this embodiment, the pressure receiving area of the secondary pressure and the flow path area are not equal as in the conventional pilot type control valve shown in FIG. The flow passage area A is larger than the pressure receiving surface S 2 ′ with a larger diameter than the pressure receiving surface, and the flow passage area is not limited by the pressure receiving area of the secondary pressure. A large area A is secured.

本実施形態において、上記のパイロット弁48は図中上下方向の進退移動によってパイロット流路46の開度を変化させ、これにより背圧室42の圧力を変化させることで、主弁16を同方向に同じ距離で追従して進退移動させる。
その際の作用が図2及び図3に詳しく示してある。
In the present embodiment, the pilot valve 48 changes the opening degree of the pilot flow path 46 by advancing and retreating in the vertical direction in the drawing, thereby changing the pressure of the back pressure chamber 42, thereby moving the main valve 16 in the same direction. Follow the same distance and move forward and backward.
The operation at that time is shown in detail in FIGS.

図2(I)は、主弁16が閉弁した状態、詳しくは流調弁部36が主弁座14に着座して閉弁した状態、及びパイロット弁48がパイロット弁座52に着座して閉弁した状態をそれぞれ表している。
この状態からパイロット弁48が図中上向きに後退移動すると、パイロット流路46が開かれて背圧室42内の水がパイロット流路46を通じて2次側の流路10-2へと流出する。
FIG. 2 (I) shows a state in which the main valve 16 is closed, more specifically, a state in which the flow control valve portion 36 is seated on the main valve seat 14 and is closed, and a pilot valve 48 is seated on the pilot valve seat 52. Each of the closed states is shown.
From this state, when the pilot valve 48 moves backward in the figure, the pilot passage 46 is opened, and the water in the back pressure chamber 42 flows out through the pilot passage 46 to the secondary passage 10-2.

すると背圧室42の圧力が低下するため、差圧駆動部34に作用する背圧室42の圧力と、1次側圧力(及び2次側圧力)の圧力をバランスさせるように、主弁16が図中上向きに後退移動する(図2(II))。
そしてその圧力がバランスしたところで主弁16の図中上向きの移動即ち後退移動が停止する。このときパイロット弁48とパイロット弁座52との間の間隙は微小な一定の追従間隙に保持される(図2(III))。
このようにして主弁16が図中上向きに後退移動することで、流調弁部36が主弁座14から図中上向きに離間して主流路10を開き、主流路10に流れを生ぜしめる。
Then, since the pressure in the back pressure chamber 42 decreases, the main valve 16 is adjusted so that the pressure in the back pressure chamber 42 acting on the differential pressure drive unit 34 and the pressure in the primary side pressure (and the secondary side pressure) are balanced. Moves backward in the figure (FIG. 2 (II)).
When the pressure is balanced, the upward movement of the main valve 16 in the drawing, that is, the backward movement stops. At this time, the gap between the pilot valve 48 and the pilot valve seat 52 is held at a small constant follow-up gap (FIG. 2 (III)).
As the main valve 16 moves backward in the drawing in this way, the flow regulating valve portion 36 is separated from the main valve seat 14 in the upward direction in the drawing to open the main flow path 10 and generate a flow in the main flow path 10. .

図2(III)に示す状態から更にパイロット弁48が後退移動すると、このパイロット弁48との間に上記の一定の微小な追従間隙を維持しつつ、主弁16即ち流調弁部36がパイロット弁48に追従して図中上向きに後退移動し、主流路10の開度を更に大として、主流路10を流れる流量を増大せしめる(図2(IV))。   When the pilot valve 48 further moves backward from the state shown in FIG. 2 (III), the main valve 16, that is, the flow control valve portion 36, is maintained in the pilot valve 48 while maintaining the above-mentioned constant minute clearance gap. Following the valve 48, the valve moves backward in the figure, and further increases the opening of the main flow path 10 to increase the flow rate through the main flow path 10 (FIG. 2 (IV)).

一方これとは逆にパイロット弁48が図3に示しているように図中下向きに前進移動すると、同じく差圧駆動部34に作用する背圧室の圧力と1次側及び2次側の圧力をバランスさせるようにして主弁16、即ち流調弁部36が図中下向きに前進移動し(図3(I)〜(IV))、主流路10の開度を減少させる。これによって主流路10を流れる水の流量が減少せしめられる。   On the other hand, when the pilot valve 48 moves forward downward in the figure as shown in FIG. 3, the pressure in the back pressure chamber acting on the differential pressure drive unit 34 and the pressure on the primary side and the secondary side are also shown. The main valve 16, that is, the flow control valve portion 36 moves forward downward in the figure (FIGS. 3 (I) to (IV)), and the opening degree of the main flow path 10 is decreased. As a result, the flow rate of water flowing through the main flow path 10 is reduced.

以上のように本実施形態のパイロット式制御バルブにあっては、主弁16の一部にて弁機能をもたない差圧駆動部34を構成し、そしてこの差圧駆動部34とは別途に、圧力の影響を排除し、差圧駆動部34の駆動力にて進退移動する流調弁部36を弁機能部として設けていることから、主弁16における2次側圧力の受圧面の径に拘束されることなく、流調弁部36の径を自由に設定することが可能であり、かかる流調弁部36の径を2次側圧力の受圧面に対して大径化することができる。   As described above, in the pilot control valve of the present embodiment, a part of the main valve 16 constitutes the differential pressure drive unit 34 having no valve function, and is separate from the differential pressure drive unit 34. In addition, since the flow regulating valve portion 36 that moves forward and backward by the driving force of the differential pressure drive portion 34 is provided as a valve function portion, the influence of the pressure is eliminated, so that the pressure receiving surface of the secondary side pressure in the main valve 16 is It is possible to freely set the diameter of the flow regulating valve part 36 without being restricted by the diameter, and to increase the diameter of the flow regulating valve part 36 relative to the pressure receiving surface of the secondary pressure. Can do.

そしてこのことにより、主弁16の径を一定に維持しつつ、即ちパイロット式流量制御バルブのサイズを大型化することなく、流量を従来に増して多く確保することが可能となる。
或いは流量を一定に維持したまま、主弁16の径を小径化でき、パイロット式流量制御バルブのサイズを小型化、コンパクト化することができる。
As a result, while maintaining the diameter of the main valve 16 constant, that is, without increasing the size of the pilot-type flow control valve, it is possible to secure a larger flow rate than before.
Alternatively, the diameter of the main valve 16 can be reduced while maintaining the flow rate constant, and the size of the pilot flow control valve can be reduced.

また本実施形態によれば、背圧室42,1次側圧力及び2次側圧力の影響を排除した形で流調弁部36を容易に且つ簡単な構造で構成することができる。   Moreover, according to this embodiment, the flow control valve part 36 can be easily comprised with a simple structure in the form which excluded the influence of the back pressure chamber 42, the primary side pressure, and the secondary side pressure.

図4〜図7は、本発明を自動温度調節機能付きのパイロット式湯水混合バルブ(以下単に湯水混合バルブとする)に適用した場合の実施形態を示している。
図4において、60はこの湯水混合バルブのバルブボデー(バルブケース)を示している。
このバルブボデー60には、水流入口,湯流入口にそれぞれ続いて形成された1次側流路としての水流入流路62,湯流入流路64がそれぞれ設けられている。
4 to 7 show an embodiment in which the present invention is applied to a pilot-type hot / cold water mixing valve (hereinafter simply referred to as a hot / cold water mixing valve) having an automatic temperature control function.
In FIG. 4, reference numeral 60 denotes a valve body (valve case) of the hot and cold water mixing valve.
The valve body 60 is provided with a water inflow passage 62 and a hot water inflow passage 64 as primary flow passages formed respectively following the water inlet and the hot water inlet.

これら水流入流路62,湯流入流路64から流入した水と湯とは、2次側流路である混合室66内の混合流路68を流通してそこで水と湯とが十分に混合され、そしてその混合水が流出口70から図中右方に流出する。
このバルブボデー60にはまた、後述の水側流調弁部92,湯側流調弁部94に各対応して水側主弁座72,湯側主弁座74がそれぞれ形成されている。
The water and hot water flowing in from the water inflow channel 62 and the hot water inflow channel 64 flow through the mixing channel 68 in the mixing chamber 66 which is a secondary side channel, and the water and hot water are sufficiently mixed there. The mixed water flows out from the outlet 70 to the right in the figure.
The valve body 60 is also formed with a water side main valve seat 72 and a hot water side main valve seat 74 respectively corresponding to a water side flow adjusting portion 92 and a hot water side flow adjusting portion 94 which will be described later.

76は水圧駆動されるダイヤフラム弁から成る水側主弁で、図5に拡大して示しているように、この例において水側主弁76は円形の中心軸部78を有しており、この中心軸部78が、バルブボデー60に一体に形成された仕切壁80の円形の嵌合孔82に対し、シール部材84による水密シール状態の下で図中左右方向に摺動可能に嵌合している。
ここで仕切壁80は、バルブボデー60内部且つこの仕切壁80よりも図中右側に2次側空間を画成している。
76 is a water-side main valve comprising a diaphragm valve driven by water pressure. As shown in an enlarged view in FIG. 5, in this example, the water-side main valve 76 has a circular central shaft portion 78. The central shaft portion 78 is fitted in a circular fitting hole 82 of the partition wall 80 formed integrally with the valve body 60 so as to be slidable in the left-right direction in the figure under a watertight seal state by the seal member 84. ing.
Here, the partition wall 80 defines a secondary space inside the valve body 60 and on the right side of the partition wall 80 in the drawing.

水側主弁76は、上記の中心軸部78及び仕切壁80より図中左側の部分が差圧駆動部86を成しており、また仕切壁80より図中右側において中心軸部78から径方向外方に突出した部分が弁機能部としての流調弁部88を成している。   The water-side main valve 76 has a differential pressure drive portion 86 on the left side in the drawing from the central shaft portion 78 and the partition wall 80, and has a diameter from the central shaft portion 78 on the right side in the drawing from the partition wall 80. A portion protruding outward in the direction forms a flow control valve portion 88 as a valve function portion.

この流調弁部88もまた外周面が円形をなしており、その外周面がバルブボデー60の円形の内周面に対し、シール部材90による水密シール状態の下で図中左右方向に摺動可能に嵌合している。
この流調弁部88は、図中右端部が水側流調弁部92を成しており、また図中左端部が湯側流調弁部94を成している。
即ちこの実施形態では湯側主弁が湯側流調弁部94として構成されている。
This flow control valve portion 88 also has a circular outer peripheral surface, and the outer peripheral surface slides in the left-right direction in the figure under a watertight seal state by the seal member 90 with respect to the circular inner peripheral surface of the valve body 60. It is possible to fit.
The flow adjustment valve 88 has a water-side flow adjustment portion 92 at the right end in the drawing, and a hot water flow adjustment portion 94 at the left end in the drawing.
That is, in this embodiment, the hot water main valve is configured as the hot water side flow regulating portion 94.

この実施形態では、水圧駆動の水側主弁76が図中右方に移動すると、水側流調弁部92の弁開度が小,湯側流調弁部94の弁開度が大となり、また水側主弁76が図中左方に移動すると、水側流調弁部92の弁開度が大,湯側流調弁部94の弁開度が小となり、それぞれの弁開度の変化に応じて水と湯との流入量を変化させる。
尚、図から明らかなように水側流調弁部92と湯側流調弁部94とは、軸方向において互いに逆向きに形成されている。
In this embodiment, when the water-side main valve 76 driven by water pressure moves to the right in the figure, the valve opening degree of the water-side flow adjustment unit 92 is small and the valve opening degree of the hot water-side flow adjustment unit 94 is large. When the water-side main valve 76 moves to the left in the figure, the valve opening of the water-side flow control unit 92 is large, and the valve opening of the hot-water flow control unit 94 is small. The amount of inflow of water and hot water is changed in accordance with the change in water.
As is apparent from the figure, the water-side flow regulating portion 92 and the hot-water flow regulating portion 94 are formed in opposite directions in the axial direction.

ここで湯流入流路64を通じて流入した湯は、湯側の2次側の流路96を通じて混合流路68へと到り、そこで水流入流路62から流入した水と混合される。
この実施形態では、流路96を介して2次圧室98が2次側の混合流路68と連通し、そこに2次側圧力が導入される。
Here, the hot water flowing in through the hot water inflow channel 64 reaches the mixing channel 68 through the hot water side secondary channel 96, where it is mixed with the water flowing in from the water inflow channel 62.
In this embodiment, the secondary pressure chamber 98 communicates with the secondary mixing channel 68 via the flow channel 96, and the secondary pressure is introduced therein.

図5において、上記の差圧駆動部86の図中左側の背後には、水側背圧室100が形成されている。
水側背圧室100は、その内部の圧力を水側主弁76に対して図中右方向の閉弁方向(ここでは水側流調弁部92の閉弁方向)の押圧力として作用させる。
In FIG. 5, a water-side back pressure chamber 100 is formed behind the left side of the differential pressure drive unit 86 in the drawing.
The water-side back pressure chamber 100 acts on the water-side main valve 76 as a pressing force in the valve closing direction in the right direction in the drawing (here, the valve-closing direction of the water-side flow regulating unit 92). .

この水側背圧室100とは反対側の図中右側、即ち差圧駆動部86と仕切壁80との間には1次圧室102が形成されており、そこに水流入流路62からの水が図中波線で示す連通路104,106を通じて導入されるようになっている。
即ち1次圧室102に1次側圧力が導入されるようになっている。
この1次圧室102と水側背圧室100とは、差圧駆動部86を貫通して設けられた導入小孔111を介して連通しており、この1次圧室102に導入された水が、この導入小孔111を通じて水側背圧室100に流入せしめられる。
A primary pressure chamber 102 is formed on the right side in the drawing opposite to the water-side back pressure chamber 100, that is, between the differential pressure drive unit 86 and the partition wall 80, and from there to the water inflow channel 62. Water is introduced through communication passages 104 and 106 indicated by wavy lines in the figure.
That is, the primary pressure is introduced into the primary pressure chamber 102.
The primary pressure chamber 102 and the water-side back pressure chamber 100 communicate with each other through an introduction small hole 111 provided through the differential pressure drive unit 86 and introduced into the primary pressure chamber 102. Water is caused to flow into the water-side back pressure chamber 100 through the introduction small hole 111.

差圧駆動部86は、水側背圧室100による右向きの圧力と、1次圧室102内の左向きの圧力及び中心軸部78に対して図中左向きに働く2次側圧力との差圧を受けて、水側主弁76移動のための駆動力を発生する。
上記の流調弁部88は、この差圧駆動部86で発生した駆動力によって図中左右方向に進退移動せしめられる。
The differential pressure drive unit 86 is a differential pressure between the rightward pressure by the water-side back pressure chamber 100, the leftward pressure in the primary pressure chamber 102, and the secondary side pressure acting to the left in the figure with respect to the central shaft portion 78. In response, a driving force for moving the water side main valve 76 is generated.
The flow regulating valve 88 is moved back and forth in the left-right direction in the figure by the driving force generated by the differential pressure driving section 86.

水側主弁76は、その中心部に軸方向に貫通の孔を有していて、そこに後述のスリーブ142-1が挿通されている。
そしてその貫通孔とスリーブ142-1との間に、環状のパイロット流路112が形成されている。
The water-side main valve 76 has a through-hole in the axial direction at the center thereof, and a sleeve 142-1 described later is inserted therethrough.
An annular pilot channel 112 is formed between the through hole and the sleeve 142-1.

108は水側パイロット弁で、この水側パイロット弁108が水側主弁76に形成された水側パイロット弁座110に向けて図中左右方向に進退移動することで、パイロット流路112の開度が変化せしめられる。
即ち水側背圧室100の圧力が、水側パイロット弁108の進退移動に伴って増減変化せしめられる。
Reference numeral 108 denotes a water side pilot valve. The water side pilot valve 108 moves forward and backward in the horizontal direction in the figure toward the water side pilot valve seat 110 formed in the water side main valve 76, thereby opening the pilot flow path 112. The degree is changed.
In other words, the pressure in the water-side back pressure chamber 100 is increased or decreased as the water-side pilot valve 108 moves back and forth.

従ってこの実施形態においても、水側パイロット弁108が図中左右方向に進退移動することで、水側主弁76がこれに追従して水側パイロット弁108と同方向に且つ一定の追従間隙を維持しつつ進退移動せしめられる。
このとき水側流調弁部92,湯側流調弁部94がそれぞれ逆の関係で弁開度を大小変化させ、水と湯との流入量を変化させる。即ち混合水温度を変化させる。
Therefore, also in this embodiment, the water-side pilot valve 108 moves back and forth in the left-right direction in the figure, so that the water-side main valve 76 follows this and has a constant following gap in the same direction as the water-side pilot valve 108. You can move forward and backward while maintaining.
At this time, the water-side flow adjustment unit 92 and the hot-water flow adjustment unit 94 change the valve opening degree in reverse relations to change the inflow amount of water and hot water. That is, the mixed water temperature is changed.

図4において、120は軸部122においてハンドルに一体回転に連結される円筒形状の回転部で、バルブボデー60の内面に回転可能に嵌合されている。
この回転部120の内側には、軸方向に進退移動する円筒形状の第1の進退部材124が配置されており、この進退部材124が、かかる進退部材124に形成された雄ねじ126と、回転部120に形成された雌ねじ128とにおいてねじ結合されている。
In FIG. 4, reference numeral 120 denotes a cylindrical rotating portion that is coupled to the handle at the shaft portion 122 so as to rotate integrally therewith, and is rotatably fitted to the inner surface of the valve body 60.
A cylindrical first advancing / retracting member 124 that moves forward and backward in the axial direction is disposed inside the rotating portion 120, and the advancing / retreating member 124 includes a male screw 126 formed on the advancing / retracting member 124, and a rotating portion. It is screwed with a female screw 128 formed on 120.

この進退部材124はまた、バルブボデー60における内筒部130に対し、軸方向の係合溝と係合突条とを有する回止め機構132により回止めされている。
従って回転部120が回転させられると、進退部材124がねじ送りで図中左右方向に移動せしめられる。
The advance / retreat member 124 is also secured to the inner tube portion 130 of the valve body 60 by a turning mechanism 132 having an axial engagement groove and an engagement protrusion.
Therefore, when the rotating part 120 is rotated, the advance / retreat member 124 is moved in the left-right direction in the drawing by screw feed.

進退部材124の更に内側には、有底円筒形状をなす第2の進退部材134が配置されている。
この第2の進退部材134は、バルブボデー60における上記の内筒部130に対して外嵌状態に摺動可能に嵌合されているとともに、第1の進退部材124に対し緩衝ばね機構136を介して連結されている。
Inside the advance / retreat member 124, a second advance / retreat member 134 having a bottomed cylindrical shape is disposed.
The second advancing / retracting member 134 is slidably fitted to the inner tubular portion 130 of the valve body 60 so as to be slidable, and a buffer spring mechanism 136 is provided to the first advancing / retreating member 124. Are connected through.

従って進退部材124が図中左右方向に進退移動すると、その進退移動が緩衝ばね機構136を介して第2の進退部材134に伝えられ、かかる第2の進退部材134が、内筒部130の外面に沿って図中左右方向に進退移動せしめられる。   Therefore, when the advance / retreat member 124 moves forward / backward in the left-right direction in the drawing, the advance / retreat movement is transmitted to the second advance / retreat member 134 via the buffer spring mechanism 136, and the second advance / retreat member 134 is moved to the outer surface of the inner cylinder portion 130. Along the left and right directions in the figure.

ここで緩衝ばね機構136は次のように作用する。即ち上記の水側流調弁部92又は湯側流調弁部94が、対応する水側主弁座72又は湯側主弁座74に当接することで、その後における温調軸140の移動ができなくなったとき、緩衝ばね機構136におけるばね(コイルばね)が軸方向に撓むことによって、加えられた過大な操作力を吸収する。   Here, the buffer spring mechanism 136 operates as follows. That is, when the water-side flow regulating valve 92 or the hot-water flow regulating valve 94 comes into contact with the corresponding water-side main valve seat 72 or the hot water-side main valve seat 74, the temperature adjustment shaft 140 is moved thereafter. When it becomes impossible, the spring (coil spring) in the buffer spring mechanism 136 bends in the axial direction, thereby absorbing the applied excessive operating force.

この第2の進退部材134の底部138には、水側主弁76を図中左右方向に移動させるための温調軸140の図中左端部が結合されている。
従って第2の進退部材134が図中左右方向に進退移動すると、この温調軸140がこれと一体に図中左右方向に進退移動せしめられる。
The bottom end 138 of the second advance / retreat member 134 is coupled to the left end portion of the temperature adjustment shaft 140 for moving the water side main valve 76 in the left-right direction in the drawing.
Therefore, when the second advancing / retracting member 134 moves forward / backward in the left / right direction in the drawing, the temperature adjusting shaft 140 is moved forward / backward in the left / right direction in the drawing together with the temperature adjusting shaft 140.

この温調軸140には、図6にも示しているようにスリーブ142-1,142-2,142-3,142-4が外嵌状態に且つ左右方向に相対移動可能に嵌合されている。
そして真中のスリーブ142-1に、上記の水側パイロット弁108が一体に構成されている。
この水側パイロット弁108は、シール部材144による水密シール状態の下で、上記の内筒部130の内面に左右方向に摺動可能に嵌合されている。
図中右端側のスリーブ142-3は、温調軸140に対し止め輪にて図中右端が規定され、また左端側のスリーブ142-4は、同じく止め輪にて温調軸140に対し図中左端が規定されている。
As shown in FIG. 6, sleeves 142-1, 142-2, 142-3, and 142-4 are fitted to the temperature adjusting shaft 140 so as to be externally fitted and relatively movable in the left-right direction. Yes.
The water-side pilot valve 108 is integrally formed with the middle sleeve 142-1.
The water-side pilot valve 108 is fitted to the inner surface of the inner cylindrical portion 130 so as to be slidable in the left-right direction under a watertight seal state by the seal member 144.
The right end sleeve 142-3 in the figure is defined by a retaining ring with respect to the temperature control shaft 140, and the left end sleeve 142-4 is also illustrated with respect to the temperature adjustment shaft 140 by a retaining ring. The middle left edge is specified.

そしてスリーブ142-2と142-3との間に、感温動作部材としての形状記憶合金製のコイルばねから成る感温ばね146が介装され、その付勢力をスリーブ142-1に対して、即ち水側パイロット弁108に対し図中左向きに及ぼしている。   A temperature sensitive spring 146 made of a shape memory alloy coil spring as a temperature sensitive operation member is interposed between the sleeves 142-2 and 142-3, and the biasing force is applied to the sleeve 142-1. That is, it exerts on the water side pilot valve 108 in the left direction in the figure.

またスリーブ142-4とスリーブ142-1との間に、詳しくは水側パイロット弁108との間に、コイルばねから成るバイアスばね148が介装され、その付勢力をスリーブ142-1に対して、即ち水側パイロット弁108に対して図中右向きに及ぼしている。   Further, a bias spring 148 made of a coil spring is interposed between the sleeve 142-4 and the sleeve 142-1, more specifically between the water side pilot valve 108, and its biasing force is applied to the sleeve 142-1. That is, it exerts rightward in the figure with respect to the water side pilot valve 108.

以上の説明から明らかなように、この実施形態では水側パイロット弁108が温調軸140に対して図中左右方向の軸方向に相対移動可能な状態で温調軸140により保持されており、そしてこの水側パイロット弁108に対し、図中右側と左側とに配置された感温ばね146とバイアスばね148とがその付勢力を逆向きに及ぼしており、且つ感温ばね146とバイアスばね148とが合計の長さを一定に保持しつつ水側パイロット弁108とともに温調軸140と一緒に移動するように、それらが温調軸140に組み付けられ、全体としてパイロット弁ユニット150を構成している。   As is clear from the above description, in this embodiment, the water-side pilot valve 108 is held by the temperature adjustment shaft 140 in a state in which the water-side pilot valve 108 can move relative to the temperature adjustment shaft 140 in the left-right axial direction in the figure. A temperature-sensitive spring 146 and a bias spring 148 disposed on the right and left sides in the figure exert opposite biasing forces on the water-side pilot valve 108, and the temperature-sensitive spring 146 and the bias spring 148 are reversed. Are assembled to the temperature adjustment shaft 140 so that the pilot valve unit 150 is configured as a whole, so that the temperature control shaft 140 moves together with the water side pilot valve 108 while maintaining the total length constant. Yes.

この実施形態の湯水混合バルブでは、ハンドルの回転操作によって回転部120を回転させると、第1の進退部材124がねじ送りで図中左右方向に進退移動させられる。
そしてこの進退部材124の進退移動に伴って、第2の進退部材134が同方向に進退移動させられ、またこれによって温調軸140が左右方向に進退移動させられる。
In the hot and cold water mixing valve of this embodiment, when the rotating part 120 is rotated by rotating the handle, the first advance / retreat member 124 is moved forward and backward in the left-right direction in the drawing by screw feed.
As the advance / retreat member 124 moves forward / backward, the second advance / retreat member 134 moves forward / backward in the same direction, and the temperature adjusting shaft 140 moves forward / backward in the left / right direction.

このとき、図7に示しているように水側パイロット弁108が一体に移動してパイロット流路112の開度を変化させ、これにより水側流調弁部92及び湯側流調弁部94を進退移動させて、それぞれの弁開度を互いに逆の関係で大小変化させる。
即ちハンドルによって回転部120が回転させられることによって、混合水温度が所望温度に設定される。
At this time, as shown in FIG. 7, the water-side pilot valve 108 moves integrally to change the opening degree of the pilot flow path 112, and thereby the water-side flow regulating portion 92 and the hot water-side flow regulating portion 94. Are moved forward and backward, and the respective valve openings are changed in magnitude in reverse relation to each other.
That is, when the rotating unit 120 is rotated by the handle, the mixed water temperature is set to a desired temperature.

そしてそのような操作によって水側温調弁部92,湯側温調弁部94を設定位置に位置させた状態で、混合室66内の混合水温度が設定温度に対して高くなったときには、感温ばね146が伸張して図中左向きの付勢力を高め、これにより水側温調弁部92の弁開度を大とする方向に、また湯側温調弁部94の弁開度を小とする方向に、それら水側温調弁部92,湯側温調弁部94の位置を水側パイロット弁108の移動を介して変化させ、混合水温度を設定温度に自動調節する。   Then, when the temperature of the mixed water in the mixing chamber 66 becomes higher than the set temperature in a state where the water-side temperature adjustment valve unit 92 and the hot water-side temperature adjustment valve unit 94 are positioned at the set positions by such an operation, The temperature-sensitive spring 146 extends to increase the urging force in the left direction in the figure, thereby increasing the valve opening degree of the water side temperature adjustment valve section 92 and the valve opening degree of the hot water temperature adjustment valve section 94. In the direction of decreasing, the positions of the water-side temperature adjusting valve 92 and the hot water-side temperature adjusting valve 94 are changed through the movement of the water-side pilot valve 108 to automatically adjust the mixed water temperature to the set temperature.

以上に示した本実施形態においても、図5に示しているように水側主弁76に弁機能をもたない差圧駆動部86と、差圧の影響を排除した流調弁部88とが設けられていることから、流路面積Aを2次側圧力の受圧面積S′に関り無く大きく取ることができ、従って水側主弁76を特に大径化しなくても、混合水流量を多く確保することができる。
或いは同一の混合水流量の下で水側主弁を小径化することができる。
Also in the present embodiment described above, as shown in FIG. 5, the differential pressure drive unit 86 that does not have a valve function in the water side main valve 76, and the flow control valve unit 88 that eliminates the influence of the differential pressure, Therefore, the flow passage area A can be made large regardless of the pressure receiving area S 2 ′ of the secondary pressure, so that the mixed water can be mixed without particularly increasing the diameter of the water side main valve 76. A large flow rate can be secured.
Alternatively, the water-side main valve can be reduced in diameter under the same mixed water flow rate.

尚この実施形態のものは、見方を変えれば、水側主弁及び湯側主弁を共通の一体の主弁76として構成し、そしてその主弁76に水圧駆動の差圧駆動部86を設けるとともに、その主弁76に互いに逆向きをなす水側及び湯側の各弁部を水側流調弁部92,湯側流調弁部74として一体に構成したものと見ることもできる。   In this embodiment, the water-side main valve and the hot water-side main valve are configured as a common integral main valve 76, and the main valve 76 is provided with a differential pressure drive unit 86 for water pressure drive. At the same time, it can be considered that the water-side and hot-water side valve portions opposite to each other in the main valve 76 are integrally configured as the water-side flow adjustment portion 92 and the hot-water flow adjustment portion 74.

上記の湯水混合バルブでは、水側主弁76に湯側主弁(湯側流調弁部94)を一体に構成し、そして水側主弁76を駆動弁として、これを水側パイロット弁108の移動に追従して移動させるようになしているが、水側主弁及び湯側主弁を一体移動する状態に設けるとともに、水側背圧室100に代えて湯側主弁の背後に湯側背圧室を形成し、そして湯流入口からの1次側の湯(熱水)を湯側背圧室に導入する湯側の導入小孔,湯側背圧室の湯を2次側に抜く湯側のパイロット流路を、それぞれ水側の導入小孔111,水側のパイロット流路112に代えて設け、湯側主弁を湯圧駆動の弁としてこれを湯側のパイロット弁の移動によりこれに追従して移動させ、そして水側主弁を流調弁部に水側流調弁部として一体に構成することも可能である。   In the hot water / water mixing valve, the hot water main valve (hot water flow regulating valve 94) is integrally formed with the water main valve 76, and the water main valve 76 is used as a drive valve. However, the water side main valve and the hot water side main valve are provided so as to move together, and the hot water is placed behind the hot water side main valve in place of the water side back pressure chamber 100. Forms a side back pressure chamber and introduces a hot water on the primary side (hot water) from the hot water inlet into the hot water back pressure chamber, a hot water in the hot water back pressure chamber on the secondary side The hot water side pilot flow path to be removed is provided in place of the water side introduction small hole 111 and the water side pilot flow path 112, respectively, and the hot water side main valve is used as a hot water pressure driven valve. It is possible to follow this by movement, and to configure the water side main valve integrally with the flow adjustment valve portion as the water flow adjustment portion. .

或いは水側主弁,湯側主弁をそれぞれ別体且つ独立して移動するように設けた上で、水側主弁の背後に水側背圧室を、湯側主弁の背後に湯側背圧室を、更にそれら水側背圧室,湯側背圧室の圧力を増減させる水側の導入小孔,湯側の導入小孔,水側のパイロット流路,湯側のパイロット流路をそれぞれ設けた上で、水側主弁及び湯側主弁のそれぞれに差圧駆動部及び流調弁部を設け、水側のパイロット弁と湯側のパイロット弁とを同期して軸方向に移動させることで、水側主弁と湯側主弁とを互いに逆の関係で弁開度を大小変化させるように構成するといったことも可能である。   Alternatively, the water side main valve and the hot water side main valve are provided separately and independently so that the water side back pressure chamber is located behind the water side main valve and the hot water side is located behind the hot water side main valve. Water side introduction small hole, hot water side introduction small hole, water side pilot flow path, hot water side pilot flow path that further increase / decrease the pressure of the water side back pressure chamber and hot water side back pressure chamber. In addition, each of the water side main valve and the hot water side main valve is provided with a differential pressure drive part and a flow control valve part, and the water side pilot valve and the hot water side pilot valve are synchronized in the axial direction. By moving the valve, the water-side main valve and the hot water-side main valve can be configured so that the valve opening degree is changed in a reverse relationship.

以上本発明の実施形態を詳述したがこれはあくまで一例示である。
例えば上記実施形態では主弁が何れもダイヤフラム弁から成っているが、これをピストン弁として構成することも可能である等、本発明はその趣旨を逸脱しない範囲において種々変更を加えた形態で構成可能である。
Although the embodiment of the present invention has been described in detail above, this is merely an example.
For example, in the above embodiment, the main valve is a diaphragm valve. However, the present invention can be configured as a piston valve, and the present invention is configured in various modifications without departing from the spirit of the present invention. Is possible.

10 主水路
14 主弁座
16 主弁
22,80 仕切壁
28,78 中心軸部
30,82 嵌合孔
34,86 差圧駆動部
36,88 流調弁部
42 背圧室
44,111 導入小孔
46,112 パイロット流路
48 パイロット弁
72 水側主弁座
74 湯側主弁座
76 水側主弁
100 水側背圧室
108 水側パイロット弁
146 感温ばね
148 バイアスばね
DESCRIPTION OF SYMBOLS 10 Main water channel 14 Main valve seat 16 Main valve 22,80 Partition wall 28,78 Center shaft part 30,82 Fitting hole 34,86 Differential pressure drive part 36,88 Flow control part 42 Back pressure chamber 44,111 Small introduction Hole 46, 112 Pilot flow path 48 Pilot valve 72 Water side main valve seat 74 Hot water side main valve seat 76 Water side main valve 100 Water side back pressure chamber 108 Water side pilot valve 146 Temperature sensitive spring 148 Bias spring

Claims (7)

(イ)主流路上に設けられ、主弁座に向けて進退移動して弁開度を変化させる主弁と、(ロ)該主弁の背後に形成され、内部の圧力を該主弁に対して閉弁方向の押圧力として作用させる背圧室と、(ハ)該背圧室に連通し、前記主流路の前記主弁よりも上流側の1次側の液を該背圧室に導入して圧力上昇させる導入小孔と、(ニ)該背圧室に連通して設けられ、該背圧室の液を前記主流路の該主弁よりも下流側の2次側に抜いて圧力低下させる圧抜流路としてのパイロット流路と、(ホ)前記主弁の進退移動方向に進退移動し、前記パイロット流路の開度を変化させることによって該主弁を追従して同方向に進退移動させるパイロット弁と、を有し、前記背圧室の圧力と、該主弁に対して開弁方向に作用する1次側圧力及び2次側圧力との差圧に基づいて該主弁を進退移動させるようになしたパイロット式流量制御バルブにおいて、
前記主弁には、前記差圧を受けて主弁移動のための駆動力を発生させる弁機能をもたない差圧駆動部を設けるとともに、該差圧駆動部とは別途に、前記差圧の影響を排除し、該差圧駆動部の駆動力によって該差圧駆動部と一体に前記主弁座に向けて進退移動し、該主弁座との間の間隙を大小変化させて流量調節を行う弁機能部としての流調弁部を設けたことを特徴とするパイロット式流量制御バルブ。
(B) a main valve provided on the main flow path and moving forward and backward toward the main valve seat to change the valve opening; and (b) formed behind the main valve, the internal pressure with respect to the main valve A back pressure chamber that acts as a pressing force in the valve closing direction, and (c) communicating with the back pressure chamber, and introducing the primary fluid upstream of the main valve of the main flow path into the back pressure chamber. A small introduction hole for increasing the pressure and (d) communicating with the back pressure chamber, and discharging the liquid in the back pressure chamber to the secondary side downstream of the main valve of the main flow path A pilot flow path as a decompression flow path to be lowered, and (e) moving forward and backward in the forward / backward movement direction of the main valve, and changing the opening of the pilot flow path to follow the main valve in the same direction A pilot valve that moves forward and backward, and based on a differential pressure between the pressure in the back pressure chamber and the primary side pressure and the secondary side pressure that act on the main valve in the valve opening direction. In the pilot flow control valve designed to move the main valve forward and backward,
The main valve is provided with a differential pressure drive unit that does not have a valve function to generate a driving force for moving the main valve in response to the differential pressure, and separately from the differential pressure drive unit, the differential pressure The flow is adjusted by moving forward and backward toward the main valve seat integrally with the differential pressure drive unit by the driving force of the differential pressure drive unit, and changing the size of the gap with the main valve seat. A pilot-type flow rate control valve provided with a flow control valve portion as a valve function portion for performing
請求項1において、前記差圧駆動部は軸部を有していて該軸部が、2次側空間を画成する仕切壁の嵌合孔に前記主弁の進退移動方向に液密且つ摺動可能に嵌合しているとともに、前記流調弁部は該2次側空間に設けてあって、前記2次側圧力を前進方向と後退方向との両方に同じ圧力で受けていることを特徴とするパイロット式流量制御バルブ。   2. The differential pressure drive part according to claim 1, wherein the differential pressure drive part has a shaft part, and the shaft part is liquid-tight and slid in the fitting hole of the partition wall defining the secondary space in the advancing and retracting direction of the main valve. The flow control valve portion is provided in the secondary space, and receives the secondary pressure at the same pressure in both the forward direction and the reverse direction. Characteristic pilot-type flow control valve. 請求項1,2の何れかにおいて、前記流調弁部及び前記主弁座は、前記差圧駆動部における前記2次側圧力の受圧面よりも大径となしてあることを特徴とするパイロット式流量制御バルブ。   3. The pilot according to claim 1, wherein the flow control valve part and the main valve seat have a larger diameter than a pressure receiving surface of the secondary pressure in the differential pressure drive part. Type flow control valve. 請求項1〜3の何れかにおいて、前記制御バルブは単水栓用の制御バルブであることを特徴とするパイロット式流量制御バルブ。   4. The pilot flow control valve according to claim 1, wherein the control valve is a control valve for a single water faucet. 請求項1〜3の何れかにおいて、前記制御バルブは混合水栓用の湯水混合バルブであることを特徴とするパイロット式流量制御バルブ。   4. The pilot flow control valve according to claim 1, wherein the control valve is a hot water / water mixing valve for a mixing faucet. 請求項5において、前記制御バルブが、(a)弁開度を互い逆の関係で大小変化させる水側主弁及び湯側主弁と、(b)混合水温度に感応して軸方向に伸縮し、該混合水温度が設定温度よりも高くなったときに前記水側主弁を開き、前記湯側主弁を閉じる方向にそれら水側主弁及び湯側主弁を移動させる感温動作部材と、(c)該水側主弁及び湯側主弁に対し該感温動作部材による移動方向と逆方向の付勢力を作用させるばねと、を有し、前記水側及び湯側の各主弁の下流側の混合水温度を自動調節する自動温度調節機能付きの湯水混合バルブであって、
前記背圧室が、前記水側主弁又は/及び湯側主弁に対して内部の圧力を閉弁方向の押圧力として作用させるものとなしてあるとともに、該背圧室の圧力を受ける該水側主弁,湯側主弁の少なくとも一方の主弁に前記差圧駆動部と流調弁部とが設けてあり、
前記パイロット弁が該感温動作部材の伸縮動作により前記混合水温度に感応して進退移動し、前記背圧室の圧力を増減させることで前記水側主弁又は/及び湯側主弁を開閉方向に移動させ、前記混合水温度を自動調節するものとなしてあることを特徴とする混合水温度の制御バルブ。
6. The control valve according to claim 5, wherein the control valve includes: (a) a water side main valve and a hot water side main valve that change the valve opening in a reverse relationship; and (b) an axial expansion and contraction in response to the mixed water temperature. A temperature-sensitive operation member that opens the water-side main valve and moves the water-side main valve and the hot-water main valve in a direction to close the hot-water main valve when the mixed water temperature becomes higher than a set temperature. And (c) a spring that applies an urging force in a direction opposite to the moving direction of the temperature-sensitive operation member to the water-side main valve and the hot water-side main valve. A hot water mixing valve with an automatic temperature control function that automatically adjusts the temperature of the mixed water downstream of the valve,
The back pressure chamber causes the internal pressure to act as a pressing force in the valve closing direction on the water side main valve and / or the hot water side main valve, and receives the pressure of the back pressure chamber. At least one main valve of the water side main valve and the hot water side main valve is provided with the differential pressure drive unit and the flow control valve unit
The pilot valve moves forward and backward in response to the temperature of the mixed water by the expansion and contraction of the temperature-sensitive operation member, and opens and closes the water-side main valve and / or the hot water-side main valve by increasing or decreasing the pressure in the back pressure chamber. The mixed water temperature control valve is configured to automatically adjust the mixed water temperature by moving in the direction.
請求項6において、前記水側主弁と湯側主弁との一方の主弁が、対応して設けられた水側背圧室,湯側背圧室の一方の背圧室の圧力を受けて駆動される水圧駆動又は湯圧駆動の弁となしてあるとともに、それら水側主弁及び湯側主弁は一体に移動する弁となしてあり、
前記一方の主弁に、前記差圧駆動部と流調弁部とが設けてあるとともに、他方の主弁が該流調弁部に一体に構成してあることを特徴とする混合水温度の制御バルブ。
In Claim 6, one main valve of the said water side main valve and a hot water side main valve receives the pressure of the back pressure chamber of one of the water side back pressure chamber and the hot water side back pressure chamber which were provided correspondingly. The water-side main valve and the hot-water side main valve are integrally moved valves.
The one main valve is provided with the differential pressure drive unit and the flow control valve unit, and the other main valve is formed integrally with the flow control valve unit. Control valve.
JP2009010421A 2009-01-20 2009-01-20 Pilot flow control valve Expired - Fee Related JP5132589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009010421A JP5132589B2 (en) 2009-01-20 2009-01-20 Pilot flow control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009010421A JP5132589B2 (en) 2009-01-20 2009-01-20 Pilot flow control valve

Publications (2)

Publication Number Publication Date
JP2010169131A true JP2010169131A (en) 2010-08-05
JP5132589B2 JP5132589B2 (en) 2013-01-30

Family

ID=42701478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009010421A Expired - Fee Related JP5132589B2 (en) 2009-01-20 2009-01-20 Pilot flow control valve

Country Status (1)

Country Link
JP (1) JP5132589B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242065A1 (en) 2016-05-06 2017-11-08 Toto Ltd. Flow-rate adjustable valve
EP3242064A1 (en) 2016-05-06 2017-11-08 Toto Ltd. Flow-rate adjustable valve
WO2019187470A1 (en) * 2018-03-29 2019-10-03 株式会社Lixil Valve device
WO2020249070A1 (en) * 2019-06-13 2020-12-17 厦门松霖科技股份有限公司 Water discharge structure of push switch, water discharge control valve core, and water discharge device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563944C2 (en) * 2014-01-17 2015-09-27 Общество с ограниченной ответственностью Научно-производственная фирма "МКТ-АСДМ" Drive for pipeline valves and accessories

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194670U (en) * 1984-11-29 1986-06-18
JPH06257686A (en) * 1993-02-23 1994-09-16 Fuji Seiko Kk Mixing valve
JP2001255942A (en) * 2000-03-10 2001-09-21 Inax Corp Pressure-reducing valve
JP2006072574A (en) * 2004-08-31 2006-03-16 Asahi Organic Chem Ind Co Ltd Fluid control device
JP2006214480A (en) * 2005-02-02 2006-08-17 Inax Corp Light operation faucet
JP2006349030A (en) * 2005-06-15 2006-12-28 Sanyuu Technology:Kk Two-way delivery valve
JP2007016977A (en) * 2005-07-11 2007-01-25 Smc Corp Pilot type two-port valve
JP2008133860A (en) * 2006-11-27 2008-06-12 Inax Corp Hot and cold water mixing valve

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6194670U (en) * 1984-11-29 1986-06-18
JPH06257686A (en) * 1993-02-23 1994-09-16 Fuji Seiko Kk Mixing valve
JP2001255942A (en) * 2000-03-10 2001-09-21 Inax Corp Pressure-reducing valve
JP2006072574A (en) * 2004-08-31 2006-03-16 Asahi Organic Chem Ind Co Ltd Fluid control device
JP2006214480A (en) * 2005-02-02 2006-08-17 Inax Corp Light operation faucet
JP2006349030A (en) * 2005-06-15 2006-12-28 Sanyuu Technology:Kk Two-way delivery valve
JP2007016977A (en) * 2005-07-11 2007-01-25 Smc Corp Pilot type two-port valve
JP2008133860A (en) * 2006-11-27 2008-06-12 Inax Corp Hot and cold water mixing valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3242065A1 (en) 2016-05-06 2017-11-08 Toto Ltd. Flow-rate adjustable valve
EP3242064A1 (en) 2016-05-06 2017-11-08 Toto Ltd. Flow-rate adjustable valve
US10795381B2 (en) 2016-05-06 2020-10-06 Toto Ltd. Flow-rate adjustable valve
WO2019187470A1 (en) * 2018-03-29 2019-10-03 株式会社Lixil Valve device
WO2020249070A1 (en) * 2019-06-13 2020-12-17 厦门松霖科技股份有限公司 Water discharge structure of push switch, water discharge control valve core, and water discharge device

Also Published As

Publication number Publication date
JP5132589B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP5132589B2 (en) Pilot flow control valve
WO2017024792A1 (en) Dual volume flow rate switching device
JP2009121589A (en) Automatic temperature-adjustable hot and cold water mixing valve
US7344088B2 (en) Dual-function valve with pressure adjustment and temperature control functions
CN202914809U (en) Single-handle double control constant temperature faucet applicable to solar water heater
CN103075544B (en) Anti-scald constant-temperature faucet
JP4979347B2 (en) Hot water mixing valve
JP5506454B2 (en) Flow control valve
JP4566657B2 (en) Hot water mixing valve
JP2008133860A (en) Hot and cold water mixing valve
JP5648179B2 (en) Flow control valve device
JPS6040874A (en) Cold and hot water mixing faucet
JP3882192B2 (en) Hot water mixing apparatus and hot water mixing faucet provided with the same
JP4291403B1 (en) Pilot back pressure valve with check function
JP2010025180A (en) Pilot-type control valve
JP4948330B2 (en) Pressure reducing valve device
JP6296235B2 (en) Hot water mixing device
JP2003269649A (en) Thermostat valve
JP4738077B2 (en) Pilot flow control device
JP4738078B2 (en) Pilot flow control device
WO2011065548A1 (en) Seal structure for a flow control valve
JP2006057761A5 (en)
EP3776132B1 (en) A control valve for heat regulation
JP2009133354A (en) Flow control device
JP4160909B2 (en) Hot and cold water faucet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5132589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees