JP2010165900A - Method of manufacturing transparent electrode, transparent electrode, and conductive ink and liquid-repellent transparent insulating ink used therefor - Google Patents
Method of manufacturing transparent electrode, transparent electrode, and conductive ink and liquid-repellent transparent insulating ink used therefor Download PDFInfo
- Publication number
- JP2010165900A JP2010165900A JP2009007499A JP2009007499A JP2010165900A JP 2010165900 A JP2010165900 A JP 2010165900A JP 2009007499 A JP2009007499 A JP 2009007499A JP 2009007499 A JP2009007499 A JP 2009007499A JP 2010165900 A JP2010165900 A JP 2010165900A
- Authority
- JP
- Japan
- Prior art keywords
- ink
- transparent electrode
- transparent
- repellent
- liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Non-Insulated Conductors (AREA)
- Manufacturing Of Electric Cables (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Conductive Materials (AREA)
Abstract
Description
本発明は、透明電極の製造方法、透明電極及びそれに用いる導電インキ及び撥液性透明絶縁インキに関する。 The present invention relates to a method for producing a transparent electrode, a transparent electrode, a conductive ink used therefor, and a liquid repellent transparent insulating ink.
透明電極は、ガラス、透明フィルム等の基材上に、ITOの場合は蒸着で、PEDOT/PSS、ポリアニリン等の場合は、これらを含有する塗布液を全面に塗布した後、エッチング工程を経てパターニングが施される。しかしながら、エッチング工程を伴うパターニングは、フォトレジストの塗工、マスクを介しての露光工程というフォトリソグラフィー工程、エッチング工程、レジスト除去工程を要し、生産性に課題を残している(例えば特許文献1参照)。 The transparent electrode is deposited on a substrate such as glass or transparent film. In the case of ITO, it is vapor-deposited. In the case of PEDOT / PSS, polyaniline, etc., a coating solution containing these is applied to the entire surface, and then patterned through an etching process. Is given. However, patterning with an etching process requires a photolithographic process, an etching process, and a resist removal process, which are a photoresist coating process and an exposure process through a mask, and remains a problem in productivity (for example, Patent Document 1). reference).
エッチング以外でのパターニング方法として、導電性インキを用いた直接の印刷法があるが、透明性を必須とする導電材料を含有する導電インキは、十分な導電性を維持するための厚膜印刷が困難であった。そのため、透明基材上に、撥水性のパターンを形成した後、親水性の導電インキを用いて、撥水性パターン以外の箇所に導電層を設けることが提案されている(例えば特許文献2参照)。しかしながら、主として、撥水パターンをエッチング法により作製するため、生産工程上、複雑さが残る。 As a patterning method other than etching, there is a direct printing method using a conductive ink. However, a conductive ink containing a conductive material that requires transparency is used for thick film printing to maintain sufficient conductivity. It was difficult. Therefore, after forming a water-repellent pattern on a transparent substrate, it has been proposed to provide a conductive layer in a place other than the water-repellent pattern using hydrophilic conductive ink (see, for example, Patent Document 2). . However, since the water-repellent pattern is mainly produced by the etching method, complexity remains in the production process.
本発明の課題は、従来型のフォトリソグラフィーの工程を必要とせず、かつ、透明で十分な導電性を示す導電膜の厚膜を印刷法で実現する透明電極の製造方法を提供することにある。又、当該製造方法で得られる透明電極、当該製造方法に用いることができる、粘度や液体成分の揮発性制御など細かな制約が不要な導電インキ、撥液性透明絶縁インキを提供することにある。 An object of the present invention is to provide a method for producing a transparent electrode that does not require a conventional photolithography process and realizes a thick film of a conductive film that is transparent and exhibits sufficient conductivity by a printing method. . Another object of the present invention is to provide a transparent electrode obtained by the production method, a conductive ink and a liquid repellent transparent insulating ink that can be used in the production method and do not require fine restrictions such as viscosity and liquid component volatility control. .
本発明者らは、撥液性透明絶縁インキを用いた印刷法により絶縁パターンを形成した後、導電インキを全面に塗布する印刷(コーティング)方式において、絶縁パターンに対する導電インキの撥液性を利用して、厚膜でパターン化された電極を有する透明電極の製造方法を見出した。 The present inventors use the liquid repellency of the conductive ink with respect to the insulating pattern in a printing (coating) method in which the conductive ink is applied to the entire surface after forming the insulating pattern by the printing method using the liquid repellent transparent insulating ink Then, the manufacturing method of the transparent electrode which has an electrode patterned by the thick film was discovered.
すなわち、本発明は第一に、
基板上にパターン化された導電性層を有する透明電極の製造方法であって、
(1)樹脂、及び、シリコーン系又はフッ素系の界面活性剤を含有する撥液性透明絶縁インキを用いて、印刷法によりパターンを形成する工程、及び、
(2)前記した撥液性透明絶縁インキの乾燥皮膜に対してはじき性を有する導電インキを全面に塗布し、該導電インキが、該撥液性透明絶縁インキの乾燥皮膜に、はじかれることにより、基板上の、該撥液性透明絶縁インキの乾燥皮膜が形成されていない部分に導電インキ層を形成する工程を有する透明電極の製造方法を提供する。
That is, the present invention firstly
A method for producing a transparent electrode having a conductive layer patterned on a substrate,
(1) A step of forming a pattern by a printing method using a liquid-repellent transparent insulating ink containing a resin and a silicone-based or fluorine-based surfactant; and
(2) By applying conductive ink having repellency to the dry film of the liquid repellent transparent insulating ink described above, and the conductive ink is repelled by the dry film of the liquid repellent transparent insulating ink. A method for producing a transparent electrode comprising a step of forming a conductive ink layer on a portion of a substrate where a dry film of the liquid repellent transparent insulating ink is not formed is provided.
本発明は第二に、前記した製造方法で得られる透明電極を提供する。更に、本発明は、第三に、前記した透明電極の製造方法に用いる導電インキ、撥液性透明絶縁インキを提供する。 Secondly, the present invention provides a transparent electrode obtained by the manufacturing method described above. Furthermore, the present invention thirdly provides a conductive ink and a liquid repellent transparent insulating ink used in the method for producing a transparent electrode.
上記構成によれば、絶縁性層パターン、電極層の何れも印刷乃至コーティングの手法を用いて層を形成することが可能となり、製造工程が簡略化された透明電極の製造方法が提供できる。また、厚膜の電極層の形成が可能で、導電性が十分な透明電極を得ることができる。更に、インキの粘度や溶剤揮発性の影響を受けることのない導電インキを提供できる。 According to the said structure, it becomes possible to form a layer using the method of printing thru | or coating any of an insulating layer pattern and an electrode layer, and can provide the manufacturing method of the transparent electrode with which the manufacturing process was simplified. In addition, a thick electrode layer can be formed, and a transparent electrode with sufficient conductivity can be obtained. Furthermore, it is possible to provide a conductive ink that is not affected by ink viscosity or solvent volatility.
本発明は、基板上にパターン化された導電性層を有する透明電極の製造方法であって、(1)樹脂、及び、シリコーン系又はフッ素系の界面活性剤を含有する撥液性透明絶縁インキを用いて、印刷法によりパターンを形成する工程、及び、
(2)前記した撥液性透明絶縁インキの乾燥皮膜に対してはじき性を有する導電インキを全面に塗布し、該導電インキが、該撥液性透明絶縁インキの乾燥皮膜に、はじかれることにより、基板上の、該撥液性透明絶縁インキの乾燥皮膜が形成されていない部分に導電インキ層を形成する工程を有する透明電極の製造方法を提供するものである。
The present invention is a method for producing a transparent electrode having a conductive layer patterned on a substrate, and (1) a liquid-repellent transparent insulating ink containing a resin and a silicone-based or fluorine-based surfactant A step of forming a pattern by a printing method, and
(2) By applying conductive ink having repellency to the dry film of the liquid repellent transparent insulating ink described above, and the conductive ink is repelled by the dry film of the liquid repellent transparent insulating ink. The present invention provides a method for producing a transparent electrode comprising a step of forming a conductive ink layer on a portion of the substrate where the dry film of the liquid repellent transparent insulating ink is not formed.
本発明において、「透明電極」とは、基板上に導電性を有する層を形成してなり、電圧の印加によって通電する性質を有し、かつ電極を設けた基板全体として観測者からみて光を透過する状態である電極をいう。 In the present invention, the “transparent electrode” is formed by forming a conductive layer on a substrate, has a property of energizing by application of voltage, and emits light from the viewpoint of the observer as a whole substrate provided with electrodes. An electrode that is in a transmitting state.
「パターン」とは、基板上の電極の1部または全部の配線や回路をいう。又、「はじかれる」とは、2つの物質の界面が混合あるいは融合することのない状態を表わす。「はじき性を有する」とか「撥液」についても同義である。本発明においては、パターン化された撥液性透明絶縁インキの乾燥皮膜によって、導電インキがはじかれる性質を利用している。 “Pattern” refers to part or all of the wiring or circuit of an electrode on a substrate. “Repelled” represents a state in which the interface between two substances is not mixed or fused. The terms “having repellency” and “liquid repellency” are also synonymous. In the present invention, the property that the conductive ink is repelled by the dried film of the patterned liquid repellent transparent insulating ink is utilized.
本発明に用いる基板としては、透明で、絶縁性を示す材料であれば、任意の材料を用いることが出来る。例えば、ガラス板、PETフィルム、PENフィルム等を例示できる。基板に、コロナ処理等の前処理を施したり、導電インキとの親和性が高い透明絶縁インキをアンカー剤として使用することも出来る。後者の例として、水性透明導電インキを用いる場合は、ポリビニルアルコール等の親水性の高い透明絶縁材料を用いた水性インキを適用することができる。 As the substrate used in the present invention, any material can be used as long as it is transparent and exhibits insulating properties. For example, a glass plate, a PET film, a PEN film, etc. can be illustrated. The substrate can be subjected to pretreatment such as corona treatment, or a transparent insulating ink having high affinity with the conductive ink can be used as the anchor agent. As an example of the latter, when an aqueous transparent conductive ink is used, an aqueous ink using a highly hydrophilic transparent insulating material such as polyvinyl alcohol can be applied.
本発明に用いる撥液性透明絶縁インキは、その乾燥皮膜が、次工程に用いる導電インキをはじく性質を有するものであり、バインダー樹脂、溶剤、反応性希釈剤等とともに、シリコーン系界面活性剤又はフッ素系界面活性剤を含有し、それら界面活性剤含有量が、0.5〜20質量%であることが好ましい。 The liquid repellent transparent insulating ink used in the present invention has a property that the dried film repels the conductive ink used in the next step, and together with a binder resin, a solvent, a reactive diluent, etc., a silicone surfactant or It is preferable that a fluorosurfactant is contained and the surfactant content is 0.5 to 20% by mass.
前記したシリコーン系界面活性剤としては、ジメチルシロキサン骨格を持つシリコーンオイル、シリコーン樹脂、及びこれらのメチル基の一部がアルキル基、アリール基、アルコキシ基、ヒドロキシル基等により置換されている変性シリコーンオイル、変性シリコーン樹脂等が挙げられる。又、フッ素系界面活性剤としては、パーフルオロアルキル基を持つモノマーと、各種反応性基を持つモノマーを反応させた、パーフルオロアルキル基を側鎖に持つポリマー、オリゴマーが挙げられる。 Examples of the silicone surfactant include silicone oils having a dimethylsiloxane skeleton, silicone resins, and modified silicone oils in which some of these methyl groups are substituted with alkyl groups, aryl groups, alkoxy groups, hydroxyl groups, and the like. And modified silicone resins. Examples of the fluorosurfactant include polymers and oligomers having a perfluoroalkyl group in the side chain obtained by reacting a monomer having a perfluoroalkyl group with a monomer having various reactive groups.
前記した撥液性透明絶縁インキのバインダー樹脂としては、インキ中に含有されるシリコーン系界面活性剤又はフッ素系界面活性剤との相溶性があり、乾燥後に固体状になる高分子化合物から任意に選択することができる。例えば、アクリル樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、ポリウレタン樹脂、ポリエステル樹脂、ブチラール樹脂、ポリビニルアルコール樹脂、アセタール樹脂、フェノール樹脂、ニトロセルロース、エチルセルロース等のセルロース系樹脂、塩素化ゴム、石油樹脂、フッ化ビニリデン樹脂等が使用できる。 The binder resin of the liquid repellent transparent insulating ink described above is arbitrarily selected from polymer compounds that are compatible with silicone surfactants or fluorine surfactants contained in the ink and become solid after drying. You can choose. For example, acrylic resins, epoxy resins, melamine resins, urethane resins, polyurethane resins, polyester resins, butyral resins, polyvinyl alcohol resins, acetal resins, phenolic resins, nitrocellulose, cellulose resins such as ethyl cellulose, chlorinated rubber, petroleum resins, A vinylidene fluoride resin or the like can be used.
撥液性透明絶縁インキを用いたパターニングは、任意の印刷方式を採用することができるが、パターン精度が、5〜20μm幅程度の場合は、凸版反転印刷方法、パターン精度が、20μm〜の場合は、グラビア印刷、グラビアオフセット印刷、フレキソ印刷、オフセット印刷、スクリーン印刷等が使用できる。 For the patterning using the liquid-repellent transparent insulating ink, any printing method can be adopted. When the pattern accuracy is about 5 to 20 μm, the letterpress reverse printing method and the pattern accuracy is 20 μm to Gravure printing, gravure offset printing, flexographic printing, offset printing, screen printing, etc. can be used.
例えば、撥液性透明絶縁インキの粘度を、1〜20Pa・s程度に調製し、グラビア印刷方式を採用すると、精度が、20±5、膜厚が、1.5〜2.5μm程度のパターン化された層を得ることが出来る。 For example, when the viscosity of the liquid-repellent transparent insulating ink is adjusted to about 1 to 20 Pa · s and the gravure printing method is adopted, the accuracy is 20 ± 5 and the film thickness is about 1.5 to 2.5 μm. Can be obtained.
本発明に用いる導電インキは、前工程でパターン化された撥液性透明絶縁インキの乾燥皮膜にはじかれる性質を有するものである。導電性成分としては、ポリ(3,4−エチレンジオキシチエオフェン)/ポリスチレンスルホン酸(PEDOT/PSS)、又は、ポリアニリンから選ばれる導電性有機材料、金属ナノ粒子、金属ナノワイヤー又はカーボンナノチューブから選ばれる導電性無機材料を含有することが好ましい。導電インキはそれ自体透明であることは望ましい。しかしながら、十分な導電性が得られ、且つ、電極回路を細線化することで(開口率をあげることで)、電極全体としての透過率が向上できれば、導電インキ自体は不透明であっても差し支えない。 The conductive ink used in the present invention has a property of being repelled by the dry film of the liquid repellent transparent insulating ink patterned in the previous step. As the conductive component, poly (3,4-ethylenedioxythieophene) / polystyrene sulfonic acid (PEDOT / PSS), or conductive organic material selected from polyaniline, metal nanoparticles, metal nanowires or carbon nanotubes It is preferable to contain a selected conductive inorganic material. It is desirable that the conductive ink itself be transparent. However, the conductive ink itself may be opaque as long as sufficient conductivity can be obtained and the transmittance of the entire electrode can be improved by thinning the electrode circuit (by increasing the aperture ratio). .
導電インキは、前記の工程でパターン化された撥液性透明絶縁インキの乾燥皮膜を有する基板上に塗布される。パターン化された撥液性透明絶縁インキの乾燥皮膜によってはじかれた導電インキは、基板上の、撥液性透明絶縁インキの乾燥皮膜が形成されていない部分に層を形成する。 The conductive ink is applied on a substrate having a dry film of the liquid repellent transparent insulating ink patterned in the above-described process. The conductive ink repelled by the patterned dry film of the liquid repellent transparent insulating ink forms a layer on the substrate where the dry film of the liquid repellent transparent insulating ink is not formed.
乾燥は、撥液性透明絶縁インキの場合と同様に、任意の方法で実施することができる。 The drying can be carried out by any method as in the case of the liquid repellent transparent insulating ink.
得られた透明電極の表面抵抗値は、低抵抗率計ロレスターGP、簡易テスターで測定した。 The surface resistance value of the obtained transparent electrode was measured with a low resistivity meter Lorester GP, a simple tester.
実施例を例示しながら以下に詳説する。尚、本発明の構成はこれら実施例の形態に限定されるものではない。 Detailed description will be given below with reference to examples. In addition, the structure of this invention is not limited to the form of these Examples.
調製例1:撥水性透明絶縁インキ(A−1)
バインダー樹脂として、エポキシ樹脂(HP7200:DIC製)を2.0g、親油性溶剤として、イソプロピルアルコールを9.0g、エチルアセテートを9.0g、フッ素系界面活性剤(F−178K:DIC製、固形分30%)を1.33g配合し、撥水性透明絶縁インキ(A−1)を調製した。
Preparation Example 1: Water-repellent transparent insulating ink (A-1)
As binder resin, 2.0 g of epoxy resin (HP7200: manufactured by DIC), 9.0 g of isopropyl alcohol and 9.0 g of ethyl acetate as lipophilic solvent, fluorosurfactant (F-178K: manufactured by DIC, solid) Min. 30%) was blended with 1.33 g to prepare a water-repellent transparent insulating ink (A-1).
調製例2:比較例用撥水性透明絶縁インキ(A−2)
バインダー樹脂として、エポキシ樹脂(HP7200:DIC製)を2.0g、親油性溶剤として、イソプロピルアルコールを9.0g、エチルアセテートを9.0g配合し、比較例用撥水性透明絶縁インキ(A−2)を調製した。
Preparation Example 2: Water-repellent transparent insulating ink (A-2) for comparative example
As a binder resin, 2.0 g of epoxy resin (HP7200: manufactured by DIC) and 9.0 g of isopropyl alcohol and 9.0 g of ethyl acetate as a lipophilic solvent are blended. ) Was prepared.
調製例3:水性透明導電インキ(B−1)
導電性成分として、ポリ(3,4−エチレンジオキシチエオフェン)/ポリスチレンスルホン酸を含有する水性透明導電材料であるPEDOT/PSS塗料(ORGACON S300HT G3:日本アグファマテリアルズ製Orgcon S300HT gen.3:アグファマテリアルズ社製)3.0gに、顕色材としてチタンブラック(13MT:三菱化学製)を0.1g配合して水性透明導電インキ(B−1)を調製した。
Preparation Example 3: Water-based transparent conductive ink (B-1)
PEDOT / PSS paint which is an aqueous transparent conductive material containing poly (3,4-ethylenedioxythieophene) / polystyrene sulfonic acid as a conductive component (Orgacon S300HT G3: Orgcon S300HT gen.3 manufactured by Nippon Agfa Materials): Aqueous transparent conductive ink (B-1) was prepared by blending 0.1 g of titanium black (13MT: manufactured by Mitsubishi Chemical) as a developer with 3.0 g of Agfa Materials.
調製例4:水性導電インキ(B−2)
ナノAg塗料(Ag-Q1N-P4:DIC製)を水性導電インキ(B−2)として用いた。
Preparation Example 4: Water-based conductive ink (B-2)
Nano Ag paint (Ag-Q1N-P4: manufactured by DIC) was used as the aqueous conductive ink (B-2).
(実施例1)
PETフィルム(コスモシャインA4300:東洋紡製)上に、前記撥水性透明絶縁インキ(A−1)を用いて、フレキソ印刷にて、一辺が5mmの正方形が周期的に配列した市松模様のパターン印刷を施した。100℃で5分間乾燥した後、該フィルム上に、前記水性透明導電インキ(B−1)を、バーコーター(#7)で塗工した。尚、水性透明導電インキ(B−1)に顕色材としてチタンブラックを添加したのは、水性透明導電インキ(B−1)層を顕微鏡観察するためである。顕微鏡観察の結果、チタンブラックで着色された水性透明導電インキ(B−1)の層は、パターン化された撥水性透明絶縁インキ(A−1)層部分には存在せず、撥水性透明絶縁インキ(A−1)のパターン化されていない部分(非画線部)にのみ存在することを確認できた。
Example 1
On a PET film (Cosmo Shine A4300: manufactured by Toyobo Co., Ltd.), by using the water-repellent transparent insulating ink (A-1), flexographic printing is performed with a checkered pattern printing in which squares with 5 mm sides are periodically arranged. gave. After drying at 100 ° C. for 5 minutes, the aqueous transparent conductive ink (B-1) was applied onto the film with a bar coater (# 7). The reason why titanium black was added as a developer to the water-based transparent conductive ink (B-1) was to observe the water-based transparent conductive ink (B-1) layer under a microscope. As a result of microscopic observation, the layer of the water-based transparent conductive ink (B-1) colored with titanium black does not exist in the patterned water-repellent transparent insulating ink (A-1) layer portion, and the water-repellent transparent insulating It was confirmed that the ink (A-1) was present only in the unpatterned part (non-image area).
(実施例2)
PETフィルム(コスモシャインA4300:東洋紡製)上に、前記撥水性透明絶縁インキ(A−1)を用いて、フレキソ印刷にて、L/S=100μm/100μmに配列したマトリクスパターン印刷を施した。100℃で5分間乾燥した後、該フィルム上に、前記水性導電インキ(B−2)をバーコーター(#3)で塗工した。顕微鏡観察の結果、水性導電インキ(B−2)の層は、パターン化された撥水性透明絶縁インキ(A−1)層部分には存在せず、撥水性透明絶縁インキ(A−1)のパターン化されていない部分(非画線部)にのみ存在することを確認できた。
(Example 2)
On the PET film (Cosmo Shine A4300: manufactured by Toyobo Co., Ltd.), using the water-repellent transparent insulating ink (A-1), matrix pattern printing arranged at L / S = 100 μm / 100 μm was performed by flexographic printing. After drying at 100 ° C. for 5 minutes, the aqueous conductive ink (B-2) was applied onto the film with a bar coater (# 3). As a result of microscopic observation, the layer of the water-based conductive ink (B-2) is not present in the patterned water-repellent transparent insulating ink (A-1) layer portion, and the layer of the water-repellent transparent insulating ink (A-1) is not present. It was confirmed that it exists only in an unpatterned part (non-image area).
(比較例1)
PETフィルム(コスモシャインA4300:東洋紡製)上に、前記水性透明導電インキ(B−1)をフレキソ印刷、およびグラビア印刷でベタ印刷をした。導電インキ層の厚さは共に0.1μm以下、表面抵抗値は共に100000Ω/□以上であり、電極としては機能しない程度であった。
(Comparative Example 1)
The water-based transparent conductive ink (B-1) was subjected to solid printing by flexographic printing and gravure printing on a PET film (Cosmo Shine A4300: manufactured by Toyobo). The thicknesses of the conductive ink layers were both 0.1 μm or less and the surface resistance values were both 100,000 Ω / □ or more, so that they did not function as electrodes.
(比較例2)
PETフィルム(コスモシャインA4300:東洋紡製)上に、前記比較例用撥水性透明絶縁インキ(A−2)を用いて、フレキソ印刷にて、一辺が5mmの正方形が周期的に配列した市松模様のパターン印刷を施した。100℃で5分間乾燥した後、該フィルム上に、前記水性透明導電インキ(B−1)をバーコーター(#7)で塗工した。顕微鏡観察の結果、比較例用撥水性透明絶縁インキ(A−2)のパターン化されていない部分(非画線部)、およびパターン化された比較例用撥水性透明絶縁インキ(A−2)層部分に、水性透明導電インキ(B−1)の層が存在し、水性透明導電インキのパターニングをすることはできなかった。
(Comparative Example 2)
On a PET film (Cosmo Shine A4300: manufactured by Toyobo Co., Ltd.) using the comparative water-repellent transparent insulating ink (A-2), flexographically printed, a checkered pattern in which squares with a side of 5 mm are periodically arranged Pattern printing was performed. After drying at 100 ° C. for 5 minutes, the aqueous transparent conductive ink (B-1) was applied onto the film with a bar coater (# 7). As a result of microscopic observation, the non-patterned portion (non-image portion) of the water-repellent transparent insulating ink for comparative example (A-2) and the patterned water-repellent transparent insulating ink for comparative example (A-2) The layer of the aqueous transparent conductive ink (B-1) was present in the layer portion, and the aqueous transparent conductive ink could not be patterned.
(比較例3)
PETフィルム(コスモシャインA4300:東洋紡製)上に、前記比較例用撥水性透明絶縁インキ(A−2)を用いて、フレキソ印刷にて、L/S=100μm/100μmに配列したマトリクスパターン印刷を施した。100℃で5分間乾燥した後、該フィルム上に、前記水性導電インキ(B−2)をバーコーター(#3)で塗工した。顕微鏡観察の結果、比較例用撥水性透明絶縁インキ(A−2)のパターン化されていない部分(非画線部)、およびパターン化された比較例用撥水性透明絶縁インキ(A−2)層部分に、水性導電インキ(B−2)の層が存在し、水性導電インキのパターニングをすることはできなかった。
(Comparative Example 3)
On a PET film (Cosmo Shine A4300: manufactured by Toyobo Co., Ltd.), matrix pattern printing arranged at L / S = 100 μm / 100 μm by flexographic printing using the water-repellent transparent insulating ink (A-2) for comparative example. gave. After drying at 100 ° C. for 5 minutes, the aqueous conductive ink (B-2) was applied onto the film with a bar coater (# 3). As a result of microscopic observation, the non-patterned portion (non-image portion) of the water-repellent transparent insulating ink for comparative example (A-2) and the patterned water-repellent transparent insulating ink for comparative example (A-2) The layer of the aqueous conductive ink (B-2) was present in the layer portion, and the aqueous conductive ink could not be patterned.
本発明によれば、従来型のフォトリソグラフィーの工程を必要とせず、かつ、透明で十分な導電性を示す導電膜の厚膜を印刷法で実現する透明電極の製造方法を提供することができる。タッチパネル、有機ELパネルその他パターニングされた透明電極を有するデバイス等に広く展開が可能である。 According to the present invention, it is possible to provide a method for producing a transparent electrode that does not require a conventional photolithography process and realizes a thick film of a conductive film that is transparent and exhibits sufficient conductivity by a printing method. . It can be widely applied to touch panels, organic EL panels, and other devices having patterned transparent electrodes.
Claims (8)
(1)樹脂、及び、シリコーン系又はフッ素系の界面活性剤を含有する撥液性透明絶縁インキを用いて、印刷法によりパターンを形成する工程、及び、
(2)前記した撥液性透明絶縁インキの乾燥皮膜に対してはじき性を有する導電インキを全面に塗布し、該導電インキが、該撥液性透明絶縁インキの乾燥皮膜に、はじかれることにより、基板上の、該撥液性透明絶縁インキの乾燥皮膜が形成されていない部分に導電インキ層を形成する工程を有することを特徴とする透明電極の製造方法。 A method for producing a transparent electrode having a conductive layer patterned on a substrate,
(1) A step of forming a pattern by a printing method using a liquid-repellent transparent insulating ink containing a resin and a silicone-based or fluorine-based surfactant; and
(2) By applying conductive ink having repellency to the dry film of the liquid repellent transparent insulating ink described above, and the conductive ink is repelled by the dry film of the liquid repellent transparent insulating ink. A method for producing a transparent electrode, comprising a step of forming a conductive ink layer on a portion of the substrate where the dry film of the liquid repellent transparent insulating ink is not formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007499A JP2010165900A (en) | 2009-01-16 | 2009-01-16 | Method of manufacturing transparent electrode, transparent electrode, and conductive ink and liquid-repellent transparent insulating ink used therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009007499A JP2010165900A (en) | 2009-01-16 | 2009-01-16 | Method of manufacturing transparent electrode, transparent electrode, and conductive ink and liquid-repellent transparent insulating ink used therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010165900A true JP2010165900A (en) | 2010-07-29 |
Family
ID=42581838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009007499A Pending JP2010165900A (en) | 2009-01-16 | 2009-01-16 | Method of manufacturing transparent electrode, transparent electrode, and conductive ink and liquid-repellent transparent insulating ink used therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010165900A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013104047A (en) * | 2011-11-16 | 2013-05-30 | Nec Corp | Carbon nanotube ink composition and method of spraying carbon nanotube ink composition |
KR101285162B1 (en) | 2012-05-11 | 2013-07-11 | 주식회사 엘지화학 | Conducting polymer ink composition and organic solar cell comprising the same |
WO2013133644A1 (en) * | 2012-03-08 | 2013-09-12 | 주식회사 동진쎄미켐 | Conductive ink composition for forming transparent electrodes |
WO2013161996A2 (en) | 2012-04-26 | 2013-10-31 | 国立大学法人大阪大学 | Transparent conductive ink, and method for producing transparent conductive pattern |
JP2015225760A (en) * | 2014-05-27 | 2015-12-14 | ナガセケムテックス株式会社 | Transparent electrode, production method of transparent electrode and touch panel |
-
2009
- 2009-01-16 JP JP2009007499A patent/JP2010165900A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013104047A (en) * | 2011-11-16 | 2013-05-30 | Nec Corp | Carbon nanotube ink composition and method of spraying carbon nanotube ink composition |
WO2013133644A1 (en) * | 2012-03-08 | 2013-09-12 | 주식회사 동진쎄미켐 | Conductive ink composition for forming transparent electrodes |
CN104159985A (en) * | 2012-03-08 | 2014-11-19 | 东进世美肯株式会社 | Conductive ink composition for forming transparent electrodes |
WO2013161996A2 (en) | 2012-04-26 | 2013-10-31 | 国立大学法人大阪大学 | Transparent conductive ink, and method for producing transparent conductive pattern |
US9236162B2 (en) | 2012-04-26 | 2016-01-12 | Osaka University | Transparent conductive ink and transparent conductive pattern forming method |
KR101285162B1 (en) | 2012-05-11 | 2013-07-11 | 주식회사 엘지화학 | Conducting polymer ink composition and organic solar cell comprising the same |
JP2014523464A (en) * | 2012-05-11 | 2014-09-11 | エルジー・ケム・リミテッド | Conductive polymer ink composition and organic solar cell containing the same |
US9966548B2 (en) | 2012-05-11 | 2018-05-08 | Lg Chem, Ltd. | Conductive polymer ink composition and organic solar cell including the same |
JP2015225760A (en) * | 2014-05-27 | 2015-12-14 | ナガセケムテックス株式会社 | Transparent electrode, production method of transparent electrode and touch panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9292146B2 (en) | Photosensitive film, method for producing capacitance type input device, capacitance type input device, and image display apparatus using the same | |
KR101263058B1 (en) | Method of manufacturing electronic part | |
JP2010165900A (en) | Method of manufacturing transparent electrode, transparent electrode, and conductive ink and liquid-repellent transparent insulating ink used therefor | |
JP6170288B2 (en) | Transfer material, method for manufacturing capacitive input device, capacitive input device, and image display device including the same | |
CN102057000B (en) | Ink composition for forming an insulating film and an insulating film formed from said ink composition | |
CN106457868A (en) | Printing plate, method for producing printing plate, method for manufacturing functional element and printing apparatus | |
KR20220005646A (en) | Transparent conductive coatings based on metal nanowires | |
AU2012298650A1 (en) | Patterned transparent conductors and related manufacturing methods | |
KR20090091358A (en) | Optical laminated body, method for manufacturing the optical laminated body, and composition for antistatic layer | |
WO2013176155A1 (en) | Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel | |
WO2013074617A1 (en) | Process for imprint patterning materials in thin-film devices | |
JP2011037999A (en) | Electrically conductive ink and electrically conductive pattern-forming method | |
JP2015040316A (en) | Nanoparticle carrying metal nanowire, dispersion, transparent conductive film and production method thereof, as well as touch panel | |
TWI658939B (en) | Laminated material manufacturing method, laminated material, transparent laminated body manufacturing method, transparent laminated body, electrostatic capacitance type input device and image display device | |
CN107046106A (en) | Pixel defining layer and its preparation method and application | |
Kang et al. | High resolution micro-patterning of stretchable polymer electrodes through directed wetting localization | |
Zhao et al. | A General Layer‐by‐Layer Printing Method for Scalable High‐Resolution Full‐Color Flexible Luminescent Patterns | |
JP2013246610A (en) | Electrostatic capacitance type touch panel substrate, display device and method of manufacturing electrostatic capacitance type touch panel substrate | |
KR20240116844A (en) | Transparent Conductive Film | |
KR20090103250A (en) | Ink composition for transparent electrode and method of manufacturing transparent electrode using the ink composition | |
TWI409011B (en) | Construction and Manufacturing Method of Transparent Conductive Line | |
TWI399854B (en) | Printing conductive patterns using lep | |
KR20160020230A (en) | Manufacturing method of transparent electrod and transparent electrod laminate | |
Aijazi | Printing functional electronic circuits and components | |
JP2009056625A (en) | Planographic printing plate, its manufacturing method, and printed matter using the same |