JP2010169185A - Vacuum heat insulation pipe for low-temperature liquefied gas - Google Patents
Vacuum heat insulation pipe for low-temperature liquefied gas Download PDFInfo
- Publication number
- JP2010169185A JP2010169185A JP2009012040A JP2009012040A JP2010169185A JP 2010169185 A JP2010169185 A JP 2010169185A JP 2009012040 A JP2009012040 A JP 2009012040A JP 2009012040 A JP2009012040 A JP 2009012040A JP 2010169185 A JP2010169185 A JP 2010169185A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- reinforced resin
- liquefied gas
- fiber reinforced
- stainless steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009413 insulation Methods 0.000 title claims abstract description 50
- 229920005989 resin Polymers 0.000 claims abstract description 72
- 239000011347 resin Substances 0.000 claims abstract description 72
- 239000000835 fiber Substances 0.000 claims abstract description 46
- 239000007788 liquid Substances 0.000 claims abstract description 32
- 239000010935 stainless steel Substances 0.000 claims description 55
- 229910001220 stainless steel Inorganic materials 0.000 claims description 55
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 14
- 230000004888 barrier function Effects 0.000 claims description 12
- 239000003365 glass fiber Substances 0.000 claims description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 9
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 8
- 239000004917 carbon fiber Substances 0.000 claims description 8
- 238000001704 evaporation Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 6
- 239000011888 foil Substances 0.000 claims description 6
- 239000000853 adhesive Substances 0.000 claims description 5
- 230000001070 adhesive effect Effects 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 230000008646 thermal stress Effects 0.000 claims description 4
- 239000002734 clay mineral Substances 0.000 claims description 3
- 239000013078 crystal Substances 0.000 claims description 3
- 230000002040 relaxant effect Effects 0.000 claims description 2
- 230000008602 contraction Effects 0.000 claims 2
- 229910052799 carbon Inorganic materials 0.000 claims 1
- 230000007423 decrease Effects 0.000 claims 1
- 239000011521 glass Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 97
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 44
- 239000001257 hydrogen Substances 0.000 abstract description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 42
- 238000012546 transfer Methods 0.000 abstract description 34
- 238000003860 storage Methods 0.000 abstract description 26
- 230000000452 restraining effect Effects 0.000 abstract 1
- 150000002431 hydrogen Chemical class 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229920003002 synthetic resin Polymers 0.000 description 5
- 239000000057 synthetic resin Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000004927 clay Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 2
- 239000011151 fibre-reinforced plastic Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 102100040287 GTP cyclohydrolase 1 feedback regulatory protein Human genes 0.000 description 1
- 101710185324 GTP cyclohydrolase 1 feedback regulatory protein Proteins 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/14—Arrangements for the insulation of pipes or pipe systems
- F16L59/141—Arrangements for the insulation of pipes or pipe systems in which the temperature of the medium is below that of the ambient temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
- F16L59/14—Arrangements for the insulation of pipes or pipe systems
- F16L59/16—Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
- F16L59/18—Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Thermal Insulation (AREA)
Abstract
Description
本発明は、低温液化ガスの輸送に用いられる真空断熱配管に関し、特に液化ガスの供給配管を接続する移送配管として使用される真空断熱配管に関する。 The present invention relates to a vacuum heat insulation pipe used for transporting a low-temperature liquefied gas, and more particularly to a vacuum heat insulation pipe used as a transfer pipe connecting a supply pipe for a liquefied gas.
水素ガスは、燃焼により水だけを生成するので、環境に無害な燃料として注目されている。今後、水素自動車の普及や家庭燃料としての利用が実現するためには、利用技術の開発と共に、水素ステーションなどの経済基盤を支える施設が整備される必要がある。
図7は、水素の供給システムの例を示すブロック図である。
水素、天然ガスなどの低温液化ガスを自動車燃料として活用するためには、適宜な大きさの地域ごとに供給ステーションを設けて利便性を確保する必要がある。各地に分散した液化ガスステーションに液化ガスを供給するために、液化ガスの生産拠点から各地のステーションに直接パイプラインを接続するシステムを構築するには、膨大な費用が掛かるので不合理である。
Since hydrogen gas produces only water by combustion, it attracts attention as a fuel that is harmless to the environment. In the future, in order to realize the widespread use of hydrogen vehicles and use as household fuel, it is necessary to develop facilities that support economic infrastructure such as hydrogen stations, as well as development of utilization technologies.
FIG. 7 is a block diagram illustrating an example of a hydrogen supply system.
In order to utilize low-temperature liquefied gas such as hydrogen and natural gas as automobile fuel, it is necessary to provide convenience by providing a supply station for each region of an appropriate size. In order to supply the liquefied gas to the liquefied gas stations distributed in various places, it is unreasonable to construct a system in which a pipeline is directly connected from the liquefied gas production base to the stations in the various places.
これに対して、供給ステーションがそれぞれ液化ガスの貯蔵タンクを備えて、液化ガスの生産プラントから適宜、液化ガスコンテナ車やタンクローリーによって液化ガスステーションなどの貯蔵タンクに配給する方法が合理的である。また、家庭などの燃料需要を水素で賄うようにするためにも、適当に細分化した地域ごとに貯蔵タンクを設けて各家庭と水素パイプラインでつなぎ、貯蔵タンクで液体水素ガスを貯蔵し、蒸発器でガス化しながら水素パイプラインを使って各家庭に供給するシステムが考えられる。
貯蔵タンクを使うシステムでは、貯蔵タンクの液化ガスが不足すると、液化ガスコンテナ車やタンクローリーの供給配管を貯蔵タンクの移送配管に接続して、液化ガスを貯蔵タンクに供給する。
On the other hand, it is rational that each supply station has a liquefied gas storage tank and is distributed from a liquefied gas production plant to a storage tank such as a liquefied gas station by a liquefied gas container car or a tank lorry as appropriate. In addition, in order to cover the fuel demand of households etc. with hydrogen, a storage tank is provided in each appropriately segmented area and connected with each household by a hydrogen pipeline, and liquid hydrogen gas is stored in the storage tank, A system that supplies gas to each household using a hydrogen pipeline while gasifying with an evaporator is conceivable.
In a system using a storage tank, when the liquefied gas in the storage tank is insufficient, the liquefied gas is supplied to the storage tank by connecting the supply pipe of the liquefied gas container vehicle or the tank truck to the transfer pipe of the storage tank.
従来の液化ガス移送配管は、安全の確保のため、構造に規制があって、液化ガスに触れて耐圧性能が求められる内管の材質は、液体水素ではステンレス鋼のSUS304L,SUS316Lあるいはアルミニウム合金に限られている。
図8は、標準的な移送配管の構造を示す断面概念図である。液体水素流に触れるステンレス鋼製の内管と外気に触れるステンレス鋼製の外管で2重構造を形成し、内管と外管の間に適宜の間隔で断熱材製のサポートを設けて空間を確保し、この空間を真空に保持して外部入熱を液体水素に伝熱しないように真空断熱する。サポートは、内管との接触面積を小さくして、サポートを介して外管から内管に伝熱することを抑制している。
The conventional liquefied gas transfer pipe has a structure restriction for ensuring safety, and the material of the inner pipe that requires pressure resistance performance by touching the liquefied gas is SUS304L, SUS316L or aluminum alloy of stainless steel for liquid hydrogen. limited.
FIG. 8 is a conceptual cross-sectional view showing the structure of a standard transfer pipe. A double structure is formed with a stainless steel inner tube that touches the liquid hydrogen flow and a stainless steel outer tube that touches the outside air, and a support made of heat insulating material is provided at an appropriate interval between the inner tube and the outer tube. The space is kept in a vacuum and is insulated by vacuum so that external heat input is not transferred to liquid hydrogen. The support reduces the contact area with the inner tube and suppresses heat transfer from the outer tube to the inner tube through the support.
液化ガスコンテナ車から貯蔵タンクに液化ガスを供給するときは、供給配管を移送配管に接続して貯蔵タンクに液化ガスを送り込む。しかし、移送配管は液化ガス温度に対して高温になっているので、液化ガスに冷却されて移送配管の温度が液化ガス温度まで下がるまでは、移送配管中で液化ガスが蒸発してガスとなり液化ガスを有効に移送することができない。
このため、移送配管の貯蔵タンクへの付け根位置に弁を介してバイパスラインを接続しておいて、十分冷却するまでの間に発生する蒸発ガスを液化ガスコンテナあるいは貯蔵タンクの蒸発ガス処理装置を介して大気に放出していた。
When supplying the liquefied gas from the liquefied gas container vehicle to the storage tank, the supply pipe is connected to the transfer pipe and the liquefied gas is sent into the storage tank. However, since the transfer pipe is at a higher temperature than the liquefied gas temperature, the liquefied gas evaporates in the transfer pipe to become a gas until it is cooled to the liquefied gas and the temperature of the transfer pipe drops to the liquefied gas temperature. The gas cannot be transferred effectively.
For this reason, a bypass line is connected via a valve to the root of the transfer pipe to the storage tank, and the evaporative gas generated until it is sufficiently cooled is removed from the liquefied gas container or the evaporative gas treatment device of the storage tank. Through the atmosphere.
移送配管を冷却するために消費される液化ガスは、移送効率(タンクへの充填量/液化ガス移送量)を低下させるので、これを節減させることが要請される。このような液化ガス量は、特に、たとえば2時間程度の短時間で移送するときは、配管の外からの入熱が相対的に小さく、移送配管の熱容量、すなわち配管の比熱と重量と温度差の積に主として依存する。 Since the liquefied gas consumed for cooling the transfer pipe reduces the transfer efficiency (filling amount of tank / liquefied gas transfer amount), it is required to reduce this. Such a liquefied gas amount is, for example, when transferring in a short time of about 2 hours, for example, the heat input from the outside of the pipe is relatively small, the heat capacity of the transfer pipe, that is, the specific heat, weight and temperature difference of the pipe. Depends mainly on the product of
このような液化ガスの浪費は、常時液化ガスが流れているパイプラインでは問題になることはなく、水素ステーションなどの貯蔵タンクのように間欠的に配管を使用する場合に問題となる事項である。また常時流通する配管と間欠的に使用する配管とでは、配管に求められる性能も異なるので、従来適用されてきた設計条件も再検討をする余地がある。 Such waste of liquefied gas is not a problem in pipelines where liquefied gas is constantly flowing, but is a problem when pipes are used intermittently as in storage tanks such as hydrogen stations. . Moreover, since the performance required for piping is different between piping that is always circulated and piping that is used intermittently, there is room for reviewing design conditions that have been applied in the past.
図9は、液体水素コンテナから液体水素貯蔵タンクまでの移送配管を冷却するときの負荷熱量に関する試算結果を表すグラフである。移送配管の内径を28mm、長さを20m、厚さを3mm、移送する液体水素量を10m3、配管の温度が300Kから20Kに変化する、として、外部入熱が0.5W/mと1W/mのときの熱負荷、また配管が密度8900kg/m3のステンレス鋼製と密度1900kg/m3のガラス繊維強化樹脂製であるときの熱容量を、充填時間(0.5時間から4時間)に対してプロットしている。 FIG. 9 is a graph showing a trial calculation result regarding the amount of heat applied when the transfer pipe from the liquid hydrogen container to the liquid hydrogen storage tank is cooled. Assuming that the inner diameter of the transfer pipe is 28 mm, the length is 20 m, the thickness is 3 mm, the amount of liquid hydrogen to be transferred is 10 m 3 , and the temperature of the pipe is changed from 300K to 20K, the external heat input is 0.5 W / m and 1 W / thermal load when the m, also the heat capacity when the pipe is made of glass fiber reinforced resin density 8900kg / m 3 stainless steel and density 1900 kg / m 3, the filling time (4 hours 0.5 hours) Is plotted against.
試算結果によると、ステンレス鋼管の熱容量が約5900kJであるのに対して、樹脂管の熱容量は約2800kJと、樹脂管の方が圧倒的に小さいことが分かる。また、外部入熱は、充填時間が増えるにつれて大きくなるが、その影響は、管の熱容量と比較すると小さく、特に短時間充填である場合は、配管の熱容量と比較して極めて小さいことが分かる。なお、配管の熱容量は充填時間によっては変化しない。
したがって、移送配管の内管は樹脂製である方が移送配管の冷却時に発生する蒸発ガスの量を抑制することができる。
According to the trial calculation results, it can be seen that the heat capacity of the stainless steel pipe is about 5900 kJ, whereas the heat capacity of the resin pipe is about 2800 kJ, which is overwhelmingly smaller. The external heat input increases as the filling time increases, but the influence is small compared to the heat capacity of the pipe, and it is found that the effect is extremely small compared to the heat capacity of the pipe, particularly in the case of short time filling. The heat capacity of the pipe does not change depending on the filling time.
Therefore, if the inner pipe of the transfer pipe is made of resin, the amount of evaporative gas generated when the transfer pipe is cooled can be suppressed.
また、特に液体水素や気体水素は浸透性が高いため、通常の合成樹脂では稠密性が不足し、漏洩する可能性がある。これに対しては、アルミ箔を合成樹脂の表面に張ったり樹脂内部に挟み込んだりすることにより漏洩を防止する方法がある。
なお、現状では樹脂製配管の低温液化ガスへの適用が公式には承認されていない分野もある。
In particular, since liquid hydrogen and gaseous hydrogen have high permeability, ordinary synthetic resins have insufficient denseness and may leak. For this, there is a method of preventing leakage by stretching an aluminum foil on the surface of a synthetic resin or by sandwiching it in the resin.
In addition, there are some fields where the application of resin piping to low-temperature liquefied gas is not officially approved at present.
本願出願人は、先に出願した特願2007-179882の明細書において、液体水素の貯蔵タンクに真空層を有する二重殻構造を持たせ、その内外槽の一方または両方をガス透過を防ぐバリア材を有する繊維強化プラスチック材で形成する技術を開示している。繊維強化プラスチック材は、材料の内部にミクロボイドやミクロクラックを含むので、気化ガスの透過を防ぐことができない。このため、バリア材として、アルミニウム箔やステンレス箔を使用して、十分な機械的強度とガスの透過防止性能を備えた材料としたものである。 In the specification of Japanese Patent Application No. 2007-179882 filed earlier, the applicant of the present application provides a liquid hydrogen storage tank having a double shell structure having a vacuum layer, and one or both of the inner and outer tanks are provided with a barrier that prevents gas permeation. A technique of forming a fiber-reinforced plastic material having a material is disclosed. Since the fiber reinforced plastic material contains micro voids and micro cracks inside the material, permeation of vaporized gas cannot be prevented. For this reason, an aluminum foil or a stainless steel foil is used as a barrier material to provide a material having sufficient mechanical strength and gas permeation prevention performance.
また、特許文献1に開示された粘着粘土膜をバリア材として使用することにより、水素透過を抑制した繊維強化樹脂を得ることもできる。特許文献1に開示された粘着粘土膜は、板状の結晶構造を持つ粘土鉱物が一方向に配向しかつ緻密に積層して形成されたガスバリア層である。このガスバリア層は繊維強化樹脂の表面や内部に形成することができる。この水素ガスバリア層を有する繊維強化樹脂は、水素タンクあるいは水素貯蔵設備の容器の材料とされる。 Moreover, the fiber reinforced resin which suppressed hydrogen permeation | transmission can also be obtained by using the adhesion clay film disclosed by patent document 1 as a barrier material. The adhesive clay film disclosed in Patent Document 1 is a gas barrier layer formed by densely laminating clay minerals having a plate-like crystal structure oriented in one direction. This gas barrier layer can be formed on the surface or inside of the fiber reinforced resin. The fiber reinforced resin having the hydrogen gas barrier layer is used as a material for a hydrogen tank or a container of a hydrogen storage facility.
なお、本願発明と直接に関連するものではないが、特許文献2には、高温ガスや低温ガスの流体輸送配管として使用する真空断熱式2重配管について、継手構造が開示されている。従来のフランジ式突き合わせ継手ではフランジを熱が伝わるため断熱性能を確保できないが、特許文献2に開示された真空断熱式2重配管は、内管の突き合わせ溶接部の周囲を真空室で囲むように構成して、断熱効果を高めるようにしたものである。
そこで、本発明が解決しようとする課題は、貯蔵タンクなどに移送配管を介して液体水素などの低温液化ガスを補填するときに、移送配管における蒸発ガスの発生を抑制し、高い移送効率を実現する多重真空断熱配管を提供することである。 Therefore, the problem to be solved by the present invention is to suppress the generation of evaporative gas in the transfer pipe and realize high transfer efficiency when the storage tank or the like is supplemented with low-temperature liquefied gas such as liquid hydrogen via the transfer pipe. It is to provide multiple vacuum insulation piping.
上記課題を解決するため、本発明の液化ガス真空断熱配管は、液化ガスを流す多重の真空断熱配管であって、最外層の管の内側に真空になった空間を備えて外部からの入熱を抑制し、最内層の管が金属管より熱容量が小さい繊維強化樹脂管であって通液初期における液化ガスの蒸発を抑制することを特徴とする。 In order to solve the above-mentioned problems, the liquefied gas vacuum heat insulation pipe of the present invention is a multiple vacuum heat insulation pipe for flowing a liquefied gas, and is provided with a vacuum space inside the outermost pipe, and heat input from the outside. And the innermost layer tube is a fiber reinforced resin tube having a smaller heat capacity than the metal tube, and suppresses evaporation of the liquefied gas at the initial stage of liquid passage.
また、本発明の液化ガス真空断熱配管は、特に、他の管との接続部では最内層がステンレス鋼管で形成され、その他の部分では最内層が繊維強化樹脂管であって、繊維強化樹脂管の部分ではその直ぐ外側に最内層ステンレス鋼管と接合されたステンレス鋼管が設けられて、ステンレス鋼管が液化ガスの漏洩を防止すると共に繊維強化樹脂管に大きな変形をさせないように支持することを特徴とするものであってもよい。 In addition, the liquefied gas vacuum insulation pipe of the present invention has a fiber reinforced resin pipe in which the innermost layer is formed of a stainless steel pipe in the connection part with other pipes, and the innermost layer is a fiber reinforced resin pipe in the other parts. In this part, a stainless steel pipe joined to the innermost layer stainless steel pipe is provided immediately outside, and the stainless steel pipe supports the leakage of liquefied gas and supports the fiber reinforced resin pipe not to be greatly deformed. You may do.
本発明の液化ガス真空断熱配管は、液化ガスに接する最内層管が繊維強化樹脂で形成されているため管の熱容量が小さく、また最外層管の内側に真空空間を備えるため外部入熱を抑制するので、通液初期の配管を液化ガス温度まで冷却するために液化ガスが除熱しなければならない熱量が小さく、液化ガスの蒸発を抑制することができる。 The liquefied gas vacuum insulation pipe of the present invention has a small heat capacity of the tube because the innermost layer tube in contact with the liquefied gas is formed of fiber reinforced resin, and suppresses external heat input by providing a vacuum space inside the outermost layer tube. Therefore, the amount of heat that the liquefied gas must remove from the heat in order to cool the piping at the beginning of the liquid flow to the liquefied gas temperature is small, and evaporation of the liquefied gas can be suppressed.
また、繊維強化樹脂管の部分の直ぐ外側に最内層ステンレス鋼管と接合されたステンレス鋼管が設けられたものでは、液化ガスに接触する内管が熱容量の小さい繊維強化樹脂管であるため液化ガスの蒸発を抑制する上に、ステンレス鋼管が液化ガスの漏洩を防止するので、移送配管としての安全性を確保することができると共に、繊維強化樹脂管が流体圧力により変形する場合にも、ステンレス鋼管が支えになって繊維強化樹脂管が大きな変形をしないようにすることができる。 In addition, in the case where a stainless steel pipe joined to the innermost layer stainless steel pipe is provided just outside the fiber reinforced resin pipe portion, the inner pipe in contact with the liquefied gas is a fiber reinforced resin pipe having a small heat capacity. In addition to suppressing evaporation, the stainless steel pipe prevents leakage of liquefied gas, so that safety as a transfer pipe can be secured, and the stainless steel pipe is also used when the fiber reinforced resin pipe is deformed by fluid pressure. It becomes possible to prevent the fiber-reinforced resin tube from being greatly deformed by being supported.
本発明の液化ガス真空断熱配管は、液体水素などの低温液化ガスの貯蔵タンクなどに移送配管を介して低温液化ガスを補填するときに、移送配管が液化ガス温度まで冷却する間に発生する蒸発ガス量を抑制し、液化ガスの高い移送効率を実現することができる。 The liquefied gas vacuum insulation pipe of the present invention is an evaporation that occurs while the transfer pipe cools to the liquefied gas temperature when the low temperature liquefied gas storage tank or the like such as liquid hydrogen is supplemented via the transfer pipe. The amount of gas can be suppressed and high transfer efficiency of liquefied gas can be realized.
以下、図面を参照して本発明の実施形態について説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は本実施形態の液化ガス真空断熱配管の要部を示す断面図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same constituent elements are denoted by the same reference numerals, and the description thereof is omitted.
FIG. 1 is a cross-sectional view showing the main part of the liquefied gas vacuum heat insulation pipe of this embodiment.
本実施形態の液化ガス真空断熱配管は、配管端部のステンレス鋼製の内管3、配管内奥部にある繊維強化樹脂製の内管1、繊維強化樹脂製内管1の外側に配置されるステンレス鋼製の中管5、最外層のステンレス鋼製の外管7を主要要素として構成され、液体水素LH2をコンテナ車やタンクローリーから貯蔵タンクに移送する配管である。 The liquefied gas vacuum heat insulation pipe of this embodiment is arranged outside the inner pipe 3 made of stainless steel at the end of the pipe, the inner pipe 1 made of fiber reinforced resin and the inner pipe 1 made of fiber reinforced resin in the inner part of the pipe. A stainless steel middle pipe 5 and an outermost stainless steel outer pipe 7 are used as main elements to transfer liquid hydrogen LH2 from a container car or a tank truck to a storage tank.
本実施形態では、内管1の繊維強化樹脂は、たとえばエポキシ系樹脂の炭素繊維強化樹脂やガラス繊維強化樹脂を使用することが好ましい。また、水素に直接接するので、水素が漏れないように、内管1を構成する繊維強化樹脂の表面や内部にバリア材を備えることが好ましい。 In this embodiment, it is preferable to use, for example, a carbon fiber reinforced resin or a glass fiber reinforced resin of an epoxy resin as the fiber reinforced resin of the inner tube 1. Moreover, since it contacts directly with hydrogen, it is preferable to provide a barrier material on the surface or inside of the fiber reinforced resin constituting the inner tube 1 so that hydrogen does not leak.
バリア材としてアルミ箔やステンレス箔を使用して、繊維強化樹脂に透過防止性能を付与することができる。また、特許文献1に開示された、板状の結晶構造を持つ粘土鉱物が一方向に配向しかつ緻密に積層して形成された粘着粘土膜を、繊維強化樹脂の表面や内部に形成することにより、水素の漏洩を遮断することができる。 By using an aluminum foil or a stainless steel foil as a barrier material, it is possible to impart permeation prevention performance to the fiber reinforced resin. Also, an adhesive clay film formed by densely laminating clay minerals having a plate-like crystal structure disclosed in Patent Document 1 in one direction is formed on the surface or inside of a fiber reinforced resin. Thus, leakage of hydrogen can be blocked.
また、内管3や中管5は液化ガスに接触する可能性があるので、内管3や中管5のステンレス鋼には、たとえば液体水素に適用するときは耐低温脆性を考慮して、SUS314LとSUS316Lを使用することが好ましい。 Further, since the inner tube 3 and the inner tube 5 may come into contact with the liquefied gas, the stainless steel of the inner tube 3 and the inner tube 5 is considered to be resistant to low temperature brittleness when applied to, for example, liquid hydrogen, It is preferable to use SUS314L and SUS316L.
本実施形態の液化ガス真空断熱配管は、端部を除いて内管1と中管5と外管7で3重になって、外管7と中管5の間にできる空間を第1の真空断熱層23、中管5と内管1の間にできる空間を第2の真空断熱層25とする配管である。たとえば、ごく普通の真空断熱配管として、内管1,3の外径を27.2mm、中管5の外径を42.7mm、外管7の外径を89.1mmとすることができる。 The liquefied gas vacuum heat insulation pipe of this embodiment is triple with the inner pipe 1, the middle pipe 5 and the outer pipe 7 except for the end portion, and a space formed between the outer pipe 7 and the middle pipe 5 is the first. A vacuum heat insulating layer 23, a space formed between the middle tube 5 and the inner tube 1 is a pipe that forms the second vacuum heat insulating layer 25. For example, as an ordinary vacuum heat insulating pipe, the outer diameter of the inner pipes 1 and 3 can be 27.2 mm, the outer diameter of the middle pipe 5 can be 42.7 mm, and the outer diameter of the outer pipe 7 can be 89.1 mm.
液化ガス真空断熱配管の端部には、コンテナ車やタンクローリーから液体水素(LH2)を供給する供給配管の先端に設けられたバイオネット継手のメス型27に適合するバイオネット継手のオス型17が形成されている。 At the end of the liquefied gas vacuum insulation pipe, there is a male die 17 of a bayonet fitting that matches the female die 27 of the bayonet fitting provided at the tip of a supply pipe for supplying liquid hydrogen (LH2) from a container car or a tank truck. Is formed.
配管端部の液体水素に接触する内管3はバイオネット継手をコンパクトに形成するためステンレス鋼製になっている。しかし、配管端部の内管3に配管内部で異種継手9により継合され、配管の殆どの部分を占める内管1は、熱容量を小さくするため繊維強化樹脂製とされている。
中管5の端部はフランジ15を介して配管端部の内管3に接合されている。
The inner pipe 3 in contact with the liquid hydrogen at the end of the pipe is made of stainless steel in order to form a bayonet joint compactly. However, the inner pipe 1 that is joined to the inner pipe 3 at the pipe end portion by the dissimilar joint 9 inside the pipe and occupies most of the pipe is made of fiber reinforced resin in order to reduce the heat capacity.
The end of the middle pipe 5 is joined to the inner pipe 3 at the pipe end via a flange 15.
図2は、異種継手の部分を示す断面図である。
異種継手9は、ステンレス鋼製の継手部品29を介してステンレス鋼製内管3と繊維強化樹脂製内管1の異種配管同士を継合する。継手部品29とステンレス鋼製内管3の間は溶接で接合し、繊維強化樹脂製内管1との間は、ネジ31で継合する。ネジ部には接着材を適用して結合を強固にする。なお、ネジ31はテーパネジであることが好ましい。
FIG. 2 is a cross-sectional view showing a portion of the dissimilar joint.
The dissimilar joint 9 joins dissimilar pipes of the stainless steel inner pipe 3 and the fiber reinforced resin inner pipe 1 through a stainless steel joint part 29. The joint component 29 and the stainless steel inner pipe 3 are joined by welding, and the fiber reinforced resin inner pipe 1 is joined by screws 31. An adhesive is applied to the threaded portion to strengthen the connection. The screw 31 is preferably a taper screw.
また、テーパネジ31のオス・メスは、液化ガスの温度まで下がったときの収縮状態で決める。ステンレス鋼は、室温から水素の沸点の20Kまで冷却されると約0.27%収縮するので、継合する相手が同じ温度変化で約0.4%収縮するエポキシ樹脂系のガラス繊維強化樹脂であるときは、ステンレス鋼製内管3と接合した継手部品29をオスとし、繊維強化樹脂製内管1をメスとすることが好ましい。テーパネジ31のオス・メスをこのように選択することによって、冷却したときにオス側よりメス側が縮もうとするのでテーパネジ31はより強く締まることになる。 Further, the male / female of the taper screw 31 is determined by the contracted state when it is lowered to the temperature of the liquefied gas. Stainless steel shrinks about 0.27% when cooled from room temperature to the boiling point of hydrogen, 20K, so it is an epoxy resin-based glass fiber reinforced resin that shrinks about 0.4% at the same temperature change. In some cases, it is preferable that the joint component 29 joined to the stainless steel inner pipe 3 is a male and the fiber reinforced resin inner pipe 1 is a female. By selecting the male / female of the taper screw 31 in this manner, the taper screw 31 is tightened more strongly because the female side tends to contract from the male side when cooled.
図3は、図2とオス・メスの関係が異なる異種継手を示す断面図である。
エポキシ樹脂系の炭素繊維強化樹脂は、室温から20Kまで冷却されると約0.4%膨張するので、ガラス繊維の場合と逆に、継手部品29'をメスとし、繊維強化樹脂製内管1'をオスとして、テーパネジ31'の方向を逆にすることで、冷却時に強く締まるようになる。
FIG. 3 is a cross-sectional view showing a dissimilar joint having a male / female relationship different from that in FIG.
Since the epoxy resin-based carbon fiber reinforced resin expands by about 0.4% when cooled from room temperature to 20K, conversely, in the case of glass fiber, the joint component 29 'is a female and the fiber reinforced resin inner tube 1 is expanded. By reversing the direction of the taper screw 31 'with' as a male, it is strongly tightened during cooling.
図4は、複合材料を用いて熱変形を低減させた内管の断面を表す図面である。
内管1の外側を低温において収縮する特性を有するガラス繊維強化樹脂(GFRP)33とし、内側を低温において膨張する特性を持つ炭素繊維強化樹脂(CFRP)35とした複合構造を持たせて、熱歪みを減少させることができる。室温から20Kまで冷却すると、炭素繊維強化樹脂は0.4%膨張し、ガラス繊維強化樹脂は0.4%収縮するので、複合体は液体水素と接触するようになってもほとんど変形しない。
FIG. 4 is a drawing showing a cross section of an inner tube in which thermal deformation is reduced using a composite material.
A glass fiber reinforced resin (GFRP) 33 having a property of shrinking at a low temperature on the outer side of the inner tube 1 and a carbon fiber reinforced resin (CFRP) 35 having a property of expanding at a low temperature on the inside have a composite structure. Distortion can be reduced. When cooled from room temperature to 20K, the carbon fiber reinforced resin expands by 0.4% and the glass fiber reinforced resin contracts by 0.4%, so that the composite hardly deforms even when it comes into contact with liquid hydrogen.
なお、この複合材料が剪断破壊しないため、炭素繊維強化樹脂の内面とガラス繊維強化樹脂の外面との接合面を樹脂などで補強する必要がある。また、複合材の製造段階で、炭素繊維とガラス繊維を重ねて、エポキシ系樹脂を含浸させて固化するようにしてもよい。
ステンレス鋼は同じ室温から20Kまでの温度変化で、約0.27%収縮するので、異種継手9のテーパネジは、複合材料の方をオスとし、ステンレス鋼の部分をメスとしてねじ込むことにより、低温状態でよく締まるようになる。
In addition, since this composite material does not shear and break, it is necessary to reinforce the joint surface between the inner surface of the carbon fiber reinforced resin and the outer surface of the glass fiber reinforced resin with a resin or the like. Further, at the production stage of the composite material, carbon fibers and glass fibers may be overlapped and impregnated with an epoxy resin to be solidified.
Since stainless steel shrinks by about 0.27% at the same temperature change from room temperature to 20K, the taper screw of the dissimilar joint 9 is in a low temperature state by screwing the composite material as a male and the stainless steel part as a female. It will tighten well.
再び図1に戻り、サポート11は、断熱性の合成樹脂で形成され、中管5と内管1の間に適宜の間隔で設けられたもので、中管5と内管1の間に第2断熱層25の空間を確保する機能を有する。
第2断熱層25の空間は、真空吸引して真空状態にすることにより外部からの入熱を遮断することができる。なお、活性炭シート10を空間内に挿入しておくことにより、真空吸引に代えてあるいは真空吸引と併用して、活性炭シート10の吸着機能を活用することができる。活性炭シート10は極めて高い吸着能力を有し、空間内の残留分子を吸着して固定するので、第2断熱層25における真空度が向上し、断熱機能が向上する。
Returning to FIG. 1 again, the support 11 is formed of a heat insulating synthetic resin and is provided at an appropriate interval between the middle tube 5 and the inner tube 1. 2 It has the function of ensuring the space of the heat insulation layer 25.
The space of the second heat insulating layer 25 can block heat input from the outside by being vacuumed to be in a vacuum state. In addition, by inserting the activated carbon sheet 10 into the space, the adsorption function of the activated carbon sheet 10 can be utilized instead of vacuum suction or in combination with vacuum suction. The activated carbon sheet 10 has an extremely high adsorption capacity and adsorbs and fixes the residual molecules in the space, so that the degree of vacuum in the second heat insulation layer 25 is improved and the heat insulation function is improved.
図5は、中管5と内管1の関係を説明する概念図である。
内管1の内側で液化ガスもしくは蒸発したガスが過度の圧力を及ぼすときは、図4に点線で示すように、合成樹脂製の内管1が圧力に負けて、サポート11を支点として外側に撓んでも、ステンレス鋼製の中管5にもたれて内管1が内部の流体を漏洩したり管が破損したりする事故に至らないようになっている。
また、本実施形態の液化ガス真空断熱配管は、合成樹脂製の内管1の部分全体にわたって液化ガスの流路をステンレス鋼製の中管5が囲繞するようになっているので、実質的に、内管がステンレス鋼製である液化ガス真空断熱配管と同等の安全性を確保することができる。
FIG. 5 is a conceptual diagram illustrating the relationship between the middle tube 5 and the inner tube 1.
When the liquefied gas or vaporized gas inside the inner tube 1 exerts an excessive pressure, the inner tube 1 made of synthetic resin loses the pressure and moves outward with the support 11 as a fulcrum as shown by a dotted line in FIG. Even if it bends, it does not lead to an accident in which the inner tube 1 leaks against the stainless steel middle tube 5 and the inner fluid leaks or the tube is damaged.
In addition, the liquefied gas vacuum insulation pipe of the present embodiment is configured so that the stainless steel middle pipe 5 surrounds the flow path of the liquefied gas over the entire portion of the inner pipe 1 made of synthetic resin. The same safety as that of the liquefied gas vacuum insulation pipe whose inner pipe is made of stainless steel can be ensured.
中管5には、適宜の位置に熱応力を緩和するためのベローズ13が設けられている。
ステンレス鋼と繊維強化樹脂では、熱膨張率が異なるため、中管5の両端に固定された内管1との間には大きな熱応力が生じることになるため、この熱応力を吸収する必要がある。ベローズ13は、中管5と内管1の間に発生する応力を効果的に吸収することができる。
The middle tube 5 is provided with a bellows 13 for relaxing thermal stress at an appropriate position.
Since stainless steel and fiber reinforced resin have different coefficients of thermal expansion, a large thermal stress is generated between the inner tube 1 fixed at both ends of the middle tube 5 and it is necessary to absorb this thermal stress. is there. The bellows 13 can effectively absorb the stress generated between the middle tube 5 and the inner tube 1.
外管7と中管5あるいは内管3との間に形成される空間は、真空吸引して真空状態にすることにより、外部入熱を遮断する第1断熱層23を形成する。なお、真空吸引と併用して、活性炭シート21を空間内に挿入しておいて、活性炭シート21の極めて高い吸着機能を活用し、第1断熱層23の真空度を高めて、断熱機能を向上させることができる。 A space formed between the outer tube 7 and the middle tube 5 or the inner tube 3 is vacuum-sucked to form a first heat insulating layer 23 that blocks external heat input. In combination with vacuum suction, the activated carbon sheet 21 is inserted into the space, the extremely high adsorption function of the activated carbon sheet 21 is utilized, the degree of vacuum of the first heat insulating layer 23 is increased, and the heat insulating function is improved. Can be made.
本実施形態の液化ガス真空断熱配管は、貯蔵タンクに設備されていて、貯蔵タンク中の液体水素が不足すると、液化ガスコンテナ車の供給パイプ先端のバイオネット継手27と貯蔵タンク側の真空断熱配管先端のバイオネット継手17を継合し、バイパスラインのバルブをあけて、液体水素を供給する。 The liquefied gas vacuum insulation pipe of this embodiment is installed in the storage tank, and when the liquid hydrogen in the storage tank is insufficient, the bayonet joint 27 at the tip of the supply pipe of the liquefied gas container vehicle and the vacuum insulation pipe on the storage tank side. The bayonet joint 17 at the tip is joined, the valve of the bypass line is opened, and liquid hydrogen is supplied.
初めは、真空断熱配管の温度が高いため、液体水素は真空断熱配管中で蒸発して水素ガスとなり、バイパスラインを通って大気に放散される。
やがて真空断熱配管が液体水素により十分冷却されて液体水素の沸点(20K)に近くなると、バイパスラインに繋がるバルブを遮断して、後は液体水素を全量、貯蔵タンクに移送する。
At first, since the temperature of the vacuum heat insulation pipe is high, the liquid hydrogen evaporates in the vacuum heat insulation pipe to become hydrogen gas, and is diffused to the atmosphere through the bypass line.
Eventually, when the vacuum insulation pipe is sufficiently cooled by liquid hydrogen and approaches the boiling point (20K) of liquid hydrogen, the valve connected to the bypass line is shut off, and then the entire amount of liquid hydrogen is transferred to the storage tank.
この冷却期間においてガス化した液体水素は、回収不能な成分であり、移送効率を低下させるものである。
本実施形態の液化ガス真空断熱配管においては、冷却すべき内管1が繊維強化樹脂で形成されているため、ステンレス鋼管と比べて、熱容量が小さく冷却に必要な蒸発ガス量が少ない。たとえば、長さを20mのステンレス鋼管で熱容量が約5900kJであるときに、樹脂管の熱容量は約2800kJであって、蒸発する水素ガスもステンレス鋼管の場合と比べて1/2以下になる。
The liquid hydrogen gasified during this cooling period is a component that cannot be recovered and reduces the transfer efficiency.
In the liquefied gas vacuum heat insulation pipe of this embodiment, since the inner pipe 1 to be cooled is formed of fiber reinforced resin, the heat capacity is small and the amount of evaporative gas required for cooling is small compared to the stainless steel pipe. For example, when a stainless steel pipe having a length of 20 m and a heat capacity of about 5900 kJ, the heat capacity of the resin pipe is about 2800 kJ, and the hydrogen gas to be evaporated is ½ or less compared to the case of the stainless steel pipe.
このように、本実施形態の液化ガス真空断熱配管では、内管が樹脂製であって中管がステンレス鋼製であるので、液化ガス供給の初期において配管を冷却するために発生する蒸発ガスの量を抑制することができ、かつ、ステンレス鋼製の内管を備えた液化ガス真空断熱配管と同等の安全性を確保することができる。 Thus, in the liquefied gas vacuum insulation pipe of this embodiment, since the inner pipe is made of resin and the middle pipe is made of stainless steel, the evaporation gas generated to cool the pipe in the initial stage of liquefied gas supply The amount can be suppressed, and safety equivalent to that of the liquefied gas vacuum heat insulating pipe provided with the stainless steel inner pipe can be ensured.
図6は、本発明第2の実施形態に係る液化ガス真空断熱配管の要部を示す断面図である。本実施形態の液化ガス真空断熱配管は、貯蔵タンクの液化ガス受け入れ時などに使用する移送配管に使用するものである。このような使用の仕方をする配管では、使用の度に室温から液化ガスの沸点まで冷却する必要があり、液化ガスの浪費を強いられることになる。 FIG. 6: is sectional drawing which shows the principal part of the liquefied gas vacuum heat insulation piping which concerns on the 2nd Embodiment of this invention. The liquefied gas vacuum insulation pipe of this embodiment is used for a transfer pipe used when receiving a liquefied gas in a storage tank. In piping which uses such a way, it is necessary to cool from room temperature to the boiling point of the liquefied gas every time it is used, and the liquefied gas is wasted.
本実施形態の液化ガス真空断熱配管は、2重管であって、コンテナ車の供給配管先端に設けられるバイオネット継手のメス部27と適合するバイオネット継手オス部17と一体になった内管37の部分はステンレス鋼製であるが、この内管37と異種継手9で継合される内管1の部分には、熱容量を低減するため、ガスバリア付の繊維強化樹脂製配管を採用する。外管39には、ステンレス鋼管もしくは繊維強化樹脂管を用いる。
内管1と外管39の間にはサポート11を設けて空間を確保し、この空間を真空吸引して真空断熱層41とする。真空断熱層41には活性炭シート19を挿入し、真空度を高めて断熱効果を向上させる。
The liquefied gas vacuum heat insulation pipe of this embodiment is a double pipe, and an inner pipe integrated with a bayonet joint male part 17 adapted to a female part 27 of a bayonet joint provided at the tip of a supply pipe of a container car. The portion 37 is made of stainless steel, but the portion of the inner pipe 1 joined by the inner pipe 37 and the dissimilar joint 9 employs a fiber reinforced resin pipe with a gas barrier in order to reduce the heat capacity. As the outer tube 39, a stainless steel tube or a fiber reinforced resin tube is used.
A support 11 is provided between the inner tube 1 and the outer tube 39 to secure a space, and this space is vacuum-sucked to form a vacuum heat insulating layer 41. The activated carbon sheet 19 is inserted into the vacuum heat insulating layer 41 to increase the degree of vacuum and improve the heat insulating effect.
繊維強化樹脂の極低温における耐圧力は液体水素を扱うために十分であり、ガスバリアを備えることにより水素の漏洩も防止できるので、本実施形態の液化ガス真空断熱配管は、液体水素の補填時にのみ使用する配管に適用することができる。 The pressure resistance of the fiber reinforced resin at cryogenic temperature is sufficient for handling liquid hydrogen, and since the leakage of hydrogen can be prevented by providing a gas barrier, the liquefied gas vacuum insulation pipe of this embodiment is used only when liquid hydrogen is supplemented. It can be applied to the piping used.
本発明は、液体水素などの液化ガス供給ステーションにおける貯蔵タンクの液化ガス補填に使用する移送配管などに使用することが可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a transfer pipe used for liquefied gas supplementation of a storage tank in a liquefied gas supply station such as liquid hydrogen.
1 内管(FRP製)
3 内管(ステンレス鋼製)
5 中管
7 外管
9 異種継手
11 サポート
13 ベローズ
15 フランジ
17 バイオネット継手(オス)
19,21 活性炭シート
23 第1断熱層
25 第2断熱層
27 バイオネット継手(メス)
29 継手部品
31 接着材
33 ガラス繊維強化樹脂部
35 炭素繊維強化樹脂部
37 内管
39 外管
41 断熱層
1 Inner pipe (FRP)
3 Inner tube (stainless steel)
5 Middle pipe 7 Outer pipe 9 Dissimilar joint 11 Support 13 Bellows 15 Flange 17 Bionette joint (male)
19, 21 Activated carbon sheet 23 1st heat insulation layer 25 2nd heat insulation layer 27 Bionette joint (female)
29 Joint parts 31 Adhesive material 33 Glass fiber reinforced resin part 35 Carbon fiber reinforced resin part 37 Inner pipe 39 Outer pipe 41 Heat insulation layer
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009012040A JP5415090B2 (en) | 2009-01-22 | 2009-01-22 | Vacuum insulated piping for low-temperature liquefied gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009012040A JP5415090B2 (en) | 2009-01-22 | 2009-01-22 | Vacuum insulated piping for low-temperature liquefied gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010169185A true JP2010169185A (en) | 2010-08-05 |
JP5415090B2 JP5415090B2 (en) | 2014-02-12 |
Family
ID=42701525
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009012040A Active JP5415090B2 (en) | 2009-01-22 | 2009-01-22 | Vacuum insulated piping for low-temperature liquefied gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5415090B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448240B1 (en) | 2013-04-26 | 2014-10-14 | 정우이앤이 주식회사 | Vacuum insulated pipe |
WO2016051770A1 (en) * | 2014-09-30 | 2016-04-07 | 川崎重工業株式会社 | Guide mechanism for bayonet joint in vacuum-insulated double-walled pipe for low-temperature fluid |
WO2016059755A1 (en) * | 2014-10-16 | 2016-04-21 | 川崎重工業株式会社 | Joint structure for vacuum-heat-insulated double tube for low temperature fluid |
KR20200072868A (en) * | 2018-12-13 | 2020-06-23 | 전주대학교 산학협력단 | Pipe of sprinkler |
US20230228363A1 (en) * | 2022-01-19 | 2023-07-20 | Airbus Operations Limited | Coupling for insulated piping |
WO2023135830A1 (en) * | 2022-01-11 | 2023-07-20 | 株式会社Space Walker | Method for manufactureing liquified gas container and liquified gas container |
WO2024079830A1 (en) * | 2022-10-12 | 2024-04-18 | 川崎重工業株式会社 | Piping unit for cryogenic fluid transfer |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6803148B2 (en) * | 2016-04-11 | 2020-12-23 | 川崎重工業株式会社 | Joint structure |
JP2017202783A (en) * | 2016-05-13 | 2017-11-16 | 川崎重工業株式会社 | Connection structure between vessel and loading arm |
KR102443559B1 (en) * | 2020-12-02 | 2022-09-15 | 정우이앤이 주식회사 | Expanding joint of liquid hydrogen transfer vacuum insulated pipe |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501643A (en) * | 1984-12-19 | 1987-07-02 | ユニオン カ−バイド コ−ポレ−シヨン | insulation |
JPH0251700A (en) * | 1988-08-12 | 1990-02-21 | Hitachi Ltd | Vacuum insulation piping |
JPH0550289U (en) * | 1991-12-10 | 1993-07-02 | 古河電気工業株式会社 | Flame-retardant insulation pipe |
JP2000028080A (en) * | 1998-07-13 | 2000-01-25 | Bushu Kogyo Kk | Fluid insulating transport tube |
JP2001041390A (en) * | 1999-07-30 | 2001-02-13 | Benkan Corp | Vacuum heat insulating pipe for fluid transporting piping, and piping supporting method |
JP2006188645A (en) * | 2004-12-10 | 2006-07-20 | National Institute Of Advanced Industrial & Technology | Adhesive clay film and method of using the same |
-
2009
- 2009-01-22 JP JP2009012040A patent/JP5415090B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501643A (en) * | 1984-12-19 | 1987-07-02 | ユニオン カ−バイド コ−ポレ−シヨン | insulation |
JPH0251700A (en) * | 1988-08-12 | 1990-02-21 | Hitachi Ltd | Vacuum insulation piping |
JPH0550289U (en) * | 1991-12-10 | 1993-07-02 | 古河電気工業株式会社 | Flame-retardant insulation pipe |
JP2000028080A (en) * | 1998-07-13 | 2000-01-25 | Bushu Kogyo Kk | Fluid insulating transport tube |
JP2001041390A (en) * | 1999-07-30 | 2001-02-13 | Benkan Corp | Vacuum heat insulating pipe for fluid transporting piping, and piping supporting method |
JP2006188645A (en) * | 2004-12-10 | 2006-07-20 | National Institute Of Advanced Industrial & Technology | Adhesive clay film and method of using the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101448240B1 (en) | 2013-04-26 | 2014-10-14 | 정우이앤이 주식회사 | Vacuum insulated pipe |
WO2016051770A1 (en) * | 2014-09-30 | 2016-04-07 | 川崎重工業株式会社 | Guide mechanism for bayonet joint in vacuum-insulated double-walled pipe for low-temperature fluid |
WO2016059755A1 (en) * | 2014-10-16 | 2016-04-21 | 川崎重工業株式会社 | Joint structure for vacuum-heat-insulated double tube for low temperature fluid |
KR20200072868A (en) * | 2018-12-13 | 2020-06-23 | 전주대학교 산학협력단 | Pipe of sprinkler |
KR102174844B1 (en) * | 2018-12-13 | 2020-11-05 | 전주대학교 산학협력단 | Pipe of sprinkler |
WO2023135830A1 (en) * | 2022-01-11 | 2023-07-20 | 株式会社Space Walker | Method for manufactureing liquified gas container and liquified gas container |
US20230228363A1 (en) * | 2022-01-19 | 2023-07-20 | Airbus Operations Limited | Coupling for insulated piping |
WO2024079830A1 (en) * | 2022-10-12 | 2024-04-18 | 川崎重工業株式会社 | Piping unit for cryogenic fluid transfer |
Also Published As
Publication number | Publication date |
---|---|
JP5415090B2 (en) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5415090B2 (en) | Vacuum insulated piping for low-temperature liquefied gas | |
JP2008546956A (en) | Deep refrigerant storage container | |
CA2706904C (en) | Liquefied natural gas pipeline with near zero coefficient of thermal expansion | |
WO2018147189A1 (en) | Emergency release mechanism for fluid loading devices | |
US20120325832A1 (en) | Bonding structure of metal member and composite-material member | |
JP6466581B2 (en) | System for connecting at least one pipe between an LNG tank and its tank connection space | |
US6748748B2 (en) | Hydrogen storage and supply system | |
JP2022521370A (en) | Liquefied natural gas transport pipe for fuel supply of marine engines | |
US20110226782A1 (en) | Gas temperature moderation within compressed gas vessel through heat exchanger | |
WO2014023324A1 (en) | Method for manufacturing thermal isolation panels | |
Kim et al. | Operation scenario-based design methodology for large-scale storage systems of liquid hydrogen import terminal | |
CN110513544A (en) | A kind of pipeline suitable for conveying ultralow temperature medium | |
JP5039846B1 (en) | Vaporizer for liquefied gas | |
JP2005249195A (en) | Double wall container | |
KR101171261B1 (en) | Lng carrier | |
KR20150058645A (en) | Cargo containment | |
JP5184176B2 (en) | Flexible tube for cryogenic fluid transport | |
KR20140059620A (en) | Lng transfer pipeline | |
JP6159641B2 (en) | Cryogenic propellant storage device | |
JP4622906B2 (en) | Liquefied gas filling method | |
JP2018066426A (en) | Liquid hydrogen high pressure tank for transportation | |
CN221724075U (en) | Heat insulation structure of liquid hydrogen storage bottle shell | |
JP7545611B1 (en) | Vehicles for transporting low-temperature liquefied gas | |
JP2009103165A (en) | Low temperature liquefied gas transport vehicle | |
KR102443559B1 (en) | Expanding joint of liquid hydrogen transfer vacuum insulated pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5415090 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |