[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010168538A - Endothermic/exothermic capsule and endothermic/exothermic capsule dispersion - Google Patents

Endothermic/exothermic capsule and endothermic/exothermic capsule dispersion Download PDF

Info

Publication number
JP2010168538A
JP2010168538A JP2009217731A JP2009217731A JP2010168538A JP 2010168538 A JP2010168538 A JP 2010168538A JP 2009217731 A JP2009217731 A JP 2009217731A JP 2009217731 A JP2009217731 A JP 2009217731A JP 2010168538 A JP2010168538 A JP 2010168538A
Authority
JP
Japan
Prior art keywords
capsule
absorption
phase change
change material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009217731A
Other languages
Japanese (ja)
Other versions
JP5604834B2 (en
Inventor
Hiroyuki Arai
博之 新井
Yoshitaka Sugiura
由隆 杉浦
Shinichi Ogura
新一 小倉
Atsushi Sakai
敦 阪井
Mitsuru Kondo
満 近藤
Toyo Yano
都世 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009217731A priority Critical patent/JP5604834B2/en
Publication of JP2010168538A publication Critical patent/JP2010168538A/en
Application granted granted Critical
Publication of JP5604834B2 publication Critical patent/JP5604834B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an endothermic/exothermic capsule destroying less microencapsulating wall upon swelling/shrinkage of a phase transfer material accompanied by endotherm/exotherm of the endothermic/exothermic capsule and showing high dispersion stability in a highly safe fluorinated solvent; an endothermic/exothermic capsule dispersion; and a method for producing the same. <P>SOLUTION: The endothermic/exothermic capsule includes a water-curable urethane monomer or urethane prepolymer and a fluorinated polymer having a hydroxy group in its molecule as materials for a film-like capsule wall forming an enclosed space therein, and further includes at least one of sugar alcohol, urea and thiourea as materials enclosed in the closed space inside of the capsule wall. The endothermic/exothermic capsule is produced by a first stage of microencapsulation wherein an encapsulating wall is formed by means of a quick-curable urethane monomer or urethane prepolymer in the coexistence of a surfactant, and a subsequent second stage of microencapsulation wherein a further encapsulating wall is formed by means of a urethane monomer or urethane prepolymer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、吸・放熱カプセル及び吸・放熱カプセル分散液とその製造方法に関する。   The present invention relates to an absorption / radiation capsule, an absorption / radiation capsule dispersion, and a method for producing the same.

溶媒水に溶解する相転移物質のマイクロカプセルは、特開2001−181612公報(特許文献1)に記載されている。この特許文献では、相転移物質として硫酸ナトリウム10水和物や塩化カルシウム6水和物等の無機塩水和物を、カプセル壁形成物質であるビニルモノマー、重合開始剤、分散剤を含む溶液中に分散させ、カプセル壁形成物質溶液に溶媒水に溶解する相転移物質が分散したW/Oエマルションを得て、前記W/Oエマルションを、分散剤を含有する水溶液中に分散させ、W/O/W系エマルションを調製し、カプセル壁形成物質を重合させることにより、カプセル壁形成物質に点在した相転移物質を備えた吸・放熱カプセル及び吸・放熱カプセル分散液を得ている。   A microcapsule of a phase change material that dissolves in solvent water is described in Japanese Patent Application Laid-Open No. 2001-181612 (Patent Document 1). In this patent document, an inorganic salt hydrate such as sodium sulfate decahydrate or calcium chloride hexahydrate is used as a phase transition material in a solution containing a vinyl monomer that is a capsule wall forming material, a polymerization initiator, and a dispersant. Disperse to obtain a W / O emulsion in which a phase transition material dissolved in a solvent water is dispersed in a capsule wall-forming substance solution. The W / O emulsion is dispersed in an aqueous solution containing a dispersant, and W / O / By preparing a W-based emulsion and polymerizing the capsule wall-forming substance, an absorbing / dissipating capsule and an absorbing / dissipating capsule dispersion provided with phase change substances interspersed with the capsule wall-forming substance are obtained.

特開2007−031597公報(特許文献2)では、相転移物質として水酸化バリウム8水和物(融点78℃)、フッ素系溶媒としてパーフルオロカーボン(商品名「フロリナートFC3255」、住友スリーエム社製)及びフッ素系界面活性剤(商品名「フタージェント150」、ネオス社製)を相転移物質の融点以上の温度(85℃)で、高圧乳化機を用いて乳化分散液を調製した後に、マイクロカプセル化剤であるスチレンモノマー、ジビニルベンゼンモノマー及び重合開始剤である4,4−アゾビス−4−シアノバレリック酸(商品名「AVCC」、大塚化学社製)を分散液の攪拌下に添加し、相転移物質粒子の界面でビニルモノマーを重合させ、内部に密閉空間を形成する膜状のカプセル壁体と、該カプセル壁体の該密閉空間に封入された相転移物質を備えた吸・放熱カプセル及び吸・放熱カプセル分散液を得ている。   In Japanese Patent Application Laid-Open No. 2007-031597 (Patent Document 2), barium hydroxide octahydrate (melting point: 78 ° C.) as a phase transition material, perfluorocarbon (trade name “Fluorinert FC3255”, manufactured by Sumitomo 3M) as a fluorine-based solvent, and After preparing an emulsified dispersion using a high-pressure emulsifier at a temperature (85 ° C.) above the melting point of the phase change material with a fluorosurfactant (trade name “Furgent 150”, manufactured by Neos), microencapsulation A styrene monomer, a divinylbenzene monomer, and 4,4-azobis-4-cyanovaleric acid (trade name “AVCC”, manufactured by Otsuka Chemical Co., Ltd.), which is a polymerization initiator, are added under stirring of the dispersion, and a phase is added. A film-like capsule wall body that forms a sealed space inside by polymerizing vinyl monomer at the interface of the transfer material particles, and the sealed space of the capsule wall body Newsletter intake and radiator capsules and intake and radiator capsule dispersion with the incoming has been phase change material.

特開2005−203148公報(特許文献3)では、相転移物質として水酸化バリウム8水和物(融点78℃)粒子をフッ素オイル(パーフルオロカーボン)に分散させて、分散液にシランカップリング剤を添加し、シランカップリング剤を無機粒子である相転移物質の水酸化バリウム8水和物粒子の界面に吸着させた後に、分散液の温度を55℃程度の温度にすることにより、相転移物質粒子界面でのシランカップリング剤を重合させ、フッ素系溶媒中で吸・放熱カプセル及び吸・放熱カプセル分散液を得ている。   In JP-A-2005-203148 (Patent Document 3), barium hydroxide octahydrate (melting point: 78 ° C.) particles as a phase transition material are dispersed in fluorine oil (perfluorocarbon), and a silane coupling agent is added to the dispersion. After adding and adsorbing the silane coupling agent to the interface of the barium hydroxide octahydrate particles of the phase change material which is inorganic particles, the temperature of the dispersion is brought to about 55 ° C. A silane coupling agent at the particle interface is polymerized to obtain an absorption / radiation capsule and an absorption / radiation capsule dispersion in a fluorine-based solvent.

特開2007−330872公報(特許文献4)では、相転移物質として無機塩水和物(水酸化バリウム8水和物、酢酸ナトリウム3水和物)を用いて、無機塩水和物に添加した水を開始剤として、水硬化性のウレタンモノマー又はウレタンプレポリマーで相転移物質としての無機塩水和物の界面にマイクロカプセル壁を形成し、吸・放熱カプセル及び非水溶性溶媒に該吸・放熱カプセルを分散した吸・放熱カプセル分散液を得ている。   In Japanese Patent Application Laid-Open No. 2007-330872 (Patent Document 4), an inorganic salt hydrate (barium hydroxide octahydrate, sodium acetate trihydrate) is used as a phase transition material, and water added to the inorganic salt hydrate is added. As an initiator, a microcapsule wall is formed at the interface of a water curable urethane monomer or urethane prepolymer and an inorganic salt hydrate as a phase transition material, and the absorption / radiation capsule is placed in an absorption / radiation capsule and a water-insoluble solvent. A dispersed absorption / radiation capsule dispersion is obtained.

特開2007−244935公報(特許文献5)では、相転移物質(潜熱蓄熱材)としての水に不溶性なパラフィンワックス、飽和脂肪酸、不飽和脂肪酸を水中に分散させ、アミン系重合性反応性物質を含むアルカリ水溶液を添加し、相転移物質粒子界面でナイロン膜を形成させ、その後に、イソシアネート基や二重結合を有する重合性反応物質を含む数nm〜10μmの分散液よりなるO/Wエマルションを添加して界面重合あるいはラジカル重合反応を行わせることにより、ナイロン膜表面に重合膜を形成し、吸・放熱カプセルを得ている。   In Japanese Patent Application Laid-Open No. 2007-244935 (Patent Document 5), water-insoluble paraffin wax, saturated fatty acid, and unsaturated fatty acid as a phase change material (latent heat storage material) are dispersed in water, and an amine-based polymerizable reactive material is added. Add an aqueous alkaline solution to form a nylon film at the phase change material particle interface, and then form an O / W emulsion made of a dispersion of several nm to 10 μm containing a polymerizable reactive material having an isocyanate group or a double bond. By adding it to cause interfacial polymerization or radical polymerization reaction, a polymer film is formed on the surface of the nylon film, and an absorbing / dissipating capsule is obtained.

特開2008−221046公報(特許文献6)では、相転移物質(相変化物質)としての水に不溶性なヘキサデカンを、メラミン粉末のホルムアルデヒド水溶液に加熱分散することにより、メラミン樹脂からなる外郭(151nm〜300nm厚み)を形成させ、その後に、ポリビニルアルコールなどの反応性物質にて被覆し、吸・放熱カプセルを得ている。   In JP-A-2008-221046 (Patent Document 6), water-insoluble hexadecane as a phase change material (phase change material) is heated and dispersed in a formaldehyde aqueous solution of melamine powder to thereby form an outer shell made of melamine resin (151 nm˜ 300 nm thickness), and then coated with a reactive substance such as polyvinyl alcohol to obtain an absorption / heat dissipation capsule.

特開2001−181612公報JP 2001-181612 A 特開2007−031597公報JP 2007-031597 A 特開2005−203148公報JP-A-2005-203148 特開2007−330876公報JP 2007-330876 A 特開2007−244935公報JP 2007-244935 A 特開2008−221046公報JP 2008-221046 A

前記特許文献1に記載した特徴を有する吸・放熱カプセルは、カプセル化剤もモノマー等で構成される油中に、溶媒水に溶解する相転移物質の液滴を分散させ、O/Wエマルションを形成させてから、溶媒水にO/Wエマルションを分散させているため、カプセル全体における相転移物質の体積分率を相転移物質の液滴の最密充填状態以上にすることができず、カプセル全体の体積に対する相転移物質の体積分率の割合を実質的に60体積%以上とすることは困難である。   The absorbent / heat-dissipating capsule having the characteristics described in Patent Document 1 is obtained by dispersing droplets of a phase change material dissolved in solvent water in oil composed of a monomer or the like as an encapsulating agent. Since the O / W emulsion is dispersed in the solvent water after the formation, the volume fraction of the phase change material in the entire capsule cannot be more than the close-packed state of the phase change material droplets. It is difficult to make the ratio of the volume fraction of the phase change material with respect to the total volume substantially 60% by volume or more.

また、一度O/Wエマルションを形成させてから、溶媒水にO/Wエマルションを分散させているため、カプセルの粒子径は相転移物質の液滴の粒子径より大きくなる問題を有している。   In addition, since the O / W emulsion is dispersed once in the solvent water after the O / W emulsion is formed, there is a problem that the particle size of the capsule is larger than the particle size of the droplet of the phase change material. .

前記特許文献2に記載した特徴を有する吸・放熱カプセルは、相転移物質として無機塩水和物である水酸化バリウム8水和物や水酸化ストロンチウム8水和物を用いており、吸・放熱カプセルのカプセル壁が破壊された場合には、劇物である水酸化バリウムや水酸化ストロンチウムが溶出してしまう問題を有している。また、相転移物質としての無機塩水和物は、融解・凝固の繰返しにより水和水が脱離してしまい、融解・凝固を安定的に行なうことができないという問題を有している。   The absorption / radiation capsule having the characteristics described in Patent Document 2 uses barium hydroxide octahydrate or strontium hydroxide octahydrate, which are inorganic salt hydrates, as the phase transition material. When the capsule wall is destroyed, barium hydroxide and strontium hydroxide, which are deleterious substances, are eluted. In addition, the inorganic salt hydrate as a phase transition material has a problem that the water of hydration is eliminated by repeated melting and solidification, and the melting and solidification cannot be performed stably.

また、相転移物質として無機塩水和物の粒子を得た後に、カプセル化剤としてのビニルモノマー及びラジカル重合開始剤を添加し、前記無機水和物粒子と分散媒体の界面でカプセル化剤の重合反応を進行させているが、前記無機水和物粒子と分散媒体の界面以外でもカプセル化剤の重合反応が生じる可能性があり、相転移物質を含まないカプセル粒子が生成してしまうという問題を有している。   In addition, after obtaining inorganic salt hydrate particles as a phase transition material, a vinyl monomer and a radical polymerization initiator as an encapsulating agent are added, and the encapsulating agent is polymerized at the interface between the inorganic hydrate particles and the dispersion medium. Although the reaction is proceeding, there is a possibility that the polymerization reaction of the encapsulating agent may occur at a place other than the interface between the inorganic hydrate particles and the dispersion medium, resulting in the generation of capsule particles containing no phase change material. Have.

前記特許文献3に記載した特徴を有する吸・放熱カプセルは、相転移物質として無機塩水和物である水酸化バリウム8水和物を用い、シランカップリング剤により、相転移物質内に含まれる水を用いて重合しているため、前記無機水和物粒子と分散媒体の界面のみでカプセル化剤の重合反応を進行させることができるが、シランカップリング剤の重合によりエタノール等のアルコールが生成するため、生成したアルコールの作用で、吸・放熱カプセルの分散性が著しく低下する問題を有している。   The absorption / heat dissipation capsule having the characteristics described in Patent Document 3 uses barium hydroxide octahydrate which is an inorganic salt hydrate as a phase transition material, and water contained in the phase transition material by a silane coupling agent. The polymerization reaction of the encapsulating agent can proceed only at the interface between the inorganic hydrate particles and the dispersion medium, but alcohol such as ethanol is generated by the polymerization of the silane coupling agent. For this reason, there is a problem that the dispersibility of the absorbing / dissipating capsule is significantly lowered by the action of the generated alcohol.

前記特許文献4に記載した特徴を有する吸・放熱カプセルは、前記特許文献1〜3の問題点を改善しているが、水硬化性のウレタンモノマー又はウレタンプレポリマーで相転移物質としての無機塩水和物の界面にマイクロカプセル壁を形成した場合、マイクロカプセル化壁に弾力性がなく、相転移物質の吸・放熱に伴う相転移物質の膨張・収縮により、マイクロカプセル化壁が破けてしまうという欠点を有している。   The absorption / heat dissipation capsule having the characteristics described in Patent Document 4 improves the problems of Patent Documents 1 to 3, but is an inorganic salt water as a phase change material with a water-curable urethane monomer or urethane prepolymer. When the microcapsule wall is formed at the interface of the Japanese product, the microencapsulation wall is not elastic, and the microencapsulation wall is torn due to the expansion / contraction of the phase change material due to the absorption / dissipation of the phase change material. Has drawbacks.

また、水硬化性のウレタンモノマー又はウレタンプレポリマーで形成したマイクロカプセル化粒子は壁面が有機性であるので、有機溶媒に分散させ吸・放熱カプセル分散液を得る場合は問題がないが、引火性がないフッ素系溶媒に分散させる場合は、マイクロカプセル化壁とフッ素系溶媒の親和性が弱く、吸・放熱カプセル分散液の安定性が悪くなるという問題を有している。   In addition, microencapsulated particles formed with water-curable urethane monomer or urethane prepolymer have organic walls, so there is no problem when absorbing and dissipating capsule dispersion liquid by dispersing in organic solvent, but flammability In the case of dispersing in a fluorinated solvent that does not have any, there is a problem that the affinity between the microencapsulation wall and the fluorinated solvent is weak, and the stability of the absorbing / dissipating capsule dispersion is deteriorated.

前記特許文献5及び6に記載した特徴を有する吸・放熱カプセルの製造方法は、水溶性溶媒中で、非水溶性相転移物質をその周囲において2段階でマイクロカプセル化する方法であるが、相転移物質が糖アルコール、尿素、チオ尿素等の水溶性物質である場合には、上記の方法ではマイクロカプセル化壁を形成することはできない。   The manufacturing method of the absorption / radiation capsule having the characteristics described in Patent Documents 5 and 6 is a method in which a water-insoluble phase transition material is microencapsulated in two stages in a water-soluble solvent. When the transfer substance is a water-soluble substance such as sugar alcohol, urea, thiourea, etc., the above method cannot form a microencapsulated wall.

本発明は以上のような事情に鑑みてなされたものであり、安全性の高い相転移物質を使用し、融解・凝固の繰返し時において、水溶性相転移物質の膨張・収縮に十分耐えうるマイクロカプセル化壁を有する吸・放熱カプセル、及びフッ素系溶媒に分散させた場合に、分散安定性の高い吸・放熱カプセル分散液を提供することにある。   The present invention has been made in view of the circumstances as described above, and uses a highly safe phase change material, which can sufficiently withstand the expansion and contraction of a water-soluble phase change material during repeated melting and solidification. An object of the present invention is to provide an absorbing / dissipating capsule dispersion liquid having high dispersion stability when dispersed in a fluorine-based solvent and an absorbing / dissipating capsule having an encapsulating wall.

本発明者等は、前記目的を達成するために鋭意検討した。その結果、本発明者は、従来技術の現状に留意しつつ鋭意研究を重ねた結果、内部に密閉空間を形成する膜状のカプセル壁体と、該カプセル壁体の該密閉空間に封入された封入物質としての、水又は水混和性有機溶媒に溶解する相転移物質とを備えた吸・放熱カプセルであって、前記封入物質として、糖アルコール、尿素及びチオ尿素の少なくとも1つからなる相転移物質を含有することにより、安全性の高い相転移物質を使用し、前記カプセル壁体として水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとを含有することにより、相転移物質の膨張・収縮に十分耐えうるマイクロカプセル化壁を有する吸・放熱カプセル、及びフッ素系溶媒に分散させた場合に、分散安定性の高い吸・放熱カプセル分散液を見出し、また、1段目マイクロカプセル化として硬化速度の速いウレタンモノマー又はウレタンプレポリマーにより界面活性剤の共存下でカプセル化壁を形成した後に、2段目マイクロカプセル化としてウレタンモノマー又はウレタンプレポリマーにより更なるカプセル化壁を形成することにより、上記の吸・放熱カプセルを製造できることを見出し、本発明を完成するに至った。   The inventors of the present invention have intensively studied to achieve the above object. As a result, the present inventor conducted extensive research while paying attention to the current state of the prior art, and as a result, the membrane-like capsule wall forming an enclosed space inside, and the sealed space of the capsule wall were enclosed. An absorption / radiation capsule comprising a phase change material dissolved in water or a water-miscible organic solvent as an encapsulated material, wherein the encapsulated material is a phase transition comprising at least one of sugar alcohol, urea, and thiourea By using a phase transition material with high safety by containing a substance, by containing a water-curable urethane monomer or urethane prepolymer and a fluorine-based polymer having a hydroxyl group in the molecule as the capsule wall, Absorption / radiation capsules with microencapsulated walls that can withstand the expansion and contraction of phase change materials, and absorption / radiation with high dispersion stability when dispersed in fluorinated solvents After the formation of an encapsulated wall in the presence of a surfactant with a urethane monomer or urethane prepolymer having a high curing speed as a first-stage microencapsulation, a urethane monomer is obtained as a second-stage microencapsulation. Alternatively, the inventors have found that the above-described absorption / heat dissipation capsule can be produced by forming a further encapsulating wall with a urethane prepolymer, and have completed the present invention.

すなわち、本発明は下記の吸・放熱カプセル及び吸・放熱カプセル分散液とその製造方法に関するものである。
(1)内部に密閉空間を形成する膜状のカプセル壁体と、該カプセル壁体の該密閉空間に封入された封入物質としての、水又は水混和性有機溶媒に溶解する相転移物質とを備えた吸・放熱カプセルであって、かつ、前記封入物質として、糖アルコール、尿素及びチオ尿素の少なくとも1つからなる相転移物質を含有する吸・放熱カプセルにおいて、前記カプセル壁体として、水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとを含有することを特徴とする吸・放熱カプセル。
(2)前記カプセル壁体の水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとの質量比率が40/60から60/40であることを特徴とする前記(1)に記載の吸・放熱カプセル。
(3)前記封入物質として水又は多価アルコール類を含有することを特徴とする前記(1)又は(2)に記載の吸・放熱カプセル。
(4)前記多価アルコール類がエチレングリコール、ジエチレングリコール及びグリセリンの少なくとも1つからなることを特徴とする前記(3)に記載の吸・放熱カプセル。
(5)前記吸・放熱カプセルの粒子径が10〜50μmであり、かつ、吸・放熱カプセルの粒子径に対するカプセル壁体の厚みの比率が2〜10%であることを特徴とする前記(1)〜(4)のいずれかに記載の吸・放熱カプセル。
(6)フッ素系分散媒体と、該分散媒体に分散された前記(1)〜(5)のいずれかに記載の吸・放熱カプセルを含むことを特徴とする吸・放熱カプセル分散液。
(7)前記(6)に記載の吸・放熱カプセル分散液であって、相転移物質を分散液に対して10〜40質量%、かつ、フッ素系界面活性剤を相転移物質に対して2〜30質量%、グリコール系流動促進剤を相転移物質に対して10〜100質量%含有することを特徴とする上記吸・放熱カプセル分散液。
(8)前記(1)〜(5)のいずれかに記載の吸・放熱カプセルの製造方法であって、1段目マイクロカプセル化として硬化速度の速いウレタンモノマー又はウレタンプレポリマーにより界面活性剤の共存下でカプセル化壁を形成した後に、2段目マイクロカプセル化としてウレタンモノマー又はウレタンプレポリマーにより更なるカプセル化壁を形成することを特徴とする上記方法。
(9)前記1段目マイクロカプセル化として硬化速度の速いウレタンモノマー又はウレタンプレポリマーによりカプセル化壁を形成する際に、相転移物質に対して2〜50質量%の界面活性剤を含有させることを特徴する前記(8)に記載の吸・放熱カプセルの製造方法。
That is, the present invention relates to the following absorbing / dissipating capsule, absorbing / dissipating capsule dispersion, and manufacturing method thereof.
(1) A membrane-like capsule wall that forms a sealed space inside, and a phase change material that dissolves in water or a water-miscible organic solvent as a sealed material sealed in the sealed space of the capsule wall A heat-absorbing / heat-dissipating capsule comprising the phase-change material comprising at least one of sugar alcohol, urea and thiourea as the encapsulating material, A heat-absorbing and heat-dissipating capsule comprising a functional urethane monomer or urethane prepolymer and a fluorine-based polymer having a hydroxyl group in the molecule.
(2) The mass ratio of the water-curable urethane monomer or urethane prepolymer of the capsule wall body to the fluorine-based polymer having a hydroxyl group in the molecule is 40/60 to 60/40 ).
(3) The absorbing / dissipating capsule according to (1) or (2), wherein the encapsulating substance contains water or a polyhydric alcohol.
(4) The absorbing / dissipating capsule according to (3), wherein the polyhydric alcohol is composed of at least one of ethylene glycol, diethylene glycol, and glycerin.
(5) The above-mentioned (1), wherein the absorption / heat dissipation capsule has a particle diameter of 10 to 50 μm, and the ratio of the capsule wall thickness to the absorption / heat dissipation capsule particle diameter is 2 to 10%. ) To (4).
(6) An absorbent / heat dissipating capsule dispersion comprising the fluorine-based dispersion medium and the absorbing / dissipating capsule according to any one of (1) to (5) dispersed in the dispersion medium.
(7) The absorption / heat dissipation capsule dispersion according to (6), wherein the phase change material is 10 to 40% by mass with respect to the dispersion, and the fluorosurfactant is 2% with respect to the phase change material. The absorbing / dissipating capsule dispersion described above, which contains ˜30% by mass and a glycol-based glidant in an amount of 10 to 100% by mass with respect to the phase change material.
(8) The method for producing an absorption / radiation capsule according to any one of (1) to (5) above, wherein the surfactant is made of a urethane monomer or urethane prepolymer having a high curing rate as the first-stage microencapsulation. The method as described above, wherein after forming the encapsulated wall in the coexistence, a further encapsulated wall is formed by urethane monomer or urethane prepolymer as the second-stage microencapsulation.
(9) When forming the encapsulation wall with a urethane monomer or urethane prepolymer having a high curing speed as the first-stage microencapsulation, 2 to 50% by mass of a surfactant is contained with respect to the phase change material. The method for producing an absorption / radiation capsule according to (8), characterized in that:

前記(1)に記載の吸・放熱カプセルは、相転移物質として水酸化バリウム8水和物や水酸化ストロンチウム8水和物のような強塩基性の劇物を用いておらず、吸・放熱カプセルが破壊された場合に、分散液に劇物が溶出しない特徴を有している。また、水和水の脱離により融解・凝固の繰返し安定性の低い無機塩水和物を相転移物質として用いていないため、融解・凝固の繰返し耐久性に高い吸・放熱カプセルを得ることができる。更に、前記カプセル壁体として水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとを含有することにより、マイクロカプセル化壁に弾力性が生じ、マイクロカプセル化壁内の相転移物質の吸・放熱に伴う相転移物質の膨張・収縮に耐え、マイクロカプセル化壁の破壊が少ない吸・放熱カプセルを得ることができる。   The absorbing / dissipating capsule described in (1) above does not use a strong basic deleterious substance such as barium hydroxide octahydrate or strontium hydroxide octahydrate as a phase transition material, and absorbs / releases heat. When the capsule is broken, the deleterious substances do not elute in the dispersion. In addition, since inorganic salt hydrates with low stability of repeated melting and solidification due to the detachment of hydrated water are not used as phase transition materials, it is possible to obtain absorption / heat dissipation capsules with high durability against repeated melting and solidification. . Further, by containing a water-curable urethane monomer or urethane prepolymer and a fluorine-based polymer having a hydroxyl group in the molecule as the capsule wall body, elasticity is generated in the microencapsulated wall, It is possible to obtain an absorbing / dissipating capsule that can withstand the expansion / contraction of the phase change material accompanying the absorption / dissipation of the phase change material and that does not break the microencapsulated wall.

前記(2)に記載の吸・放熱カプセルによれば、水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとの質量比率を40/60から60/40に制御することで、より弾力の高いマイクロカプセル化壁とすることができる、また、マイクロカプセル化壁にフッ素系ポリマーを含有しているため、マイクロカプセル化壁とフッ素系溶媒の親和性が向上する。   According to the absorption / heat dissipation capsule described in (2), the mass ratio of the water-curable urethane monomer or urethane prepolymer and the fluorine-based polymer having a hydroxyl group in the molecule is controlled from 40/60 to 60/40. As a result, the microencapsulated wall can be made more elastic, and the microencapsulated wall contains a fluorine-based polymer, so that the affinity between the microencapsulated wall and the fluorine-based solvent is improved.

前記(3)に記載の吸・放熱カプセルによれば、封入物質として、水又は多価アルコール類を含有することにより、相転移物質と該相転移物質を分散するウレタンモノマー又はウレタンポリマー溶液の界面で重合反応が継続するため、確実にマイクロカプセル化した吸・放熱カプセルを得ることができる。封入物質として水を含有する場合は、相転移物質と該相転移物質を分散するウレタンモノマー又はウレタンポリマー溶液の界面で、水とイソシアネート基を有するウレタンモノマー又はウレタンポリマーが反応し、該ウレタンモノマー又はウレタンポリマーの末端がアミンとなり、該末端が別のウレタンモノマー又はウレタンポリマーと反応するため、該界面で重合反応が継続する。また、分子量が小さい水は重合反応中に速やかに該相転移物質の内部から該界面に移動できるため、該界面で重合反応が継続し、確実にマイクロカプセル化した吸・放熱カプセルを得ることができる。封入物質として多価アルコール類を含有する場合は、相転移物質と該相転移物質を分散するウレタンモノマー又はウレタンポリマー溶液の界面で、アルコール基とイソシアネート基を有するウレタンモノマー又はウレタンポリマーが反応し、該ウレタンモノマー又はウレタンポリマーの末端が水酸基となり、該末端が別のウレタンモノマー又はウレタンポリマーと反応するため、該界面で重合反応が継続する。   According to the absorption / heat dissipation capsule described in (3) above, the interface between the phase change material and the urethane monomer or urethane polymer solution in which the phase change material is dispersed by containing water or a polyhydric alcohol as the encapsulating material. Since the polymerization reaction continues, it is possible to obtain a heat-absorbing and heat-dissipating capsule that is reliably microencapsulated. When water is contained as the encapsulating material, water and the urethane monomer or urethane polymer having an isocyanate group react at the interface between the phase change material and the urethane monomer or urethane polymer solution in which the phase change material is dispersed. Since the terminal of the urethane polymer becomes an amine and the terminal reacts with another urethane monomer or urethane polymer, the polymerization reaction continues at the interface. In addition, since water having a low molecular weight can quickly move from the inside of the phase change material to the interface during the polymerization reaction, the polymerization reaction continues at the interface, and it is possible to reliably obtain microcapsulated absorption / heat dissipation capsules. it can. When polyhydric alcohols are contained as the encapsulating substance, the urethane monomer or urethane polymer having an alcohol group and an isocyanate group reacts at the interface between the phase change substance and the urethane monomer or urethane polymer solution in which the phase change substance is dispersed, Since the terminal of the urethane monomer or urethane polymer becomes a hydroxyl group and the terminal reacts with another urethane monomer or urethane polymer, the polymerization reaction continues at the interface.

前記(4)に記載の吸・放熱カプセルによれば、封入物質として、多価アルコール類であって分子量が小さいエチレングリコール、ジエチレングリコール又はグリセリンを含有することにより、これらは重合反応中に速やかに該相転移物質の内部から該界面に移動できるため、該界面で重合反応が継続し、確実にマイクロカプセル化した吸・放熱カプセルを得ることができる。   According to the capsule for absorbing and releasing heat described in the above (4), as the encapsulating substance, polyhydric alcohols having a low molecular weight, such as ethylene glycol, diethylene glycol or glycerin, are contained in the capsule quickly during the polymerization reaction. Since it can move from the inside of the phase change material to the interface, the polymerization reaction continues at the interface, and a microcapsulated absorption / heat dissipation capsule can be obtained.

前記(5)に記載の吸・放熱カプセルによれば、吸・放熱カプセルの粒子径が10〜50μmであるために、吸・放熱カプセル分散液を移送するポンプのメカニカルシールの隙間に侵入することのない吸・放熱カプセルを得ることができる。また吸・放熱カプセルの粒子径に対するカプセル壁体の厚みの比率が2〜10%であるために、マイクロカプセル化壁内の相転移物質の吸・放熱に伴う相転移物質の膨張・収縮に耐え、マイクロカプセル化壁の破壊が少ない吸・放熱カプセルを得ることができる。   According to the absorption / radiation capsule described in (5) above, since the particle diameter of the absorption / radiation capsule is 10 to 50 μm, the absorption / radiation capsule enters the gap of the mechanical seal of the pump that transfers the absorption / radiation capsule dispersion liquid. Absorptive and heat dissipation capsule can be obtained. Further, since the ratio of the capsule wall thickness to the particle diameter of the absorbing / dissipating capsule is 2 to 10%, it withstands the expansion / contraction of the phase change material accompanying the absorption / dissipation of the phase change material in the microencapsulated wall. In addition, it is possible to obtain a heat-absorbing and heat-dissipating capsule with little destruction of the microencapsulated wall.

前記(6)に記載の吸・放熱カプセル分散液によれば、分散媒体に引火性のないフッ素系分散媒体を用いているので、引火性のない吸・放熱カプセル分散液を得ることができる。また、マイクロカプセル化壁にフッ素系ポリマーを含有しているため、マイクロカプセル化壁とフッ素系溶媒の親和性が向上し、フッ素系溶媒中で分散安定性の高い吸・放熱カプセル分散液を得ることができる。   According to the absorbent / heat dissipation capsule dispersion described in (6) above, since the non-flammable fluorine-based dispersion medium is used as the dispersion medium, it is possible to obtain an absorbent / heat dissipation capsule dispersion without flammability. In addition, since the microencapsulated wall contains a fluorinated polymer, the affinity between the microencapsulated wall and the fluorinated solvent is improved, and an absorbing / dissipating capsule dispersion having high dispersion stability in the fluorinated solvent is obtained. be able to.

前記(7)に記載の吸・放熱カプセル分散液によれば、吸・放熱カプセル中に相転移物質を分散液に対して10〜40質量%、かつ、フッ素系界面活性剤を相転移物質に対して2〜30質量%、グリコール系流動促進剤を相転移物質に対して10〜100質量%含有することにより、マイクロカプセル化水溶性相転移物質粒子の凝集を防止し、水溶性相転移物質粒子の沈降が少なく安定化されたマイクロカプセル化水溶性相転移物質のフッ素系溶媒の分散液を得ることができる。   According to the absorbing / dissipating capsule dispersion described in (7) above, the phase change material in the absorbing / dissipating capsule is 10 to 40% by mass with respect to the dispersion, and the fluorosurfactant is used as the phase change material. In contrast, by containing 2 to 30% by mass of the glycol-based glidant in an amount of 10 to 100% by mass with respect to the phase change material, aggregation of the microencapsulated water-soluble phase change material particles is prevented, and the water-soluble phase change material is obtained. A dispersion of a fluorine-based solvent of a microencapsulated water-soluble phase change material stabilized with less sedimentation of particles can be obtained.

前記(8)に記載の吸・放熱カプセルの製造方法によれば、吸・放熱カプセルの粒子径に対するカプセル壁体の厚みの比率を2〜10%とすることができるために、マイクロカプセル化壁内の相転移物質の吸・放熱に伴う相転移物質の膨張・収縮に耐え、マイクロカプセル化壁の破壊が少ない吸・放熱カプセルを提供することができる。   According to the method for producing a heat-absorbing / heat-radiating capsule described in (8) above, the ratio of the capsule wall thickness to the particle diameter of the heat-absorbing / heat-radiating capsule can be 2 to 10%. It is possible to provide an absorbing / dissipating capsule that can withstand expansion and contraction of the phase change material accompanying absorption / dissipation of the phase change material, and that does not break the microencapsulated wall.

前記(9)に記載の吸・放熱カプセルの製造方法によれば、硬化速度の速いウレタンモノマー又はウレタンプレポリマーによりカプセル化壁を形成する際に、相転移物質に対して2〜50質量%の界面活性剤を含有させているために、吸・放熱カプセルの合一が少ない吸・放熱カプセルを提供することができる。   According to the method for producing a heat-absorbing / radiating capsule described in (9) above, when forming an encapsulated wall with a urethane monomer or urethane prepolymer having a high curing rate, 2 to 50% by mass with respect to the phase change material. Since the surfactant is contained, it is possible to provide an absorbing / dissipating capsule with less coalescence of the absorbing / dissipating capsule.

本発明によれば、吸・放熱カプセルの吸・放熱に伴う相転移物質の膨張・収縮に対してマイクロカプセル化壁の破壊が少なく、安全性の高いフッ素系溶媒中で分散安定性の高い吸・放熱カプセル及び吸・放熱カプセル分散液とその製造方法を提供することができる。   According to the present invention, the microencapsulation wall is less damaged by the expansion / contraction of the phase change material accompanying the absorption / dissipation of the absorption / radiation capsule, and the absorption stability is high in a highly safe fluorinated solvent. A heat dissipation capsule, a heat absorption / heat dissipation capsule dispersion, and a method for producing the same can be provided.

本発明の実施例7で得られた吸・放熱カプセルの光学顕微鏡写真である。It is an optical micrograph of the absorption-heat radiation capsule obtained in Example 7 of this invention.

本発明の一実施形態について、以下のとおり説明する。
水硬化性のウレタンモノマー又はウレタンプレポリマーは、末端にイソシアネート基を有して、水と反応して重合反応を起こすものであれば特に限定されないが、トリレンジイソシナート(TDI)系のモノマーあるいはプレポリマー、ジフェニルメタンジイソシアネート(MDI)系のモノマーあるいはプレポリマー、ヘキサメチレンジイソシアネート(HDI)系のモノマーあるいはプレポリマー、1,3−ビス(イソシアナトメチル)シクロヘキサン(HXDI)系のモノマーあるいはプレポリマーを例示できる。これらは単独で又は組み合わせて用いることができる。
One embodiment of the present invention will be described as follows.
The water curable urethane monomer or urethane prepolymer is not particularly limited as long as it has an isocyanate group at the terminal and reacts with water to cause a polymerization reaction, but a tolylene diisocyanate (TDI) monomer. Alternatively, prepolymer, diphenylmethane diisocyanate (MDI) monomer or prepolymer, hexamethylene diisocyanate (HDI) monomer or prepolymer, 1,3-bis (isocyanatomethyl) cyclohexane (H 6 XDI) monomer or prepolymer A polymer can be illustrated. These can be used alone or in combination.

市販の水硬化型のウレタンのモノマーとしては、三井化学ポリウレタン製のコスモネートT65、T80、T100(TDI系)、コスモネートPH、M50、100、200、300(MDI系)、タケネート700(HDI系)、タケネート500(XDI系)、タケネート600(HXDI系)を例示できる。 Commercially available water-curing urethane monomers include Mitsui Chemicals polyurethane Cosmonate T65, T80, T100 (TDI), Cosmonate PH, M50, 100, 200, 300 (MDI), Takenate 700 (HDI) ), Takenate 500 (XDI series), Takenate 600 (H 6 XDI series).

市販の水硬化型のウレタンのプレポリマーとしては、三井化学ポリウレタン製のオレスターM83−42MBP、M37−33J、M37−50SS、M75−50SS、タケネートM−417BA、M−408、M−402(TDI系)、タケネートM405−BA(MDI系)、タケネートM−631N(HDI系)、タケネートM−605N(HXDI系)を例示できる。 Commercially available water-curing urethane prepolymers include Olester M83-42MBP, M37-33J, M37-50SS, M75-50SS, Takenate M-417BA, M-408, M-402 (TDI) manufactured by Mitsui Chemicals Polyurethane. System), Takenate M405-BA (MDI system), Takenate M-631N (HDI system), Takenate M-605N (H 6 XDI system).

上記のうち、1段目マイクロカプセル化に用いる硬化速度の速いウレタンモノマー又はウレタンプレポリマーとしては、室温(25℃)湿度60%雰囲気で2時間以下の硬化時間を有するウレタンのモノマー又はプレポリマーが好ましく、市販の水硬化型のウレタンのプレポリマーとしては、オレスターM83−42MBP、M37−33J、M37−50SS、M75−50SS、タケネートM−417BA、M−408を例示できる。   Among the above, as the urethane monomer or urethane prepolymer having a high curing rate used for the first-stage microencapsulation, a urethane monomer or prepolymer having a curing time of 2 hours or less at room temperature (25 ° C.) and humidity of 60% is used. Preferably, examples of commercially available water-curable urethane prepolymers include Olester M83-42MBP, M37-33J, M37-50SS, M75-50SS, Takenate M-417BA, and M-408.

上記のうち、2段目マイクロカプセル化に用いるウレタンモノマー又はウレタンプレポリマーとしては、その硬化速度は特に制限されないが、一般的には室温(25℃)湿度60%雰囲気で3時間以下の硬化時間を有するウレタンのモノマー又はプレポリマーが好ましく、市販の水硬化型のウレタンのプレポリマーとしては、タケネートM−402、M−405−BA、M−631N、M−605Nを例示できる。   Among the above, the curing rate of the urethane monomer or urethane prepolymer used for the second-stage microencapsulation is not particularly limited, but in general, the curing time is 3 hours or less at room temperature (25 ° C.) and 60% humidity. A urethane monomer or prepolymer having a hydrogen atom is preferred, and examples of commercially available water-curable urethane prepolymers include Takenate M-402, M-405-BA, M-631N, and M-605N.

本発明におけるカプセル壁体を構成するマイクロカプセル化剤として使用するフッ素系ポリマーは、分子内に水酸基を有しており、炭素骨格に少なくとも1つのフッ素原子が結合しているポリマーであれば特に限定はされない。   The fluoropolymer used as the microencapsulating agent constituting the capsule wall in the present invention is particularly limited as long as it has a hydroxyl group in the molecule and at least one fluorine atom is bonded to the carbon skeleton. Not done.

本発明で使用する分子内に水酸基を有するフッ素系ポリマーは、例えば、水酸基を有するフッ素系ビニルモノマーと水酸基を有さないビニルモノマーとを用いて共重合することによって製造することができる。   The fluorine-based polymer having a hydroxyl group in the molecule used in the present invention can be produced, for example, by copolymerization using a fluorine-based vinyl monomer having a hydroxyl group and a vinyl monomer having no hydroxyl group.

水酸基を有するフッ素系ビニルモノマーとしては、CX2=CX1−Rf−CH2OHを挙げることができる。式中X、X1は同一又は異なり、水素原子又はフッ素原子、Rfは炭素数1〜40の2価の含フッ素アルキレン基、炭素数1〜40の含フッ素オキシアルキレン基、炭素数1〜40のエーテル結合を含む含フッ素アルキレン基又は炭素数1〜40のエーテル結合を含む含フッ素オキシアルキレン基を表す。 Examples of the fluorine-based vinyl monomer having a hydroxyl group include CX 2 = CX 1 —Rf—CH 2 OH. Wherein X, X 1 are the same or different, a hydrogen atom or a fluorine atom, Rf is a divalent fluorine-containing alkylene group, a fluorine-containing oxyalkylene group having 1 to 40 carbon atoms of 1 to 40 carbon atoms, carbon atoms 1 to 40 A fluorine-containing alkylene group containing an ether bond or a fluorine-containing oxyalkylene group containing an ether bond having 1 to 40 carbon atoms.

水酸基を有するフッ素系ビニルモノマーとしては、より具体的には
CF2=CF−Rf1−CH2OH
を挙げることができる。式中、Rf1は炭素数1〜40の2価の含フッ素アルキレン基又はORf2、ただし、Rf2は炭素数1〜40の2価の含フッ素アルキレン基又は炭素数1〜40のエーテル結合を含む2価の含フッ素アルキレン基である。
More specifically, the fluorine-based vinyl monomer having a hydroxyl group is CF 2 ═CF—Rf 1 —CH 2 OH.
Can be mentioned. Wherein, Rf 1 is a divalent fluorine-containing alkylene group or ORf 2 of 1 to 40 carbon atoms, provided that, Rf 2 is a divalent fluorine-containing alkylene group or an ether bond having 1 to 40 carbon atoms of 1 to 40 carbon atoms Is a divalent fluorine-containing alkylene group.

また、CF2=CFCF2−ORf3−CH2OH
を挙げることができる。式中、−Rf3は炭素数1〜39の2価の含フッ素アルキレン基又は炭素数1〜39のエーテル結合を含む2価の含フッ素アルキレン基を表わす。
CF 2 = CFCF 2 —ORf 3 —CH 2 OH
Can be mentioned. In the formula, -Rf 3 represents a divalent fluorinated alkylene group having 1 to 39 carbon atoms or a divalent fluorinated alkylene group containing an ether bond having 1 to 39 carbon atoms.

また、CH2=CFCF2−Rf4−CH2OH
を挙げることができる。式中、−Rf4は炭素数1〜39の2価の含フッ素アルキレン基、又はORf5(Rf5は炭素数1〜39の2価の含フッ素アルキレン基又は炭素数1〜39のエーテル結合を含む2価の含フッ素アルキレン基)を表わす。
In addition, CH 2 = CFCF 2 -Rf 4 -CH 2 OH
Can be mentioned. In the formula, -Rf 4 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms, or ORf 5 (Rf 5 is a divalent fluorine-containing alkylene group having 1 to 39 carbon atoms or an ether bond having 1 to 39 carbon atoms. Represents a divalent fluorine-containing alkylene group).

また、CH2=CH−Rf6−CH2OH
を挙げることができる。式中、Rf6は炭素数1〜40の2価の含フッ素アルキレン基である。
In addition, CH 2 = CH-Rf 6 -CH 2 OH
Can be mentioned. In the formula, Rf 6 is a divalent fluorine-containing alkylene group having 1 to 40 carbon atoms.

一方、水酸基を有さないビニルモノマーとしては、フッ素系ビニルモノマー、例えばテトラフルオロエチレン、クロロトリフルオロエチレン、フッ化ビニル、ビニリデンフルオライド、ヘキサフルオロプロピレン、ヘキサフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)類、CH2=CF−(CF2n−X、CH2=CH−(CF2n−X、(ただし、Xはいずれも水素原子、塩素原子又はフッ素原子、nは、いずれも1〜5の整数)が挙げられる。 On the other hand, as vinyl monomers having no hydroxyl group, fluorine-based vinyl monomers such as tetrafluoroethylene, chlorotrifluoroethylene, vinyl fluoride, vinylidene fluoride, hexafluoropropylene, hexafluoroisobutene, perfluoro (alkyl vinyl ether) s CH 2 ═CF— (CF 2 ) n —X, CH 2 ═CH— (CF 2 ) n —X, wherein X is a hydrogen atom, chlorine atom or fluorine atom, and n is 1 to An integer of 5).

分子内に水酸基を有するフッ素系ポリマーとしては、テトラフルオロエチレンとパーフルオロアルキルビニルエーテルとの共重合体が好ましい。   As the fluorine-based polymer having a hydroxyl group in the molecule, a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether is preferable.

本発明で使用する分子内に水酸基を有するフッ素系ポリマーは、過半量の水酸基を有さないフッ素系ビニルモノマーと少量の水酸基を有するビニルモノマーとを用いて共重合することによって製造することもできる。   The fluorine-based polymer having a hydroxyl group in the molecule used in the present invention can also be produced by copolymerization using a fluorine-based vinyl monomer having no majority hydroxyl group and a vinyl monomer having a small amount of hydroxyl group. .

水酸基を有さないフッ素系ビニルモノマーとしては、フルオロオレフィン、例えばテトラフルオロエチレン、トリフルオロエチレン及びクロロトリフルオロエチレンが挙げられる。   Examples of the fluorine-based vinyl monomer having no hydroxyl group include fluoroolefins such as tetrafluoroethylene, trifluoroethylene, and chlorotrifluoroethylene.

水酸基を有するビニルモノマーとしては、ヒドロキシアルキルビニルエーテルが挙げられる。ヒドロキシアルキルビニルエーテルは、アルキル鎖上に置換水酸基を含有するアルキルビニルエーテルである。アルキルビニルエーテルとしては、炭素数3〜8の直鎖状又は分岐状の脂肪族アルキルビニルエーテル、例えばメチルビニルエーテル、エチルビニルエーテル、イソプロピルビニルエーテル、n−ブチルビニルエーテル及び類似の低級アルキルビニルエーテルが挙げられる。   Examples of the vinyl monomer having a hydroxyl group include hydroxyalkyl vinyl ethers. Hydroxyalkyl vinyl ether is an alkyl vinyl ether containing a substituted hydroxyl group on the alkyl chain. Examples of the alkyl vinyl ether include linear or branched aliphatic alkyl vinyl ethers having 3 to 8 carbon atoms such as methyl vinyl ether, ethyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, and similar lower alkyl vinyl ethers.

分子内に水酸基を有するフッ素系ポリマーとしては、ヒドロキシアルキルビニルエーテルとフルオロオレフィンとの共重合体が好ましい。同様に、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、及びフルオロオレフィンエーテルの三元共重合体を含むフッ素系ポリマーも好ましい。フッ素系共重合体又は三元共重合体は、モル%基準で、フルオロオレフィン30%ないし70%と、ヒドロキシアルキルビニルエーテル単位を含むビニルエーテル単位30ないし70%を含み得る。ヒドロキシアルキルビニルエーテル単位は、通常、分子内に水酸基を有するフッ素系ポリマーの1モル%ないし30モル%を構成する。該分子内に水酸基を有するフッ素系ポリマーの水酸基価は通常2ないし200であり、好ましくは5ないし150である。適当な分子内に水酸基を有するフッ素系ポリマーは、アルキルビニルエーテル、ヒドロキシアルキルビニルエーテル及びトリフルオロエチレンの三元共重合体及びルミフロン(Lumiflon)ポリマー類として公知の市販されている共重合体である。   As the fluorine-based polymer having a hydroxyl group in the molecule, a copolymer of hydroxyalkyl vinyl ether and fluoroolefin is preferable. Similarly, a fluoropolymer containing a terpolymer of alkyl vinyl ether, hydroxyalkyl vinyl ether, and fluoroolefin ether is also preferred. The fluorocopolymer or terpolymer may contain 30% to 70% fluoroolefin and 30% to 70% vinyl ether units containing hydroxyalkyl vinyl ether units on a mole percent basis. The hydroxyalkyl vinyl ether unit usually constitutes 1 mol% to 30 mol% of the fluoropolymer having a hydroxyl group in the molecule. The hydroxyl value of the fluorine-based polymer having a hydroxyl group in the molecule is usually 2 to 200, preferably 5 to 150. Suitable fluoropolymers having a hydroxyl group in the molecule are terpolymers of alkyl vinyl ethers, hydroxyalkyl vinyl ethers and trifluoroethylene, and commercially available copolymers known as Lumiflon polymers.

米国特許第4,916,188号は、分子内に水酸基を有するフッ素系ポリマーが、モル%基準で45%ないし48%のフッ素系モノマー、1%ないし30%、好ましくは2%ないし5%のヒドロキシアルキルビニルエーテルモノマー、残量のアルキルビニルエーテルモノマーを含むものが好ましいことを述べている。このフッ素系ポリマーは、周囲温度で固体であり、約35℃よりも高い、好ましくは35℃ないし50℃の軟化点又はTg を有し、ASTM D 3016、D 3536−76及びD 3593−80によるGPC(ゲル浸透クロマトグラフィ)により測定される8,000ないし16,000、好ましくは10,000ないし14,000の数平均分子量を有する。そのような種類のフッ素系ポリマーも本発明に用いるのに適している。そのようなポリマーはルミフロンLF−200Dと称され、旭硝子株式会社より販売されている。   U.S. Pat. No. 4,916,188 discloses that a fluorine-based polymer having a hydroxyl group in the molecule is 45% to 48% fluorine-based monomer, 1% to 30%, preferably 2% to 5% based on mol%. It is stated that hydroxyalkyl vinyl ether monomers and those containing the remaining amount of alkyl vinyl ether monomers are preferred. This fluoropolymer is solid at ambient temperature and has a softening point or Tg greater than about 35 ° C, preferably 35 ° C to 50 ° C, according to ASTM D 3016, D 3536-76 and D 3593-80. It has a number average molecular weight measured by GPC (gel permeation chromatography) of 8,000 to 16,000, preferably 10,000 to 14,000. Such types of fluoropolymers are also suitable for use in the present invention. Such a polymer is called Lumiflon LF-200D and is sold by Asahi Glass Co., Ltd.

分子内に水酸基を有するフッ素系ポリマーは、通常約8,000ないし約16,000、好ましくは約9,000ないし約13,000、更に好ましくは約10,000ないし約11,000の数平均分子量を有する。   The fluorine-based polymer having a hydroxyl group in the molecule is generally a number average molecular weight of about 8,000 to about 16,000, preferably about 9,000 to about 13,000, more preferably about 10,000 to about 11,000. Have

本発明に用いられる好ましい分子内に水酸基を有するフッ素系ポリマーは、旭硝子株式会社により製造されたルミフロンLF−710Fである。ルミフロンLF−710Fは水酸基価46±5、Tg 55、平均分子量10,000及び融点100℃を有する。ルミフロンLF−710Fは炭素及びフッ素の交互配列を有し、優れた耐候性能を示す。そのようなポリマーは水酸基及びカルボキシル基の両方を有する。   A preferred fluoropolymer having a hydroxyl group in the molecule used in the present invention is Lumiflon LF-710F manufactured by Asahi Glass Co., Ltd. Lumiflon LF-710F has a hydroxyl value of 46 ± 5, Tg 55, an average molecular weight of 10,000, and a melting point of 100 ° C. Lumiflon LF-710F has an alternating arrangement of carbon and fluorine and exhibits excellent weather resistance. Such polymers have both hydroxyl and carboxyl groups.

前記フッ素系ポリマーは単独で又は組み合わせて用いることができるが、フッ素系界面活性剤の添加効果を高めるために、カプセル壁体を構成するマイクロカプセル化剤のうち、前記フッ素系ポリマーの配合量を10質量%〜90質量%とすることが好ましく、質量30%〜70質量%とすることがさらに好ましい。水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとの質量比率が40/60から60/40であることが好ましく、45/55から55/45であることがさらに好ましい。   The fluorine-based polymer can be used alone or in combination, but in order to enhance the effect of adding the fluorine-based surfactant, among the microencapsulating agents constituting the capsule wall body, the amount of the fluorine-based polymer is adjusted. It is preferable to set it as 10 mass%-90 mass%, and it is more preferable to set it as 30 mass%-70 mass%. The mass ratio of the water-curable urethane monomer or urethane prepolymer and the fluoropolymer having a hydroxyl group in the molecule is preferably 40/60 to 60/40, and more preferably 45/55 to 55/45 preferable.

本発明の吸・放熱カプセル分散液においてフッ素系分散媒体として用いるフッ素系溶媒としては、炭素骨格に少なくとも1つのフッ素原子が結合している溶媒であれば特に限定されない。パーフルオロポリエーテル、パーフルオロカーボン、ハイドロフルオロエーテルなどを例示できる。これらのフッ素系溶媒は単独で使用しても差し支えないし、混合して使用しても差し支えない。フッ素系溶媒は、水又は水混和性有機溶媒に溶解する相転移物質の融解温度の低下も引き起こさず、吸・放熱カプセル分散液も引火性を有しない特徴を有しているため、吸・放熱カプセル分散液として好ましい。   The fluorinated solvent used as the fluorinated dispersion medium in the absorption / heat dissipation capsule dispersion of the present invention is not particularly limited as long as it is a solvent in which at least one fluorine atom is bonded to the carbon skeleton. Examples thereof include perfluoropolyether, perfluorocarbon, and hydrofluoroether. These fluorinated solvents may be used alone or in combination. Fluorine-based solvents do not cause a decrease in the melting temperature of phase transition materials dissolved in water or water-miscible organic solvents, and the absorption / radiation capsule dispersion has characteristics that are not flammable. Preferred as a capsule dispersion.

本発明における水又は水混和性有機溶媒に溶解する相転移物質(以下「水溶性相転移物質」という。)は、糖アルコール、尿素、チオ尿素のいずれかであれば特に限定されず、糖アルコールとしては、エリスリトール、スレイトール、キシリトール、ソルビトール、マルチトールなどの糖アルコール類を例示できる。   The phase change material (hereinafter referred to as “water-soluble phase change material”) dissolved in water or a water-miscible organic solvent in the present invention is not particularly limited as long as it is any of sugar alcohol, urea, and thiourea. Examples thereof include sugar alcohols such as erythritol, threitol, xylitol, sorbitol, maltitol and the like.

相転移物質を溶解する水混和性有機溶媒としては、相転移物質である糖アルコール、尿素、チオ尿素を溶解する溶媒であれば特に限定されず、1価アルコール類(メタノール、エタノール、プロパノール、ブタノールなど)、多価アルコール類(エチレングリコール、ジエチレングリコール、グリセリンなど)、ケトン類(アセトン、メチルエチルケトン、ジエチルケトンなど)及びエステル類(酢酸メチル、酢酸エチルなど)を例示できる。   The water-miscible organic solvent that dissolves the phase change material is not particularly limited as long as it is a solvent that dissolves the sugar alcohol, urea, and thiourea that are the phase change materials, and monohydric alcohols (methanol, ethanol, propanol, butanol). Etc.), polyhydric alcohols (ethylene glycol, diethylene glycol, glycerin, etc.), ketones (acetone, methyl ethyl ketone, diethyl ketone, etc.) and esters (methyl acetate, ethyl acetate, etc.).

これらの水溶性相転移物質は、単独で使用しても差し支えないし、混合して使用しても差し支えない。また、融解点を調節するために、水又は相転移物質に溶解する物質を含んでも差し支えない。相転移物質に溶解する物質としては、相転移物質よりも融解温度が低く、相転移物質に相転移温度以上で溶解するものであれば特に限定されないが、1価アルコール類(メタノール、エタノール、プロパノール、ブタノールなど)、多価アルコール類(エチレングリコール、ジエチレングリコール、グリセリンなど)、ケトン類(アセトン、メチルエチルケトン、ジエチルケトンなど)及びエステル類(酢酸メチル、酢酸エチルなど)を例示できる。   These water-soluble phase change materials can be used alone or in combination. Moreover, in order to adjust a melting point, the substance which melt | dissolves in water or a phase change substance may be included. The substance that dissolves in the phase transition material is not particularly limited as long as it has a melting temperature lower than that of the phase transition material and dissolves in the phase transition material at a temperature higher than the phase transition temperature, but monohydric alcohols (methanol, ethanol, propanol) And butanol), polyhydric alcohols (ethylene glycol, diethylene glycol, glycerin, etc.), ketones (acetone, methyl ethyl ketone, diethyl ketone, etc.) and esters (methyl acetate, ethyl acetate, etc.).

マイクロカプセル化反応の開始剤となる封入物質として水又は多価アルコール類を水溶性相転移物質に添加することが好ましい。多価アルコール類としては、2価以上のアルコールであり、相転移物質に相転移温度以上で溶解するものであれば特に限定されないが、相転移物質中に拡散してマイクロカプセル化表面で、ウレタンモノマー又はプレポリマーと反応するために、分子量は大きくないほうが好ましく、エチレングリコール、ジエチレングリコール及びグリセリンを例示できる。   It is preferable to add water or a polyhydric alcohol to the water-soluble phase change material as an encapsulating material that serves as an initiator for the microencapsulation reaction. The polyhydric alcohol is not particularly limited as long as it is a dihydric or higher alcohol and can be dissolved in the phase change material at a temperature higher than the phase transition temperature. In order to react with the monomer or prepolymer, the molecular weight is preferably not large, and examples thereof include ethylene glycol, diethylene glycol and glycerin.

水溶性相転移物質に添加するマイクロカプセル化反応の開始剤となる水又は多価アルコール類の量は、相転移物質に対して、1質量%〜20質量%が好ましく、5質量%〜15質量%がさらに好ましい。1質量%未満の場合は、融解温度調節の効果や重合開始剤の効果が発揮されず、20質量%を超える場合は、吸・放熱の有効物質である相転移物質の含有量が低下し好ましくない。   The amount of water or polyhydric alcohols used as an initiator for the microencapsulation reaction added to the water-soluble phase change material is preferably 1% by mass to 20% by mass with respect to the phase change material, and 5% by mass to 15% by mass. % Is more preferable. When the amount is less than 1% by mass, the effect of adjusting the melting temperature and the effect of the polymerization initiator are not exerted. When the amount exceeds 20% by mass, the content of the phase change material, which is an effective material for absorbing and releasing heat, is preferably reduced. Absent.

相転移物質の相転移温度を調節する物質である相転移物質の凝固温度を調整する過冷却防止剤としては、相転移物質の融解温度より高融解温度を有し、相転移物質の凝固の際の種結晶となり得る物質であれば特に限定されない。   The supercooling inhibitor that adjusts the solidification temperature of the phase change material, which is a material that adjusts the phase transition temperature of the phase change material, has a melting temperature higher than the melting temperature of the phase change material, The substance is not particularly limited as long as it can be a seed crystal.

過冷却防止剤としては、無機塩類、金属酸化物、金属、有機物などを例示し得る。   Examples of the supercooling preventive agent include inorganic salts, metal oxides, metals, and organic substances.

無機塩類としては、相転移物質の融解温度より高融解温度を有する物質であれば特に限定されず、塩化ナトリウム、塩化カリウム、臭化カリウム、塩化マグネシウム、炭酸ナトリウム、ホウ砂などを例示できる。   The inorganic salt is not particularly limited as long as it has a melting temperature higher than the melting temperature of the phase change material, and examples thereof include sodium chloride, potassium chloride, potassium bromide, magnesium chloride, sodium carbonate, and borax.

金属酸化物としては、酸化銅、酸化銀、酸化亜鉛、酸化ニッケル、アルミナ、チタニア、シリカ、ジルコニアなどの微細粒子を例示できる。   Examples of the metal oxide include fine particles such as copper oxide, silver oxide, zinc oxide, nickel oxide, alumina, titania, silica, and zirconia.

金属としては、白金、金、銀、パラジウム、イリジウム、ルテニウム、ニッケルなどの微細粒子を例示できる。   Examples of the metal include fine particles such as platinum, gold, silver, palladium, iridium, ruthenium, and nickel.

有機物としては、マンニトール、ペンタエリスリトールなどを例示できる。   Examples of organic substances include mannitol and pentaerythritol.

これらの過冷却防止剤は、単独で用いても良く、複数種類を併用してもかまわない。また、相転移物質の過冷却が大きくない場合は用いなくてもかまわない。過冷却防止剤の相転移物質に対する含有量は、0.1質量%〜10質量%が好ましい。0.1質量%未満の場合は、過冷却防止の効果が発揮されず、10質量%を超える場合は、吸・放熱の有効物質である相転移物質の含有量が低下し好ましくない。   These supercooling inhibitors may be used alone or in combination of two or more. Further, when the supercooling of the phase change material is not large, it may not be used. The content of the supercooling inhibitor with respect to the phase change material is preferably 0.1% by mass to 10% by mass. When the amount is less than 0.1% by mass, the effect of preventing overcooling is not exhibited, and when it exceeds 10% by mass, the content of the phase change material, which is an effective substance for absorbing and releasing heat, is undesirably reduced.

分散媒体には、吸・放熱カプセルの分散性を向上させるため、界面活性剤を含んでも構わない。本発明における界面活性剤は、特に限定されないが、各種公知の非イオン性界面活性剤、陰イオン性界面活性剤、陽イオン性界面活性剤を例示しうる。また、使用する界面活性剤は、1種類又は2種類以上の併用のいずれでもかまわない。   The dispersion medium may contain a surfactant in order to improve the dispersibility of the absorbing / dissipating capsule. The surfactant in the present invention is not particularly limited, but various known nonionic surfactants, anionic surfactants, and cationic surfactants can be exemplified. Moreover, the surfactant to be used may be one kind or a combination of two or more kinds.

非イオン性界面活性剤としては、ソルビタン脂肪酸エステル、ショ糖脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンポリオキシプロピレンブロックポリマー等を例示できる。   Nonionic surfactants include sorbitan fatty acid ester, sucrose fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, polyoxyethylene polyoxypropylene A block polymer etc. can be illustrated.

また、陰イオン性界面活性剤としては、アルキルベンゼンスルホン酸塩、アルキル硫酸塩、ロジン石鹸、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテルスルホン酸塩、ポリオキシエチレンアルキルフェニルエーテルスルホコハク酸塩、ポリオキシエチレンジスチリルフェニルエーテル硫酸塩、ポリオキシエチレンジスチリルフェニルエーテルのスルホコハク酸塩等を例示できる。   Examples of the anionic surfactant include alkylbenzene sulfonate, alkyl sulfate, rosin soap, polyoxyethylene alkylphenyl ether sulfate, polyoxyethylene alkylphenyl ether sulfonate, polyoxyethylene alkylphenyl ether sulfosuccinic acid. Examples thereof include salts, polyoxyethylene distyryl phenyl ether sulfate, sulfosuccinate of polyoxyethylene distyryl phenyl ether, and the like.

また、陽イオン性界面活性剤としては、アルキルトリメチルアンモニウムクロライド、逆性石鹸等を例示できる。   Examples of the cationic surfactant include alkyl trimethyl ammonium chloride and reverse soap.

フッ素系媒体に分散させる界面活性剤としては、非イオン性界面活性剤では、ヘキサフルオロプロペンオリゴマーのポリオキシエチレンエーテル、陰イオン性界面活性剤では、ヘキサフルオロプロペンオリゴマーのスルホン酸塩、ホスホン酸塩、カルボン酸塩、陽イオン性界面活性剤では、ヘキサフルオロプロペンオリゴマーが好ましい。   As the surfactant to be dispersed in the fluorinated medium, the nonionic surfactant is polyoxyethylene ether of hexafluoropropene oligomer, and the anionic surfactant is sulfonate or phosphonate of hexafluoropropene oligomer. In the case of carboxylate and cationic surfactant, hexafluoropropene oligomer is preferable.

本発明に用いられる好ましいフッ素系界面活性剤は、株式会社ネオス製のKB−L110、KB−L109及びKB−L115である。   Preferred fluorine-based surfactants used in the present invention are KB-L110, KB-L109 and KB-L115 manufactured by Neos Co., Ltd.

吸・放熱カプセル分散液の安全性の観点から、フッ素系溶媒分散液の安全性の観点から、添加するグリコール系流動促進剤は、引火点は高いほうが好ましく、その観点からは、エチレングリコール、ジエチレングリコール、トリエチレングリコールのエーテル又はエステルが好ましい。   From the viewpoint of the safety of the heat-absorbing and heat-dissipating capsule dispersion, from the viewpoint of the safety of the fluorine-based solvent dispersion, the glycol-type flow promoter to be added preferably has a high flash point. From this viewpoint, ethylene glycol, diethylene glycol Preferred are ethers or esters of triethylene glycol.

吸・放熱カプセル分散液の安定性の観点から、添加するグリコール系流動促進剤は、両末端水酸基がエーテル又はエステル結合した、ジエチレングリコールモノエチルエーテルアセテート(DEG−MEEA)、ジエチレングリコールモノブチルエーテルアセテート(DEG−MBuEA)、トリエチレングリコールジメチルエーテル(TEG−DME)が特に好ましい。   From the viewpoint of the stability of the heat-absorbing / radiating capsule dispersion, the glycol type glidant to be added is diethylene glycol monoethyl ether acetate (DEG-MEEA), diethylene glycol monobutyl ether acetate (DEG MBuEA) and triethylene glycol dimethyl ether (TEG-DME) are particularly preferred.

相転移物質粒子の表面にマイクロカプセル壁を形成する際の、水硬化性のウレタンモノマー又はウレタンプレポリマーを含有する溶媒に溶融した相転移物質を分散させる方法は、相転移物質のマイクロ粒子を形成できるものであれば特に限定されないが、微細な相転移物質粒子を得るために、ホモミキサーや高圧乳化機による乳化分散や膜乳化装置による分散方法が好ましい。   When the microcapsule wall is formed on the surface of the phase change material particles, the method of dispersing the melted phase change material in a solvent containing a water-curable urethane monomer or urethane prepolymer forms phase change material microparticles. Although it will not specifically limit if it can be performed, In order to obtain a fine phase change material particle, the emulsification dispersion | distribution method by a homomixer or a high-pressure emulsifier, or the film | membrane emulsifier is preferable.

ウレタンモノマー又はウレタンプレポリマーを溶解する溶媒は、ウレタンモノマー又はプレポリマーを溶解し、相転移物質をほとんど溶解しない溶媒であり、相転移物質の融点以上の沸点を有する溶媒であれば特に限定されないが、トルエン、キシレン、エチルベンゼン、ノナン、デカン、ドデカンなどの炭化水素溶媒を例示できる。   The solvent that dissolves the urethane monomer or urethane prepolymer is a solvent that dissolves the urethane monomer or prepolymer and hardly dissolves the phase change material, and is not particularly limited as long as it has a boiling point equal to or higher than the melting point of the phase change material. And hydrocarbon solvents such as toluene, xylene, ethylbenzene, nonane, decane, and dodecane.

相転移物質を水硬化性のウレタンモノマー又はウレタンプレポリマーを含有する溶媒に分散する場合に、相転移物質界面の界面張力を低下させ、相転移物質粒子を安定化させる界面活性剤を添加する必要は必ずしもないが、相転移物質粒子の合一、相転移物質粒子の粒子径を小さくするためには、相転移物質に対して、好ましくは2〜50質量%、さらに好ましくは5〜20質量%の界面活性剤を1段目のマイクロカプセル化時に含有させる。   When the phase change material is dispersed in a solvent containing a water curable urethane monomer or urethane prepolymer, it is necessary to add a surfactant that lowers the interface tension of the phase change material interface and stabilizes the phase change material particles. However, in order to reduce the particle size of the phase change material particles by coalescence of the phase change material particles, it is preferably 2 to 50% by mass, more preferably 5 to 20% by mass, based on the phase change material. The surfactant is contained at the time of microencapsulation in the first stage.

吸・放熱カプセルの粒子径は、分散液の安定性の観点からは小さく、吸・放熱カプセル分散液を移送するポンプのメカニカルシールの隙間に入り込まない観点からは、数10μm以上であることが好ましく、両方の観点から、好ましくは10〜50μm、さらに好ましくは15〜30μmの吸・放熱カプセルの粒子径が選択される。   The particle diameter of the absorbing / dissipating capsule is small from the viewpoint of the stability of the dispersion, and is preferably several tens of μm or more from the viewpoint of not entering the gap of the mechanical seal of the pump that transfers the absorbing / dissipating capsule dispersion. From both viewpoints, the particle diameter of the absorbing / dissipating capsule is preferably selected to be 10 to 50 μm, more preferably 15 to 30 μm.

吸・放熱カプセルのカプセル壁体の厚みは、吸・放熱カプセルの強度の観点からは、厚いほうが好ましく、相転移物質をカプセル内に多く含む観点からは、薄いほうが好ましい。その両方の観点から、吸・放熱カプセル径に対するカプセル壁体の厚みの比率は、好ましくは2〜10%、さらに好ましくは5〜10%である。   The thickness of the capsule wall of the absorbing / dissipating capsule is preferably thicker from the viewpoint of the strength of the absorbing / dissipating capsule, and is preferably thinner from the viewpoint of containing a large amount of phase change material in the capsule. From both viewpoints, the ratio of the thickness of the capsule wall body to the diameter of the absorbing / dissipating capsule is preferably 2 to 10%, more preferably 5 to 10%.

吸・放熱カプセル径に対するカプセル壁体の厚みの比率が2〜10%である吸・放熱カプセルを製造するには、相転移物質の融点以上の温度(スレイトールの場合は90℃)とした水硬化性のウレタンモノマー又はウレタンプレポリマーを含有する溶媒が温度維持され攪拌されている状態のところへ、溶融した相転移物質を添加することにより、相転移物質の分散と同時に、相転移物質の界面でウレタン化反応を促進する水又は多価アルコール類とウレタンモノマー又はウレタンプレポリマーを反応させてマイクロカプセル壁を形成させる。   In order to produce an absorption / radiation capsule in which the ratio of the capsule wall thickness to the absorption / radiation capsule diameter is 2 to 10%, water curing at a temperature equal to or higher than the melting point of the phase change material (90 ° C. in the case of threitol) By adding the molten phase change material to the state where the temperature of the solvent containing the urethane monomer or urethane prepolymer is maintained and stirred, at the interface of the phase change material at the same time as the dispersion of the phase change material Microcapsule walls are formed by reacting water or polyhydric alcohols that promote the urethanization reaction with urethane monomers or urethane prepolymers.

この1段目マイクロカプセル化のウレタンモノマー又はウレタンプレポリマーの溶媒中の濃度としては、ウレタンモノマー又はウレタンプレポリマーが溶媒に溶解していれば特に限定されないが、3〜30質量%の間で選択される。ウレタンモノマー又はウレタンプレポリマー濃度が低いとカプセル化壁の形成が十分でなく、濃度が高いとウレタンモノマー又はウレタンプレポリマーを含む溶媒全体がゲル化してしまう。吸・放熱カプセル径の合一を防ぎつつ、比較的短時間にマイクロカプセル化反応を行うには、溶媒中のウレタンモノマー又はウレタンプレポリマー濃度が10〜20質量%であることが特に好ましい。   The concentration of the urethane monomer or urethane prepolymer in the first-stage microencapsulation is not particularly limited as long as the urethane monomer or urethane prepolymer is dissolved in the solvent, but is selected between 3 to 30% by mass. Is done. When the concentration of the urethane monomer or urethane prepolymer is low, the formation of the encapsulation wall is not sufficient, and when the concentration is high, the entire solvent containing the urethane monomer or urethane prepolymer is gelled. In order to carry out the microencapsulation reaction in a relatively short time while preventing coalescence of the absorption / radiation capsule diameter, the concentration of the urethane monomer or urethane prepolymer in the solvent is particularly preferably 10 to 20% by mass.

1段目マイクロカプセル化に使用するウレタンモノマー又はウレタンプレポリマーの硬化速度は速いので、1段目マイクロカプセル化反応時間は、10〜30分であることが好ましく、15〜25分であることがさらに好ましい。10分より反応時間が短いとカプセル化壁体の形成が十分でなく、30分より長いと時間を無駄に使用するだけでなく、未反応のウレタンモノマー又はウレタンプレポリマーが溶媒に溶解してきた水又は多価アルコール類により反応促進され、相転移物質界面以外で反応するため好ましくない。   Since the curing rate of the urethane monomer or urethane prepolymer used for the first stage microencapsulation is high, the first stage microencapsulation reaction time is preferably 10 to 30 minutes, and preferably 15 to 25 minutes. Further preferred. When the reaction time is shorter than 10 minutes, the formation of the encapsulated wall is not sufficient. When the reaction time is longer than 30 minutes, not only is the time wasted, but also water in which the unreacted urethane monomer or urethane prepolymer is dissolved in the solvent. Alternatively, the reaction is promoted by polyhydric alcohols, and it is not preferable because it reacts at other than the phase change material interface.

1段目マイクロカプセル化における吸・放熱カプセル径に対するカプセル壁体の厚みの比率は、2%以下であるが、2段目のマイクロカプセル化工程において、相転移物質粒子の合一を防止するには十分な厚みである。   The ratio of the capsule wall thickness to the absorption / radiation capsule diameter in the first-stage microencapsulation is 2% or less, but in the second-stage microencapsulation process, the coalescence of the phase change material particles is prevented. Is a sufficient thickness.

1段目マイクロカプセル化には、分散した相転移物質粒子を安定化させ、粒子の合一を防止するために、相転移物質に対して好ましくは2〜50質量%、さらに好ましくは5〜20質量%の界面活性剤を含む。   In the first stage microencapsulation, in order to stabilize the dispersed phase change material particles and prevent coalescence of the particles, the amount is preferably 2 to 50% by mass, more preferably 5 to 20%, based on the phase change material. Contains% by weight surfactant.

2段目マイクロカプセル化に移行する前には、吸・放熱カプセルを濾過し、未反応のウレタンモノマー又はウレタンプレポリマーを分離し、新しく調製したウレタンモノマー又はウレタンプレポリマーを含む溶媒を1段目のマイクロカプセル化と同様に準備し、濾別した吸・放熱カプセルを溶媒中に再分散することが好ましい。   Before moving to the second-stage microencapsulation, the absorption / heat dissipation capsule is filtered to separate the unreacted urethane monomer or urethane prepolymer, and the newly prepared solvent containing the urethane monomer or urethane prepolymer is added to the first stage. It is preferable to re-disperse the absorbing / dissipating capsule prepared and filtered in the same manner as in the above microencapsulation.

この2段目マイクロカプセル化のウレタンモノマー又はウレタンプレポリマーの溶媒中の濃度としては、ウレタンモノマー又はウレタンプレポリマーが溶媒に溶解していれば特に限定されないが、好ましくは3〜15質量%、さらに好ましくは5〜12質量%の間で選択される。   The concentration of the second-stage microencapsulated urethane monomer or urethane prepolymer in the solvent is not particularly limited as long as the urethane monomer or urethane prepolymer is dissolved in the solvent, preferably 3 to 15% by mass, Preferably, it is selected between 5 and 12% by mass.

2段目マイクロカプセル化に使用するウレタンモノマー又はウレタンプレポリマーの2段目マイクロカプセル化反応時間は、30〜90分であることが好ましく、35〜45分であることがさらに好ましい。30分より反応時間が短いとカプセル化壁体の形成が十分でなく、90分より長いと時間を無駄に使用するだけでなく、未反応のウレタンモノマー又はウレタンプレポリマーが溶媒に溶解してきた水又は多価アルコール類により反応促進され、相転移物質界面以外で反応するため好ましくない。   The second stage microencapsulation reaction time of the urethane monomer or urethane prepolymer used for the second stage microencapsulation is preferably 30 to 90 minutes, and more preferably 35 to 45 minutes. When the reaction time is shorter than 30 minutes, the formation of the encapsulated wall is not sufficient, and when it is longer than 90 minutes, not only is the time wasted, but also water in which the unreacted urethane monomer or urethane prepolymer is dissolved in the solvent. Alternatively, the reaction is promoted by polyhydric alcohols, and it is not preferable because it reacts at other than the phase change material interface.

2段目マイクロカプセル化を行うことにより、吸・放熱カプセル径に対するカプセル壁体の厚みの比率が2%〜10%、好ましくは5%〜10%に増加し、マイクロカプセル化壁内の相転移物質の吸・放熱に伴う相転移物質の膨張・収縮に耐え得るようになる。   By performing the second-stage microencapsulation, the ratio of the capsule wall thickness to the absorption / radiation capsule diameter increases from 2% to 10%, preferably from 5% to 10%, and the phase transition in the microencapsulation wall It will be able to withstand the expansion and contraction of the phase change material accompanying the absorption and release of the material.

2段目マイクロカプセル化には、粒子の合一を防止するために、相転移物質に対して2〜50質量%、好ましくは5〜20質量%の界面活性剤を含んでもよい。   The second-stage microencapsulation may contain 2 to 50% by mass, preferably 5 to 20% by mass of a surfactant with respect to the phase change material in order to prevent coalescence of particles.

2段目マイクロカプセル化終了後に、吸・放熱カプセルを濾過し、未反応のウレタンモノマー又はウレタンプレポリマーを分離する。   After completion of the second-stage microencapsulation, the absorbing / dissipating capsule is filtered to separate the unreacted urethane monomer or urethane prepolymer.

吸・放熱カプセルを分散媒体へ分散する場合、吸・放熱カプセル分散液に対する吸・放熱カプセル体積分率は、10体積%〜50体積%であることが好ましく、15体積%〜30体積%であることがさらに好ましい。10体積%未満の場合は、吸・放熱の有効物質である相転移物質の含有量が少なく、蓄熱媒体としての効果が小さく好ましくない。50体積%を超える場合は、吸・放熱カプセル分散液の粘度が著しく増加して好ましくない。   When the absorption / radiation capsule is dispersed in the dispersion medium, the absorption / radiation capsule volume fraction with respect to the absorption / radiation capsule dispersion is preferably 10% by volume to 50% by volume, and more preferably 15% by volume to 30% by volume. More preferably. When the amount is less than 10% by volume, the content of the phase change material, which is an effective material for absorbing and releasing heat, is small, and the effect as a heat storage medium is small, which is not preferable. If it exceeds 50% by volume, the viscosity of the capsule for absorbing and releasing heat is remarkably increased, which is not preferable.

吸・放熱カプセルをフッ素系溶媒に分散する場合、相転移物質を吸・放熱カプセル分散液に対して好ましくは10〜40質量%、さらに好ましくは15〜30質量%含有させる。10質量%未満の場合は、吸・放熱の有効物質である相転移物質の含有量が少なく、蓄熱媒体としての効果が小さく好ましくない。40質量%を超える場合は、吸・放熱カプセル分散液の粘度が著しく増加して好ましくない。   In the case where the absorption / radiation capsule is dispersed in a fluorine-based solvent, the phase change material is preferably contained in an amount of 10 to 40% by mass, more preferably 15 to 30% by mass with respect to the absorption / radiation capsule dispersion. When the amount is less than 10% by mass, the content of the phase change material, which is an effective material for absorbing and releasing heat, is small, and the effect as a heat storage medium is small, which is not preferable. If it exceeds 40% by mass, the viscosity of the capsule for absorbing and releasing heat is remarkably increased, which is not preferable.

吸・放熱カプセルをフッ素系溶媒に分散する場合、吸・放熱カプセルを安定化させるために、フッ素系界面活性剤を、相転移物質に対して好ましくは2〜30質量%、さらに好ましくは5〜20質量%含有させる。2質量%未満のフッ素系界面活性剤の添加量では、分散液の安定性が十分ではなく、30質量%を超えると、分散液に粘度が増大し好ましくない。   In the case where the absorption / radiation capsule is dispersed in a fluorinated solvent, in order to stabilize the absorption / radiation capsule, the fluorine-based surfactant is preferably 2 to 30% by mass, more preferably 5 to 5%, based on the phase transition material. 20% by mass is contained. If the amount of the fluorosurfactant added is less than 2% by mass, the stability of the dispersion is not sufficient, and if it exceeds 30% by mass, the viscosity of the dispersion increases, which is not preferable.

吸・放熱カプセルのフッ素系溶媒の分散に、グリコール系流動促進剤を含有させても良い。グリコール系流動促進剤の添加量としては、相転移物質に対して、好ましくは10〜100質量%、さらに好ましくは20〜80質量%である。10質量%未満のグリコール系流動促進剤の添加量では、流動性の改善が十分ではなく、100質量%を超えると、分散液中の相転移物質の割合が低下し好ましくない。   A glycol-type flow promoter may be contained in the dispersion of the fluorine-based solvent in the absorption / heat dissipation capsule. The amount of the glycol-based glidant added is preferably 10 to 100% by mass, more preferably 20 to 80% by mass, based on the phase change material. When the amount of the glycol type glidant added is less than 10% by mass, the improvement of the fluidity is not sufficient. When the amount exceeds 100% by mass, the ratio of the phase change material in the dispersion is lowered, which is not preferable.

前記によれば、吸・放熱カプセルの吸・放熱に伴う相転移物質の膨張・収縮に対してマイクロカプセル化壁の破壊が少なく、安全性の高いフッ素系溶媒中で分散安定性の高い吸・放熱カプセル及び吸・放熱カプセル分散液とその製造方法を提供することができる。   According to the above, the microencapsulation wall is less damaged against the expansion / contraction of the phase change material accompanying the absorption / dissipation of the absorption / radiation capsule, and the absorption / absorption with high dispersion stability in the highly safe fluorinated solvent. A heat dissipating capsule, a heat dissipating / heat dissipating capsule dispersion, and a method for producing the same can be provided.

1.1段階カプセル化反応による吸・放熱カプセル及び吸・放熱カプセル分散液の製造
(実施例1)
モレキュラシーブ3A(ナカライテスク株式会社製)で脱水したトルエン(ナカライテスク株式会社製、試薬特級)に、トリレンジイソシアネート系のプレポリマーであるタケネートM−408(三井武田ケミカル株式会社製)及びフッ素系ポリマーであるルミフロンLF−710F(旭硝子株式会社製)を60質量%となるように調製したトルエン溶液90mlをホモジナイザーにて16000rpmで回転しつつ、90℃まで加熱し、マイクロカプセル化剤溶液容器に準備した。ここで、タケネートM−408とルミフロンLF−710Fの樹脂比率は50/50質量%とした。更に、フッ素系界面活性剤KB−L110(株式会社ネオス製)を50質量%となるように調製したトルエン溶液を調製し、6mlを樹脂トルエン溶液に添加した。一方、スレイトール(エーピーアイ・コーポレーション社製)にイオン交換水を10質量%となるように添加したもの10mlを、90℃まで加熱し、スレイトール溶融液を調製し、16000rpmで撹拌されている90℃に攪拌下で維持されたタケネートM−408、ルミフロンLF−710F、ならびにKB−L110が溶解しているトルエン溶液中に、スレイトール溶融液を約3分で流し入れた。スレイトール溶融液を流し入れた後も、タケネートM−408、ルミフロンLF−710F、ならびにKB−L110が溶解しているトルエン溶液は90℃に保ちつつ30分攪拌を継続し、マイクロカプセル化反応を完結させた。その後、マイクロカプセル化分散液を室温まで冷却し、パーフルオロカーボン(商品名「フロリナートFC3283」、住友スリーエム社製)を40ml添加し、2分間マグネチックスターラーで均一攪拌した。攪拌終了後、室温で30分静置して、上層にトルエン、下層にマイクロカプセル化された水溶性相転移物質の分散液63gを得た。このマイクロカプセル化水溶性相転移物質粒子のフッ素系溶媒分散液63g中には、パーフルオロカーボン39.6g、スレイトール13g、マイクロカプセル6.5g、フッ素系界面活性剤(KB−L110)3.9gを含有している。フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子をレーザ回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)により測定し、体積平均径が5μmであることを確認した。吸・放熱カプセル粒子中に含有されるスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、加熱冷却を同一サンプルにて10回繰り返した融解潜熱量の変化をスレイトールの文献値と比較することにより求めた。吸・放熱カプセル粒子中には84質量%のスレイトールを含有し、10回加熱冷却を繰り返した後も82質量%のスレイトール含有率を示した。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、70℃〜75℃と測定された。この吸・放熱カプセル分散液を、室温で24時間静置後に上層に分離したマイクロカプセル化粒子分散液を分離し、下層のフッ素系溶媒(パーフルオロカーボン)の質量を測定したところ10gであった。すなわち、分散液質量の16質量%が分離したことになる。
1.1 Production of absorption / radiation capsule and absorption / radiation capsule dispersion by a step-encapsulation reaction (Example 1)
Toluene dehydrated with Molecular Sieve 3A (manufactured by Nacalai Tesque), Takenate M-408 (manufactured by Mitsui Takeda Chemical Co., Ltd.) and a fluoropolymer Lumiflon LF-710F (manufactured by Asahi Glass Co., Ltd.), 90 ml, was heated to 90 ° C. while rotating at 16000 rpm with a homogenizer to prepare a microencapsulant solution container. . Here, the resin ratio of Takenate M-408 and Lumiflon LF-710F was 50/50 mass%. Furthermore, the toluene solution prepared so that it might become 50 mass% of fluorine-type surfactant KB-L110 (made by Neos Co., Ltd.) was prepared, and 6 ml was added to the resin toluene solution. Meanwhile, 10 ml of ion-exchanged water added to Threitol (manufactured by API Corporation) to 10% by mass is heated to 90 ° C. to prepare a threitol melt, which is stirred at 16000 rpm at 90 ° C. The threitol melt was poured into a toluene solution in which Takenate M-408, Lumiflon LF-710F, and KB-L110 were maintained under stirring in about 3 minutes. After pouring the thritol melt, the toluene solution in which Takenate M-408, Lumiflon LF-710F, and KB-L110 are dissolved is kept stirred at 90 ° C. for 30 minutes to complete the microencapsulation reaction. It was. Thereafter, the microencapsulated dispersion was cooled to room temperature, 40 ml of perfluorocarbon (trade name “Fluorinert FC 3283”, manufactured by Sumitomo 3M Limited) was added, and the mixture was uniformly stirred with a magnetic stirrer for 2 minutes. After completion of the stirring, the mixture was allowed to stand at room temperature for 30 minutes to obtain 63 g of a water-soluble phase transition material dispersion in which the upper layer was toluene and the lower layer was microencapsulated. In 63 g of the fluorinated solvent dispersion of the microencapsulated water-soluble phase change material particles, 39.6 g of perfluorocarbon, 13 g of threitol, 6.5 g of microcapsules, and 3.9 g of fluorinated surfactant (KB-L110) were added. Contains. Microencapsulated water-soluble phase change material particles dispersed in a fluorinated solvent are measured with a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.), and the volume average diameter is 5 μm. It was confirmed. The amount of threitol contained in the heat-absorbing / heat-releasing capsule particles is the literature value of slatol, which is obtained by measuring the change in latent heat of fusion obtained by repeating heating and cooling 10 times in the same sample using a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.). It was calculated by comparing with. The absorption / heat dissipation capsule particles contained 84% by mass of thritol, and the thritol content was 82% by mass even after repeated heating and cooling 10 times. Moreover, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the heat-absorbing / radiating capsule was measured to be 70 ° C to 75 ° C. The microcapsulated particle dispersion separated from the upper / lower layer after leaving this absorbing / dissipating capsule dispersion at room temperature for 24 hours was separated, and the mass of the lower fluorine solvent (perfluorocarbon) was measured to be 10 g. That is, 16% by mass of the dispersion mass was separated.

(実施例2)
タケネートM−408とルミフロンLF−710Fの樹脂比率は40/60質量%とした以外は、実施例1の方法で、フッ素系溶媒分散液63gを得た。フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子をレーザ回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)により測定し、体積平均径が5.5μmであることを確認した。吸・放熱カプセル粒子中に含有されるスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、加熱冷却を同一サンプルにて10回繰り返した融解潜熱量の変化をスレイトールの文献値と比較することにより求めた。吸・放熱カプセル粒子中には80質量%のスレイトールを含有し、10回加熱冷却を繰り返した後も79質量%のスレイトール含有率を示した。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、70℃〜75℃と測定された。この吸・放熱カプセル分散液を、室温で24時間静置後に上層に分離したマイクロカプセル化粒子分散液を分離し、下層のフッ素系溶媒(パーフルオロカーボン)の質量を測定したところ7gであった。すなわち、分散液質量の11質量%が分離したことになる。
(Example 2)
A fluorine-based solvent dispersion 63 g was obtained by the method of Example 1 except that the resin ratio of Takenate M-408 and Lumiflon LF-710F was 40/60% by mass. The microencapsulated water-soluble phase change material particles dispersed in a fluorine-based solvent were measured with a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.), and the volume average diameter was 5.5 μm. I confirmed that there was. The amount of threitol contained in the heat-absorbing / heat-releasing capsule particles is the literature value of slatol, which is obtained by measuring the change in latent heat of fusion obtained by repeating heating and cooling 10 times in the same sample using a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.). It was calculated by comparing with. The absorption / heat dissipation capsule particles contained 80% by mass of thritol, and the slatitol content of 79% by mass was exhibited even after repeated heating and cooling 10 times. Moreover, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 70 ° C to 75 ° C. When the microencapsulated particle dispersion separated from the upper / lower layer after leaving this absorbing / dissipating capsule dispersion at room temperature for 24 hours was separated, and the mass of the lower fluorine solvent (perfluorocarbon) was measured, it was 7 g. That is, 11% by mass of the dispersion mass was separated.

(実施例3)
タケネートM−408とルミフロンLF−710Fの樹脂比率は60/40質量%とした以外は、実施例1の方法で、フッ素系溶媒分散液63gを得た。フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子をレーザ回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)により測定し、体積平均径が5μmであることを確認した。吸・放熱カプセル粒子中に含有されるスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、加熱冷却を同一サンプルにて10回繰り返した融解潜熱量の変化をスレイトールの文献値と比較することにより求めた。吸・放熱カプセル粒子中には85質量%のスレイトールを含有し、10回加熱冷却を繰り返した後も83質量%のスレイトール含有率を示した。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、70℃〜75℃と測定された。この吸・放熱カプセル分散液を、室温で24時間静置後に上層に分離したマイクロカプセル化粒子分散液を分離し、下層のフッ素系溶媒(パーフルオロカーボン)の質量を測定したところ16gであった。すなわち、分散液質量の25質量%が分離したことになる。
(Example 3)
A fluorine-based solvent dispersion 63 g was obtained by the method of Example 1 except that the resin ratio of Takenate M-408 and Lumiflon LF-710F was 60/40% by mass. Microencapsulated water-soluble phase change material particles dispersed in a fluorinated solvent are measured with a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.), and the volume average diameter is 5 μm. It was confirmed. The amount of threitol contained in the heat-absorbing / heat-releasing capsule particles is the literature value of slatol, which is obtained by measuring the change in latent heat of fusion obtained by repeating heating and cooling 10 times in the same sample using a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.). It was calculated by comparing with. The absorbing / dissipating capsule particles contained 85% by weight of threitol, and the content of threitol was 83% by weight even after repeated heating and cooling 10 times. Moreover, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 70 ° C to 75 ° C. The microcapsulated particle dispersion separated from the absorbent / heat-radiating capsule dispersion at room temperature for 24 hours and then separated into the upper layer was separated, and the mass of the lower layer fluorinated solvent (perfluorocarbon) was measured to be 16 g. That is, 25% by mass of the mass of the dispersion is separated.

(実施例4)
タケネートM−408とルミフロンLF−710Fの樹脂比率は20/80質量%とした以外は、実施例1の方法で、フッ素系溶媒分散液63gを得た。フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子をレーザ回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)により測定し、体積平均径が5μmであることを確認した。吸・放熱カプセル粒子中に含有されるスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、加熱冷却を同一サンプルにて10回繰り返した融解潜熱量の変化をスレイトールの文献値と比較することにより求めた。吸・放熱カプセル粒子中には60質量%のスレイトールを含有し、10回加熱冷却を繰り返した後も50質量%のスレイトール含有率を示した。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、70℃〜75℃と測定された。この吸・放熱カプセル分散液を、室温で24時間静置後に上層に分離したマイクロカプセル化粒子分散液を分離し、下層のフッ素系溶媒(パーフルオロカーボン)の質量を測定したところ5gであった。すなわち、分散液質量の8質量%が分離したことになる。
Example 4
A fluorine-based solvent dispersion 63 g was obtained by the method of Example 1 except that the resin ratio of Takenate M-408 and Lumiflon LF-710F was 20/80 mass%. Microencapsulated water-soluble phase change material particles dispersed in a fluorinated solvent are measured with a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.), and the volume average diameter is 5 μm. It was confirmed. The amount of threitol contained in the heat-absorbing / heat-releasing capsule particles is the literature value of slatol, which is obtained by measuring the change in latent heat of fusion obtained by repeating heating and cooling 10 times in the same sample using a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.). It was calculated by comparing with. The absorbent / heat-radiating capsule particles contained 60% by mass of thritol, and showed a slateol content of 50% by mass even after repeated heating and cooling 10 times. Moreover, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 70 ° C to 75 ° C. The microcapsulated particle dispersion separated from the absorbent / heat-radiating capsule dispersion was allowed to stand at room temperature for 24 hours and then separated into the upper layer, and the mass of the lower layer fluorine-based solvent (perfluorocarbon) was measured to be 5 g. That is, 8% by mass of the dispersion mass was separated.

(実施例5)
タケネートM−408とルミフロンLF−710Fの樹脂比率は80/20質量%とした以外は、実施例1の方法で、フッ素系溶媒分散液63gを得た。フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子をレーザ回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)により測定し、体積平均径が5μmであることを確認した。吸・放熱カプセル粒子中に含有されるスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、加熱冷却を同一サンプルにて10回繰り返した融解潜熱量の変化をスレイトールの文献値と比較することにより求めた。吸・放熱カプセル粒子中には82質量%のスレイトールを含有し、10回加熱冷却を繰り返した後も77質量%のスレイトール含有率を示した。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、70℃〜75℃と測定された。この吸・放熱カプセル分散液を、室温で24時間静置後に上層に分離したマイクロカプセル化粒子分散液を分離し、下層のフッ素系溶媒(パーフルオロカーボン)の質量を測定したところ25gであった。すなわち、分散液質量の40質量%が分離したことになる。
(Example 5)
A fluorine-based solvent dispersion 63 g was obtained by the method of Example 1 except that the resin ratio of Takenate M-408 and Lumiflon LF-710F was 80/20% by mass. Microencapsulated water-soluble phase change material particles dispersed in a fluorinated solvent are measured with a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.), and the volume average diameter is 5 μm. It was confirmed. The amount of threitol contained in the heat-absorbing / heat-releasing capsule particles is the literature value of slatol, which is obtained by measuring the change in latent heat of fusion obtained by repeating heating and cooling 10 times in the same sample using a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.). It was calculated by comparing with. The absorption / heat dissipation capsule particles contained 82% by mass of threitol, and showed a 77% by mass thritol content even after repeated heating and cooling 10 times. Moreover, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 70 ° C to 75 ° C. The microcapsulated particle dispersion separated from the upper / lower layer after leaving this absorbing / dissipating capsule dispersion at room temperature for 24 hours was separated, and the mass of the lower fluorine solvent (perfluorocarbon) was measured to be 25 g. That is, 40% by mass of the dispersion liquid was separated.

(実施例6)
相転移物質として、スレイトール(エーピーアイ・コーポレーション社製)10gを使用した。1段目マイクロカプセル化反応には、スレイトールに対し60質量%のマイクロカプセル化剤6g(トリレンジイソシアネート系のプレポリマーであるタケネートM−408(三井武田ケミカル株式会社製)3g、フッ素系ポリマーであるルミフロンLF−710F(旭硝子株式会社製)3g)、スレイトールに対し5質量%のフッ素系界面活性剤KB−L110(株式会社ネオス製)0.5gをマイクロカプセル化剤の濃度が16質量%となるようにモレキュラシーブ3A(ナカライテスク株式会社製)で脱水したトルエン(ナカライテスク株式会社製、試薬特級)31.5gに溶解したトルエン溶液38gを、ホモジナイザーにて16000rpmで回転しつつ、90℃まで加熱した。一方、スレイトール10gにイオン交換水1g(10質量%)を添加したもの11gを、90℃まで加熱し、スレイトール溶融液を調製し、16000rpmで撹拌されている90℃に攪拌下で維持された上記トルエン溶液38g中に添加した。トルエン溶液は90℃に保ちつつ20分攪拌を継続し、1段目のマイクロカプセル化反応を完結させた。反応終了後、反応液を室温まで急冷し、デカンテーションにて吸・放熱カプセルから未反応のマイクロカプセル化剤を含むトルエン溶液を分離した。
(Example 6)
As a phase transition material, 10 g of slateol (manufactured by API Corporation) was used. In the first stage microencapsulation reaction, 60 g% of microencapsulating agent 6 g (Takenate M-408 (produced by Mitsui Takeda Chemical Co., Ltd.), which is a tolylene diisocyanate-based prepolymer) A certain Lumiflon LF-710F (Asahi Glass Co., Ltd. 3 g), 5% by mass of fluorosurfactant KB-L110 (Neos Co., Ltd.) 0.5 g with respect to Threitol, and the concentration of the microencapsulating agent is 16% by mass. 38 g of toluene solution dissolved in 31.5 g of toluene dehydrated with Molecular Sieve 3A (manufactured by Nacalai Tesque Co., Ltd., reagent grade) is heated to 90 ° C. while rotating at 16000 rpm with a homogenizer. did. On the other hand, 11 g of 1 g (10% by mass) of ion-exchanged water added to 10 g of threitol was heated to 90 ° C. to prepare a threitol melt and maintained at 90 ° C. with stirring at 16000 rpm with stirring. It was added to 38 g of toluene solution. The toluene solution was kept stirring at 90 ° C. for 20 minutes to complete the first microencapsulation reaction. After completion of the reaction, the reaction solution was rapidly cooled to room temperature, and the toluene solution containing the unreacted microencapsulating agent was separated from the absorption / release heat capsule by decantation.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に97質量%のスレイトールが含有され、カプセル壁体厚みは0.15μmと計算され、吸・放熱カプセル径20μm(半径10μm)に対し、1.5%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルの一部が、合一しており、十分にカプセル壁が形成できていないと推察された。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、87℃と測定された。   The dried capsule for absorbing and releasing heat was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. The capsule contains 97% by weight of thritol based on the latent heat of fusion of the capsule, and the capsule wall thickness is calculated to be 0.15 μm. For the capsule diameter of 20 μm (radius 10 μm), 1.5% It became the thickness ratio of the capsule wall body. After repeating the two absorption / heat dissipation cycles, it was surmised that some of the absorption / radiation capsules were united and the capsule wall could not be formed sufficiently. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 87 ° C.

(比較例1)
タケネートM−408とルミフロンLF−710Fの樹脂比率は0/100質量%とした以外は、実施例1の方法で、フッ素系溶媒分散液63gを得ようと試みたが、フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子を得ることはできず、マイクロカプセル化剤、水溶性相転移物質が合一した塊を得た。
(Comparative Example 1)
An attempt was made to obtain 63 g of the fluorinated solvent dispersion by the method of Example 1 except that the resin ratio of Takenate M-408 and Lumiflon LF-710F was 0/100% by mass. The microencapsulated water-soluble phase change material particles could not be obtained, and a mass in which the microencapsulating agent and the water-soluble phase change material were combined was obtained.

(比較例2)
タケネートM−408とルミフロンLF−710Fの樹脂比率は100/0質量%とした以外は、実施例1の方法で、フッ素系溶媒分散液63gを得た。フッ素系溶媒に分散されたマイクロカプセル化された水溶性相転移物質粒子をレーザ回折/散乱式粒度分布測定装置LA−910(株式会社堀場製作所製)により測定し、体積平均径が4μmであることを確認した。吸・放熱カプセル粒子中に含有されるスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、加熱冷却を同一サンプルにて10回繰り返した融解潜熱量の変化をスレイトールの文献値と比較することにより求めた。吸・放熱カプセル粒子中には80質量%のスレイトールを含有し、10回加熱冷却を繰り返した後も75質量%のスレイトール含有率を示した。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、70℃〜75℃と測定された。この吸・放熱カプセル分散液を、室温で24時間静置後に上層に分離したマイクロカプセル化粒子分散液を分離し、下層のフッ素系溶媒(パーフルオロカーボン)の質量を測定したところ32gであった。すなわち、分散液質量の51質量%が分離したことになる。
(Comparative Example 2)
A fluorine-based solvent dispersion 63 g was obtained by the method of Example 1 except that the resin ratio of Takenate M-408 and Lumiflon LF-710F was 100/0% by mass. Microencapsulated water-soluble phase change material particles dispersed in a fluorine-based solvent are measured with a laser diffraction / scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.), and the volume average diameter is 4 μm. It was confirmed. The amount of threitol contained in the heat-absorbing / heat-releasing capsule particles is the literature value of slatol, which is obtained by measuring the change in latent heat of fusion obtained by repeating heating and cooling 10 times in the same sample using a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.). It was calculated by comparing with. The absorption / heat dissipation capsule particles contained 80% by mass of thritol, and the thritol content was 75% by mass even after repeated heating and cooling 10 times. Moreover, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 70 ° C to 75 ° C. When the microencapsulated particle dispersion separated from the upper / lower layer after leaving this absorbing / dissipating capsule dispersion at room temperature for 24 hours was separated, the mass of the lower fluorine solvent (perfluorocarbon) was measured and found to be 32 g. That is, 51% by mass of the dispersion liquid was separated.

これらの実施例1〜5及び比較例1〜2の結果を表1にまとめるが、内部に水溶性相転移物質を含有する吸・放熱カプセルにおいて、カプセル壁体として、水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとを含有する場合、吸・放熱カプセルの吸・放熱に伴う相転移物質の膨張・収縮に対して、吸・放熱カプセル内の水溶性相転移物質の減少量が少なく、安全性の高いフッ素系溶媒中でフッ素系溶媒の分離量が減少した。   The results of these Examples 1 to 5 and Comparative Examples 1 and 2 are summarized in Table 1. In the absorption / heat dissipation capsule containing a water-soluble phase change substance inside, as a capsule wall, a water-curable urethane monomer or When a urethane prepolymer and a fluorine-based polymer having a hydroxyl group in the molecule are contained, the water-soluble phase transition in the absorbing / dissipating capsule against the expansion / contraction of the phase change material accompanying the absorbing / dissipating of the absorbing / dissipating capsule The amount of the fluorinated solvent was reduced in a highly safe fluorinated solvent with little decrease in the amount of substances.

Figure 2010168538
Figure 2010168538

2.2段階カプセル化反応による吸・放熱カプセル及び吸・放熱カプセル分散液の製造
吸・放熱カプセルの製造
(実施例7)
<1段目マイクロカプセル化反応>
1回の吸・放熱カプセルの調製に、相転移物質として、スレイトール(エーピーアイ・コーポレーション社製)10gを使用した。1段目マイクロカプセル化反応には、スレイトールに対し60質量%のマイクロカプセル化剤6g(トリレンジイソシアネート系のプレポリマーであるタケネートM−408(三井武田ケミカル株式会社製)3g、フッ素系ポリマーであるルミフロンLF−710F(旭硝子株式会社製)3g)、スレイトールに対し5質量%のフッ素系界面活性剤KB−L110(株式会社ネオス製)0.5gをマイクロカプセル化剤の濃度が16質量%となるようにモレキュラシーブ3A(ナカライテスク株式会社製)で脱水したトルエン(ナカライテスク株式会社製、試薬特級)31.5gに溶解したトルエン溶液38gを、ホモジナイザーにて16000rpmで回転しつつ、90℃まで加熱した。一方、スレイトール10gにイオン交換水1g(10質量%)を添加したもの11gを、90℃まで加熱し、スレイトール溶融液を調製し、16000rpmで撹拌されている90℃に攪拌下で維持された上記トルエン溶液38g中に添加した。トルエン溶液は90℃に保ちつつ20分攪拌を継続し、1段目のマイクロカプセル化反応を完結させた。反応終了後、反応液を室温まで急冷し、デカンテーションにて吸・放熱カプセルから未反応のマイクロカプセル化剤を含むトルエン溶液を分離した。
2.2 Production of absorption / radiation capsules and absorption / radiation capsule dispersions by encapsulating reaction
Manufacture of absorption / radiation capsules (Example 7)
<First stage microencapsulation reaction>
For the preparation of the one-time absorption / radiation capsule, 10 g of slateol (manufactured by API Corporation) was used as a phase change material. In the first stage microencapsulation reaction, 60 g% of microencapsulating agent 6 g (Takenate M-408 (produced by Mitsui Takeda Chemical Co., Ltd.), which is a tolylene diisocyanate-based prepolymer) A certain Lumiflon LF-710F (Asahi Glass Co., Ltd. 3 g), 5% by mass of fluorosurfactant KB-L110 (Neos Co., Ltd.) 0.5 g with respect to Threitol, and the concentration of the microencapsulating agent is 16% by mass. 38 g of toluene solution dissolved in 31.5 g of toluene dehydrated with Molecular Sieve 3A (manufactured by Nacalai Tesque Co., Ltd., reagent grade) is heated to 90 ° C. while rotating at 16000 rpm with a homogenizer. did. On the other hand, 11 g of 1 g (10% by mass) of ion-exchanged water added to 10 g of threitol was heated to 90 ° C. to prepare a threitol melt and maintained at 90 ° C. with stirring at 16000 rpm with stirring. It was added to 38 g of toluene solution. The toluene solution was kept stirring at 90 ° C. for 20 minutes to complete the first microencapsulation reaction. After completion of the reaction, the reaction solution was rapidly cooled to room temperature, and the toluene solution containing the unreacted microencapsulating agent was separated from the absorption / release heat capsule by decantation.

<2段目マイクロカプセル化反応>
2段目マイクロカプセル化反応には、スレイトールに対し60質量%のマイクロカプセル化剤6g(1,3−ビス(イソシアナトメチル)シクロヘキサン系のプレポリマーであるタケネートM−605Nを3g、ルミフロンLF−710Fを3g)、スレイトールに対し5質量%のフッ素系界面活性剤(KB−L110)0.5gをマイクロカプセル化剤の濃度が10質量%となるようにモレキュラシーブ3Aで脱水したトルエン54gに溶解したトルエン溶液60.5gを、ホモジナイザーにて16000rpmで回転しつつ、90℃まで加熱した。一方、1段目マイクロカプセル化で得られた上記吸・放熱カプセルを、16000rpmで撹拌されている90℃に攪拌下で維持された上記トルエン溶液60.5g中に添加した。トルエン溶液は90℃に保ちつつ40分攪拌を継続し、2段目のマイクロカプセル化反応を完結させた。反応終了後、反応液を室温まで急冷し、デカンテーションにて吸・放熱カプセルから未反応のマイクロカプセル化剤を含むトルエン溶液を分離した。分離した吸・放熱カプセルは、モレキュラシーブ3Aで脱水したトルエン50gで洗浄し、未反応のマイクロカプセル化剤を完全に除去し、室温減圧にて溶剤であるトルエンを除去し乾燥した吸・放熱カプセルを得た。
<Second stage microencapsulation reaction>
In the second microencapsulation reaction, 6 g of microencapsulating agent 6 g (1,3-bis (isocyanatomethyl) cyclohexane prepolymer 3 g of Takenate M-605N with respect to threitol, Lumiflon LF- 710F (3 g) and 5% by mass of fluorosurfactant (KB-L110) with respect to threitol (0.5 g) were dissolved in 54 g of toluene dehydrated with molecular sieve 3A so that the concentration of the microencapsulating agent was 10% by mass. 60.5 g of toluene solution was heated to 90 ° C. while rotating at 16000 rpm with a homogenizer. On the other hand, the absorption / release heat capsule obtained by the first-stage microencapsulation was added to 60.5 g of the toluene solution maintained at 90 ° C. with stirring at 16000 rpm. The toluene solution was kept stirring at 90 ° C. for 40 minutes to complete the second-stage microencapsulation reaction. After completion of the reaction, the reaction solution was rapidly cooled to room temperature, and the toluene solution containing the unreacted microencapsulating agent was separated from the absorption / release heat capsule by decantation. The separated absorption / radiation capsule was washed with 50 g of toluene dehydrated with molecular sieve 3A to completely remove the unreacted microencapsulating agent, and the solvent was removed from toluene at room temperature under reduced pressure. Obtained.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、図1に示すように、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に82質量%のスレイトールが含有され、カプセル壁体厚みは0.92μm、すなわち、吸・放熱カプセル径20μm(半径10μm)に対し、9.2%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルは、球形の形状を維持していた。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、88℃と測定された。   The dried absorption / radiation capsule was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm as shown in FIG. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. 82 mass% of thritol is contained in the capsule from the latent heat of fusion of the absorption / radiation capsule, and the capsule wall thickness is 0.92 μm, that is, 9.2% of the absorption / radiation capsule diameter of 20 μm (radius 10 μm). It became the thickness ratio of the capsule wall. After repeating the two absorption / radiation cycles, the absorption / radiation capsule maintained a spherical shape. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the heat-absorbing / radiating capsule was measured to be 88 ° C.

(実施例8)
1段目マイクロカプセル化反応において、スレイトールに対し60質量%のマイクロカプセル化剤6g(タケネートM−408を3g、ルミフロンLF−710Fを3g)、スレイトールに対し5質量%のフッ素系界面活性剤(KB−L110)0.5gをマイクロカプセル化剤の濃度が5質量%となるようにモレキュラシーブ3Aで脱水したトルエン114gに溶解した以外は実施例7と同じ操作を行った。
(Example 8)
In the first-stage microencapsulation reaction, 6 g of a microencapsulating agent of 60% by mass with respect to threitol (3 g of Takenate M-408, 3 g of Lumiflon LF-710F) and 5% by mass of a fluorosurfactant with respect to threitol ( The same operation as in Example 7 was performed except that 0.5 g of KB-L110) was dissolved in 114 g of toluene dehydrated with molecular sieve 3A so that the concentration of the microencapsulating agent was 5% by mass.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に94質量%のスレイトールが含有され、カプセル壁体厚みは0.27μm、すなわち、吸・放熱カプセル径20μm(半径10μm)に対し、2.7%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルは、球形の形状を維持していた。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、88℃と測定された。   The dried capsule for absorbing and releasing heat was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. From the amount of latent heat of fusion of the absorbing / dissipating capsule, 94% by mass of thritol is contained in the capsule, and the capsule wall thickness is 0.27 μm, that is, 2.7% of the absorbing / dissipating capsule diameter of 20 μm (radius 10 μm). It became the thickness ratio of the capsule wall. After repeating the two absorption / radiation cycles, the absorption / radiation capsule maintained a spherical shape. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the heat-absorbing / radiating capsule was measured to be 88 ° C.

(実施例9)
2段目マイクロカプセル化反応において、スレイトールに対し60質量%のマイクロカプセル化剤6g(タケネートM−605Nを3g、ルミフロンLF−710Fを3g)、スレイトールに対し5質量%のフッ素系界面活性剤(KB−L110)0.5gをマイクロカプセル化剤の濃度が5質量%となるようにモレキュラシーブ3Aで脱水したトルエン114gに溶解した以外は実施例7と同じ操作を行った。
Example 9
In the second-stage microencapsulation reaction, 6 g of a microencapsulating agent of 60% by mass with respect to threitol (3 g of Takenate M-605N and 3 g of Lumiflon LF-710F) and 5% by mass of a fluorosurfactant with respect to threitol ( The same operation as in Example 7 was performed except that 0.5 g of KB-L110) was dissolved in 114 g of toluene dehydrated with molecular sieve 3A so that the concentration of the microencapsulating agent was 5% by mass.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に84質量%のスレイトールが含有され、カプセル壁体厚みは0.81μm、すなわち、吸・放熱カプセル径20μm(半径10μm)に対し、8.1%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルは、球形の形状を維持していた。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、87℃と測定された。   The dried capsule for absorbing and releasing heat was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. From the amount of latent heat of fusion of the absorbing / dissipating capsule, 84% by mass of thritol is contained in the capsule, and the capsule wall thickness is 0.81 μm, that is, 8.1% with respect to the absorbing / dissipating capsule diameter of 20 μm (radius 10 μm). It became the thickness ratio of the capsule wall. After repeating the two absorption / radiation cycles, the absorption / radiation capsule maintained a spherical shape. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 87 ° C.

(実施例10)
2段目マイクロカプセル化反応において、スレイトールに対し5質量%のフッ素系界面活性剤(KB−L110)0.5gを添加しない以外は、実施例7と同じ操作を行った。
(Example 10)
In the second-stage microencapsulation reaction, the same operation as in Example 7 was performed, except that 0.5 g of 5% by mass of a fluorosurfactant (KB-L110) was not added to threitol.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に88質量%のスレイトールが含有され、カプセル壁体厚みは0.58μm、すなわち、吸・放熱カプセル径20μm(半径10μm)に対し、5.8%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルは、球形の形状を維持していた。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、87℃と測定された。   The dried capsule for absorbing and releasing heat was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. Based on the amount of latent heat of fusion of the absorbing / dissipating capsule, 88% by mass of thritol is contained in the capsule, and the capsule wall thickness is 0.58 μm, that is, 5.8% of the absorbing / dissipating capsule diameter of 20 μm (radius 10 μm). It became the thickness ratio of the capsule wall. After repeating the two absorption / radiation cycles, the absorption / radiation capsule maintained a spherical shape. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 87 ° C.

(実施例11)
スレイトール10gにカプセル化反応の促進剤として、イオン交換水1g(10質量%)の代わりにジエチレングリコール(DEG)1g(10質量%)とし、1段目マイクロカプセル化反応時間を120分、2段目マイクロカプセル化反応時間を120分に変更した以外は、実施例7と同じ操作を行った。
(Example 11)
As an accelerator for the encapsulation reaction in 10 g of thritol, 1 g (10 mass%) of diethylene glycol (DEG) is used instead of 1 g (10 mass%) of ion-exchanged water, and the first stage microencapsulation reaction time is 120 minutes. The same operation as in Example 7 was performed except that the microencapsulation reaction time was changed to 120 minutes.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に84質量%のスレイトールが含有され、カプセル壁体厚みは0.80μm、すなわち、吸・放熱カプセル径20μm(半径10μm)に対し、8.0%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルは、球形の形状を維持していた。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、72℃と測定された。   The dried capsule for absorbing and releasing heat was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. From the amount of latent heat of fusion of the absorbing / dissipating capsule, 84% by mass of thritol is contained in the capsule, and the capsule wall thickness is 0.80 μm, that is, 8.0% against the absorbing / dissipating capsule diameter of 20 μm (radius 10 μm). It became the thickness ratio of the capsule wall. After repeating the two absorption / radiation cycles, the absorption / radiation capsule maintained a spherical shape. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the heat-absorbing / heat-radiating capsule was measured to be 72 ° C.

(比較例3)
1段目マイクロカプセル化反応にマイクロカプセル化剤として、フッ素系ポリマーであるルミフロンLF−710Fを含まず、トリレンジイソシアネート系のプレポリマーであるタケネートM−408だけで6g、2段目マイクロカプセル化反応にマイクロカプセル化剤として、フッ素系ポリマーであるルミフロンLF−710Fを含まず、1,3−ビス(イソシアナトメチル)シクロヘキサン系のプレポリマーであるタケネートM605Nだけで6gとした以外は、実施例7と同じ操作を行った。
(Comparative Example 3)
The first stage microencapsulation reaction does not contain Lumiflon LF-710F, which is a fluoropolymer, as a microencapsulating agent, but only 6 g of Takenate M-408, a tolylene diisocyanate prepolymer, and second stage microencapsulation. Example except that Lumiflon LF-710F, which is a fluorine-based polymer, is not included as a microencapsulating agent in the reaction, and 6 g is formed using only Takenate M605N, which is a 1,3-bis (isocyanatomethyl) cyclohexane-based prepolymer. The same operation as 7 was performed.

分離した吸・放熱カプセルを、モレキュラシーブ3Aで脱水したトルエン50gで洗浄したところ、吸・放熱カプセルは凝集し、大きな塊となり、粒子径が10〜50μmの吸・放熱カプセルは形成していなかった。   When the separated absorption / radiation capsule was washed with 50 g of toluene dehydrated with molecular sieve 3A, the absorption / radiation capsule aggregated into a large lump, and an absorption / radiation capsule having a particle diameter of 10 to 50 μm was not formed.

(比較例4)
1段目マイクロカプセル化反応において、スレイトールに対し5質量%のフッ素系界面活性剤(KB−L110)0.5gを添加しない以外は、実施例7と同じ操作を行った。
(Comparative Example 4)
In the first-stage microencapsulation reaction, the same operation as in Example 7 was performed except that 0.5 g of 5% by mass of a fluorosurfactant (KB-L110) was not added to the threitol.

乾燥した吸・放熱カプセルは、光学顕微鏡で観察し、粒子径が20μm程度の球形粒子であることを確認した。吸・放熱カプセル粒子中に含有される相転移物質のスレイトール量は、示差熱分析計DSC3100(株式会社マックサイエンス社製)により、融解潜熱量及び融解温度を測定した。吸・放熱カプセルの融解潜熱量からカプセル中に100質量%のスレイトールが含有され、カプセル壁体厚みは0μmと計算され、吸・放熱カプセル径20μm(半径10μm)に対し、0%のカプセル壁体の厚み比率となった。2回の吸・放熱サイクルの繰返し後、吸・放熱カプセルは、合一して大きな塊となり、十分にカプセル壁が形成できていないと推察された。また、示差熱分析計DSC3100の測定結果より、吸・放熱カプセル中のスレイトールの融解温度は、87℃と測定された。   The dried capsule for absorbing and releasing heat was observed with an optical microscope and confirmed to be spherical particles having a particle diameter of about 20 μm. The amount of thritol of the phase transition material contained in the absorption / radiation capsule particles was measured by a differential thermal analyzer DSC3100 (manufactured by Mac Science Co., Ltd.) for the latent heat of fusion and the melting temperature. The capsule contains 100% by weight of thritol from the latent heat of fusion of the absorbing / dissipating capsule, and the capsule wall thickness is calculated to be 0 μm. Thickness ratio. It was surmised that after the two absorption / heat dissipation cycles were repeated, the absorption / radiation capsules were united into a large lump and a capsule wall could not be formed sufficiently. Further, from the measurement result of the differential thermal analyzer DSC3100, the melting temperature of thritol in the absorption / radiation capsule was measured to be 87 ° C.

(比較例5)
1段目マイクロカプセル化反応において、マイクロカプセル化剤である硬化時間の速いトリレンジイソシアネート系のプレポリマーであるタケネートM−408に代えて、硬化時間の遅い1,3−ビス(イソシアナトメチル)シクロヘキサン系のプレポリマーであるタケネートM−605Nを用い、1段目マイクロカプセル化反応時間を20分から60分に延長した以外は、実施例7と同じ操作を行った。
(Comparative Example 5)
In the first-stage microencapsulation reaction, 1,3-bis (isocyanatomethyl) having a slow curing time is used instead of Takenate M-408, which is a tolylene diisocyanate prepolymer having a fast curing time, which is a microencapsulating agent. The same operation as in Example 7 was performed except that Takenate M-605N, which is a cyclohexane-based prepolymer, was used to extend the first-stage microencapsulation reaction time from 20 minutes to 60 minutes.

2段目マイクロカプセル化反応の終了時点で反応溶液全体にゲル化が見られ、吸・放熱カプセルを得ることはできなかった。   Gelation was observed in the entire reaction solution at the end of the second-stage microencapsulation reaction, and an absorption / radiation capsule could not be obtained.

以上の実施例7〜11について、相転移物質(PCM)の種、カプセル化反応の促進剤種、添加量、1段目及び2段目のマイクロカプセル化反応におけるカプセル化剤種とフッ素系ポリマー比率、反応温度、反応時間、カプセル化剤添加量、カプセル化剤のトルエン溶液中濃度、界面活性剤の添加量、吸・放熱カプセルの直径、カプセル壁厚み、カプセル壁比率、相転移物質(PCM)の含有率、相転移物資(PCM)の融解温度、2回の吸・放熱サイクル実施後のカプセル壁の維持を表2に示す。同じように、実施例6及び7と比較例3〜5について表3に示す。   Regarding Examples 7 to 11 above, seeds of phase change material (PCM), seeds of accelerator for encapsulating reaction, amount added, seeds of encapsulating agent and fluoropolymer in first and second stage microencapsulation reactions Ratio, reaction temperature, reaction time, amount of encapsulating agent added, concentration of encapsulating agent in toluene solution, amount of surfactant added, diameter of absorbing / dissipating capsule, capsule wall thickness, capsule wall ratio, phase change material (PCM) ), The melting temperature of the phase change material (PCM), and the maintenance of the capsule wall after two absorption / release cycles are shown in Table 2. Similarly, it shows in Table 3 about Example 6 and 7 and Comparative Examples 3-5.

Figure 2010168538
Figure 2010168538

Figure 2010168538
Figure 2010168538

吸・放熱カプセル分散液の製造
(実施例12)
実施例7で調製した吸・放熱カプセル11.9g(相転移物質で10g)にパーフルオロカーボン(フロリナートFC3283、住友スリーエム社製)を56g(相転移物質に対し5.6倍)、フッ素系界面活性剤KB−L110(株式会社ネオス製)を1.25g(相転移物質に対し12.5質量%)、グリコール系流動促進剤として、ジエチレングリコールモノブチルエーテルアセテート(DEG−MBuEA)5g(相転移物質に対し50質量%)を常温にて添加攪拌し、吸・放熱カプセル分散液75.15gを調製した。吸・放熱カプセル分散液に含まれる相転移物質の含有量は13.3質量%となる。分散媒体であるパーフルオロカーボン(フロリナートFC3283)の密度は、1.82g/cmであるので、吸・放熱カプセル分散液に含まれる相転移物質の体積分率はおよそ20体積%となる。
Production of absorption / radiation capsule dispersion (Example 12)
Perfluorocarbon (Fluorinert FC 3283, manufactured by Sumitomo 3M Co.) 56 g (5.6 times the phase change material) perfluorocarbon (Fluoronate FC 3283) to 11.9 g (10 g of phase change material) of the absorption / heat dissipation capsule prepared in Example 7, fluorine-based surface activity Agent KB-L110 (manufactured by Neos Co., Ltd.) 1.25 g (12.5% by mass with respect to the phase change material), diethylene glycol monobutyl ether acetate (DEG-MBuEA) 5 g (with respect to the phase change material) 50 mass%) was added and stirred at room temperature to prepare 75.15 g of an absorbing / dissipating capsule dispersion. The content of the phase change material contained in the absorption / radiation capsule dispersion is 13.3% by mass. Since the density of perfluorocarbon (Fluorinert FC 3283) as a dispersion medium is 1.82 g / cm 3 , the volume fraction of the phase change material contained in the absorbing / dissipating capsule dispersion is approximately 20% by volume.

このように調製した吸・放熱カプセル分散液を無攪拌条件下で、90℃で30分加熱後に室温まで放置冷却の繰返し吸・放熱サイクルを10回実施した後に、分散状態を確認したところ、比重差が大きいため静置状態では2相分離していたが、攪拌を加えると元の分散状態に復帰した。吸・放熱サイクルを10回実施後の吸・放熱カプセルを示差熱分析計DSC3100により、融解潜熱及び融解温度を測定したところ、吸・放熱カプセルの融解潜熱量からカプセル中に83質量%のスレイトールが含有され、スレイトールの融解温度は88℃と測定され、吸・放熱サイクルを実施する前の値をほぼ維持していた。   The thus-prepared absorption / radiation capsule dispersion was heated at 90 ° C. for 30 minutes under non-stirring conditions, and then allowed to cool to room temperature and repeatedly cooled for 10 times. Since the difference was large, the two phases were separated in the stationary state, but when the stirring was added, the original dispersed state was restored. When the latent heat of fusion and the melting temperature were measured with a differential thermal analyzer DSC3100 after the absorption / radiation cycle was carried out 10 times, 83 mass% of thritol was found in the capsule based on the latent heat of fusion of the absorption / radiation capsule. Contained, the melting temperature of threitol was measured to be 88 ° C., and the value before the absorption / release heat cycle was substantially maintained.

(実施例13)
フッ素系界面活性剤KB−L110を吸・放熱カプセル11.9g(相転移物質で10g)に対して、0.5g(相転移物質に対し5質量%)とした以外は、実施例12と同じ方法で吸・放熱カプセル分散液を調製し、同様の吸・放熱サイクルを実施した。
(Example 13)
The same as Example 12 except that the fluorosurfactant KB-L110 was changed to 0.5 g (5% by mass with respect to the phase change material) with respect to 11.9 g of the absorption / heat dissipation capsule (10 g for the phase change material). The absorption / radiation capsule dispersion was prepared by the same method, and the same absorption / radiation cycle was carried out.

吸・放熱サイクルを10回実施後において、静置状態では2相分離していたが、攪拌を加えると元の分散状態に復帰した。また、吸・放熱カプセルの融解潜熱量からカプセル中に83質量%のスレイトールが含有され、スレイトールの融解温度は87℃と測定され、吸・放熱サイクルを実施する前の値をほぼ維持していた。   After 10 absorption / release cycles, the two-phase separation occurred in the standing state, but when the stirring was applied, the original dispersion state was restored. Moreover, 83 mass% of thritol was contained in the capsule from the amount of latent heat of fusion of the absorption / radiation capsule, and the melting temperature of thritol was measured to be 87 ° C., and the value before the absorption / radiation cycle was almost maintained. .

(比較例6)
フッ素系界面活性剤KB−L110を吸・放熱カプセル11.9g(相転移物質で10g)に対して、添加しなかった以外は、実施例12と同じ方法で吸・放熱カプセル分散液を調製し、同様の吸・放熱サイクルを実施した。
(Comparative Example 6)
An absorbent / heat dissipating capsule dispersion was prepared in the same manner as in Example 12, except that the fluorosurfactant KB-L110 was not added to 11.9 g of the absorbing / dissipating capsule (10 g of the phase change material). The same absorption / release heat cycle was carried out.

吸・放熱サイクルを10回実施後において、静置状態で2相分離し、攪拌を加えても元の分散状態に戻らなかった。   After carrying out the absorption / heat radiation cycle 10 times, the two phases were separated in a stationary state, and even if agitation was added, the original dispersed state was not restored.

(比較例7)
フッ素系界面活性剤KB−L110を吸・放熱カプセル11.9g(相転移物質で10g)に対して、5g(相転移物質に対し50質量%)とした以外は、実施例12と同じ方法で吸・放熱カプセル分散液を調製したが、非常に高粘度で流動性のない分散液が得られた。
(Comparative Example 7)
Except for the fluorine-based surfactant KB-L110, 5 g (50% by mass with respect to the phase change material) with respect to 11.9 g of the absorption / heat dissipation capsule (10 g with the phase change material), the same method as in Example 12 An absorption / radiation capsule dispersion was prepared, but a dispersion with very high viscosity and no fluidity was obtained.

(比較例8)
グリコール系流動促進剤として、ジエチレングリコールモノブチルエーテルアセテート(DEG−MBuEA)を吸・放熱カプセル11.9g(相転移物質で10g)に対して、添加しなかった以外は、実施例12と同じ方法で吸・放熱カプセル分散液を調製したが、非常に高粘度で流動性のない分散液が得られた。
(Comparative Example 8)
As a glycol-based glidant, diethylene glycol monobutyl ether acetate (DEG-MBuEA) was absorbed in the same manner as in Example 12 except that it was not added to 11.9 g of the heat-absorbing and heat-dissipating capsule (10 g of the phase change material). -A heat dissipation capsule dispersion was prepared, but a dispersion with very high viscosity and no fluidity was obtained.

実施例12、13及び比較例6〜8について、吸・放熱カプセル種及び分散液に対する相転移物質(PCM)の含有量(質量%)、界面活性剤種及び添加量、流動促進剤種及び添加量、10回吸・放熱サイクル後の攪拌時の分散状態、サイクル前後の吸・放熱カプセルの相転移物質含有量を表4に示す。   About Example 12, 13 and Comparative Examples 6-8, content (mass%) of the phase change material (PCM) with respect to an absorption-heat dissipation capsule seed | species and a dispersion liquid, surfactant seed | species and addition amount, glidant seed | species addition, and addition Table 4 shows the amount of the phase change substance in the absorption / radiation capsule before and after the cycle.

Figure 2010168538
Figure 2010168538

本発明の吸・放熱カプセル及び吸・放熱カプセル分散液の用途としては、自動車エンジンや燃料電池の冷却液媒体、蓄熱システムの熱移送媒体などの用途が挙げられる。従来の熱移送媒体に比較して、単位体積当りの見掛け比熱が大きいため、媒体の循環流量を小さくすることができ、省エネルギーに貢献できる。   Applications of the absorbing / radiating capsule and absorbing / dissipating capsule dispersion of the present invention include applications such as a cooling fluid medium for an automobile engine and a fuel cell, and a heat transfer medium for a heat storage system. Since the apparent specific heat per unit volume is larger than that of a conventional heat transfer medium, the circulation flow rate of the medium can be reduced, contributing to energy saving.

Claims (9)

内部に密閉空間を形成する膜状のカプセル壁体と、該カプセル壁体の該密閉空間に封入された封入物質としての、水又は水混和性有機溶媒に溶解する相転移物質とを備えた吸・放熱カプセルであって、かつ、前記封入物質として、糖アルコール、尿素及びチオ尿素の少なくとも1つからなる相転移物質を含有する吸・放熱カプセルにおいて、前記カプセル壁体として、水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとを含有することを特徴とする吸・放熱カプセル。   An absorbent comprising a membrane-like capsule wall that forms a sealed space inside, and a phase change material that dissolves in water or a water-miscible organic solvent as a sealed material sealed in the sealed space of the capsule wall. A heat-radiating capsule that is a heat-dissipating capsule and contains a phase change material composed of at least one of sugar alcohol, urea, and thiourea as the encapsulating material, and a water-curable urethane as the capsule wall. An air-absorbing / dissipating capsule comprising a monomer or urethane prepolymer and a fluorine-based polymer having a hydroxyl group in the molecule. 前記カプセル壁体の水硬化性のウレタンモノマー又はウレタンプレポリマーと分子内に水酸基を有するフッ素系ポリマーとの質量比率が40/60から60/40であることを特徴とする請求項1に記載の吸・放熱カプセル。   The mass ratio of the water-curable urethane monomer or urethane prepolymer of the capsule wall body to the fluorine-based polymer having a hydroxyl group in the molecule is 40/60 to 60/40. Absorption / heat dissipation capsule. 前記封入物質として水又は多価アルコール類を含有することを特徴とする請求項1又は2に記載の吸・放熱カプセル。   The capsule according to claim 1 or 2, wherein the encapsulating substance contains water or a polyhydric alcohol. 前記多価アルコール類がエチレングリコール、ジエチレングリコール及びグリセリンの少なくとも1つからなることを特徴とする請求項3に記載の吸・放熱カプセル。   The absorption / heat dissipation capsule according to claim 3, wherein the polyhydric alcohol is composed of at least one of ethylene glycol, diethylene glycol, and glycerin. 前記吸・放熱カプセルの粒子径が10〜50μmであり、かつ、吸・放熱カプセルの粒子径に対するカプセル壁体の厚みの比率が2〜10%であることを特徴とする請求項1〜4のいずれか1項に記載の吸・放熱カプセル。   The particle diameter of the absorbing / dissipating capsule is 10 to 50 μm, and the ratio of the thickness of the capsule wall body to the particle diameter of the absorbing / dissipating capsule is 2 to 10%. The absorption / radiation capsule according to any one of the above items. フッ素系分散媒体と、該分散媒体に分散された請求項1〜5のいずれか1項に記載の吸・放熱カプセルを含むことを特徴とする吸・放熱カプセル分散液。   An absorbing / dissipating capsule dispersion comprising the fluorine-based dispersion medium and the absorbing / dissipating capsule according to any one of claims 1 to 5 dispersed in the dispersing medium. 請求項6に記載の吸・放熱カプセル分散液であって、相転移物質を分散液に対して10〜40質量%、かつ、フッ素系界面活性剤を相転移物質に対して2〜30質量%、グリコール系流動促進剤を相転移物質に対して10〜100質量%含有することを特徴とする上記吸・放熱カプセル分散液。   The absorption / heat dissipation capsule dispersion according to claim 6, wherein the phase change material is 10 to 40% by mass with respect to the dispersion, and the fluorosurfactant is 2 to 30% by mass with respect to the phase change material. The above-mentioned absorbing / dissipating capsule dispersion, wherein the glycol-based glidant is contained in an amount of 10 to 100% by mass with respect to the phase change material. 請求項1〜5のいずれか1項に記載の吸・放熱カプセルの製造方法であって、1段目マイクロカプセル化として硬化速度の速いウレタンモノマー又はウレタンプレポリマーにより界面活性剤の共存下でカプセル化壁を形成した後に、2段目マイクロカプセル化としてウレタンモノマー又はウレタンプレポリマーにより更なるカプセル化壁を形成することを特徴とする上記方法。   It is a manufacturing method of the absorption-heat radiation capsule of any one of Claims 1-5, Comprising: In the coexistence of surfactant by the urethane monomer or urethane prepolymer with a quick hardening rate as 1st step | paragraph microencapsulation. The method as described above, wherein after the formation of the encapsulated wall, a further encapsulated wall is formed by urethane monomer or urethane prepolymer as the second stage microencapsulation. 前記1段目マイクロカプセル化として硬化速度の速いウレタンモノマー又はウレタンプレポリマーによりカプセル化壁を形成する際に、相転移物質に対して2〜50質量%の界面活性剤を含有させることを特徴する請求項8に記載の吸・放熱カプセルの製造方法。   When the encapsulation wall is formed with a urethane monomer or urethane prepolymer having a high curing speed as the first-stage microencapsulation, 2 to 50% by mass of a surfactant is contained with respect to the phase change material. The manufacturing method of the absorption-heat radiation capsule of Claim 8.
JP2009217731A 2008-12-25 2009-09-18 Absorbing / dissipating capsule and absorbing / dissipating capsule dispersion Active JP5604834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009217731A JP5604834B2 (en) 2008-12-25 2009-09-18 Absorbing / dissipating capsule and absorbing / dissipating capsule dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008329750 2008-12-25
JP2008329750 2008-12-25
JP2009217731A JP5604834B2 (en) 2008-12-25 2009-09-18 Absorbing / dissipating capsule and absorbing / dissipating capsule dispersion

Publications (2)

Publication Number Publication Date
JP2010168538A true JP2010168538A (en) 2010-08-05
JP5604834B2 JP5604834B2 (en) 2014-10-15

Family

ID=42700967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009217731A Active JP5604834B2 (en) 2008-12-25 2009-09-18 Absorbing / dissipating capsule and absorbing / dissipating capsule dispersion

Country Status (1)

Country Link
JP (1) JP5604834B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059969A1 (en) 2010-11-01 2012-05-10 トヨタ自動車株式会社 Cooling system for internal combustion engine
WO2012107990A1 (en) 2011-02-07 2012-08-16 トヨタ自動車株式会社 Cooling system for internal combustion engine
JP2015232118A (en) * 2014-05-14 2015-12-24 積水化学工業株式会社 Water soluble curing agent- and/or curing accelerator-including capsule and thermosetting resin composition
WO2021131404A1 (en) * 2019-12-27 2021-07-01 富士フイルム株式会社 Microcapsule, heat storage composition, heat storage sheet, and method for producing microcapsule
CN114231254A (en) * 2021-12-14 2022-03-25 佛山欧神诺陶瓷有限公司 Composite ceramic material with phase change temperature regulation function and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175327A (en) * 1990-11-09 1992-06-23 Dainippon Ink & Chem Inc Polyurethanepolyurea particle
JPH0859770A (en) * 1994-08-15 1996-03-05 Dainippon Ink & Chem Inc Polyurethane-polyurea crosslinked fine particle dispersion body and its production
JP2001031957A (en) * 1999-07-21 2001-02-06 Mitsubishi Chemicals Corp Heat storage material composition and heat storage-type hot water supplying apparatus
JP2001152141A (en) * 1999-11-30 2001-06-05 Mitsubishi Chemicals Corp Heat accumulator composition
JP2004107476A (en) * 2002-09-18 2004-04-08 Dainippon Ink & Chem Inc Method for producing polyurethane beads
JP2007031597A (en) * 2005-07-27 2007-02-08 Toyota Motor Corp Heat-absorbing/heat-releasing capsule, method for producing the same, heat-absorbing/heat-releasing capsule dispersion and method for producing the same
JP2007330876A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Microencapsulation method of water-soluble phase change material, microcapsule particle containing water-soluble phase change material, coolant, and heat transfer medium
JP2007330872A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Method of and apparatus for microencapsulating water-soluble phase-transitional substance
JP2010024403A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Dispersion liquid of microcapsulated water-soluble phase transition material in chlorofluorocarbon solvent, cooling liquid and heat transfer medium

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175327A (en) * 1990-11-09 1992-06-23 Dainippon Ink & Chem Inc Polyurethanepolyurea particle
JPH0859770A (en) * 1994-08-15 1996-03-05 Dainippon Ink & Chem Inc Polyurethane-polyurea crosslinked fine particle dispersion body and its production
JP2001031957A (en) * 1999-07-21 2001-02-06 Mitsubishi Chemicals Corp Heat storage material composition and heat storage-type hot water supplying apparatus
JP2001152141A (en) * 1999-11-30 2001-06-05 Mitsubishi Chemicals Corp Heat accumulator composition
JP2004107476A (en) * 2002-09-18 2004-04-08 Dainippon Ink & Chem Inc Method for producing polyurethane beads
JP2007031597A (en) * 2005-07-27 2007-02-08 Toyota Motor Corp Heat-absorbing/heat-releasing capsule, method for producing the same, heat-absorbing/heat-releasing capsule dispersion and method for producing the same
JP2007330876A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Microencapsulation method of water-soluble phase change material, microcapsule particle containing water-soluble phase change material, coolant, and heat transfer medium
JP2007330872A (en) * 2006-06-14 2007-12-27 Toyota Motor Corp Method of and apparatus for microencapsulating water-soluble phase-transitional substance
JP2010024403A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Dispersion liquid of microcapsulated water-soluble phase transition material in chlorofluorocarbon solvent, cooling liquid and heat transfer medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012059969A1 (en) 2010-11-01 2012-05-10 トヨタ自動車株式会社 Cooling system for internal combustion engine
WO2012107990A1 (en) 2011-02-07 2012-08-16 トヨタ自動車株式会社 Cooling system for internal combustion engine
JP5682634B2 (en) * 2011-02-07 2015-03-11 トヨタ自動車株式会社 Internal combustion engine cooling system
US9163551B2 (en) 2011-02-07 2015-10-20 Toyota Jidosha Kabushiki Kaisha Cooling system for internal combustion engine
JP2015232118A (en) * 2014-05-14 2015-12-24 積水化学工業株式会社 Water soluble curing agent- and/or curing accelerator-including capsule and thermosetting resin composition
WO2021131404A1 (en) * 2019-12-27 2021-07-01 富士フイルム株式会社 Microcapsule, heat storage composition, heat storage sheet, and method for producing microcapsule
JPWO2021131404A1 (en) * 2019-12-27 2021-07-01
CN114901778A (en) * 2019-12-27 2022-08-12 富士胶片株式会社 Microcapsule, heat-accumulative composition, heat-accumulative sheet, and method for producing microcapsule
CN114231254A (en) * 2021-12-14 2022-03-25 佛山欧神诺陶瓷有限公司 Composite ceramic material with phase change temperature regulation function and preparation method and application thereof
CN114231254B (en) * 2021-12-14 2023-12-22 佛山欧神诺陶瓷有限公司 Composite ceramic material with phase-change temperature regulation and preparation method and application thereof

Also Published As

Publication number Publication date
JP5604834B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5604834B2 (en) Absorbing / dissipating capsule and absorbing / dissipating capsule dispersion
KR101272547B1 (en) Heat-expandable microsphere, process for producing the same, and use
Al-Shannaq et al. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials
US7919184B2 (en) Hybrid nanoparticles
JP5366972B2 (en) Method for producing microcapsules
JP6005067B2 (en) Microcapsules with paraffin composition as capsule core
WO2014036681A1 (en) Heat-expandable microspheres, preparation method and use thereof
Chaiyasat et al. Preparation and characterization of poly (divinylbenzene) microcapsules containing octadecane
JP2008531808A (en) Microcapsule powder
KR20140125800A (en) Heat-expandable microspheres, process for producing same, and uses
JP5200473B2 (en) Manufacturing method of absorption / radiation capsule
WO2015122460A1 (en) Sugar alcohol microcapsule, slurry, and resin molded article
Al-Shannaq et al. Methods for the synthesis of phase change material microcapsules with enhanced thermophysical properties—A state-of-the-art review
KR20110116611A (en) Method for manufacturing nanocapsules comprising phase change materials
JP4668541B2 (en) Thermal storage material, method for producing the same, heating or cooling system, thermal storage article, and copolymer
JP4967469B2 (en) Method for microencapsulation of water-soluble phase change material, microcapsule particles containing water-soluble phase change material, cooling liquid, and heat transfer medium
JP5151767B2 (en) CFC-based solvent dispersion, cooling liquid, and heat transfer medium of microencapsulated water-soluble phase transition material
JP4527946B2 (en) Heat storage microcapsule manufacturing method and heat storage microcapsule
JP5345307B2 (en) Thermally expandable microsphere and method for producing the same
JP7500557B2 (en) Dispersible ionomer powder and method for producing same
JP5141156B2 (en) Method of dispersing microencapsulated phase change material in fluorine-based solvent, dispersion, and coolant for fuel cell stack
JP2007031597A (en) Heat-absorbing/heat-releasing capsule, method for producing the same, heat-absorbing/heat-releasing capsule dispersion and method for producing the same
JP2010150329A (en) Microcapsule particle for heat storage material
JP2010229341A (en) Thermally expandable microcapsule and method for manufacturing the same
JP2004203978A (en) Heat-accumulating microcapsule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R151 Written notification of patent or utility model registration

Ref document number: 5604834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250