[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010161629A - Solid-state image sensor and method of driving the same, and image capturing apparatus - Google Patents

Solid-state image sensor and method of driving the same, and image capturing apparatus Download PDF

Info

Publication number
JP2010161629A
JP2010161629A JP2009002477A JP2009002477A JP2010161629A JP 2010161629 A JP2010161629 A JP 2010161629A JP 2009002477 A JP2009002477 A JP 2009002477A JP 2009002477 A JP2009002477 A JP 2009002477A JP 2010161629 A JP2010161629 A JP 2010161629A
Authority
JP
Japan
Prior art keywords
charge
solid
temporary storage
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009002477A
Other languages
Japanese (ja)
Inventor
Masaru Sato
優 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2009002477A priority Critical patent/JP2010161629A/en
Priority to TW098144794A priority patent/TW201027990A/en
Priority to KR1020100000707A priority patent/KR20100082309A/en
Publication of JP2010161629A publication Critical patent/JP2010161629A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14868CCD or CID colour imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure that facilitates carrying out vertical pixel addition in a solid-state image sensor. <P>SOLUTION: The solid-state image sensor has: a plurality of pixels 24 arranged and formed in a two-dimension array on a semiconductor substrate with color filters laminated thereon; a plurality of vertical electric charge transmission paths 25 formed along a plurality of pixel arrays configured by pixels 24, and allowing signal electric charges detected by the pixels 24 to be read out and transmitted therethrough; a horizontal electric charge transmission path 26 formed along a transmission direction end of the plurality of the vertical electric charge transmission paths 25; a branch type electric charge temporary storage part 28 which corresponds to each of the plurality of vertical electric charge transmission paths 25, resides between the transmission direction end 25a of the vertical electric charge transmission paths 25 and the horizontal electric charge transmission path 26, and temporarily stores the signal electric charge transmitted along the vertical electric charge transmission path 25 to transmit it to the horizontal electric charge transmission path 26; and application wiring 36 and 37 for control signals ϕLM1 and ϕLM2 connected separately to each of individual electric charge temporary storage parts 28a and 28b that configure the branch type electric charge temporary storage part 28. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、CCD型の固体撮像素子(Charge Coupled Device Image Sensor)及びその駆動方法並びに撮像装置に関し、特に、水平画素加算及び垂直画素加算を固体撮像素子内部で容易に実現できる構造を備えたCCD型の固体撮像素子及びその駆動方法並びに撮像装置に関する。   The present invention relates to a CCD type solid-state image pickup device (Charge Coupled Device Image Sensor), a driving method thereof, and an image pickup apparatus, and in particular, a CCD having a structure capable of easily realizing horizontal pixel addition and vertical pixel addition inside a solid-state image pickup device. The present invention relates to a solid-state imaging device of a type, a driving method thereof, and an imaging apparatus.

CCD型の固体撮像素子は、特許文献1に記載されている様に、垂直電荷転送路(VCCD)と水平電荷転送路(HCCD)を備えている。特許文献1記載の固体撮像素子は、フレームインターライントランスファ(FIT)型であり、垂直電荷転送路で転送されてきた信号電荷を、遮光膜下に設けられた1画面分の信号電荷を蓄積できる蓄積部に一旦蓄積する構成になっている。このため、垂直電荷転送路による蓄積部への転送は高速に行い、その後、低速で、蓄積部の信号電荷を水平転送路に転送できるという利点がある。   As described in Patent Document 1, the CCD solid-state imaging device includes a vertical charge transfer path (VCCD) and a horizontal charge transfer path (HCCD). The solid-state imaging device described in Patent Document 1 is a frame interline transfer (FIT) type, and can accumulate signal charges for one screen provided under a light shielding film, with signal charges transferred through a vertical charge transfer path. The storage unit temporarily stores the data. For this reason, there is an advantage that the transfer to the storage unit by the vertical charge transfer path is performed at a high speed, and then the signal charge of the storage unit can be transferred to the horizontal transfer path at a low speed.

しかも、この特許文献1記載の固体撮像素子では、2列の画素列が1本の垂直電荷転送路(VCCD)を共用する構成にし、蓄積部に信号電荷を入れるとき、2本の蓄積部に振り分けて転送する構成になっている。つまり、蓄積部の本数と、画素列の本数とは同数となっている。   In addition, in the solid-state imaging device described in Patent Document 1, when two pixel columns share one vertical charge transfer path (VCCD) and signal charges are input into the storage unit, It is configured to distribute and transfer. That is, the number of storage units is the same as the number of pixel columns.

蓄積部は、「蓄積」という用語を用いているが、1画面分の信号電荷を蓄積できるため実際には垂直電荷転送路と同様に多段構成となっており、信号電荷は、垂直電荷転送路と同様に転送パルスによって1段づつ水平電荷転送路の方向に転送される。従って、広義の意味では電荷転送路ということもできる。   The storage unit uses the term “accumulation”. However, since the signal charge for one screen can be stored, the storage unit actually has a multi-stage configuration like the vertical charge transfer path. In the same manner as described above, the transfer pulses are transferred one by one in the direction of the horizontal charge transfer path. Therefore, it can also be called a charge transfer path in a broad sense.

上記の例はFIT型であるが、蓄積部を有しないインターライントランスファ型の固体撮像素子等、他の方式のCCD型固体撮像素子も、各画素(フォトダイオード)が受光量に応じて検出した信号電荷を垂直電荷転送路(FIT型では多段転送型の蓄積部)に沿って水平電荷転送路まで転送し、次に、水平電荷転送路に沿って転送する構成は同じである。   Although the above example is a FIT type, other types of CCD type solid-state image sensors such as an interline transfer type solid-state image sensor that does not have a storage unit are also detected by each pixel (photodiode) according to the amount of light received. The signal charge is transferred to the horizontal charge transfer path along the vertical charge transfer path (multi-stage transfer type storage unit in the FIT type), and then transferred along the horizontal charge transfer path.

斯かるCCD型の固体撮像素子において、水平方向に設けられた同色カラーフィルタを搭載した複数画素の検出電荷を固体撮像素子内部で加算できる構造を備えた固体撮像素子を、本出願人は先に提案している(特許文献2,3)。   In such a CCD type solid-state imaging device, the present applicant has first proposed a solid-state imaging device having a structure in which detection charges of a plurality of pixels mounted with the same color filter provided in the horizontal direction can be added inside the solid-state imaging device. (Patent Documents 2 and 3).

この特許文献2記載の固体撮像素子は、垂直電荷転送路の転送方向端部と、水平電荷転送路との境界部分に電荷蓄積段を1段だけ設け、この電荷蓄積段の電位制御を垂直電荷転送路の転送パルスとは異なる制御パルスで制御し、水平転送パルスと制御パルスとの位相関係を制御することで、水平方向の画素加算を実現している。この電荷蓄積段は、各垂直電荷転送路毎に1段づつ設けられるため、ラインメモリ(LM)と称される。この明細書でもラインメモリLMの用語を用いて説明する。   In the solid-state imaging device described in Patent Document 2, only one charge storage stage is provided at the boundary between the transfer direction end of the vertical charge transfer path and the horizontal charge transfer path, and the potential control of this charge storage stage is performed using the vertical charge. The pixel addition in the horizontal direction is realized by controlling with a control pulse different from the transfer pulse of the transfer path and controlling the phase relationship between the horizontal transfer pulse and the control pulse. Since this charge storage stage is provided for each vertical charge transfer path, it is called a line memory (LM). This specification will also be described using the terminology of the line memory LM.

特開平4―341074号公報JP-A-4-341074 特開2002―112119号公報JP 2002-112119 A 特開2007―27977号公報JP 2007-27977 A

CCD型固体撮像素子は、垂直電荷転送路と水平電荷転送路との接続部分にラインメモリを設けることで、固体撮像素子内部で容易に信号電荷の水平画素加算を行うことができる。しかし、従来のラインメモリでは、垂直方向の画素加算は容易でない。   The CCD solid-state imaging device can easily perform horizontal pixel addition of signal charges inside the solid-state imaging device by providing a line memory at the connection portion between the vertical charge transfer path and the horizontal charge transfer path. However, in the conventional line memory, pixel addition in the vertical direction is not easy.

固体撮像素子内部で画素加算すなわち信号電荷の混合を行うには、加算対象の信号電荷が同色画素によって検出された信号電荷である必要があり、色の異なる画素から検出された信号電荷を加算しても混色が発生してしまうためできない。   In order to perform pixel addition, that is, mixing signal charges, inside the solid-state imaging device, the signal charge to be added must be signal charges detected by pixels of the same color, and signal charges detected from pixels of different colors are added. However, this is not possible because color mixing occurs.

例えばカラーフィルタ配列が縦ストライプであれば、同色の画素が1本の垂直電荷転送路に沿って並ぶため、垂直画素加算は、垂直電荷転送路上で可能である。しかし、ベイヤー配列や横ストライプの様に、垂直方向に異なる色のカラーフィルタが交互に設けられたCCD型固体撮像素子の場合、異なる色の画素が1本の垂直電荷転送路に沿って並ぶため、垂直画素加算はできない。   For example, if the color filter array is a vertical stripe, pixels of the same color are arranged along one vertical charge transfer path, so that vertical pixel addition is possible on the vertical charge transfer path. However, in the case of a CCD type solid-state imaging device in which color filters of different colors are alternately provided in the vertical direction, such as a Bayer array or a horizontal stripe, pixels of different colors are arranged along one vertical charge transfer path. Vertical pixel addition is not possible.

本発明の目的は、固体撮像素子内部で、水平画素加算及び垂直画素加算を容易に行う構造を有する固体撮像素子及びその駆動方法並びに撮像装置を提供することにある。   An object of the present invention is to provide a solid-state imaging device having a structure that easily performs horizontal pixel addition and vertical pixel addition inside the solid-state imaging device, a driving method thereof, and an imaging apparatus.

本発明の固体撮像素子は、半導体基板に二次元アレイ状に配列形成されカラーフィルタが積層された複数の画素と、該画素で構成される複数の画素列に沿って形成され前記画素が検出した信号電荷が読み出され転送される複数の垂直電荷転送路と、該複数の垂直電荷転送路の転送方向端部に沿って形成される水平電荷転送路と、前記複数の各垂直電荷転送路対応に且つ該垂直電荷転送路の転送方向端部と前記水平電荷転送路との間に設けられ該垂直電荷転送路に沿って転送されてきた前記信号電荷を一時蓄積し前記水平電荷転送路に転送する分岐型電荷一時蓄積部と、該分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部の各々に別個に接続された制御信号印加用の配線とを備えることを特徴とする。   The solid-state imaging device of the present invention is formed along a plurality of pixels arranged in a two-dimensional array on a semiconductor substrate and laminated with a color filter, and a plurality of pixel columns composed of the pixels, and the pixels are detected. A plurality of vertical charge transfer paths from which signal charges are read and transferred, a horizontal charge transfer path formed along a transfer direction end of the plurality of vertical charge transfer paths, and the plurality of vertical charge transfer paths And the signal charge transferred along the vertical charge transfer path provided between the transfer direction end of the vertical charge transfer path and the horizontal charge transfer path is temporarily stored and transferred to the horizontal charge transfer path. And a control signal applying wiring separately connected to each of the individual charge temporary storage units constituting the branch type charge temporary storage unit.

本発明の固体撮像素子の駆動方法は、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部には、同一の該電荷一時蓄積部に同一色のカラーフィルタを持つ画素で検出された信号電荷が振り分けられることを特徴とする。   In the solid-state imaging device driving method according to the present invention, the individual charge temporary storage units constituting the branch type charge temporary storage unit are detected by pixels having the same color temporary color filter in the same charge temporary storage unit. The signal charge is distributed.

本発明の撮像装置は、上記記載の固体撮像素子と、該固体撮像素子に垂直転送パルスと水平転送パルスと前記制御信号とを供給する撮像素子駆動手段とを備えることを特徴とする。   An image pickup apparatus according to the present invention includes the solid-state image pickup device described above, and image pickup device driving means for supplying a vertical transfer pulse, a horizontal transfer pulse, and the control signal to the solid-state image pickup device.

本発明によれば、並列に分岐する分岐型電荷一時蓄積部を個々の垂直電荷転送路に設け、異なる色の信号電荷を、分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部に振り分けて蓄積するため、水平画素加算と垂直画素加算が固体撮像素子内部で容易に実現可能となる。   According to the present invention, a branch type charge temporary storage unit that branches in parallel is provided in each vertical charge transfer path, and signal charges of different colors are distributed to the individual charge temporary storage units constituting the branch type charge temporary storage unit. Therefore, horizontal pixel addition and vertical pixel addition can be easily realized inside the solid-state imaging device.

本発明の一実施形態に係る撮像装置の機能ブロック図である。It is a functional block diagram of the imaging device concerning one embodiment of the present invention. 図1に示すCCD型の固体撮像素子の表面模式図である。It is a surface schematic diagram of the CCD type solid-state imaging device shown in FIG. 図2に示す固体撮像素子の要部拡大図である。It is a principal part enlarged view of the solid-state image sensor shown in FIG. 図3に示す固体撮像素子の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the solid-state image sensor shown in FIG. 本発明の別実施形態に係る固体撮像素子の要部拡大図である。It is a principal part enlarged view of the solid-state image sensor which concerns on another embodiment of this invention. 図5に示す固体撮像素子の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the solid-state image sensor shown in FIG. 本発明の更に別実施形態に係る固体撮像素子の要部拡大図である。It is a principal part enlarged view of the solid-state image sensor which concerns on another embodiment of this invention. 図7に示す固体撮像素子の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the solid-state image sensor shown in FIG. 本発明の更に別実施形態に係る固体撮像素子の要部拡大図である。It is a principal part enlarged view of the solid-state image sensor which concerns on another embodiment of this invention. 図9に示す固体撮像素子の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the solid-state image sensor shown in FIG. 本発明の更に別実施形態に係る固体撮像素子の要部拡大図である。It is a principal part enlarged view of the solid-state image sensor which concerns on another embodiment of this invention. 図11に示す固体撮像素子の動作を説明するタイミングチャートである。12 is a timing chart for explaining the operation of the solid-state imaging device shown in FIG. 11. 本発明の更に別実施形態に係る固体撮像素子の要部拡大図である。It is a principal part enlarged view of the solid-state image sensor which concerns on another embodiment of this invention. 図13に示す固体撮像素子の動作を説明するタイミングチャートである。It is a timing chart explaining operation | movement of the solid-state image sensor shown in FIG.

以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本実施形態の固体撮像装置(図示する例は、デジタルスチルカメラ)の概略構成を示す機能ブロック図である。この固体撮像装置100は、被写体画像を撮像する撮像部1と、撮像部1から出力される撮像画像信号を相関二重サンプリング(CDS)処理や利得制御処理するアナログ信号処理部2と、アナログ信号処理部2から出力されるアナログの撮像画像信号をデジタル信号に変換するアナログ/デジタル(A/D)変換部3と、後述のシステム制御部9からの指示に基づいて撮像部1,アナログ信号処理部2,A/D変換部3に制御パルスを出力する駆動部(撮像素子駆動手段を含む)4とを備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a schematic configuration of a solid-state imaging apparatus (an example shown is a digital still camera) of the present embodiment. The solid-state imaging device 100 includes an imaging unit 1 that captures a subject image, an analog signal processing unit 2 that performs correlated double sampling (CDS) processing and gain control processing on a captured image signal output from the imaging unit 1, and an analog signal. An analog / digital (A / D) conversion unit 3 that converts an analog captured image signal output from the processing unit 2 into a digital signal, and an imaging unit 1 and analog signal processing based on an instruction from a system control unit 9 to be described later 2 and a driving unit (including an image sensor driving unit) 4 that outputs a control pulse to the A / D conversion unit 3.

固体撮像装置100は更に、A/D変換部3から出力されるデジタルの撮像画像信号を画像処理するデジタル信号処理部(DSP)6と、画像処理後の撮像画像信号をJPEG画像やMPEG画像等に圧縮したり逆に伸長したりする圧縮/伸張処理部7と、スルー画像や撮像画像を表示するカメラ背面等に設けられた表示部8と、撮像装置100を統括制御するシステム制御部(CPU)9と、フレームメモリ等の内部メモリ10と、記録メディア12にJPEG画像データやMPEG画像データを格納するメディアインタフェース11と、これらを相互に接続するシステムバス14とを備える。   The solid-state imaging device 100 further includes a digital signal processing unit (DSP) 6 that performs image processing on a digital captured image signal output from the A / D conversion unit 3, and a captured image signal after image processing as a JPEG image, an MPEG image, or the like. A compression / expansion processing unit 7 that compresses or reversely compresses the image, a display unit 8 provided on the back of the camera that displays a through image or a captured image, and a system control unit (CPU) that performs overall control of the imaging device 100 ) 9, an internal memory 10 such as a frame memory, a media interface 11 for storing JPEG image data or MPEG image data in the recording medium 12, and a system bus 14 for interconnecting them.

システム制御部9には、シャッタボタンやメニュー操作ボタン等の操作部13が接続され、操作部13から入力されるユーザ指示に基づき、システム制御部9が撮像装置100を制御する。   An operation unit 13 such as a shutter button or a menu operation button is connected to the system control unit 9, and the system control unit 9 controls the imaging apparatus 100 based on a user instruction input from the operation unit 13.

撮像部1は、撮影レンズ12や絞り,赤外光カットフィルタ,光学的ローパスフィルタを含む光学系と、これら光学系を通して結像した被写体からの光像を電気信号に変換するCCD型の固体撮像素子22とを備える。固体撮像素子22の前段にメカニカルシャッタを備える場合もある。   The imaging unit 1 includes an optical system including a photographing lens 12, an aperture, an infrared light cut filter, and an optical low-pass filter, and a CCD type solid-state imaging device that converts a light image from a subject formed through these optical systems into an electrical signal. And an element 22. In some cases, a mechanical shutter is provided in front of the solid-state imaging element 22.

図2は、図1に示すCCD型の固体撮像素子22の表面模式図である。この固体撮像素子22は、半導体基板の表面部に二次元アレイ状に、図示する例では正方格子状に配列形成された複数の画素(フォトダイオード:PD)24と、画素24で構成される各画素列の各々に沿って形成される垂直電荷転送路(VCCD)25と、各垂直電荷転送路25の転送方向端部に沿って形成される水平電荷転送路(HCCD)26と、水平電荷転送路26の転送方向端部に設けられ転送されてきた信号電荷の電荷量に応じた信号を撮像画像信号として図1のアナログ信号処理部2に出力するアンプ27とを備える。   FIG. 2 is a schematic view of the surface of the CCD type solid-state imaging device 22 shown in FIG. The solid-state imaging device 22 includes a plurality of pixels (photodiodes: PD) 24 arranged in a two-dimensional array form on the surface of the semiconductor substrate, in the illustrated example, in a square lattice form, and pixels 24. A vertical charge transfer path (VCCD) 25 formed along each pixel column, a horizontal charge transfer path (HCCD) 26 formed along the transfer direction end of each vertical charge transfer path 25, and a horizontal charge transfer An amplifier 27 is provided that is provided at an end portion in the transfer direction of the path 26 and outputs a signal corresponding to the amount of signal charge transferred to the analog signal processing unit 2 in FIG. 1 as a captured image signal.

各画素24と図示する例では左隣の垂直電荷転送路25とは、読出ゲート部24aにより接続され、各画素24が受光量に応じて蓄積した信号電荷(この例では電子)を読出パルスが印加されたとき隣接の垂直電荷転送路25に読み出す様になっている。   Each pixel 24 and the vertical charge transfer path 25 adjacent to the left in the example shown in the figure are connected by a readout gate section 24a, and the readout pulse is a signal charge (electrons in this example) accumulated by each pixel 24 according to the amount of received light. When applied, it is read out to the adjacent vertical charge transfer path 25.

この実施形態の固体撮像素子22では、各画素24上に、原色系カラーフィルタR(赤),緑(G),青(B)がベイヤー配列されている。即ち、奇数行の画素行にはGBGBGB…、偶数行の画素行にはRGRGRG…とカラーフィルタが積層されている。   In the solid-state imaging device 22 of this embodiment, primary color filters R (red), green (G), and blue (B) are Bayer arranged on each pixel 24. That is, color filters GBGBGB ... are stacked on the odd pixel rows, and RGRRGRG ... are stacked on the even pixel rows.

尚、ベイヤー配列を例として以下の実施形態を説明するが、本発明はカラーフィルタ配列がベイヤー配列に限るものではなく、また、原色系カラーフィルタではなく補色系カラーフィルタでも良い。カラーフィルタはストライプ状でも良いが、市松配列の様なモザイク状が良い。更に、本発明は、画素配列が正方格子配列でなく所謂ハニカム画素配列(奇数行の画素行に対して偶数行の画素行が1/2画素ピッチずれた配列)にも適用できる。   Although the following embodiments will be described by taking the Bayer array as an example, the present invention is not limited to the Bayer array, and the present invention may be a complementary color filter instead of a primary color filter. The color filter may be striped, but a mosaic like a checkered pattern is preferred. Furthermore, the present invention can be applied to a so-called honeycomb pixel arrangement (an arrangement in which even-numbered pixel lines are shifted by 1/2 pixel pitch from odd-numbered pixel lines) instead of a square lattice arrangement.

図2に示す本実施形態の固体撮像素子22は、更に、各垂直電荷転送路25の転送方向端部における水平電荷転送路26との間に、転送段が1段の電荷一時蓄積部28が設けられている。この電荷一時蓄積部28は、各垂直電荷転送路25に対応して設けられており、1つ1つの電荷一時蓄積部28について説明する場合には「電荷一時蓄積部28」といい、1ライン全ての電荷一時蓄積部28について説明する場合にはラインメモリ(LM)28と呼ぶことにする。   The solid-state imaging device 22 of this embodiment shown in FIG. 2 further includes a charge temporary storage unit 28 having one transfer stage between the vertical charge transfer path 25 and the horizontal charge transfer path 26 at the transfer direction end. Is provided. This temporary charge storage section 28 is provided corresponding to each vertical charge transfer path 25, and when describing each single temporary charge storage section 28, it is referred to as a "temporary charge storage section 28". When all the charge temporary storage units 28 are described, they are referred to as line memories (LM) 28.

個々の電荷一時蓄積部28は、詳細は図3で説明する様に、並列に2分岐されており、2分岐状態で水平電荷転送路26に接続される。   As will be described in detail with reference to FIG. 3, the individual charge temporary storage units 28 are branched into two in parallel, and are connected to the horizontal charge transfer path 26 in a two-branched state.

この固体撮像素子22は、図1に示す駆動部4の一部を構成する撮像素子駆動手段4aにより駆動される。即ち、駆動手段4aは、システム制御部9からの指示に基づいて駆動パルスを生成し、垂直転送パルスφVi(i=1〜4:4相駆動の場合)を垂直電荷転送路25を構成する転送電極に印加して垂直電荷転送路25を転送駆動する。また、水平転送パルスφHi(i=1,2:2相駆動の場合)を水平電荷転送路を構成する転送電極に印加して水平電荷転送路26を転送駆動する。   The solid-state image sensor 22 is driven by an image sensor drive unit 4a that constitutes a part of the drive unit 4 shown in FIG. That is, the drive unit 4 a generates a drive pulse based on an instruction from the system control unit 9, and transfers the vertical transfer pulse φVi (i = 1 to 4: in the case of four-phase drive) constituting the vertical charge transfer path 25. The vertical charge transfer path 25 is applied to the electrodes and driven to transfer. Further, the horizontal charge transfer path 26 is driven to transfer by applying a horizontal transfer pulse φHi (i = 1, 2: in the case of two-phase driving) to the transfer electrodes constituting the horizontal charge transfer path.

また、撮像素子駆動手段4aは、ラインメモリ制御パルスφLM1,φLM2をラインメモリ(LM)28に印加してラインメモリ(LM)28の電位レベル制御を後述する様に行う。   Further, the image sensor driving means 4a applies line memory control pulses φLM1 and φLM2 to the line memory (LM) 28, and controls the potential level of the line memory (LM) 28 as described later.

尚、「垂直」「水平」という用語を用いて説明しているが、これは、半導体基板表面に沿う「1方向」「この1方向に対して略直交する方向」の意味に過ぎない。   Although the terms “vertical” and “horizontal” are used for explanation, this only means “one direction” along the surface of the semiconductor substrate and “a direction substantially orthogonal to the one direction”.

図3は、図2に示す固体撮像素子の要部拡大図であり、図4は、撮像素子駆動手段4aから固体撮像素子に与えられる転送パルス,制御パルスを示すタイミングチャートである。   FIG. 3 is an enlarged view of a main part of the solid-state imaging device shown in FIG. 2, and FIG. 4 is a timing chart showing transfer pulses and control pulses given from the imaging device driving means 4a to the solid-state imaging device.

図3には、奇数列(左側とする)とそれに隣接する偶数列(右側とする)の2列の垂直電荷転送路25及び画素24と、垂直電荷転送路端部の2分岐された電荷一時蓄積部28と、水平電荷転送路26が示されている。   FIG. 3 shows two vertical charge transfer paths 25 and pixels 24 in an odd number column (referred to as the left side) and an even number column (referred to as the right side) adjacent to the odd number column (referred to as the right side). An accumulation unit 28 and a horizontal charge transfer path 26 are shown.

垂直電荷転送路24,電荷一時蓄積部28,水平電荷転送路26は、半導体基板の表面pウェル層に形成されたn型不純物領域(埋め込みチャネル)と、その上にゲート絶縁膜を介して形成されたポリシリコン膜等でなる電極膜とで構成され、図3には主にその電極膜部分が図示されている。   The vertical charge transfer path 24, the charge temporary storage section 28, and the horizontal charge transfer path 26 are formed via an n-type impurity region (buried channel) formed in the surface p-well layer of the semiconductor substrate and a gate insulating film thereon. FIG. 3 mainly shows the electrode film portion.

図4の見方は次の通りである。各パルス信号の電位がハイ(H)のとき、その下部の埋め込みチャネルに電位井戸が形成され、中に信号電荷が中に入ることができる。パルス信号の電位がロー(L)のときは、この電位井戸は消失し、バリア(障壁部)となる。   The way of viewing FIG. 4 is as follows. When the potential of each pulse signal is high (H), a potential well is formed in the buried channel below it, and signal charges can enter it. When the potential of the pulse signal is low (L), the potential well disappears and becomes a barrier (barrier portion).

図3で、画素(PD)24の左隣に示す「G」「R」「B」のある箇所は、夫々電位井戸が形成されており、その中に「Gフィルタ」「Rフィルタ」「Bフィルタ」が積層された画素から読み出され転送されてきた信号電荷が入っている状態を示している。垂直電荷転送路25のうちG,R,Bの記載のない箇所は、上記のバリア(障壁部)となっている箇所である。   In FIG. 3, potential wells are respectively formed at locations where “G”, “R”, and “B” shown on the left side of the pixel (PD) 24, and “G filter”, “R filter”, and “B” are included therein. The filter shows a state in which signal charges read out and transferred from the stacked pixels are contained. A portion where G, R, and B are not described in the vertical charge transfer path 25 is a portion serving as the above-described barrier (barrier portion).

各垂直電荷転送路25の端部には分岐部25aが設けられており、転送パルスφV4が印加される分岐部25aに、2分岐された電荷一時蓄積部28a,28bが並列に連設され、各電荷一時蓄積部28a,28b間は、素子分離帯29で分離されている。そして、一方の電荷一時蓄積部28aの制御電極膜にはラインメモリ制御パルスφLM1が印加される配線36が、また、他方の電荷一時蓄積部28bにはラインメモリ制御パルスφLM2が印加される配線37が接続されている。   A branch portion 25a is provided at an end portion of each vertical charge transfer path 25, and two branching temporary charge storage portions 28a and 28b are connected in parallel to the branch portion 25a to which the transfer pulse φV4 is applied. The respective charge temporary storage units 28 a and 28 b are separated by an element separation band 29. A wiring 36 to which the line memory control pulse φLM1 is applied is applied to the control electrode film of one charge temporary storage unit 28a, and a wiring 37 to which the line memory control pulse φLM2 is applied to the other charge temporary storage unit 28b. Is connected.

水平電荷転送路26の転送電極は、水平転送1段分に対して2枚の電極26a,26bを組として、この電極組が水平方向に連続して設けられる。電極26aはL字形をなし、その短手部分が、1本の垂直電荷転送路すなわち1組の電荷蓄積部28a,28bに対し対面して設けられ、長手部分が、水平電荷転送方向に直交する様に設けられる。   As the transfer electrode of the horizontal charge transfer path 26, two electrodes 26a and 26b are set as a set for one horizontal transfer stage, and this electrode set is continuously provided in the horizontal direction. The electrode 26a has an L-shape, and a short portion thereof is provided to face one vertical charge transfer path, that is, one set of charge storage portions 28a and 28b, and a long portion thereof is orthogonal to the horizontal charge transfer direction. Provided.

そして、L字形の凹部矩形箇所に電極26bが設けられる。電極26bは組となる電極26aに対して水平転送方向すなわちアンプ27方向に設けられる。電極26a,26bの各組下に形成される埋め込みチャネルは、電位井戸が形成されたとき電極26b下の電位井戸が電極26a下の電位井戸より深く(電荷が多く溜まる様に)形成される様に、不純物濃度勾配が設けられている。   And the electrode 26b is provided in the L-shaped recessed rectangular part. The electrode 26b is provided in the horizontal transfer direction, that is, in the direction of the amplifier 27 with respect to the pair of electrodes 26a. The buried channel formed under each pair of the electrodes 26a and 26b is formed such that when the potential well is formed, the potential well under the electrode 26b is deeper than the potential well under the electrode 26a (so that a large amount of charge is accumulated). In addition, an impurity concentration gradient is provided.

各電極組の夫々に対して、奇数列の垂直電荷転送路に対応する電極組には水平転送パルスφH1が印加され、偶数列の垂直電荷転送路に対応する電極組にはφH1と逆位相の水平転送パルスφH2が印加される配設接続となっている。   For each of the electrode sets, the horizontal transfer pulse φH1 is applied to the electrode sets corresponding to the odd-numbered vertical charge transfer paths, and the electrode sets corresponding to the even-numbered vertical charge transfer paths are opposite in phase to φH1. The arrangement connection is such that the horizontal transfer pulse φH2 is applied.

次に、図4のタイミングチャートに従って、固体撮像素子22の動作を説明する。図3に示すR,G,Bの各信号電荷の転送位置は、図4の時刻tにおける状態を示している。   Next, the operation of the solid-state imaging device 22 will be described according to the timing chart of FIG. The transfer positions of the R, G, and B signal charges shown in FIG. 3 indicate the state at time t in FIG.

この図3は、固体撮像素子22を用いて全画素の信号電荷を全画素読出する場合を説明する図であり、奇数列の垂直電荷転送路25にはGRGRGR…の信号電荷が転送されてきており、偶数列の垂直電荷転送路25にはBGBGBG…の信号電荷が転送されてきている。   FIG. 3 is a diagram for explaining the case where the signal charges of all the pixels are read out using the solid-state image pickup device 22. The signal charges of GRGRGR... Have been transferred to the vertical charge transfer paths 25 in the odd columns. The signal charges BGBGBBG... Are transferred to the vertical charge transfer paths 25 in even columns.

奇数列の垂直電荷転送路25(左側)だけみると、G信号電荷とR信号電荷とが交互に転送されてきており、電荷一時蓄積部28aにはR信号電荷が、電荷一時蓄積部28bにはG信号電荷が一時蓄積されている。   If only the vertical charge transfer path 25 (left side) in the odd-numbered column is viewed, the G signal charge and the R signal charge are alternately transferred, and the R signal charge is transferred to the temporary charge storage unit 28a and the R signal charge is transferred to the temporary charge storage unit 28b. G signal charge is temporarily stored.

電荷一時蓄積部28b内のG信号電荷は、図4の時刻tに先行するφV1,φV2,φV3,φV4の垂直転送パルスに従って、図4に「G」の移動を図示するように、垂直電荷転送路に沿って転送される。そして、転送パルスφV4で分岐部25aに転送されてきたとき、制御パルスφLM2がハイ(H)で電荷一時蓄積部28bに電位井戸が形成されており、このとき制御パルスφLM1がロー(L)で電荷一時蓄積部28aがバリア(障壁部)となっているため、G信号電荷は電荷一時蓄積部28b内に入り込み、蓄積部28aには入らない。   The G signal charge in the temporary charge storage unit 28b is transferred in accordance with the vertical transfer pulses φV1, φV2, φV3, and φV4 preceding the time t in FIG. 4 so that the movement of “G” is illustrated in FIG. Transferred along the road. When the transfer pulse φV4 is transferred to the branch section 25a, the control pulse φLM2 is high (H) and the potential well is formed in the temporary charge storage section 28b. At this time, the control pulse φLM1 is low (L). Since the temporary charge storage section 28a is a barrier (barrier section), the G signal charge enters the temporary charge storage section 28b and does not enter the storage section 28a.

このG信号電荷の蓄積部28b内への転送に先立つタイミングでは、R信号電荷が垂直電荷転送路に沿って転送され、分岐部25aに転送されてきたR信号電荷は、φLM1がハイ(H)でφLM2がロー(L)のため、電位井戸が形成されている電荷一時蓄積部28a内に入り、電荷一時蓄積部28bには入らない。   At a timing prior to the transfer of the G signal charge into the storage unit 28b, the R signal charge is transferred along the vertical charge transfer path, and φLM1 is high (H) in the R signal charge transferred to the branch unit 25a. Since φLM2 is low (L), it enters the charge temporary storage part 28a where the potential well is formed and does not enter the charge temporary storage part 28b.

この様にして、奇数列の垂直電荷転送路ではR信号電荷は、常に電荷一時蓄積部28a内に振り分けられ、G信号電荷は、常に電荷一時蓄積部28b内に振り分けられ、常に、同色の信号電荷が同じ電荷一時蓄積部内に蓄積されることになる。これは偶数列の電荷一時蓄積部でも同様である。   In this way, in the odd-numbered vertical charge transfer paths, the R signal charge is always distributed in the temporary charge storage unit 28a, and the G signal charge is always distributed in the temporary charge storage unit 28b. Charges are stored in the same charge temporary storage unit. The same applies to the even-numbered charge temporary storage units.

時刻tの後は、水平転送パルスφH1がハイ(H)40(パルスφH2はロー(L)41)のときにラインメモリ制御パルスφLM1が一時的にロー(L)42となる。これにより、奇数列の垂直電荷転送路に対応する電荷一時蓄積部28a内のR信号電荷が水平電荷転送路26に転送される。そして、高速駆動の水平転送パルス43によりR信号電荷はアンプ27まで送られ、撮像画像信号として出力される。   After time t, the line memory control pulse φLM1 temporarily becomes low (L) 42 when the horizontal transfer pulse φH1 is high (H) 40 (pulse φH2 is low (L) 41). As a result, the R signal charge in the temporary charge storage unit 28 a corresponding to the odd-numbered vertical charge transfer paths is transferred to the horizontal charge transfer path 26. Then, the R signal charge is sent to the amplifier 27 by the high-speed driving horizontal transfer pulse 43 and is output as a captured image signal.

偶数列の垂直電荷転送路に対応する電荷一時蓄積部内の信号電荷は、対応の水平転送電極26a下(特に、短手部分)が印加電圧(φH2)によってバリア(障壁)になっているため、水平電荷転送路側に移動できず、電荷一時蓄積部内に留まっている。   Since the signal charge in the charge temporary storage portion corresponding to the vertical charge transfer path of the even-numbered column is a barrier (barrier) by the applied voltage (φH2) under the corresponding horizontal transfer electrode 26a (particularly the short portion), It cannot move to the horizontal charge transfer path and remains in the temporary charge storage section.

次に、水平転送パルスφH1がハイ(H)40(φH2はロー(L)41)が保たれている状態でラインメモリ制御パルスφLM2が一時的にロー(L)44になると、奇数列の垂直電荷転送路に対応する電荷一時蓄積部28b内のG信号電荷が水平電荷転送路26に転送され、高速駆動の水平転送パルス45によりG信号電荷がアンプ27まで送られ、撮像画像信号として出力される。   Next, when the line memory control pulse φLM2 temporarily becomes low (L) 44 in a state where the horizontal transfer pulse φH1 is kept high (H) 40 (φH2 is low (L) 41), the odd column vertical The G signal charge in the temporary charge storage unit 28b corresponding to the charge transfer path is transferred to the horizontal charge transfer path 26, and the G signal charge is sent to the amplifier 27 by the horizontal transfer pulse 45 driven at high speed, and is output as a captured image signal. The

次に、水平転送パルスφH1がロー(L)46となり且つ水平転送パルスφH2がハイ(H)47となる。これにより、奇数列の垂直電荷転送路に対応する電荷一時蓄積部端部と水平電荷転送路との間にバリアが形成されると共に、偶数列の垂直電荷転送路に対応する電荷一時蓄積部端部と水平電荷転送路との間のバリアは消失する。   Next, the horizontal transfer pulse φH 1 becomes low (L) 46 and the horizontal transfer pulse φH 2 becomes high (H) 47. As a result, a barrier is formed between the horizontal charge transfer path and the charge temporary storage section end corresponding to the odd-numbered vertical charge transfer path, and the charge temporary storage section end corresponding to the even-numbered vertical charge transfer path. The barrier between the part and the horizontal charge transfer path disappears.

そして、ラインメモリ制御パルスφLM1が一時的にロー(L)48になると、偶数列(図3の右側)の垂直電荷転送路に対応する電荷一時蓄積部28aのG信号電荷が水平電荷転送路に移動し、次の高速駆動の水平転送パルス49により、G信号電荷はアンプ27まで送られ、撮像画像信号として出力される。   Then, when the line memory control pulse φLM1 temporarily becomes low (L) 48, the G signal charge of the temporary charge storage section 28a corresponding to the vertical charge transfer path in the even column (right side in FIG. 3) enters the horizontal charge transfer path. The G signal charge is sent to the amplifier 27 by the next horizontal transfer pulse 49 for high-speed driving, and is output as a captured image signal.

次に、ラインメモリ制御パルスφLM2が一時的にロー(L)50になると、偶数列の垂直電荷転送路に対応する電荷一時蓄積部28bのB信号電荷が水平電荷転送路に移動し、次の高速駆動の水平転送パルス51により、B信号電荷はアンプ27まで送られ、撮像画像信号として出力される。   Next, when the line memory control pulse φLM2 temporarily becomes low (L) 50, the B signal charge in the temporary charge storage unit 28b corresponding to the vertical charge transfer path in the even-numbered column moves to the horizontal charge transfer path. The B signal charge is sent to the amplifier 27 by the high-speed driving horizontal transfer pulse 51 and is output as a captured image signal.

次に、図4には図示していないが、垂直転送パルスφV1〜φV4が印加されて、上記と同様にして信号電荷が電荷一時蓄積部28a,28bに振り分けられながら転送され、以後、上記と同様にして、全画素の信号電荷が撮像画像信号として出力される。   Next, although not shown in FIG. 4, vertical transfer pulses φV1 to φV4 are applied, and signal charges are transferred while being distributed to the temporary charge storage units 28a and 28b in the same manner as described above. Similarly, signal charges of all pixels are output as captured image signals.

この様に、本実施形態では、垂直電荷転送路を水平電荷転送路に接続する部分に設ける電荷一時蓄積部28を並列の2分岐型としたため、撮像画像信号の品質劣化を回避できるという効果を奏する。その理由は以下の通りである。   As described above, in this embodiment, since the charge temporary storage unit 28 provided in the portion where the vertical charge transfer path is connected to the horizontal charge transfer path is a parallel two-branch type, it is possible to avoid deterioration in quality of the captured image signal. Play. The reason is as follows.

もし、電荷一時蓄積部28を分岐型とせず1個だけとし、ある電荷一時蓄積部から水平電荷転送路への転送不良が発生したとする。即ち、この電荷一時蓄積部の物理的特性が他の電荷一時蓄積部と異なっていたとする。この場合、この転送不良に起因する縦スジが撮像画像中に見えてしまい、画像品質を劣化させる。   It is assumed that only one charge temporary storage unit 28 is used instead of the branch type, and a transfer failure from a certain charge temporary storage unit to the horizontal charge transfer path occurs. In other words, it is assumed that the physical characteristics of this temporary charge storage unit are different from those of other temporary charge storage units. In this case, vertical stripes resulting from this transfer failure appear in the captured image, degrading the image quality.

しかし、本実施形態の様に、2分岐型(2分岐型に限らず、3分岐型,4分岐型でも良い。)とし、しかも、同色の信号電荷が同じ電荷一時蓄積部を通って水平電荷転送路に転送される構造のため、いずれかの電荷一時蓄積部28a,28bに転送不良が発生したとしても、その転送残り電荷は後段の同色の信号電荷と混合されるため、縦スジが目立たない。   However, as in the present embodiment, a two-branch type (not limited to a two-branch type, a three-branch type or a four-branch type) may be used. Due to the structure of transfer to the transfer path, even if a transfer failure occurs in any of the temporary charge storage units 28a and 28b, the remaining transfer charge is mixed with the signal charge of the same color in the subsequent stage, so vertical streaks are conspicuous Absent.

また、同色の信号電荷を分岐させずに片方の電荷一時蓄積部だけを通過させることにより、垂直電荷転送路から夫々の電荷一時蓄積部への転送効率に差があってもその影響を受けずに、同色で分岐させた場合に発生する虞のある横スジも回避可能となる。   In addition, by passing only one charge temporary storage unit without branching the same color signal charges, even if there is a difference in transfer efficiency from the vertical charge transfer path to each charge temporary storage unit, it is not affected. In addition, it is possible to avoid the horizontal streak that may occur when the same color is branched.

図5,図6は、本発明の別実施形態の動作説明図である。図3,図4は、全画素の信号電荷を全画素(プログレッシブ)読出して静止画像を作成する場合の動作であったが、本実施形態は、例えば、マルチフィールド読出で、GRGR…行の信号電荷を読み出す例を示している。   5 and 6 are explanatory diagrams of the operation of another embodiment of the present invention. 3 and 4 show the operation when the signal charges of all the pixels are read out by all the pixels (progressive) to create a still image. In the present embodiment, for example, the signal of the GRGR. The example which reads an electric charge is shown.

この場合、奇数列の垂直電荷転送路にはR信号電荷だけが転送され、偶数列の垂直電荷転送路にはG信号電荷だけが転送される構成となる。この場合には、2分岐された電荷一時蓄積部28a,28bのうち一方(図示の例では28a)だけを用いて転送駆動することになる。   In this case, only the R signal charge is transferred to the odd-numbered vertical charge transfer paths, and only the G signal charge is transferred to the even-numbered vertical charge transfer paths. In this case, transfer driving is performed by using only one of the two-charged temporary charge storage units 28a and 28b (28a in the illustrated example).

図5は、図6のタイミングチャートの時刻tにおける状態を示す図である。図6のタイミングチャートは、図4のタイミングチャートのうち垂直電荷転送路から電荷一時蓄積部28bへの転送と、電荷一時蓄積部28bから水平電荷転送路への転送部分が削除されたタイミングチャートになっているだけなので、図4と同一部分には同一符号を付してその説明は省略する。   FIG. 5 is a diagram illustrating a state at time t in the timing chart of FIG. The timing chart of FIG. 6 is a timing chart in which the transfer from the vertical charge transfer path to the temporary charge storage section 28b and the transfer section from the temporary charge storage section 28b to the horizontal charge transfer path are deleted from the timing chart of FIG. Therefore, the same parts as those in FIG.

図7,図8は、本発明の更に別実施形態の動作説明図である。図7は、図8に示すタイミングチャートにおける時刻tの状態を示す図である。図3,図4の実施形態では、電荷一時蓄積部28aにR信号電荷が蓄積され、電荷一時蓄積部28bにG信号電荷が蓄積されたとき、これら信号電荷R,Gを水平電荷転送路に転送し出力したが、本実施形態では、垂直2画素加算を電荷一時蓄積部28a,28bで行っている点が異なる。   7 and 8 are operation explanatory views of still another embodiment of the present invention. FIG. 7 is a diagram showing a state at time t in the timing chart shown in FIG. 3 and 4, when the R signal charge is stored in the temporary charge storage unit 28a and the G signal charge is stored in the temporary charge storage unit 28b, the signal charges R and G are used as the horizontal charge transfer path. However, the present embodiment is different in that the vertical two-pixel addition is performed by the charge temporary storage units 28a and 28b.

即ち、奇数列の垂直電荷転送路ではG信号電荷とR信号電荷とが交互に転送されて来るため、分岐部25aで交互に振り分け、図8の時刻t前に転送によって、R信号電荷2個分を電荷一時蓄積部28aに蓄積させ、G信号電荷2個分を電荷一時蓄積部28bに蓄積させた後、図4と同じ時刻t後の転送パルスによって水平電荷転送路に転送しアンプ27から出力させる。   That is, since the G signal charge and the R signal charge are alternately transferred in the odd-numbered vertical charge transfer paths, two R signal charges are distributed by the branching portion 25a and transferred before time t in FIG. Is stored in the temporary charge storage unit 28a and two G signal charges are stored in the temporary charge storage unit 28b, and then transferred to the horizontal charge transfer path by the transfer pulse after the same time t as in FIG. Output.

この様に、本実施形態では、垂直電荷転送路毎に電荷一時蓄積部を並列に2分岐させているため、同色の信号電荷の垂直加算が容易となり、垂直画素加算を固体撮像素子内部で行うことが可能となる。   As described above, in this embodiment, since the charge temporary storage unit is branched into two branches in parallel for each vertical charge transfer path, the vertical addition of the signal charges of the same color is facilitated, and the vertical pixel addition is performed inside the solid-state imaging device. It becomes possible.

勿論、この実施形態の様に垂直2画素加算を行う場合には、電荷一時蓄積部28a,28bの容量として、夫々、画素24の飽和電荷量の少なくとも2倍の容量を持たせる必要があり、垂直n(n=3以上の整数)画素加算を行う場合には、少なくともn倍の容量が必要となる。   Of course, when performing vertical two-pixel addition as in this embodiment, it is necessary to provide a capacity of the charge temporary storage units 28a and 28b at least twice as large as the saturation charge amount of the pixel 24. When performing vertical n (n = integer greater than or equal to 3) pixel addition, at least n times the capacity is required.

また、水平画素加算を行う場合には、従来と同様にして、水平転送パルスとラインメモリ制御パルスの各タイミングを調整することで容易に行うことができる。例えば水平電荷転送路上をG信号電荷が転送されて来て、G信号電荷を保持している電荷一時蓄積部の前の水平転送段に来たとき、電荷一時蓄積部のG信号電荷を水平電荷転送路に転送させれば、水平方向画素加算が水平電荷転送路上で実現できる。   Further, when performing horizontal pixel addition, it can be easily performed by adjusting the timings of the horizontal transfer pulse and the line memory control pulse in the same manner as in the prior art. For example, when the G signal charge is transferred on the horizontal charge transfer path and comes to the horizontal transfer stage before the charge temporary storage unit holding the G signal charge, the G signal charge in the temporary charge storage unit is converted into the horizontal charge. If transferred to the transfer path, horizontal pixel addition can be realized on the horizontal charge transfer path.

尚、図示する例では、電荷一時蓄積部28a内にR信号電荷を2個分蓄積するのであるが、1個分が蓄積された状態で垂直電荷転送路の分岐部25aからG信号電荷を電荷一時蓄積部28b内に転送するとき、電荷一時蓄積部28aの電位をバリア状態にするが、各電荷一時蓄積部28a,28b内の埋め込みチャネルの不純物濃度に濃度勾配を付けたり制御電極形状に工夫をしておけば、R信号電荷が電荷一時蓄積部28aから外部に漏れ出ることはない。   In the example shown in the figure, two R signal charges are stored in the temporary charge storage unit 28a. However, the G signal charge is charged from the branch unit 25a of the vertical charge transfer path in a state where one R signal charge is stored. When transferring into the temporary storage unit 28b, the potential of the temporary charge storage unit 28a is set to a barrier state. However, the impurity concentration of the buried channel in each of the temporary charge storage units 28a and 28b is given a concentration gradient or the control electrode shape is devised. If this is done, the R signal charge will not leak out of the temporary charge storage section 28a.

この様に、本実施形態によれば、垂直画素加算を容易に固体撮像素子内部で行うことができるため、水平転送する画素数(信号電荷数)が減り、フレームレートを向上させることができ、動画像の撮像に有利となる。   As described above, according to the present embodiment, vertical pixel addition can be easily performed inside the solid-state imaging device, so that the number of pixels to be horizontally transferred (number of signal charges) can be reduced, and the frame rate can be improved. This is advantageous for capturing moving images.

図9,図10は、本発明の更に別実施形態の動作説明図である。本実施形態では、図5,図6の実施形態に対して、2分岐された電荷一時蓄積部の一方を用いて垂直方向2画素加算を行う例を示しており、図7,図8の実施形態の片側の電位一時蓄積部28aだけの動作となるため、その説明は省略する。   9 and 10 are explanatory diagrams of the operation of still another embodiment of the present invention. In the present embodiment, an example in which vertical two-pixel addition is performed using one of the bifurcated charge temporary storage units is shown in the embodiments of FIGS. 5 and 6. Since only the potential temporary storage section 28a on one side of the configuration is operated, the description thereof is omitted.

図11,図12は、本発明の更に別実施形態の動作説明図である。図5,図6に示す実施形態では、R信号電荷,G信号電荷を夫々2分岐型電荷一時蓄積部の片側28aにだけ転送したが、この実施形態では、両方の電荷一時蓄積部28a,28bに分割して転送している点が異なる。   11 and 12 are explanatory diagrams of the operation of still another embodiment of the present invention. In the embodiment shown in FIGS. 5 and 6, the R signal charge and the G signal charge are respectively transferred only to one side 28a of the two-branch type charge temporary storage unit. However, in this embodiment, both charge temporary storage units 28a and 28b are transferred. The difference is that it is divided and transferred.

本実施形態では、分岐部25aに信号電荷が転送されてきたとき、両方の電荷一時蓄積部28a,28bは共に電位井戸となるため、信号電荷は、両方の電位井戸内に流れ込む。夫々の電荷一時蓄積部28a,28b内に入り込む電荷量がどのような割合になるかは制御できないが、両方の電荷一時蓄積部28a,28bは、同一製造工程で製造され物理的構造が同一となるため、略1/2づつ分割される。   In the present embodiment, when the signal charge is transferred to the branching portion 25a, both the charge temporary storage portions 28a and 28b become potential wells, so that the signal charge flows into both potential wells. Although it is not possible to control the ratio of the amount of charge entering the respective temporary charge storage units 28a and 28b, both the temporary charge storage units 28a and 28b are manufactured in the same manufacturing process and have the same physical structure. Therefore, it is divided by about 1/2.

しかし、信号電荷がどの様な比率で分割されても問題はない。それは、図12に示す様に、時刻t後に、ラインメモリ制御パルスφLM1,φLM2共に同時にローパルス55,56が印加され、水平電荷転送路の同一転送段に、分割された信号電荷が同時に転送され水平電荷転送路上で結合されるからである。   However, there is no problem even if the signal charge is divided at any ratio. As shown in FIG. 12, after time t, low pulses 55 and 56 are simultaneously applied to the line memory control pulses φLM1 and φLM2, and the divided signal charges are simultaneously transferred to the same transfer stage of the horizontal charge transfer path. This is because they are coupled on the charge transfer path.

この実施形態によれば、1画素の信号電荷を2つの電荷一時蓄積部に蓄積するので、概ね2倍の信号量を扱うことができ、画像のダイナミックレンジを向上させることができる。また、飽和信号量が多くなった分、電荷一時蓄積部を小さく設計でき、固体撮像素子のチップ面積を縮小可能となる。   According to this embodiment, since the signal charge of one pixel is accumulated in the two charge temporary accumulation units, it is possible to handle almost twice the signal amount and improve the dynamic range of the image. In addition, as the amount of saturation signal increases, the temporary charge storage unit can be designed to be small, and the chip area of the solid-state imaging device can be reduced.

図13,図14は、本発明の更に別実施形態の動作説明図である。図5,図6の実施形態と図9,図10の実施形態との関係と同じであり、本実施形態では、図11,図12の実施形態に対して垂直2画素加算を両方の電荷一時蓄積部28a,28bを用いて行う構成となっている。   13 and 14 are explanatory diagrams of the operation of still another embodiment of the present invention. 5 and 6 is the same as the relationship between the embodiment of FIG. 9 and FIG. 10, and in this embodiment, the vertical two-pixel addition is performed for both charge transients in the embodiment of FIG. 11 and FIG. The storage unit 28a, 28b is used for the configuration.

図3〜図14に示す実施形態では、分岐型電荷一時蓄積部28を構成する個々の枝部(電荷一時蓄積部28a,28b)毎に異なる配線36,37を接続し、一方にラインメモリ制御パルスφLM1を印加し、他方にパルスφLM2を印加する配線接続したが、この図11〜図14の実施形態では、パルスφLM1,φLM2を同じパルスとして印加している。   In the embodiment shown in FIGS. 3 to 14, different wirings 36 and 37 are connected to each branch part (charge temporary storage parts 28 a and 28 b) constituting the branched charge temporary storage part 28, and line memory control is performed on one side. The pulse φLM1 is applied and the other wire is connected to apply the pulse φLM2. In the embodiment shown in FIGS. 11 to 14, the pulses φLM1 and φLM2 are applied as the same pulse.

このように、配線接続として、異なる位相のパルスφLM1,φLM2を印加できる配線にしておくことで、図3〜図14で説明した様々な動作を1つの固体撮像素子22に実行させることができ、様々な撮影モードに対応した信号読出方法(プログレッシブ読出,マルチフィールド読出,動画像読出,画素間引読出など)に柔軟に対応可能となる。   In this way, by making wiring that can apply pulses φLM1 and φLM2 of different phases as wiring connection, various operations described with reference to FIGS. 3 to 14 can be performed by one solid-state imaging device 22. It is possible to flexibly cope with signal readout methods (progressive readout, multi-field readout, moving picture readout, pixel thinning readout, etc.) corresponding to various photographing modes.

尚、上述した各実施形態において、垂直電荷転送路に沿って転送されてくる信号電荷が何色になるかは、固体撮像素子の各画素に積層されるカラーフィルタ配列に依存することになる。また、マルチフィールド読出する場合に、垂直電荷転送路に沿う信号電荷配列がどの様な色の配列になるかや、動画像読出時の画素間引き読み出し時にどの様な信号電荷の色配列になるかは、予め分かるため、それに合わせて2分岐型電荷一時蓄積部への電荷振り分け制御を行えばよい。   In each of the above-described embodiments, the color of the signal charge transferred along the vertical charge transfer path depends on the color filter array stacked on each pixel of the solid-state imaging device. Also, in multi-field readout, what kind of color arrangement the signal charge arrangement along the vertical charge transfer path is, and what kind of signal charge arrangement is used when thinning out pixels during moving picture readout Therefore, the charge distribution control to the two-branch charge temporary storage unit may be performed accordingly.

電荷一時蓄積部は、3分岐型,4分岐型とすることも可能である。2分岐型の場合にはラインメモリ制御パルスを2相駆動可能な配線接続としたが、3分岐型であれば3相駆動可能な配線接続にする必要があり、4分岐型であれば4相駆動可能な配線接続する必要がある。複数分岐型としたとき、分岐した電荷一時蓄積部を全て水平電荷転送路の同一転送段に接続する構成とするのが良いが、異なる転送段に接続する構成としても良い。   The charge temporary storage unit may be a 3-branch type or a 4-branch type. In the case of the 2-branch type, the line memory control pulse is connected to the wiring that can be driven in two phases. Wiring that can be driven must be connected. In the case of a multi-branch type, it is preferable to connect all branched charge temporary storage units to the same transfer stage of the horizontal charge transfer path, but it is also possible to connect to different transfer stages.

以上述べた様に、本発明の実施形態は、半導体基板に二次元アレイ状に配列形成されカラーフィルタが積層された複数の画素と、該画素で構成される複数の画素列に沿って形成され前記画素が検出した信号電荷が読み出され転送される複数の垂直電荷転送路と、該複数の垂直電荷転送路の転送方向端部に沿って形成される水平電荷転送路と、前記複数の各垂直電荷転送路対応に且つ該垂直電荷転送路の転送方向端部と前記水平電荷転送路との間に設けられ該垂直電荷転送路に沿って転送されてきた前記信号電荷を一時蓄積し前記水平電荷転送路に転送する分岐型電荷一時蓄積部と、該分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部の各々に別個に接続された制御信号印加用の配線とを備える固体撮像素子を特徴とする。   As described above, the embodiment of the present invention is formed along a plurality of pixels in which a color filter is stacked and arranged in a two-dimensional array on a semiconductor substrate, and a plurality of pixel columns composed of the pixels. A plurality of vertical charge transfer paths through which signal charges detected by the pixels are read and transferred; horizontal charge transfer paths formed along transfer direction ends of the plurality of vertical charge transfer paths; Corresponding to the vertical charge transfer path and provided between the horizontal charge transfer path and the transfer direction end of the vertical charge transfer path, the signal charge transferred along the vertical charge transfer path is temporarily accumulated and the horizontal charge transfer path. A solid-state imaging device comprising: a branch-type charge temporary storage unit for transferring to a charge transfer path; and a control signal application wiring separately connected to each of the individual charge temporary storage units constituting the branch-type charge temporary storage unit It is characterized by.

また、実施形態は、上記記載の固体撮像素子であって、前記分岐型電荷一時蓄積部は、前記垂直電荷転送路から受け取った前記信号電荷を転送段1段で前記水平電荷転送路に転送する構成を特徴とする。   The embodiment is the solid-state imaging device described above, wherein the branch charge temporary storage unit transfers the signal charge received from the vertical charge transfer path to the horizontal charge transfer path in one transfer stage. Features the configuration.

また、実施形態は、上記記載の固体撮像素子であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部は前記水平電荷転送路の同一転送段に接続される構成を特徴とする。   In addition, the embodiment is a solid-state imaging device described above, characterized in that the individual charge temporary storage units constituting the branched charge temporary storage unit are connected to the same transfer stage of the horizontal charge transfer path. To do.

また、実施形態は、上記記載の固体撮像素子であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部は、各々が、前記画素の飽和電荷量の少なくとも2倍の電荷を蓄積する容量を備える構成を特徴とする。   Further, the embodiment is the solid-state imaging device described above, wherein each of the temporary charge storage units constituting the branched charge temporary storage unit has a charge of at least twice the saturation charge amount of the pixel. It is characterized by a configuration having a storage capacity.

また、実施形態は、上記記載の固体撮像素子であって、前記画素には原色系のカラーフィルタがモザイク状に積層される構成を特徴とする。   In addition, the embodiment is a solid-state imaging device described above, and is characterized in that a primary color filter is stacked in a mosaic pattern on the pixel.

また、実施形態は、上記記載の固体撮像素子であって、前記画素には補色系のカラーフィルタがモザイク状に積層される構成を特徴とする。   In addition, the embodiment is a solid-state imaging device described above, and is characterized in that a complementary color filter is stacked in a mosaic pattern on the pixel.

また、実施形態の撮像装置は、上記のいずれかに記載の固体撮像素子と、該固体撮像素子に垂直転送パルスと水平転送パルスと前記制御信号とを供給する撮像素子駆動手段とを備えることを特徴とする。   In addition, an imaging apparatus according to an embodiment includes the solid-state imaging device according to any one of the above, and imaging device driving means that supplies a vertical transfer pulse, a horizontal transfer pulse, and the control signal to the solid-state imaging device. Features.

また、実施形態は、上記記載の固体撮像素子の駆動方法であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部には、同一の該電荷一時蓄積部に同一色のカラーフィルタを持つ画素で検出された信号電荷が振り分けられることを特徴とする。   In addition, the embodiment is a driving method of the solid-state imaging device described above, and the individual charge temporary storage units constituting the branch type charge temporary storage unit include the same color in the same temporary charge storage unit. Signal charges detected by a pixel having a filter are distributed.

また、実施形態は、上記記載の固体撮像素子の駆動方法であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部には、複数の画素が検出した信号電荷複数個分を蓄積した後に前記水平電荷転送路に転送されることを特徴とする。   In addition, the embodiment is a driving method of the solid-state imaging device described above, and each of the charge temporary storage units constituting the branch type charge temporary storage unit includes a plurality of signal charges detected by a plurality of pixels. After the accumulation, it is transferred to the horizontal charge transfer path.

また、実施形態は、上記記載の固体撮像素子の駆動方法であって、1本の垂直電荷転送路が同一色のカラーフィルタを持つ画素が検出した信号電荷だけを転送しているときは前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部に並行に該信号電荷を分割して転送することを特徴とする。   In addition, the embodiment is a driving method of the solid-state imaging device described above, and when one vertical charge transfer path transfers only the signal charge detected by a pixel having a color filter of the same color, the branching is performed. The signal charges are divided and transferred in parallel to the individual charge temporary storage units constituting the type charge temporary storage unit.

また、実施形態は、上記記載の固体撮像素子の駆動方法であって、前記分岐型電荷一時蓄積部には、複数の画素が検出した信号電荷複数個分を蓄積した後に前記水平電荷転送路に転送されることを特徴とする。   In addition, the embodiment is a driving method of the solid-state imaging device described above, wherein the branching charge temporary storage unit stores a plurality of signal charges detected by a plurality of pixels and then enters the horizontal charge transfer path. It is transferred.

これにより、固体撮像素子内部で水平画素加算と水平画素加算を容易に行うことができ、また、プログレッシブ読出,マルチフィールド読出,動画像読出,画素間引読出に柔軟に対応して高品質な画像読出を行うことが可能となる。   As a result, horizontal pixel addition and horizontal pixel addition can be easily performed inside the solid-state imaging device, and high-quality images can be flexibly supported for progressive readout, multi-field readout, moving image readout, and pixel thinning readout. Reading can be performed.

本発明に係る固体撮像素子は、固体撮像素子内部で水平画素加算と垂直画素加算とを容易に行うことができるため、CCD型の固体撮像素子を搭載するデジタルカメラ(デジタルスチルカメラ,デジタルビデオカメラ,カメラ付携帯電話機を含む。)等に適用すると有用である。   Since the solid-state imaging device according to the present invention can easily perform horizontal pixel addition and vertical pixel addition inside the solid-state imaging device, a digital camera (digital still camera, digital video camera) equipped with a CCD solid-state imaging device can be used. , Including camera-equipped mobile phones).

1 撮像部
4 駆動部
4a 撮像素子駆動手段
9 システム制御部
22 CCD型固体撮像素子
24 画素(フォトダイオード:光電変換素子)
25 垂直電荷転送路(VCCD)
26 水平電荷転送路
27 出力アンプ
28 2分岐型電荷一時蓄積部
28a,28b 電荷一時蓄積部
36 ラインメモリ制御パルスφLM1用の配線
37 ラインメモリ制御パルスφLM2用の配線
DESCRIPTION OF SYMBOLS 1 Image pick-up part 4 Drive part 4a Image pick-up element drive means 9 System control part 22 CCD type solid-state image pick-up element 24 Pixel (photodiode: photoelectric conversion element)
25 Vertical charge transfer path (VCCD)
26 horizontal charge transfer path 27 output amplifier 28 bifurcated charge temporary storage units 28a, 28b temporary charge storage unit 36 wiring for line memory control pulse φLM1 37 wiring for line memory control pulse φLM2

Claims (11)

半導体基板に二次元アレイ状に配列形成されカラーフィルタが積層された複数の画素と、該画素で構成される複数の画素列に沿って形成され前記画素が検出した信号電荷が読み出され転送される複数の垂直電荷転送路と、該複数の垂直電荷転送路の転送方向端部に沿って形成される水平電荷転送路と、前記複数の各垂直電荷転送路対応に且つ該垂直電荷転送路の転送方向端部と前記水平電荷転送路との間に設けられ該垂直電荷転送路に沿って転送されてきた前記信号電荷を一時蓄積し前記水平電荷転送路に転送する分岐型電荷一時蓄積部と、該分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部の各々に別個に接続された制御信号印加用の配線とを備える固体撮像素子。   A plurality of pixels arranged in a two-dimensional array on a semiconductor substrate and layered with color filters, and signal charges formed along a plurality of pixel columns composed of the pixels and detected by the pixels are read out and transferred. A plurality of vertical charge transfer paths, a horizontal charge transfer path formed along a transfer direction end of the plurality of vertical charge transfer paths, and a plurality of vertical charge transfer paths corresponding to each of the plurality of vertical charge transfer paths. A branch-type charge temporary storage unit that is provided between the transfer direction end and the horizontal charge transfer path, temporarily stores the signal charge transferred along the vertical charge transfer path, and transfers the signal charge to the horizontal charge transfer path; A solid-state imaging device comprising: a control signal applying wiring separately connected to each of the individual charge temporary storage units constituting the branched charge temporary storage unit. 請求項1に記載の固体撮像素子であって、前記分岐型電荷一時蓄積部は、前記垂直電荷転送路から受け取った前記信号電荷を転送段1段で前記水平電荷転送路に転送する構成の固体撮像素子。   2. The solid-state imaging device according to claim 1, wherein the branched charge temporary storage unit transfers the signal charge received from the vertical charge transfer path to the horizontal charge transfer path in one transfer stage. Image sensor. 請求項1または請求項2に記載の固体撮像素子であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部は前記水平電荷転送路の同一転送段に接続される構成の固体撮像素子。   3. The solid-state imaging device according to claim 1, wherein each individual charge temporary storage unit included in the branched charge temporary storage unit is connected to the same transfer stage of the horizontal charge transfer path. Image sensor. 請求項1乃至請求項3のいずれかに記載の固体撮像素子であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部は、各々が、前記画素の飽和電荷量の少なくとも2倍の電荷を蓄積する容量を備える構成の固体撮像素子。   4. The solid-state imaging device according to claim 1, wherein each of the individual charge temporary storage units included in the branched charge temporary storage unit is at least 2 of a saturation charge amount of the pixel. A solid-state imaging device having a structure for storing double charge. 請求項1乃至請求項4のいずれかに記載の固体撮像素子であって、前記画素には原色系のカラーフィルタがモザイク状に積層される固体撮像素子。   5. The solid-state image pickup device according to claim 1, wherein primary pixels of color filters are stacked in a mosaic pattern on the pixels. 請求項1乃至請求項4のいずれかに記載の固体撮像素子であって、前記画素には補色系のカラーフィルタがモザイク状に積層される固体撮像素子。   5. The solid-state imaging device according to claim 1, wherein a complementary color system color filter is stacked in a mosaic pattern on the pixels. 請求項1乃至請求項6のいずれかに記載の固体撮像素子と、該固体撮像素子に垂直転送パルスと水平転送パルスと前記制御信号とを供給する撮像素子駆動手段とを備える撮像装置。   An image pickup apparatus comprising: the solid-state image pickup device according to any one of claims 1 to 6; and an image pickup device driving unit that supplies a vertical transfer pulse, a horizontal transfer pulse, and the control signal to the solid-state image pickup device. 請求項1乃至請求項6のいずれかに記載の固体撮像素子の駆動方法であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部には、同一の該電荷一時蓄積部に同一色のカラーフィルタを持つ画素で検出された信号電荷が振り分けられる固体撮像素子の駆動方法。   7. The method for driving a solid-state imaging device according to claim 1, wherein each of the charge temporary storage units constituting the branch-type charge temporary storage unit includes the same charge temporary storage unit. A method for driving a solid-state imaging device in which signal charges detected by pixels having color filters of the same color are distributed. 請求項8に記載の固体撮像素子の駆動方法であって、前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部には、複数の画素が検出した信号電荷複数個分を蓄積した後に前記水平電荷転送路に転送される固体撮像素子の駆動方法。   9. The method for driving a solid-state imaging device according to claim 8, wherein each of the charge temporary storage units constituting the branch-type charge temporary storage unit stores a plurality of signal charges detected by a plurality of pixels. A method for driving a solid-state imaging device transferred to the horizontal charge transfer path. 請求項1乃至請求項6のいずれかに記載の固体撮像素子の駆動方法であって、1本の垂直電荷転送路が同一色のカラーフィルタを持つ画素が検出した信号電荷だけを転送しているとき前記分岐型電荷一時蓄積部を構成する個々の電荷一時蓄積部に並行に該信号電荷を分割して転送する固体撮像素子の駆動方法。   7. The method for driving a solid-state imaging device according to claim 1, wherein one signal charge detected by a pixel having a color filter of the same color is transferred by one vertical charge transfer path. A method of driving a solid-state imaging device, wherein the signal charge is divided and transferred in parallel to individual charge temporary storage units constituting the branched charge temporary storage unit. 請求項10に記載の固体撮像素子の駆動方法であって、前記分岐型電荷一時蓄積部には、複数の画素が検出した信号電荷複数個分を蓄積した後に前記水平電荷転送路に転送される固体撮像素子の駆動方法。   11. The driving method of a solid-state imaging device according to claim 10, wherein a plurality of signal charges detected by a plurality of pixels are stored in the branch-type charge temporary storage unit and then transferred to the horizontal charge transfer path. A method for driving a solid-state imaging device.
JP2009002477A 2009-01-08 2009-01-08 Solid-state image sensor and method of driving the same, and image capturing apparatus Withdrawn JP2010161629A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009002477A JP2010161629A (en) 2009-01-08 2009-01-08 Solid-state image sensor and method of driving the same, and image capturing apparatus
TW098144794A TW201027990A (en) 2009-01-08 2009-12-24 Solid state photographing element, its drive method, and photographing device
KR1020100000707A KR20100082309A (en) 2009-01-08 2010-01-06 Solid state image sensor and method for driving the same, and image apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009002477A JP2010161629A (en) 2009-01-08 2009-01-08 Solid-state image sensor and method of driving the same, and image capturing apparatus

Publications (1)

Publication Number Publication Date
JP2010161629A true JP2010161629A (en) 2010-07-22

Family

ID=42578454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009002477A Withdrawn JP2010161629A (en) 2009-01-08 2009-01-08 Solid-state image sensor and method of driving the same, and image capturing apparatus

Country Status (3)

Country Link
JP (1) JP2010161629A (en)
KR (1) KR20100082309A (en)
TW (1) TW201027990A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506668A (en) * 2008-10-22 2012-03-15 イーストマン コダック カンパニー Image sensor with vertical pixel binning
JP2017531168A (en) * 2014-08-08 2017-10-19 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated Optical system and assay chip for molecular search, detection and analysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012506668A (en) * 2008-10-22 2012-03-15 イーストマン コダック カンパニー Image sensor with vertical pixel binning
JP2017531168A (en) * 2014-08-08 2017-10-19 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated Optical system and assay chip for molecular search, detection and analysis
US11175227B2 (en) 2014-08-08 2021-11-16 Quantum-Si Incorporated Optical system and assay chip for probing, detecting and analyzing molecules
US11879841B2 (en) 2014-08-08 2024-01-23 Quantum-Si Incorporated Optical system and assay chip for probing, detecting and analyzing molecules

Also Published As

Publication number Publication date
TW201027990A (en) 2010-07-16
KR20100082309A (en) 2010-07-16

Similar Documents

Publication Publication Date Title
US7944496B2 (en) Imaging apparatus and driving method for CCD type solid-state imaging device
JP4524609B2 (en) Solid-state imaging device, solid-state imaging device driving method, and imaging apparatus
US20110216228A1 (en) Solid-state image sensing element, method for driving solid-state image sensing element and image pickup device
US20040263652A1 (en) Image-taking apparatus and solid-state image-taking element
JP2009117979A (en) Method of driving solid-state imaging device
JP2009055321A (en) Imaging device and method of driving ccd solid image sensor
JP4797007B2 (en) Output bifurcated solid-state image sensor
JP4354346B2 (en) Solid-state imaging device, driving method thereof, and camera equipped with the same
JP2010161629A (en) Solid-state image sensor and method of driving the same, and image capturing apparatus
JP4796859B2 (en) Output bifurcated solid-state imaging device and imaging apparatus
JP4637033B2 (en) Output bifurcated solid-state imaging device and imaging apparatus
JP2006014075A5 (en)
JP2011210748A (en) Ccd type solid-state imaging element and method of manufacturing the same, and imaging device
JP5124549B2 (en) Moving image signal readout method and imaging apparatus for solid-state imaging device
US8379125B2 (en) Solid-state imaging device, method for driving solid-state imaging device and camera system
JP2007235888A (en) Single-ccd color solid-state imaging element and imaging apparatus
JP2005210359A (en) Two-ccd type color solid-state imaging apparatus and digital camera
JP4649346B2 (en) Output bifurcated solid-state imaging device, driving method thereof, and imaging apparatus
JP2007201711A (en) Imaging apparatus and charge transfer method of ccd type solid-state imaging element
JP2009071025A (en) Ccd solid-state imaging device
JP2007228265A (en) Two-branch outputting solid-state imaging device, driving method for the same and imaging apparatus
JP2009094397A (en) Ccd solid-state imaging element, and imaging apparatus
JP2011066684A (en) Solid-state imaging element, driving method thereof, and imaging apparatus
JP2005318240A (en) Solid-state imaging sensor, its driving method and electronic apparatus
JP2010171506A (en) Imaging apparatus and method for driving solid-state imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111216

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120326