[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010155788A - New tripeptides and method for producing these tripeptides, and method for producing angiotensin converting enzyme-inhibiting substance - Google Patents

New tripeptides and method for producing these tripeptides, and method for producing angiotensin converting enzyme-inhibiting substance Download PDF

Info

Publication number
JP2010155788A
JP2010155788A JP2008333554A JP2008333554A JP2010155788A JP 2010155788 A JP2010155788 A JP 2010155788A JP 2008333554 A JP2008333554 A JP 2008333554A JP 2008333554 A JP2008333554 A JP 2008333554A JP 2010155788 A JP2010155788 A JP 2010155788A
Authority
JP
Japan
Prior art keywords
bonito
ile
phe
tripeptide
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008333554A
Other languages
Japanese (ja)
Other versions
JP5416964B2 (en
Inventor
Eiji Seki
英治 関
Motomu Miyaoka
求 宮岡
Hiroaki Ikeda
博明 池田
Makoto Kurihara
信 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Food Tech Co Ltd
Yamaki Co Ltd
Original Assignee
Kirin Food Tech Co Ltd
Yamaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Food Tech Co Ltd, Yamaki Co Ltd filed Critical Kirin Food Tech Co Ltd
Priority to JP2008333554A priority Critical patent/JP5416964B2/en
Publication of JP2010155788A publication Critical patent/JP2010155788A/en
Application granted granted Critical
Publication of JP5416964B2 publication Critical patent/JP5416964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new peptide having an angiotensin converting enzyme-inhibiting activity. <P>SOLUTION: Five kinds of new tripeptides each having the angiotensin converting enzyme-inhibiting activity are obtained by reacting dried bonito as a raw material with a protease produced by Trametes saguinea. The enzymolysis product can be adsorbed to a hydrophobic adsorptive resin and then eluted with a water-containing organic solvent to produce the more highly active peptide fraction. The new tripeptide is a safe and highly effective raw material as a daily ingestible food, and its utilization for specified health foods, functional foods, and the like can be expected. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はアンジオテンシン変換酵素(ACE)を阻害する活性をもち、このことにより、血圧降下作用を示す新規で有用な5種類のトリペプチドに関するものである。本発明の新規なペプチドは、魚肉性タンパク質、特に鰹節を熱水抽出した時の残渣として残る不溶性タンパク質をヒイロタケ(Trametes saguinea)の産生酵素により加水分解して得られる新規トリペプチドであり、アンジオテンシン変換酵素阻害剤及び血圧降下剤の有効成分として利用できる。本発明の新規なトリペプチドは高血圧症の治療または予防に有用であると期待される。 The present invention relates to five new and useful tripeptides having an activity to inhibit angiotensin converting enzyme (ACE) and thereby exhibiting blood pressure lowering action. The novel peptide of the present invention is a novel tripeptide obtained by hydrolyzing fish protein, in particular, insoluble protein remaining as a residue when bonito is extracted with hot water using a production enzyme of Trametes saguinea, which is converted to angiotensin. It can be used as an active ingredient of enzyme inhibitors and antihypertensive agents. The novel tripeptide of the present invention is expected to be useful for the treatment or prevention of hypertension.

高血圧症は代表的な生活習慣病であり、その患者数は予備軍を含め、5490万人といわれている(厚生労働省:平成18年国民健康・栄養調査結果)。高血圧症は脳出血、クモ膜下出血、脳梗塞、心筋梗塞、狭心症、腎硬化症等種々の合併症を引き起こすことが知れており、高血圧症の発症メカニズムについて様々な研究が行われてきている。   Hypertension is a typical lifestyle-related disease, and the number of patients, including the reserve army, is said to be 54.9 million (Ministry of Health, Labor and Welfare: 2006 National Health and Nutrition Survey). Hypertension is known to cause various complications such as cerebral hemorrhage, subarachnoid hemorrhage, cerebral infarction, myocardial infarction, angina pectoris, nephrosclerosis, and various studies on the mechanism of hypertension have been conducted. Yes.

血圧の調節系として、昇圧に関与するレニン・アンジオテンシン系と降圧に関与するカリクレイン・キニン系が重要な役割を果たしている。レニン・アンジオテンシン系では肝臓から分泌されるアンジオシノーゲンが腎臓で生産されるレニンによってアンジオテンシンIとなり、更にアンジオテンシン変換酵素(ACE)によってアンジオテンシンIIに変換される。このアンジオテンシンIIは血管平滑筋を収縮させ、血圧を上昇させる。一方、降圧系のカリクレインはキニノーゲンに作用してブラジキニンを産生する。このブラジキニンには血管を拡張して血圧を下げる効果があるが、ACEにはこのブラジキニンを分解してしまう作用がある。このように、ACEは昇圧ペプチドであるアンジオテンシンIIの産生と降圧ペプチドであるブラジキニンの不活化という二つの作用によって血圧の上昇に関与していることが知られている。
従って、このACEの酵素活性を抑制することにより血圧の上昇を抑制することが可能となる。このACE阻害活性物質として開発されたプロリン誘導体であるカプトプリル(D-2- メチル-3- メルカプトプロパノイルーL-プロリン)やエナラプリル等は高血圧症の治療に広く用いられている。
The renin / angiotensin system involved in pressurization and the kallikrein / kinin system involved in hypotension play important roles in the regulation of blood pressure. In the renin-angiotensin system, angiosinogen secreted from the liver is converted into angiotensin I by renin produced in the kidney, and further converted into angiotensin II by angiotensin converting enzyme (ACE). This angiotensin II contracts vascular smooth muscles and increases blood pressure. On the other hand, antihypertensive kallikrein acts on kininogen to produce bradykinin. This bradykinin has the effect of dilating blood vessels and lowering blood pressure, while ACE has the action of degrading this bradykinin. Thus, it is known that ACE is involved in the increase of blood pressure by two actions, production of angiotensin II which is a pressor peptide and inactivation of bradykinin which is a hypotensive peptide.
Therefore, it is possible to suppress an increase in blood pressure by suppressing the enzyme activity of ACE. Captopril (D-2-methyl-3-mercaptopropanoyl-L-proline) and enalapril, which are proline derivatives developed as ACE inhibitory active substances, are widely used for the treatment of hypertension.

また、最近では食品素材タンパク質の酵素分解物であるペプチドにACE阻害活性のあることが報告されている。例えば、ゼラチンのコラーギナーゼ分解物(特開昭52−148631)、カゼインのトリプシン分解物(特開昭58−109425、特開昭61−36226および特開昭61−36227)、イワシ筋肉のペプシン分解物(特開平3−11097)、かつお節のサーモライシン分解物(特開平4−144696)、ゴマ蛋白のサーモライシン分解物(特開平8−231588)、κ−カゼインのペプシン等の分解物(特開平8−269088)等多数の報告がなされている。天然物由来のアンギオテンシン変換酵素阻害剤は食品あるいは食品原料から得られるので低毒性で安全性の高い降圧剤となることが期待されるからである。
微生物あるいは種々の食品中にもACE阻害物質が見い出され、降圧剤としての実用化が検討されている(末網邦男、発酵と工業、46巻(No.3)、179〜182頁(1988))。
他方、動物性タンパク質含有原料、特にカツオ節のだし抽出粕(残渣)をヒイロタケ産生酵素で分解し、エキス化してなる酵素分解型調味料が提案されており、この調味料には遊離アミノ酸とペプチドが豊富に含有されるとされる(特開2006−94756号公報)。
ヒイロタケは、広葉樹の枯れ木、倒木に自然に群生する木材腐朽菌の一種である。ヒイロタケは、セルラーゼ、キシラーゼ、ペクチナーゼ、酸性カルボキシペプチダーゼ、酸性プロテイアーゼを産生し、これらの酵素の混合物がヒイロタケ産生酵素である。ヒイロタケ産生酵素の製法は、前記の特開2000−94756号公報に記載され、該公報の参考例1に具体的に説明されてある。
特開昭52−148631号公報 特開昭58−109425号公報 特開昭61−36226号公報 特開昭61−36227号公報 特開平3−11097号公報 特開平4−144696号公報 特開平8−231588号公報 特開平8−269088号公報 特開2006−94756号公報 末網邦男、「発酵と工業」46巻(No.3)、179〜182頁(1988年)
Recently, it has been reported that peptides that are enzymatic degradation products of food material proteins have ACE inhibitory activity. For example, gelatin collagenase degradation product (Japanese Patent Laid-Open No. 52-148431), casein trypsin degradation product (Japanese Patent Laid-Open No. 58-109425, Japanese Patent Laid-Open No. 61-36226, and Japanese Patent Laid-Open No. 61-36227), and pepsin degradation product of sardine muscle. (Japanese Patent Laid-Open No. 3-11097), Thermolysin degradation product of bonito (Japanese Patent Laid-Open No. Hei 4-144696), Thermolysin degradation product of sesame protein (Japanese Patent Laid-Open No. 8-231588), Degradation product of kappa-casein pepsin, etc. Many reports have been made. This is because a natural product-derived angiotensin converting enzyme inhibitor is obtained from foods or food materials, and is expected to be a low-toxic and highly safe antihypertensive agent.
An ACE inhibitor is also found in microorganisms or various foods, and its practical application as an antihypertensive agent is being studied (Kunio Sueami, Fermentation and Industry, Vol . 46 (No. 3), pp. 179-182 (1988)). ).
On the other hand, an enzyme-degraded seasoning has been proposed in which animal protein-containing raw materials, especially bonito soup stock extract (residue), are decomposed with an agaric-producing enzyme and extracted to produce free amino acids and peptides. Abundantly contained (Japanese Patent Laid-Open No. 2006-94756).
Giant bamboo is a kind of wood decay fungus that naturally grows on dead and fallen trees of broad-leaved trees. Hilotake produces cellulase, xylase, pectinase, acidic carboxypeptidase, and acidic protease, and a mixture of these enzymes is Hilotake producing enzyme. The method for producing the oyster mushroom producing enzyme is described in the aforementioned Japanese Patent Application Laid-Open No. 2000-94756, and is specifically described in Reference Example 1 of the publication.
Japanese Patent Laid-Open No. 52-148631 JP 58-109425 A JP-A 61-36226 JP-A-61-36227 Japanese Patent Laid-Open No. 3-11097 JP-A-4-144696 JP-A-8-231588 JP-A-8-269088 JP 2006-94756 A Kunio Sueami, “Fermentation and Industry”, 46 (No. 3), 179-182 (1988)

食品素材由来のACE阻害活性を有するペプチドは副作用、毒性等の安全性の点でも問題が少なく、通常の食品として摂取することが可能であることが大きな利点となっている。
しかし、上記報告のペプチドの多くのものは、その構成アミノ酸数が5以上のものである(特開昭52−148631、特開昭58−109425、特開昭61−36226、特開昭61−36227、特開平3−11097、特開平8−269088)。これらアミノ酸残基数の多いペプチドは摂取後にペプシン、トリプシン、キモトリプシン等の消化酵素により分解され易く、それらのACE阻害活性が生体中で消失したり、また、分解されない場合でもその分子構造が大きいために吸収され難いといわれている。
Peptides having ACE inhibitory activity derived from food materials have few problems in terms of safety such as side effects and toxicity, and it is a great advantage that they can be taken as normal food.
However, many of the peptides reported above have 5 or more constituent amino acids (Japanese Patent Laid-Open Nos. 52-148431, 58-109425, 61-36226, 61-61). 36227, JP-A-3-11097, JP-A-8-269088). Since these peptides with a large number of amino acid residues are easily degraded by digestive enzymes such as pepsin, trypsin, chymotrypsin after ingestion, their ACE inhibitory activity disappears in the body, and even when they are not degraded, their molecular structure is large. It is said that it is difficult to absorb.

したがって、本発明の課題は、経口摂取したとき消化酵素により分解されにくく、体内でのACE阻害活性が失われにくい、そのままで小腸粘膜吸収可能な、ACE阻害活性を有する新規なトリペプチドを提供することであり、またかかる新規トリペプチドを含有する粉末品を提供することである。
さらに、本発明は上記の新規なトリペプチドを一種以上含有してなるアンジオテンシン変換酵素阻害剤あるいは血圧降下剤あるいは飲食用組成物(飲食料)を提供する。
Accordingly, an object of the present invention is to provide a novel tripeptide having an ACE inhibitory activity that is difficult to be digested by digestive enzymes when taken orally, is less likely to lose ACE inhibitory activity in the body, and can be absorbed as it is in the small intestinal mucosa. And to provide a powder product containing such a novel tripeptide.
Furthermore, the present invention provides an angiotensin converting enzyme inhibitor, an antihypertensive agent, or a composition for eating and drinking (food and beverage) comprising at least one of the above novel tripeptides.

上記のように、天然有機物および食品由来のアンジオテンシン変換酵素阻害物質は、人体に対する安全性をもつことから重要性が高く、生活習慣病予防のためにも大きな研究課題である。   As described above, natural organic substances and food-derived angiotensin converting enzyme inhibitors are highly important because of their safety to the human body, and are a major research subject for the prevention of lifestyle-related diseases.

本発明は、この課題を解決するためになされたものであって、アンジオテンシン変換酵素を有効に阻害することにより、血圧上昇を抑制する新規で安全な物質を、食品素材から見出し、その阻害物質の構造を明らかにするとともに、品質および価格面から適度な濃縮法を開発し、アンジオテンシン変換酵素阻害物質を含む食品素材を提供することを目的とする。   The present invention has been made to solve this problem, and by effectively inhibiting an angiotensin converting enzyme, a novel and safe substance that suppresses an increase in blood pressure is found from a food material. The purpose is to provide a food material containing an angiotensin converting enzyme inhibitory substance by clarifying the structure and developing an appropriate concentration method in terms of quality and price.

鰹節を熱水抽出した後に残渣として残る水不溶性タンパク質をヒイロタケ産生酵素で加水分解して得られた生成分解物中に、上記問題を解決するペプチドが存在するのではないかと考え、該生成分解物の中にアミノ酸数が3以下でACE阻害活性を有するペプチドが含有されるか、探索を行った。
その結果、下記のアミノ酸配列をもち且つACE阻害活性を有する5種のトリペプチドを、鰹節熱水抽出残渣である水不溶性タンパク質のヒイロタケ産生酵素による加水分解生成物中に見出し、それらトリペプチドを単離することに成功して本発明を完成するに至った。
In the product degradation product obtained by hydrolyzing the water-insoluble protein remaining as a residue after extraction of bonito with hot bamboo shoots, there is a peptide that solves the above problem, and the product degradation product An investigation was made as to whether a peptide having an ACE inhibitory activity with 3 or fewer amino acids was contained therein.
As a result, five types of tripeptides having the following amino acid sequences and having ACE inhibitory activity were found in the hydrolysis products of the water-insoluble protein, which is the residue of hot water extraction from bonito, by the oyster mushroom-producing enzyme. The present invention has been completed successfully.

第1の本発明では、Val−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheまたはLeu−Val−Trpでそれぞれ表されるアミノ酸配列を有するトリペプチドであって、しかもアンジオテンシン変換酵素阻害活性を有するトリペプチドを提供する。
また、本発明は上記トリペプチドを一種以上含有してなる飲食用組成物、アンジオテンシン変換酵素阻害剤および血圧降下剤を提供する。
In the first aspect of the present invention, a tripeptide having an amino acid sequence represented by Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe, or Leu-Val-Trp, Furthermore, a tripeptide having an angiotensin converting enzyme inhibitory activity is provided.
Moreover, this invention provides the composition for eating and drinking which comprises 1 or more types of the said tripeptide, the angiotensin converting enzyme inhibitor, and the blood pressure lowering agent.

本発明者らが種々研究を行い、その結果として、鰹タンパク質の中に、アンジオテンシン変換酵素阻害物質の存在が推測され、そして、この鰹節タンパク質中のアンジオテンシン変換酵素阻害物質が、逆相分配系樹脂に吸着される性質のものであることが判ってきた。さらに、この阻害物質が、鰹節を原料とし熱水抽出により得られた不溶性タンパク質残渣をヒイロタケ産生酵素で分解して、疎水性吸着樹脂に吸着させ、含水有機溶媒により溶出することで、高収量に得られ且つ簡単に濃縮することができる結果が得られたこと、そして、得られた阻害物質中の各成分について、クロマトグラフィーを用いて、ACE阻害活性の強い成分を単離し、その成分の阻害活性値(IC50値)の測定および構造解析を行ったところ、この成分がVal−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheまたはLeu−Val−Trpで表されるアミノ酸配列をもち且つアンジオテンシン変換酵素阻害活性をもつトリペプチドであることが判ってきたことによるものである。 The present inventors have conducted various studies, and as a result, the presence of an angiotensin converting enzyme inhibitor in the cocoon protein is presumed, and the angiotensin converting enzyme inhibitor in the bonito protein is a reverse phase partition resin. It has been found that it has a property of being adsorbed on the surface. Furthermore, this inhibitor can be obtained in high yields by decomposing insoluble protein residues obtained from hot bonito using hot bonito as a raw material, degrading it with a bamboo shoot-producing enzyme, adsorbing it on a hydrophobic adsorption resin, and eluting it with a water-containing organic solvent. Obtained results that can be easily concentrated, and for each component in the obtained inhibitory substance, a component having strong ACE inhibitory activity was isolated using chromatography, and inhibition of that component was achieved. When the activity value (IC 50 value) was measured and the structure was analyzed, this component was Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe or Leu-Val-Trp. This is because it has been found to be a tripeptide having the amino acid sequence shown and having angiotensin converting enzyme inhibitory activity.

上述の目的を達成するための手段として、Val−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheおよびLeu−Val−Trpよりなるアンジオテンシン変換酵素阻害ペプチドを主体とするアンジオテンシン変換酵素阻害物質を提供し、また、鰹節熱水抽出残渣タンパク質をヒイロタケ産生酵素で分解後、直ちに疎水性吸着樹脂に吸着し、含水有機溶媒で溶出することを特徴とするアンジオテンシン変換酵素阻害物質の製造法を提供するものである。   As a means for achieving the above-mentioned object, an angiotensin converting enzyme inhibitory peptide comprising Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe and Leu-Val-Trp is mainly used. Angiotensin-converting enzyme inhibitor that inhibits angiotensin-converting enzyme, which is obtained by decomposing bonito hot water extract residue protein with Hilotake-producing enzyme, immediately adsorbing to hydrophobic adsorption resin and eluting with water-containing organic solvent A method for producing a substance is provided.

疎水性吸着樹脂すなわち芳香族系修飾型樹脂(三菱化学製:セパビーズSP207)は、芳香環に臭素を化学的に導入した芳香族系(スチレン−ジビニルベンゼン系)合成吸着剤で、細孔表面の疎水吸着性が強いことから親水性の高い有機物(疎水性が低い物質)に対しても優れた吸着性能を発揮すると思われ、アミノ酸分離精製、タンパク質除去、天然抽出物精製、発酵液前処理等に用いられてよい。   Hydrophobic adsorption resin, that is, aromatic modified resin (Mitsubishi Chemical: Sepabead SP207) is an aromatic (styrene-divinylbenzene) synthetic adsorbent in which bromine is chemically introduced into the aromatic ring. Due to its strong hydrophobic adsorptivity, it is considered to exhibit excellent adsorption performance for highly hydrophilic organic substances (substances with low hydrophobicity), such as amino acid separation purification, protein removal, natural extract purification, fermentation broth pretreatment, etc. May be used.

第2の本発明は、Val−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheまたはLeu−Val−Trpで表されるアミノ酸配列をもつトリペプチドまたはその薬理上許容される酸付加塩の少なくとも1つを有効成分として含有するアンジオテンシン変換酵素阻害剤である。   The second invention is a tripeptide having an amino acid sequence represented by Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe or Leu-Val-Trp, or a pharmacologically thereof. An angiotensin converting enzyme inhibitor containing as an active ingredient at least one acceptable acid addition salt.

第3の本発明は、Val−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheまたはLeu−Val−Trpで表されるアミノ酸配列をもつトリペプチドまたはその薬理上許容される酸付加塩の少なくとも1つを有効成分として含有する血圧降下剤である。   The third aspect of the present invention is a tripeptide having an amino acid sequence represented by Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe or Leu-Val-Trp, or a pharmacologically thereof. An antihypertensive agent containing at least one acceptable acid addition salt as an active ingredient.

上記でトリペプチドの酸付加塩とは、製薬上許容される酸(無機酸及び有機酸)との付加塩、例えば塩酸塩、臭化水素、酸塩、硫酸塩、硝酸塩、酢酸塩、安息香酸塩、マレイン酸塩、フマル酸塩、コハク酸塩、酒石酸塩、クエン酸塩、シュウ酸塩、メタンスルホン酸塩、トルエンスルホン酸塩、アスパラギン酸塩、グルタミン酸塩等を包含する。   In the above, acid addition salt of tripeptide means addition salt with pharmaceutically acceptable acid (inorganic acid and organic acid), for example, hydrochloride, hydrogen bromide, acid salt, sulfate, nitrate, acetate, benzoic acid Salt, maleate, fumarate, succinate, tartrate, citrate, oxalate, methanesulfonate, toluenesulfonate, aspartate, glutamate and the like.

本発明で用いるトリペプチドは鰹節熱水抽出残渣タンパク質の酵素分解法、有機化学的な合成方法によりアミノ酸を段階的に導入する方法、加水分解酵素の逆反応を利用したペプチド合成法、遺伝子工学的方法等によって製造することができる。   The tripeptide used in the present invention is a method of enzymatic degradation of hot water extract residue protein, a method of stepwise introduction of amino acids by an organic chemical synthesis method, a peptide synthesis method utilizing reverse reaction of hydrolase, genetic engineering It can be manufactured by a method or the like.

鰹節熱水抽出残渣である水不溶性タンパク質の酵素分解法により前記の新規な5種のトリペプチドを製造する方法について説明する。原料の鰹節タンパク質として、それをさらに精製した熱水抽出不溶性画分を用いる場合について説明する。   A method for producing the above five novel tripeptides by enzymatic decomposition of water-insoluble protein, which is the residue of hot water extraction from bonito, will be described. The case where the hot water extraction insoluble fraction which refine | purified it further as a raw material koji protein is demonstrated.

作用酵素としてはエンド型プロテアーゼと、カルボキシペプチダーゼを含むヒイロタケ産生酵素を用いることができる。ヒイロタケ産生酵素は高純度(製薬グレード)のものでも、工業用グレードのもの(例えばHP酵素(キリンフードテック社製品))でもよい。基質濃度は反応時に攪拌混合ができる範囲内であればいずれでもよいが、攪拌が容易なタンパク質濃度2〜30%(w/v) の範囲で行うのが好ましい。ヒイロタケ産生酵素の添加量は力価により異なるが通常はタンパク質あたり0.01重量%以上、好ましくは0.1 〜10重量%が適当である。反応のpH、温度は至適pH、至適温度付近を用いればよく、pH2.0〜6.0、好ましくは3.0〜5.0、温度30〜70℃好ましくは40〜60℃が適当である。反応中のpHの調整は必要に応じ水酸化ナトリウム水溶液、塩酸等により行う。   As the working enzyme, endo-protease and oyster mushroom-producing enzyme including carboxypeptidase can be used. The oyster mushroom-producing enzyme may be of high purity (pharmaceutical grade) or industrial grade (for example, HP enzyme (Kirin Foodtech Co., Ltd.)). The substrate concentration may be any as long as it is within the range in which stirring and mixing can be performed during the reaction, but it is preferably performed in the range of protein concentration of 2 to 30% (w / v) where stirring is easy. The added amount of the oyster mushroom-producing enzyme varies depending on the titer, but is usually 0.01% by weight or more, preferably 0.1 to 10% by weight per protein. The pH and temperature of the reaction may be the optimum pH and the vicinity of the optimum temperature. The pH is 2.0 to 6.0, preferably 3.0 to 5.0, and the temperature is 30 to 70 ° C, preferably 40 to 60 ° C. It is. The pH during the reaction is adjusted with an aqueous sodium hydroxide solution, hydrochloric acid or the like as necessary.

酵素反応時間は酵素の添加量、反応温度、反応pHによって異なるため一定ではないが、通常は0.5〜50時間程度である。   The enzyme reaction time varies depending on the amount of enzyme added, the reaction temperature, and the reaction pH, and is not constant, but is usually about 0.5 to 50 hours.

酵素分解反応の停止は、加水分解物の加熱、pHの変化による酵素の失活など公知の方法に従って行うことができる。ついで加水分解液を固液分離(例えば遠心分離、濾過等) し、分離液を限外濾過、ゲル濾過等により分別して例えば分子量が 10000以下の画分を含有する液を得る。この液中には本発明のトリペプチドが含有されており、以下この液またはその濃縮物(例えばスプレードライ) をさらに分別して目的のトリペプチドを得ることが出来る。   The enzymatic decomposition reaction can be stopped according to a known method such as heating of the hydrolyzate or deactivation of the enzyme due to a change in pH. The hydrolyzed liquid is then subjected to solid-liquid separation (for example, centrifugation, filtration, etc.), and the separated liquid is fractionated by ultrafiltration, gel filtration, or the like to obtain a liquid containing a fraction having a molecular weight of 10,000 or less. This liquid contains the tripeptide of the present invention, and the liquid or its concentrate (for example, spray dried) can be further fractionated to obtain the target tripeptide.

本トリペプチドの酸付加塩は常法により製造することができる。例えば本トリペプチド(塩基性アミノ酸残基を含むもの)とそれに対し1当量の適当な酸とを水中で反応させて凍結乾燥することにより得ることができる。   The acid addition salt of the present tripeptide can be produced by a conventional method. For example, it can be obtained by reacting the present tripeptide (containing a basic amino acid residue) with 1 equivalent of an appropriate acid in water and freeze-drying.

本トリペプチドおよびその酸付加塩はACE阻害作用ひいては血圧降下作用を有しヒトをはじめとする哺乳動物の高血圧症の治療、予防に有効であると期待される。   This tripeptide and its acid addition salt have an ACE inhibitory action and thus a blood pressure lowering action, and are expected to be effective in the treatment and prevention of hypertension in mammals including humans.

本トリペプチドおよびその酸付加塩はそのまま、または通常少なくとも1つの製薬補助剤と製薬組成物にして使用する。   The tripeptide and its acid addition salt are used as such or usually in a pharmaceutical composition with at least one pharmaceutical adjuvant.

本トリペプチドおよびその酸付加塩は非経口的(すなわち、静脈注射、直腸投与等)または経口的に投与し、各投与方法に適した形態に製剤することができる。   The present tripeptide and acid addition salts thereof can be administered parenterally (that is, intravenous injection, rectal administration, etc.) or orally, and can be formulated into a form suitable for each administration method.

注射剤としての製剤形態は、通常滅菌水溶液を包含する。上記形態の製剤はまた緩衝剤pH調節剤(リン酸水素ナトリウム、クエン酸等)、等張化剤(塩化ナトリウム、グルコース等)、保存剤(パラオキシ安息香酸メチル、P-ヒドロキシ安息香酸プロピル等)等の水以外の他の製薬補助剤を含有することができる。該製剤は細菌保持フィルターを通す濾過、組成物への殺菌剤の混入、組成物の照射や加熱によって滅菌することができる。該製剤はまた殺菌固体組成物として製造し、用時滅菌水等に溶解して使用することもできる。   Formulation forms as injections usually include sterile aqueous solutions. Formulations in the above form are also buffer pH adjusters (sodium hydrogen phosphate, citric acid, etc.), isotonic agents (sodium chloride, glucose, etc.), preservatives (methyl paraoxybenzoate, propyl P-hydroxybenzoate, etc.) And other pharmaceutical adjuvants other than water. The preparation can be sterilized by filtration through a bacteria-retaining filter, mixing of a bactericide into the composition, irradiation of the composition or heating. The preparation can also be produced as a sterilized solid composition and dissolved in sterilized water before use.

経口投与剤は胃腸器官による吸収に適した形に製剤する。錠剤、カプセル剤、顆粒剤、細粒剤、粉末剤は常用の製薬補助剤、例えば結合剤(シロップ、アラビアゴム、ゼラチン、ソルビット、トラガカント、ポリビニルピロリドン、ヒドロキシプロピルセルロース等)、賦形剤(ラクトース、シュガー、コーンスターチ、リン酸カルシウム、ソルビット、グリシン等)、滑沢剤(ステアリン酸マグネシウム、タルク、ポリエチレングリコール、シリカ等)、崩壊剤(ポテトスターチ、カルボキシメチルセルロース等)、湿潤剤(ラウリル硫酸ナトリウム等)を包含することができる。錠剤は常法によりコーティングすることができる。経口液剤は水溶液等に、ドライプロダクトにすることができる。そのような経口液剤は常用の添加剤例えば保存剤(p−ヒドロキシ安息香酸メチルもしくはプロピル、ソルビン酸等)を包含していてもよい。   Orally administered drugs are formulated in a form suitable for absorption by the gastrointestinal tract. Tablets, capsules, granules, fine granules, powders are conventional pharmaceutical adjuvants such as binders (syrup, gum arabic, gelatin, sorbit, tragacanth, polyvinylpyrrolidone, hydroxypropylcellulose, etc.), excipients (lactose , Sugar, corn starch, calcium phosphate, sorbit, glycine, etc.), lubricants (magnesium stearate, talc, polyethylene glycol, silica, etc.), disintegrants (potato starch, carboxymethyl cellulose, etc.), wetting agents (sodium lauryl sulfate, etc.) Can be included. Tablets can be coated by conventional methods. The oral solution can be made into a dry product such as an aqueous solution. Such oral solutions may contain conventional additives such as preservatives (methyl or propyl p-hydroxybenzoate, sorbic acid, etc.).

本ACE阻害剤あるいは血圧降下剤中の本トリペプチドまたはその酸付加塩の量は種々かえることができるが、通常5〜100%(w/w) 、特に10〜60%(w/w)が適当である。本ACE阻害剤あるいは血圧降下剤の投与量はヒトに対して投与する場合、有効成分として0.1〜500mg/kg/dayが適当である。   The amount of the present tripeptide or its acid addition salt in the present ACE inhibitor or antihypertensive agent can vary, but usually 5 to 100% (w / w), especially 10 to 60% (w / w) Is appropriate. The dose of the present ACE inhibitor or antihypertensive agent is suitably 0.1 to 500 mg / kg / day as an active ingredient when administered to humans.

また、本トリペプチドは多量に摂取しても生体に悪影響を与えない利点を有することから、そのまま、または種々の栄養分等を加えて、もしくは飲食品中に含有させて血圧降下作用、高血圧予防の機能をもたせた機能性食品、健康食品として食してもよい。すなわち、例えば各種ビタミン類、ミネラル類等の栄養分を加えて、例えば栄養ドリンク、豆乳、スープ等の液状の食品や各種形状の固形食品、さらには粉末状としてそのままあるいは各種食品へ添加して用いることもできる。機能性食品、健康食品としての本ACE阻害剤あるいは血圧降下剤中の有効成分の含有量、摂取量はそれぞれ上記製薬における含有量、投与量と同様でよい。
前記の新規トリペプチドの有機化学的合成法としては液相法、固相法の2種があり、いずれも常法、例えば泉屋信夫、加藤哲夫、青柳東彦及び脇道典著、「ペプチド合成の基礎と実験」、丸善株式会社、1985、に従って行うことができる。液相法では、例えば、本トリペプチドのC末端に位置すべきアミノ酸であってそのカルボキシル基をベンジル基(Bzl )、t-ブチル基( t-Bu )等で保護したアミノ酸と、該C末端アミノ酸の隣に位置すべきアミノ酸であってそのα−アミノ基をt-ブチルオキシカルボニル基 ( Boc )、ベンジルオキシカルボニル基(Z)等で保護したアミノ酸をジメチルホルムアミド(DMF)、ジメチルアセトアミド等に溶解し、それらをジシクロヘキシルカルボジイミド ( DCC )及び1-ヒドロキシベンゾトリアゾール( HOBT )の存在下通常室温で一夜反応させる。ついで生成物のアミノ保護基を常法によって除去した後のジペプチド誘導体を必要に応じ、アミノ基を保護した第3のアミノ酸と同様に反応させ、アミノ保護基を除去し、必要に応じ同じ手順を繰り返して本トリペプチド誘導体を得る。反応させるアミノ酸がヒドロキシル基、グアニジノ基またはイミダゾリル基を有する場合には、これらの基は一般に上記反応に先立って保護すべきである。アルコール性ヒドロキシル基の保護基はBzl 、t-Bu等、フェノール性ヒドロキシル基の保護基はBzl等、グアニジノ基の保護基はトシル基 ( Tos )等、イミダゾリル基の保護基は Tos等を包含する。最終反応の終了後、すべての保護基を除去して本トリペプチドを得る。これらの保護基の導入及び除去は常法により行うことができる。
In addition, since this tripeptide has the advantage of not adversely affecting the living body even if it is ingested in large amounts, it can be used as it is, or with various nutrients added or contained in food or drink, to lower blood pressure and prevent hypertension. It may be eaten as a functional food or health food with a function. That is, for example, by adding nutrients such as various vitamins and minerals, for example, liquid foods such as energy drinks, soy milk and soup, solid foods of various shapes, and powders as they are or added to various foods. You can also. The content and intake of the active ingredient in the present ACE inhibitor or antihypertensive agent as a functional food and a health food may be the same as the content and dose in the above-mentioned pharmaceutical product, respectively.
There are two types of organic chemical synthesis methods for the above novel tripeptides, liquid phase method and solid phase method, both of which are conventional methods such as Nobuo Izumiya, Tetsuo Kato, Toshihiko Aoyagi and Noriaki Wakimichi, Basic and Experiment ", Maruzen Co., Ltd., 1985. In the liquid phase method, for example, an amino acid that should be located at the C-terminal of the present tripeptide and whose carboxyl group is protected with a benzyl group (Bzl), t-butyl group (t-Bu), etc., and the C-terminal An amino acid that should be located next to an amino acid and whose α-amino group is protected with a t-butyloxycarbonyl group (Boc), a benzyloxycarbonyl group (Z), etc. is converted into dimethylformamide (DMF), dimethylacetamide, etc. Dissolve and react them in the presence of dicyclohexylcarbodiimide (DCC) and 1-hydroxybenzotriazole (HOBT), usually at room temperature overnight. Next, the dipeptide derivative after removal of the amino protecting group of the product by a conventional method is reacted in the same manner as the third amino acid with the amino group protected if necessary, the amino protecting group is removed, and the same procedure is performed as necessary. Repeat to obtain the present tripeptide derivative. If the amino acid to be reacted has a hydroxyl group, a guanidino group or an imidazolyl group, these groups should generally be protected prior to the reaction. Protecting groups for alcoholic hydroxyl groups include Bzl, t-Bu, etc., protecting groups for phenolic hydroxyl groups include Bzl, protective groups for guanidino groups include tosyl groups (Tos), and protecting groups for imidazolyl groups include Tos, etc. . After completion of the final reaction, all protecting groups are removed to give the tripeptide. Introduction and removal of these protecting groups can be carried out by conventional methods.

他方、固相法に関してはペプチドシンセサイザーを用いる方法が近年広く用いられており、例えばアプライドバイオシステムズ社製の430A型ペプチドシンセサイザーを用いて本トリペプチドを製造することができる。すなわち、基本的には、本トリペプチドのC末端に位置するアミノ酸が結合したフェニルアセトアミドメチル( PAM )樹脂 L-Xaa-O-CH2-PAM( Xaa はアミノ酸残基) ( アプライドバイオシステムズ社から入手し得る) のN側から、Bocでアミノ基を保護したα−アミノ酸(Boc-アミノ酸) をペプチド結合と Bocの除去の繰り返しによって段階的に延長する。Boc-アミノ酸は DCCの使用によるその対称的無水物を中間体として経由する延長反応に付す。上記 Boc-アミノ酸またはL-Xaa-O-CH2-PAM において、反応に関与すべきでない反応性官能基がある場合には一般に適当な保護基によって保護すべきである。430A型ペプチドシンセサイザーを用いる合成系においてはアミノ酸原料に加え以下の試薬及び溶媒を用いる:N,N-ジイソプロピルエチルアミン( TFA中和剤 )、TFA ( Boc切断 )、MeOH (生成尿素系化合物の溶解及び除去) 、HOBT ( 0.5M HOBT/DMF )、DCC( 0.5M DCC/ジクロロメタン( DCM) 、DCM 及び DMF (溶媒) 、中和剤( 70% エタノールアミン、29.5% メタノール) ( 廃液の中和) 。アミノ酸原料及びこれらの試薬及び溶媒は所定の場所に装填する。これらの使用はペプチドシンセサイザーが自動的に行う。反応温度及び時間の調整も自動的に行われるが、反応温度は通常室温である。上記手順によってトリペプチド中の反応性基が保護されたトリペプチド-O-CH2-PAMが得られる。上記固相ペプチド合成の実際の操作はアプライドバイオシステムズ社による430A型ペプチドシンセサイザーユーザーズマニュアルによって行う。   On the other hand, regarding the solid phase method, a method using a peptide synthesizer has been widely used in recent years. For example, the present tripeptide can be produced using a 430A type peptide synthesizer manufactured by Applied Biosystems. Basically, phenylacetamidomethyl (PAM) resin L-Xaa-O-CH2-PAM (where Xaa is an amino acid residue) to which an amino acid located at the C-terminus of this tripeptide is bound (obtained from Applied Biosystems) The α-amino acid (Boc-amino acid) whose amino group is protected with Boc is extended stepwise by repeating peptide bonds and removal of Boc. Boc-amino acids are subjected to an extension reaction via their symmetrical anhydrides as intermediates through the use of DCC. In the above Boc-amino acid or L-Xaa-O-CH2-PAM, if there is a reactive functional group that should not participate in the reaction, it should generally be protected by a suitable protecting group. In the synthesis system using the 430A type peptide synthesizer, in addition to the amino acid raw material, the following reagents and solvents are used: N, N-diisopropylethylamine (TFA neutralizing agent), TFA (Boc cleavage), MeOH (dissolution of the generated urea compound and Removal), HOBT (0.5M HOBT / DMF), DCC (0.5M DCC / dichloromethane (DCM), DCM and DMF (solvent), Neutralizer (70% ethanolamine, 29.5% methanol) (in waste liquid The amino acid raw material and these reagents and solvent are charged in place, and their use is automatically performed by the peptide synthesizer, and the reaction temperature and time are adjusted automatically, but the reaction temperature is usually room temperature. The above procedure yields tripeptide-O-CH2-PAM in which the reactive group in the tripeptide is protected, and the actual operation of the solid phase peptide synthesis is described by Applied Biosystems 43. Performed according to the 0A type peptide synthesizer user's manual.

得られた、反応性官能基が保護されたトリペプチド-O-CH2-PAMを常法、例えば前記「ペプチド合成の基礎と実験」または430A型ペプチドシンセサイザーユーザーズマニュアルに記載された方法、例えば、保護基の切断によって生成するカチオンを捕獲するスカベンジャーとしてチオアニソール及び/またはエタンジチオールの存在下 TFAと共のトリフルオロメタンスルホン酸( TFMSA )( TFAはTFMSA の希釈剤) によって処理して、樹脂及び保護基を切断し、それによって目的とするトリペプチドを得る。   The obtained reactive functional group-protected tripeptide-O-CH2-PAM was prepared by a conventional method, for example, the method described in the above-mentioned “Basics and Experiments of Peptide Synthesis” or 430A Type Peptide Synthesizer User's Manual, for example, protection. Resin and protecting groups treated with trifluoromethanesulfonic acid (TFMSA) (TFA is a diluent of TFMSA) in the presence of thioanisole and / or ethanedithiol as a scavenger to capture cations generated by group cleavage To obtain the desired tripeptide.

本発明トリペプチドは、上記のとおり有機合成によって製造してもよい。けれども、経口摂取する飲食品または医薬品に添加してACE阻害活性を発揮させる目的のためには、鰹節等に由来するタンパク質をヒイロタケ産生酵素で分解しさらには、単離精製して得られるところの、上記5種のトリペプチドの少なくとも一種を含む経口摂取可能な組成物として製造することが好ましい。   The tripeptide of the present invention may be produced by organic synthesis as described above. However, for the purpose of exerting ACE inhibitory activity by adding it to foods and beverages or pharmaceuticals to be taken orally, it is obtained by degrading proteins derived from bonito and the like with a bamboo shoot-producing enzyme and further by isolation and purification. Preferably, it is produced as an orally ingestible composition containing at least one of the above five tripeptides.

原料としては、鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干他雑節等の魚肉、およびそれらの熱水抽出物残渣が使用できる。   As raw materials, fish meat such as salmon, salmon roar, salmon koji, soda salmon, soda salmon, salmon, salmon, salmon, salmon, salmon, salmon, salmon, other dried knots, etc., and hot water extract residues thereof Can be used.

ヒイロタケ産生酵素による分解で、本発明のトリペプチドを得る場合、原料となる鰹節タンパク質を、まず前処理として、加熱処理によるアミノ酸、水溶性タンパク質の除去を行うことが好ましい。また、ヒイロタケ産生酵素分解を効率よくするために、原料となる素材は細かく粉砕してから水に攪拌・懸濁することが好ましい。また、得られたタンパク質は難溶性であるが、酵素反応の為に最適なpHになるように塩酸を加え、均一に分散・懸濁・溶解させる。これにタンパク質100gあたり、0.1〜10重量%のヒイロタケ産生酵素を加え、pH3.5〜4.5、温度40〜55℃で0.5〜30時間、攪拌操作を加えながらタンパク質分解を行った後、苛性ソーダでpH6.0〜7.5に調整する。および加熱処理(98℃、15分間)によって、ヒイロタケ産生酵素の活性を失活させる。分解液はバイブスクリーンで未分解タンパク質を除去後、デカンタ、デラバル、超高速遠心分離機(15000回転/分)や濾過処理(セライト濾過:Hyflo Super Cellなど)等で未分解物、沈殿物を除き、得られた濾液を苛性ソーダもしくは塩酸を用いて中和後、濃縮する。さらに香味上の問題、例えば苦味やえぐ味、異臭等の活性炭処理(精製白鷺:キリンフードテック社製品等)を行って改善することもできる。このようにして得られた鰹節ペプチドにはVal−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheおよびLeu−Val−Trpがそれぞれ0.0005重量%から0.5重量%含まれる。   When the tripeptide of the present invention is obtained by decomposition with the oyster mushroom-producing enzyme, it is preferable to first remove the amino acid and water-soluble protein by heat treatment as a pretreatment for the koji protein as a raw material. Further, in order to efficiently decompose the bamboo shoot-producing enzyme, it is preferable that the raw material is finely pulverized and then stirred and suspended in water. Moreover, although the obtained protein is sparingly soluble, hydrochloric acid is added to achieve an optimum pH for the enzyme reaction, and the resulting protein is uniformly dispersed, suspended and dissolved. To this, 0.1 to 10% by weight of a bamboo shoot-producing enzyme is added per 100 g of protein, and the protein is degraded while stirring at pH 3.5 to 4.5 and temperature 40 to 55 ° C. for 0.5 to 30 hours. After that, the pH is adjusted to 6.0 to 7.5 with caustic soda. And the activity of the oyster mushroom producing enzyme is inactivated by heat treatment (98 ° C., 15 minutes). After removing undegraded protein with a vibe screen, remove the undegraded material and precipitates with a decanter, DeLaval, ultra-high speed centrifuge (15000 rpm) or filtration (Celite filtration: Hyflo Super Cell, etc.) The filtrate obtained is neutralized with caustic soda or hydrochloric acid and then concentrated. Furthermore, it can also be improved by performing a problem on flavor, for example, activated carbon treatment (purified white rice cake: product of Kirin Foodtech Co., Ltd., etc.) such as bitterness, pungent taste, and offensive odor. The bonito peptide thus obtained contains 0.0005% by weight to 0.005% by weight of Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe and Leu-Val-Trp, respectively. 5% by weight is included.

本発明のトリペプチドとして、上記の得られたヒイロタケ産生酵素分解物やこれをさらにハイポーラスポリマー樹脂(疎水性吸着樹脂)やイオン交換樹脂等で処理して高分子のタンパク質や、モノマーなアミノ酸、さらに塩類を除去し、本発明のトリペプチドを豊富に含有する粗精製品を得、これをそのまま用いることが出来る。以下、このような分解物および粗精製物を総称して、トリペプチドを豊富に含有する組成物と呼ぶ。   As the tripeptides of the present invention, the above-obtained oyster mushroom-producing enzyme degradation product and this are further treated with a high porous polymer resin (hydrophobic adsorption resin), an ion exchange resin or the like, so that a high molecular protein, a monomeric amino acid, Further, the salt can be removed to obtain a crude product containing abundant tripeptides of the present invention, which can be used as it is. Hereinafter, such decomposed products and crudely purified products are collectively referred to as compositions containing abundant tripeptides.

精製によって本発明のペプチドを得る場合には、上記濃縮物をゲル濾過カラムクロマトグラフィー、イオン交換樹脂やハイポーラスポリマー樹脂を用いたクロマトグラフィー、アフィニティークロマトグラフィー等で、ACE阻害活性を有する本発明のペプチド分画を集め、さらに、この活性画分をODSカラム等の逆相カラムを用いた高速液体クロマトグラフィー等を用いた通常のペプチド精製法で、ほぼ純粋な各ペプチドに精製することができる。なお、本発明のトリペプチドは鰹節および鰹節熱水抽出残渣物に限らず、鰹、鰹熱水抽出残渣物、宗田鰹節、宗田鰹節熱水抽出残渣物、宗田鰹、宗田鰹熱水抽出残渣物他、魚肉タンパク質からも上記に示した方法で得ることができる。トリペプチドまたはそれを豊富に含む組成物のACE阻害活性は、例えば実施例に記載した方法で測定できる。   When the peptide of the present invention is obtained by purification, the concentrate is subjected to gel filtration column chromatography, chromatography using an ion exchange resin or high porous polymer resin, affinity chromatography, etc. Peptide fractions are collected, and the active fraction can be further purified to almost pure peptides by a normal peptide purification method using high performance liquid chromatography using a reverse phase column such as an ODS column. In addition, the tripeptide of the present invention is not limited to bonito and bonito hot water extraction residue, cocoon, bonito hot water extraction residue, Soda bonbushi, Soda bonbushi hot water extraction residue, Soda tsumugi, soda bonito hot water extraction residue In addition, it can be obtained from fish meat protein by the method described above. The ACE inhibitory activity of a tripeptide or a composition rich in it can be measured, for example, by the method described in the Examples.

化学合成によって本発明のペプチドを得る場合には、通常のペプチド合成に用いられる固相法あるいは液相法のいずれの方法でも合成ができる。合成によって得られた本発明のペプチドは逆相高速液体クロマトグラフィー、イオン交換樹脂やハイポーラスポリマー樹脂を用いたクロマトグラフィー、アフィニティークロマトグラフィー等を用いた通常の精製法で精製することができる。   When the peptide of the present invention is obtained by chemical synthesis, the peptide can be synthesized by either a solid phase method or a liquid phase method used for usual peptide synthesis. The peptide of the present invention obtained by synthesis can be purified by a conventional purification method using reverse phase high performance liquid chromatography, chromatography using ion exchange resin or high porous polymer resin, affinity chromatography or the like.

このようにして得られたトリペプチドまたはそれを豊富に含む組成物のACE阻害作用の比活性は強いことから極めて有用なACE阻害剤として用いることができる。さらに胃腸管からの吸収もよく熱に対しても比較的安定であることから、各種飲食物の形態および医薬品製剤のいずれに応用することも可能である。   Since the specific activity of the ACE inhibitory action of the thus obtained tripeptide or a composition rich in it is strong, it can be used as an extremely useful ACE inhibitor. Furthermore, since it is well absorbed from the gastrointestinal tract and is relatively stable against heat, it can be applied to any form of food and drink and pharmaceutical preparation.

したがって、本発明では上記トリペプチドを一種以上添加配合してなるところの、アンジオテンシン変換酵素阻害作用の発揮を期待しうる飲食用組成物(飲食料)が提供される。また、および上記トリペプチドを一種以上含有してなるアンジオテンシン変換酵素阻害剤と血圧降下剤とを提供するものである。   Therefore, in this invention, the composition (food / beverage) which can anticipate the exhibit of the angiotensin converting enzyme inhibitory effect formed by adding one or more of the said tripeptides is provided. The present invention also provides an angiotensin converting enzyme inhibitor and an antihypertensive agent comprising one or more of the above-mentioned tripeptides.

本発明のトリペプチドを飲食品、医薬品等に使用、配合する場合、鰹節熱水抽出残渣タンパク質のヒイロタケ産生酵素による分解物からトリペプチドを十分に精製したものを用いても良く、あるいは化学合成により得られた合成品を用いても良い。しかし、本発明のペプチドは安定且つACE阻害活性が強いので、上記のとおり粗精製品あるいはヒイロタケ産生酵素分解物をそのままトリペプチドを豊富に含む組成物として用いて十分なACE阻害活性を得ることが出来る。   When the tripeptide of the present invention is used and blended in foods and drinks, pharmaceuticals, etc., it is possible to use a product obtained by sufficiently purifying the tripeptide from the degradation product of the bamboo shoot hot water extract residue protein by the bamboo shoot producing enzyme, or by chemical synthesis. The obtained synthetic product may be used. However, since the peptide of the present invention is stable and has strong ACE inhibitory activity, it is possible to obtain a sufficient ACE inhibitory activity by using the crude product or the enzyme-degraded enzyme product as described above as a composition rich in tripeptides as described above. I can do it.

本発明の飲食用組成物(飲食料)は、上記トリペプチドの一種以上を、1回の摂取量として0.001mg〜100mg、好ましくは0.01mg〜20mg添加して製造される。本発明のトリペプチド含有組成物は、取り扱いが容易で安定な固体あるいは粉末であり、水への溶解性もよい。また、胃腸管からの吸収もよい。したがって、食品への添加の時期、及び方法に特別の制限はなく、粉末状、溶液状、懸濁液状等として、食品製造の原料段階、中間工程、最終工程に、食品分野で慣用の方法で添加することが可能である。本発明のトリペプチドを含有する飲食用組成物を、一時的、断続的、継続的または日常的に摂取することにより、アンジオテンシン変換酵素を阻害し、例えば血圧降下作用が可能である。飲食品の形態としては、固形状、半流動状、流動状などを挙げることができる。固形状食品としては、シート状、タブレットやカプセルなどの錠剤、顆粒粉末などの形態の一般食品および健康食品が挙げられる。半流動状食品としては、ペースト状、ゼリー状、ゲル状などの、また、流動状食品としては、ジュース、清涼飲料、茶飲料、ドリンク剤などの形態の一般食品および健康食品が挙げられる。飲食物を栄養ドリンクや調味料として、本発明のトリペプチドを継続して摂取することにより、血圧の上昇を抑制することも可能である。   The composition for eating and drinking (food and beverage) of the present invention is produced by adding one or more of the above-described tripeptides as 0.001 mg to 100 mg, preferably 0.01 mg to 20 mg as a single intake. The tripeptide-containing composition of the present invention is a solid or powder that is easy to handle and stable, and has good solubility in water. Absorption from the gastrointestinal tract is also good. Therefore, there are no particular restrictions on the timing and method of addition to food, and it can be used as a powder, solution, suspension, etc., in the raw material stage, intermediate process, and final process of food production by a method commonly used in the food field. It is possible to add. By ingesting the food and beverage composition containing the tripeptide of the present invention temporarily, intermittently, continuously or daily, an angiotensin converting enzyme is inhibited, and for example, a blood pressure lowering action is possible. Examples of the form of food and drink include solid, semi-fluid, and fluid. Examples of solid foods include sheet foods, tablets such as tablets and capsules, and general foods and health foods such as granular powders. Examples of the semi-fluid food include paste, jelly, and gel. Examples of the fluid food include general food and health food in the form of juice, soft drink, tea drink, and drink. It is also possible to suppress an increase in blood pressure by continuously ingesting the tripeptide of the present invention using food and drink as an energy drink or seasoning.

本発明によるACE阻害剤または降圧剤である形の医薬組成物は、本発明のトリペプチドを、上記飲食用組成物と同様の量で含有する。本発明の医薬組成物は、患者のアンジオテンシン変換酵素を阻害し、例えば血圧降下作用を発揮させるために、高血圧症状の患者に一時的に投与してもよく、あるいは本発明の医薬組成物の有効成分は天然物由来であることから、継続して安全に使用することもできる。本発明の医薬組成物により高血圧を治療または予防することができる。医薬組成物の形態は、錠剤、カプセル剤、顆粒剤、シロップ等の経口投与剤が好ましい。非経口投与用の製剤としては、静脈、動脈、皮下、筋肉を通して投与するため、あるいは鼻腔から吸入するための、無菌の液剤が挙げられる。液剤は、用時溶解できる乾燥固体であってもよい。注射用製剤は有効成分のトリペプチドを生理食塩水に溶解し、通常の無菌操作により注射用製剤に製造することができる。本発明のトリペプチドの一つLeu-Val-TrpのACE阻害活性値(IC50)は、0.14μM(0.06μg/ml)、ACE阻害降圧薬カプトプリルが5×10−3μM(1.1×10−3μg/ml)であることから、約30分の1の薬価(力価)であり、一般にこれまでに報告されているACE阻害ペプチドの力価がカプトプリルの数百分の1から数十万分の1以上(ACE阻害ペプチドの活性値1μg/ml〜1000μg/ml)であることからも、さらにACE阻害作用および降圧作用の効果が期待され得る。 The pharmaceutical composition in the form of an ACE inhibitor or an antihypertensive agent according to the present invention contains the tripeptide of the present invention in the same amount as the above-mentioned composition for eating and drinking. The pharmaceutical composition of the present invention may be temporarily administered to a patient with hypertension in order to inhibit the angiotensin converting enzyme of the patient and exert a hypotensive effect, for example, or the effectiveness of the pharmaceutical composition of the present invention Since the ingredients are derived from natural products, they can be used safely continuously. Hypertension can be treated or prevented by the pharmaceutical composition of the present invention. The form of the pharmaceutical composition is preferably an oral administration agent such as a tablet, capsule, granule or syrup. Formulations for parenteral administration include sterile solutions for administration through veins, arteries, subcutaneous, muscle, or for inhalation through the nasal passages. The liquid agent may be a dry solid that can be dissolved at the time of use. An injectable preparation can be produced as an injectable preparation by dissolving an active ingredient tripeptide in physiological saline and subjecting it to normal aseptic operation. The ACE inhibitory activity value (IC 50 ) of Leu-Val-Trp, one of the tripeptides of the present invention, is 0.14 μM (0.06 μg / ml), and the ACE inhibitory antihypertensive drug captopril is 5 × 10 −3 μM (1. 1 × 10 −3 μg / ml), the drug titer (titer) is about 1/30, and the titer of ACE-inhibiting peptides generally reported so far is one-hundredth of captopril. 1 to several hundred thousand or more (activity value of ACE inhibitory peptide 1 μg / ml to 1000 μg / ml), an effect of ACE inhibitory action and antihypertensive action can be expected.

本発明手段においては、原料として鰹節を用い、その熱水抽出処理により、アミノ酸および水溶性タンパク質を除き、不溶性タンパク質残渣を得る。この鰹節熱水抽出残渣タンパク質をヒイロタケ産生酵素により酵素分解処理する。   In the means of the present invention, bonito is used as a raw material, and amino acid and water-soluble protein are removed by hot water extraction to obtain an insoluble protein residue. This bonito hot water extraction residue protein is subjected to an enzymatic decomposition treatment with agaric producing enzyme.

次いで、この酵素分解後の液を、吸着能力を効率的にする上において有効である、バイブスクリーン、デラバル、シャープレス、セライトろ過処理を行った後に、疎水性吸着樹脂を充填したカラムに負荷し、そのカラム内を流過させることで吸着を行なう。   Next, this liquid after enzymatic decomposition is subjected to a vibe screen, DeLaval, sharp press, and celite filtration treatment, which is effective in increasing the adsorption capacity, and then loaded onto a column filled with a hydrophobic adsorption resin. Adsorption is carried out by passing through the column.

疎水性吸着樹脂に吸着したアンジオテンシン変換酵素阻害物質は、含水エタノール等の含水有機溶媒を用いて溶出させる。   The angiotensin converting enzyme inhibitor adsorbed on the hydrophobic adsorption resin is eluted using a water-containing organic solvent such as water-containing ethanol.

この溶媒により溶出を行なう際も、吸着させた前述の阻害物質の前記溶媒による溶出を効果的に行わせるために、その溶媒を供給する前に、水の供給により、水に溶解する物質を溶出させる処理を行なうことが有効である。すなわち、酵素分解物水溶液は、カラムの約3〜10倍容量が望ましく、カラムに負荷した後に、次に、水をカラムの約3〜10倍量を通過させる。非吸着画分を全て、溶出させる。さらに、エタノールの10%、25%、50%、99.5%濃度のステップワイズグラジエントを行い、目的の吸着画分を得る。   Even when elution is performed with this solvent, the substance that dissolves in water is eluted by supplying water before supplying the solvent in order to effectively perform the elution by the solvent of the adsorbed inhibitory substance. It is effective to perform the processing. That is, the enzyme decomposition product aqueous solution is preferably about 3 to 10 times the volume of the column. After loading the column, water is then passed through about 3 to 10 times the amount of the column. All non-adsorbed fractions are eluted. Further, a stepwise gradient of ethanol with a concentration of 10%, 25%, 50%, 99.5% is performed to obtain a target adsorption fraction.

エタノール溶液により溶出したアンジオテンシン変換酵素阻害物質を含む画分は、その溶出液を、減圧濃縮し、噴霧乾燥(スプレードライ)することで、粉剤の、アンジオテンシン変換酵素阻害ペプチドを主体とする食品素材の製品が粉末の形態で得られる。   The fraction containing an angiotensin converting enzyme inhibitor substance eluted with an ethanol solution is concentrated under reduced pressure and spray-dried. The product is obtained in powder form.

このアンジオテンシン変換酵素阻害ペプチドを主体とする食品素材は、前述の溶出液を、高速液体クロマトグラフィーを用いて成分の単離を行ない、アセトニトリル・トリフルオロ酢酸でグラジエント溶出することにより、アンジオテンシン変換酵素阻害活性の強い成分に精製・単離された形態のものが得られる。   This food material mainly composed of angiotensin-converting enzyme inhibitory peptide inhibits angiotensin-converting enzyme by isolating the aforementioned eluate using high performance liquid chromatography and elution with acetonitrile / trifluoroacetic acid. A purified and isolated form of a highly active ingredient is obtained.

試験例1
ACE阻害活性測定は次のように行った。すなわち、以上のようにして得た本トリペプチドのACE阻害活性は、Cheung and Cushmanの方法(Biochemical Pharamacology,20,1637(1971))の緩衝液をリン酸緩衝液からホウ酸緩衝液に変えた方法に準じて測定した。
すなわち、ラビットラングアセトンパウダー5gを0.1Mホウ酸ナトリウム緩衝液(pH 8.3 ) 50mlに溶かし、40000G 、40分の条件で遠心分離し、その上清液をさらにハイドロキシアパタイトで精製し、1unit/mg タンパク質のアンジオテンシン変換酵素液を得た。あるいは、ラビットラング由来精製ACE(Sigma社、0.25ユニット)を用いた。
Test example 1
The ACE inhibitory activity was measured as follows. That is, the ACE inhibitory activity of the present tripeptide obtained as described above was obtained by changing the buffer solution of Cheung and Cushman's method (Biochemical Pharamacology, 20, 1637 (1971)) from phosphate buffer to borate buffer. It measured according to the method.
That is, 5 g of rabbit Lang acetone powder was dissolved in 50 ml of 0.1M sodium borate buffer (pH 8.3), centrifuged at 40,000 G for 40 minutes, and the supernatant was further purified with hydroxyapatite. An angiotensin converting enzyme solution of / mg protein was obtained. Alternatively, rabbit lang-derived purified ACE (Sigma, 0.25 unit) was used.

本トリペプチドの各濃度の溶液をそれぞれ試験管に0.030ml入れ、次に上記アンジオテンシン変換酵素液 0.1mlを加え、37℃、5分間反応させる。次に、基質として、ヒプリルヒスチジルロイシン( ペプチド研究所、Bz−Gly−His−Leu・H2O、最終濃度5mM 、NaC1300mM を含む)0.25mlを添加し、37℃で30分間反応させた。その後、IN塩酸0.25mlを添加して反応を停止させた後、1.5 mlの酢酸エチルを加え、ボルテックスミキサーで20秒攪拌した後、遠心分離(3000回転、5分間)を行い、酢酸エチル層1mlを分取した。加熱105℃、30分間(アルミブロック)後、蒸留水3mlに溶解して、酢酸エチル中に抽出された馬尿酸の228nmでの吸収値を測定し、これを酵素活性とした。
阻害率を次の式より算出した。A:阻害剤を含まない場合の228nm吸収値 B:阻害剤添加の場合の228nm吸収値 また阻害率50%のときの本トリペプチドの濃度をIC50値とした。阻害率=[1−(A−a)/(B−b) ] × 100
A:試料添加
a:試料添加、酵素のかわりに緩衝液添加
B:試料のかわりに蒸留水添加
b:試料のかわりに蒸留水添加、酵素のかわりに緩衝液添加
0.030 ml of the solution of each concentration of the present tripeptide is put into a test tube, and then 0.1 ml of the angiotensin converting enzyme solution is added and reacted at 37 ° C. for 5 minutes. Next, 0.25 ml of hippuryl histidyl leucine (containing Peptide Institute, Bz-Gly-His-Leu.H 2 O, final concentration 5 mM, NaC 1300 mM) as a substrate is added and reacted at 37 ° C. for 30 minutes. I let you. Thereafter, 0.25 ml of IN hydrochloric acid was added to stop the reaction, 1.5 ml of ethyl acetate was added, and the mixture was stirred with a vortex mixer for 20 seconds, followed by centrifugation (3000 rpm, 5 minutes). 1 ml of the ethyl layer was collected. After heating at 105 ° C. for 30 minutes (aluminum block), dissolved in 3 ml of distilled water, the absorption value at 228 nm of hippuric acid extracted into ethyl acetate was measured, and this was defined as enzyme activity.
The inhibition rate was calculated from the following formula. A: 228 nm absorption value when no inhibitor is contained B: 228 nm absorption value when an inhibitor is added Further, the concentration of the present tripeptide when the inhibition rate is 50% was defined as an IC 50 value. Inhibition rate = [1− (A−a) / (B−b)] × 100
A: Sample added a: Sample added, buffer added instead of enzyme B: Distilled water added instead of sample b: Distilled water added instead of sample, buffer added instead of enzyme

今回、鰹節熱水抽出残渣のヒイロタケ産生酵素分解物中の単離した5トリペプチドのACE阻害活性値を後記の表1に示す。   Table 1 below shows the ACE inhibitory activity values of the 5 tripeptides isolated in the enzyme-degraded enzyme product of the bamboo shoot hot water extracted from the dried bonito hot water.

実施例1
(a) ペプチドの調製・精製:
鰹節タンパク質160gに水2000mLを加え、加熱処理(95℃、35分間)後、アミノ酸、水溶性タンパク質を除き、得られた熱水抽出残渣120gに水1200mLを加え、6NHClでpH 4に調整後、ヒイロタケ産生酵素1.0wt%(酵素量:タンパク質当り、キリンフードテック社製品)を添加して、攪拌を行いながら、50℃、17時間反応させた。反応後に苛性ソーダを加えてpHを6.8に調整し、98℃、15分間加熱してヒイロタケ産生酵素を失活させた。その後、未分解タンパク質をバイブスクリーン、デラバル、遠心分離機により除去し、上清をセライトでろ過した。ろ過液をスプレイドライ(噴霧乾燥機にて)してペプチド粉末73gを得た。
Example 1
(A) Preparation and purification of peptides:
After adding 2000 mL of water to 160 g of bonito protein, heat treatment (95 ° C., 35 minutes), removing amino acids and water-soluble protein, adding 1200 mL of water to 120 g of the obtained hot water extraction residue, adjusting to pH 4 with 6N HCl, Agaricum producing enzyme 1.0 wt% (enzyme amount: per protein, product of Kirin Foodtech) was added and reacted at 50 ° C. for 17 hours while stirring. After the reaction, caustic soda was added to adjust the pH to 6.8 and heated at 98 ° C. for 15 minutes to inactivate the bamboo shoot-producing enzyme. Thereafter, undegraded protein was removed by a vibe screen, DeLaval, and a centrifuge, and the supernatant was filtered through Celite. The filtrate was spray-dried (with a spray dryer) to obtain 73 g of peptide powder.

このペプチド粉末25gを2500mlの水に溶解し、疎水性クロマトグラフィーに負荷した。
以下に疎水性クロマトグラフィーの実施条件を記す。
カラム:SP-207(50mm ID×255mm L、日本錬水製)
溶出液:0, 10%, 25%, 50%, 99.5%濃度のエタノール溶液のステップワイズグラジエント
流速:16.6ml/min
25 g of this peptide powder was dissolved in 2500 ml of water and loaded onto hydrophobic chromatography.
The conditions for hydrophobic chromatography are described below.
Column: SP-207 (50mm ID x 255mm L, manufactured by Nippon Nensui)
Eluent: Stepwise gradient of ethanol solution of 0, 10%, 25%, 50%, 99.5% concentration Flow rate: 16.6 ml / min

疎水性吸着樹脂を充填したカラムからの溶出液は、アルコール濃度のステップワイズグラジエントにより5分画し、2500mlずつの5つの画分を分取した。各画分はACE阻害活性を試験例1の方法で測定した結果、上記条件で得られたACE阻害活性画分は10%、25%または50%エタノールでの溶出画分であり、ACE阻害活性値IC50はそれぞれ、0.030mg/ml、0.038 mg/ml、 0.017 mg/mlであった。これらの画分を噴霧乾燥を行い、それぞれ5.3g, 3.4g, 1.8gの各量で白色粉末を得た。水での溶出画分にACE阻害活性は認められなかった。 The eluate from the column packed with the hydrophobic adsorption resin was fractionated into 5 fractions with a stepwise gradient of alcohol concentration, and 5 fractions of 2500 ml were fractionated. Each fraction was measured for ACE inhibitory activity by the method of Test Example 1. As a result, the ACE inhibitory activity fraction obtained under the above conditions was an elution fraction with 10%, 25% or 50% ethanol. The values IC 50 were 0.030 mg / ml, 0.038 mg / ml and 0.017 mg / ml, respectively. These fractions were spray-dried to obtain white powders in amounts of 5.3 g, 3.4 g and 1.8 g, respectively. No ACE inhibitory activity was observed in the fraction eluted with water.

次に疎水性クロマトグラフィーで得られた50%エタノール溶出画分のACE阻害活性ペプチド50mgを3mlの精製水に溶解し、ODSカートリッジカラムを用いて、さらに分画した。
以下にクロマトグラフィーの実施条件を記す。
カラム:Sep-Pak Plus C-18カラム(Waters)
移動層:0, 10,25, 30, 50, 99.5%エタノール溶液
流速:減圧滴下
Next, 50 mg of the 50% ethanol-eluted fraction obtained by hydrophobic chromatography was dissolved in 3 ml of purified water and further fractionated using an ODS cartridge column.
The chromatographic conditions are described below.
Column: Sep-Pak Plus C-18 column (Waters)
Moving layer: 0, 10, 25, 30, 50, 99.5% ethanol solution

上記条件で各エタノール濃度溶液3mlの溶出を行い、活性画分を得た。
画分は減圧下蒸発乾固後、ACE阻害活性測定用試料に供した。その結果、25% エタノール溶出画分には、強いACE阻害活性8.9μg/mlが認められた。凍結乾燥を行い、粉末18.4mg量が得られた。また、水溶出画分、10%,30%,50%エタノールでの溶出画分の活性値(IC50)は、それぞれ64.9, 13.3, 50.7, 86.9μg/mlであり、それの各分画からは粉末はそれぞれ、5.79、6.20,15.80、3.77mgの量で得られた。結果を後記の表1に示す。

Figure 2010155788
Under the above conditions, 3 ml of each ethanol concentration solution was eluted to obtain an active fraction.
The fraction was evaporated to dryness under reduced pressure and then used as a sample for measuring ACE inhibitory activity. As a result, a strong ACE inhibitory activity of 8.9 μg / ml was observed in the 25% ethanol elution fraction. Freeze drying was performed to obtain 18.4 mg of powder. Moreover, the activity values (IC 50 ) of the water-eluted fraction and the eluted fraction with 10%, 30%, and 50% ethanol are 64.9, 13.3, 50.7, and 86.9 μg / ml, respectively. From each of its fractions, powders were obtained in amounts of 5.79, 6.20, 15.80 and 3.77 mg, respectively. The results are shown in Table 1 below.
Figure 2010155788

25%エタノール溶出液中のACE阻害ペプチド8000μgを100μlの精製水に溶解し、C-18カラムを用いた高速液体クロマトグラフに2000μg/25μl負荷し、ペプチドを分画した。以下にクロマトグラフィーの実施条件を記す。
カラム:Cosmosil 5C-18 ARII(4.6mm ID × 250mm L、ナカライ化学)
移動層:5-35%CH3CN in 0.1%TFA(10-40分)
流速:0.4ml/min
温度:35℃
検出:UV 210nm
8000 μg of the ACE-inhibiting peptide in 25% ethanol eluate was dissolved in 100 μl of purified water, loaded onto a high performance liquid chromatograph using a C-18 column at 2000 μg / 25 μl, and the peptide was fractionated. The chromatographic conditions are described below.
Column: Cosmosil 5C-18 ARII (4.6 mm ID × 250 mm L, Nacalai Chemical)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.4ml / min
Temperature: 35 ° C
Detection: UV 210nm

上記条件で1分間毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、フラクション43、44、46、47、48、49、52、53、55、56中に強いACE阻害活性が認められた。これら10フラクションはそれぞれに凍結乾燥を行い、各々微量のペプチドが得られた。   Under the above conditions, one fraction was collected every minute. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in fractions 43, 44, 46, 47, 48, 49, 52, 53, 55, and 56. Each of these 10 fractions was freeze-dried to obtain a trace amount of peptide.

(a) 上記で得たフラクション43、44中のACE阻害活性ペプチドの精製
フラクショ43、44中の凍結乾燥ペプチドを30μlの精製水に溶解し、ODSカラムを用いた超高速液体クロマトグラフに負荷し、ペプチドを分画した。以下に実施条件を記す。
カラム:Acquity UPLC BEH C18(2.1mm ID ×100mm L、1.7μm)
移動層:5-35%CH3CN in 0.1%TFA(10-40分)
流速:0.2ml/min
温度:40℃
検出:UV 210nm
(A) Purification of ACE inhibitory peptide in fractions 43 and 44 obtained above Lyophilized peptide in fractions 43 and 44 was dissolved in 30 μl of purified water and loaded onto an ultrahigh performance liquid chromatograph using an ODS column. The peptide was fractionated. The implementation conditions are described below.
Column: Acquity UPLC BEH C18 (2.1 mm ID × 100 mm L, 1.7 μm)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 210nm

上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクション39,40に強いACE阻害活性が認められた。フラクションはそれぞれ凍結乾燥を行い、微量のペプチドが得られた。フラクション39、40について、アミノ酸分析およびTOF MS解析を行い、各フラクションのペプチドは、Leu−Pro−Tyrのトリペプチドであることが判明した。   Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in peptide fractions 39 and 40. Each fraction was freeze-dried to obtain a trace amount of peptide. The fractions 39 and 40 were subjected to amino acid analysis and TOF MS analysis, and the peptide of each fraction was found to be a Leu-Pro-Tyr tripeptide.

(b) 上記で得たフラクション48、49中のACE阻害活性ペプチドの精製
フラクション48、49中の凍結乾燥ペプチドを30μlの精製水に溶解し、ODSカラムを用いた超高速液体クロマトグラフに負荷し、ペプチドを分画した。以下に条件を記す。
カラム:Acquity UPLC BEH C18(2.1mm ID ×100mm L、1.7μm)
移動層:5-35%CH3CN in 0.1%TFA(10-40分)
流速:0.2ml/min
温度:40℃
検出:UV 210nm
(B) Purification of ACE-inhibiting peptide in fractions 48 and 49 obtained above The lyophilized peptide in fractions 48 and 49 was dissolved in 30 μl of purified water and loaded onto an ultrahigh performance liquid chromatograph using an ODS column. The peptide was fractionated. The conditions are described below.
Column: Acquity UPLC BEH C18 (2.1 mm ID × 100 mm L, 1.7 μm)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 210nm

上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクション57、58に強いACE阻害活性が認められた。フラクションはそれぞれ凍結乾燥を行い、各々、微量のペプチドが得られた。フラクション57、58について、アミノ酸分析およびTOF MS解析を行い、各フラクションのペプチドはVal−Ile−ProのトリペプチドとPhe−Ile−Tyrのトリペプチドであることが判明した。   Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in peptide fractions 57 and 58. Each fraction was freeze-dried, and a trace amount of peptide was obtained. Fractions 57 and 58 were subjected to amino acid analysis and TOF MS analysis, and the peptides in each fraction were found to be a Val-Ile-Pro tripeptide and a Phe-Ile-Tyr tripeptide.

(c) 上記で得たフラクション52、53中のACE阻害活性ペプチドの精製
フラクション52、53中の凍結乾燥ペプチドを30μlの精製水に溶解し、ODSカラムを用いた超高速液体クロマトグラフに負荷し、ペプチドを分画した。以下に実施条件を記す。
カラム:Acquity UPLC BEH C18(2.1mm ID ×100mm L、1.7μm)
移動層:5-35%CH3CN in 0.1%TFA(10-40分)
流速:0.2ml/min
温度:40℃
検出:UV 210nm
(C) Purification of ACE-inhibiting peptide in fractions 52 and 53 obtained above Lyophilized peptide in fractions 52 and 53 was dissolved in 30 μl of purified water and loaded onto an ultrahigh performance liquid chromatograph using an ODS column. The peptide was fractionated. The implementation conditions are described below.
Column: Acquity UPLC BEH C18 (2.1 mm ID × 100 mm L, 1.7 μm)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 210nm

上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクション70、71に強いACE阻害活性が認められた。これら2つのフラクションはそれぞれ凍結乾燥を行い、各々、微量のペプチドが得られた。フラクション70、71について、アミノ酸分析およびTOF MS解析を行い、各フラクションのペプチドはLeu−Val−Trpのトリペプチドであることが判明した。   Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in peptide fractions 70 and 71. Each of these two fractions was freeze-dried, and a trace amount of peptide was obtained. Fractions 70 and 71 were subjected to amino acid analysis and TOF MS analysis, and it was found that the peptides in each fraction were Leu-Val-Trp tripeptides.

(d) 上記で得たフラクション55、56中のACE阻害活性ペプチドの精製
フラクション55、56中の凍結乾燥ペプチドを30μlの精製水に溶解し、ODSカラムを用いた超高速液体クロマトグラフに負荷し、ペプチドを分画した。以下に実施条件を記す。
カラム:Acquity UPLC BEH C18(2.1mm ID ×100mm L、1.7μm)
移動層:5-35%CH3CN in 0.1%TFA(10-40分)
流速:0.2ml/min
温度:40℃
検出:UV 210nm
(D) Purification of ACE inhibitory peptide in fractions 55 and 56 obtained above Lyophilized peptide in fractions 55 and 56 was dissolved in 30 μl of purified water and loaded onto an ultrahigh performance liquid chromatograph using an ODS column. The peptide was fractionated. The implementation conditions are described below.
Column: Acquity UPLC BEH C18 (2.1 mm ID × 100 mm L, 1.7 μm)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 210nm

上記条件で、30秒毎に1フラクションずつ分取した。各フラクションから、減圧下蒸発乾固後、ACE阻害活性測定用試料とし、上記の方法に従い、ACE阻害活性を測定した。その結果、ペプチドのフラクション86、87に強いACE阻害活性が認められた。これら2つのフラクションはそれぞれ凍結乾燥を行い、各々、微量のペプチドが得られた。フラクション86、87について、アミノ酸分析およびTOF MS解析を行い、各フラクションのペプチドはPhe−Ile−Pheのトリペプチドであることが判明した。   Under the above conditions, one fraction was collected every 30 seconds. From each fraction, after evaporating to dryness under reduced pressure, the sample was used as an ACE inhibitory activity measurement sample, and the ACE inhibitory activity was measured according to the method described above. As a result, strong ACE inhibitory activity was observed in peptide fractions 86 and 87. Each of these two fractions was freeze-dried, and a trace amount of peptide was obtained. Fractions 86 and 87 were subjected to amino acid analysis and TOF MS analysis, and it was found that the peptides in each fraction were Phe-Ile-Phe tripeptides.

実施例2
合成法によるペプチドの合成:
アプライドバイオシステムズ社のペプチド自動合成機(ABI 430モデル)を使用し、プログラムに従ってC端より逐次BOC法によりペプチド鎖を延長し目的の保護ペプチド樹脂の合成を行った。
Example 2
Synthesis of peptides by synthetic methods:
Using an automated peptide synthesizer (Applied Biosystems) (ABI 430 model), the target protected peptide resin was synthesized by sequentially extending the peptide chain from the C end by the BOC method according to the program.

樹脂上へのペプチドの構築が終了した後、保護ペプチド樹脂を乾燥した。得られた保護ペプチドの脱保護基とペプチドの樹脂担体からの切り離しは無水フッ化水素処理(HF/p-Creso18:2 v/v,60分)によって行った。得られた粗ペプチドは90%酢酸によって抽出し、凍結乾燥により粉末固体として得た。さらに得られた粗ペプチドをODSカラムを用いた高速液体クロマトグラフに負荷し精製を行い、目的のペプチドを得た。
カラム:YMC-Pack ODS-A(30mm ID × 250mm L、ワイエムシィ)
移動層:Buffer A:5%CH3CN、0.1%TFA
Buffer B:40%CH3CN、0.1%TFA
勾配:0〜10min:0%Buffer B 10〜90min:0〜100 %Buffer B
流速:20ml/min
検出:UV 220nm
After the construction of the peptide on the resin was completed, the protected peptide resin was dried. The resulting protected peptide was separated from the deprotecting group and the resin carrier by anhydrous hydrogen fluoride treatment (HF / p-Creso 18: 2 v / v, 60 minutes). The resulting crude peptide was extracted with 90% acetic acid and obtained as a powdered solid by lyophilization. Further, the obtained crude peptide was loaded onto a high performance liquid chromatograph using an ODS column and purified to obtain the desired peptide.
Column: YMC-Pack ODS-A (30mm ID x 250mm L, YMC)
Moving layer: Buffer A: 5% CH 3 CN, 0.1% TFA
Buffer B: 40% CH 3 CN, 0.1% TFA
Gradient: 0-10 min: 0% Buffer B 10-90 min: 0-100% Buffer B
Flow rate: 20ml / min
Detection: UV 220nm

精製ペプチドの純度はODSカラムを用いた高速液体クロマトグラフィーで検定した。
カラム:Zorbax 300SB-C18(4.6mm ID × 150mm L、Agilent Technologies)
移動層:Buffer A:1%CH3CN、0.1%TFA
Buffer B:60%CH3CN、0.1%TFA
勾配: 0〜25min:0〜100%Buffer B
流速:1ml/min
検出:UV 220nm
The purity of the purified peptide was tested by high performance liquid chromatography using an ODS column.
Column: Zorbax 300SB-C18 (4.6 mm ID x 150 mm L, Agilent Technologies)
Moving layer: Buffer A: 1% CH 3 CN, 0.1% TFA
Buffer B: 60% CH 3 CN, 0.1% TFA
Gradient: 0-25 min: 0-100% Buffer B
Flow rate: 1 ml / min
Detection: UV 220nm

(a) Val−Ile−Proのトリペプチドの合成:
出発アミノ酸樹脂担体はBoc-Pro(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc-Ile、Boc-Valを各2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Val−Ile−Pro精製物を得た。上記の方法で精製物の純度を測定した結果、97.69%であった。
(A) Synthesis of Val-Ile-Pro tripeptide:
Boc-Pro (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using 2 mM each of the amino acid derivatives Boc-Ile and Boc-Val. Purification was performed by the above method to obtain a purified Val-Ile-Pro product. As a result of measuring the purity of the purified product by the above method, it was 97.69%.

(b) Phe−Ile−Tyrのトリペプチドの合成:
出発アミノ酸樹脂担体はBoc-Tyr(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc-Ile、 Boc-Pheを各2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Phel−Ile−Tyrを精製物を得た。上記の方法で精製物の純度を測定した結果、98.54%であった。
(B) Synthesis of Phe-Ile-Tyr tripeptide:
Boc-Tyr (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using 2 mM each of the amino acid derivatives Boc-Ile and Boc-Phe. Purification was performed by the method described above to obtain a purified product of Phel-Ile-Tyr. As a result of measuring the purity of the purified product by the above method, it was 98.54%.

(c) Leu−Pro−Tyrのトリペプチドの合成:
出発アミノ酸樹脂担体はBoc-Tyr(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc-Pro、Boc-Leuを各2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Leu−Pro−Tyrの精製物を得た。上記の方法で精製物の純度を測定した結果、97.95%であった。
(C) Synthesis of Leu-Pro-Tyr tripeptide:
Boc-Tyr (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using 2 mM each of amino acid derivatives Boc-Pro and Boc-Leu. Purification was performed by the above method to obtain a purified product of Leu-Pro-Tyr. As a result of measuring the purity of the purified product by the above method, it was 97.95%.

(d) Phe−Ile−Pheのトリペプチドの合成:
出発アミノ酸樹脂担体はBoc-Phe(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc-Ile、Boc-Pheを各2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、Phe−Ile−Pheの精製物を得た。上記の方法で精製物の純度を測定した結果、96.73%であった。
(D) Synthesis of Phe-Ile-Phe tripeptide:
Boc-Phe (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using 2 mM each of the amino acid derivatives Boc-Ile and Boc-Phe. Purification was performed by the above method to obtain a purified product of Phe-Ile-Phe. As a result of measuring the purity of the purified product by the above method, it was 96.73%.

(e) Leu−Val−Trpのトリペプチドの合成:
出発アミノ酸樹脂担体はBoc-Trp(BrZ)樹脂(0.5mmol)を使用し、アミノ酸誘導体Boc-Val、Boc-Leuを各2mMを用いてペプチド鎖を伸長した。上記の方法で精製を行い、精製物を得た。上記の方法で精製物の純度を測定した結果、96.30%であった。
(E) Synthesis of Leu-Val-Trp tripeptide:
Boc-Trp (BrZ) resin (0.5 mmol) was used as the starting amino acid resin carrier, and the peptide chain was elongated using 2 mM each of the amino acid derivatives Boc-Val and Boc-Leu. Purification was performed by the above method to obtain a purified product. As a result of measuring the purity of the purified product by the above method, it was 96.30%.

得られた5種のトリペプチドについて、上記の試験例1の方法に従って、ACE阻害活性を測定し、IC50を求めた。なお、対象として得られた鰹節熱水抽出残渣由来ヒイロタケ産生酵素分解物のACE阻害活性を測定した。その結果を後記の表2に示す。

Figure 2010155788
For the obtained five types of tripeptides, ACE inhibitory activity was measured according to the method of Test Example 1 above, and IC 50 was determined. In addition, the ACE inhibitory activity of the bamboo shoot hot water extract residue-derived oyster mushroom-producing enzyme degradation product obtained as a target was measured. The results are shown in Table 2 below.
Figure 2010155788

実施例3
実施例2で得たトリペプチド合成品を用いて、下記の組成のだし飲料を製造した。
(a) 素材および配合量:
鰹節熱水抽出液(めんつゆ)500mlと、実施例2で合成し、単離した5種類の合成トリペプチドの混合品(Val−Ile−Proのトリペプチド230mg、Phe−Ile−Tyrのトリペプチドの215mg、Leu−Pro−Tyrのトリペプチド115mg、Phe−Ile−Pheのトリペプチド55mg、Leu−Val−Trpのトリペプチド75mgを含有した混合物)とを用いた。
Example 3
Using the tripeptide synthetic product obtained in Example 2, a stock beverage having the following composition was produced.
(A) Material and blending amount:
A mixture of 500 ml of bonito hot water extract (mentsuyu) and 5 kinds of synthetic tripeptides synthesized and isolated in Example 2 (230 mg of Val-Ile-Pro tripeptide, Phe-Ile-Tyr tripeptide 215 mg, Leu-Pro-Tyr tripeptide 115 mg, Phe-Ile-Phe tripeptide 55 mg, Leu-Val-Trp tripeptide 75 mg).

(b) 製造方法:
鰹節の熱水抽出(95℃、35分開)後、セライト濾過を行い、そのろ液を常温に冷却した。得られた冷却後の、抽出液に、上記5種のトリペプチドの混合物を加えて攪拌、溶解させた。これによりだし飲料を製造した。
(B) Manufacturing method:
After hot water extraction of bonito (95 ° C., opened for 35 minutes), Celite filtration was performed, and the filtrate was cooled to room temperature. The mixture of the above five types of tripeptides was added to the extract after cooling and stirred and dissolved. This produced a dashi drink.

実施例4
(a) 鰹節タンパク質熱水抽出残渣をヒイロタケ産生酵素で分解した反応混合物からのLeu−Val−Trpのトリペプチドの単離・定量
鰹節タンパク質160gに水2000mlを加え、熱水抽出(95℃、35分間)を行った。得られた残渣(不溶性タンパク質)に10倍量加水後、pH4に調整、ヒイロタケ産生酵素分解後、pH6.8に調整し、加熱(98℃、15分間)後、バイブスクリーン、デカンタ、デラバル、シャープレス処理、セライトろ過を行い、減圧濃縮、スプレードライにより、粉末73gを得る。
Example 4
(A) Isolation and quantification of Leu-Val-Trp tripeptide from the reaction mixture obtained by decomposing the residue of hot water extract of bonito protein with agaricum-producing enzyme Add 2000 ml of water to 160 g of bonito protein and extract with hot water (95 ° C., 35 Minutes). After adding 10-fold amount of water to the obtained residue (insoluble protein), adjusting to pH4, decomposing agaric syrup, adjusting to pH 6.8, heating (98 ° C, 15 minutes), vibe screen, decanter, DeLaval, Sharp Less processing and Celite filtration are performed, and 73 g of powder is obtained by vacuum concentration and spray drying.

上記の粉末25gを疎水性クロマトグラフに負荷し、アルコール濃度0、10,25,50,99.5%/250mlのステップワイズグラジエントにより、50%エタノール溶出に高活性な画分を得る。溶出液を固形40%まで減圧濃縮(40℃)後、スプレードライ(入口温度150〜200℃、出口温度50〜90℃)に掛けて、高活性な粉末品を500mg得る。   A 25 g of the above powder is loaded onto a hydrophobic chromatograph, and a fraction with a high activity for 50% ethanol elution is obtained by a stepwise gradient with an alcohol concentration of 0, 10, 25, 50, 99.5% / 250 ml. The eluate is concentrated under reduced pressure (40 ° C.) to 40% solids and then spray-dried (inlet temperature 150 to 200 ° C., outlet temperature 50 to 90 ° C.) to obtain 500 mg of a highly active powder product.

上記粉末品を原料として用い、これの500mgを配合した機能性食品を得る。その加工食品は、飲料、錠剤、スープ等にも用いられる。   Using the powder product as a raw material, a functional food containing 500 mg of this is obtained. The processed food is also used for beverages, tablets, soups and the like.

実施例5
Leu−Val−Trpの単離および定量を次のように行った。すなわち、粉末品あるいは、その加工品から、本発明トリペプチドの一つであるLeu−Val−Trpの単離および定量を、以下のように実施した。
Example 5
Leu-Val-Trp was isolated and quantified as follows. That is, Leu-Val-Trp, which is one of the tripeptides of the present invention, was isolated and quantified from the powder product or the processed product as follows.

Sep-PakC18前処理:
鰹節抽出残渣酵素分解物、およびその加工食品を、それぞれ、25mg、加工食品5g秤量し、Sep-Pak C18カートリッジに負荷し、水溶性画分を除去後、吸着画分を50%エタノール溶液で溶出した液を試料とする。
Sep-PakC18 pretreatment:
Weighed 25 mg and 5 g of processed food, respectively, of the dried bonito extract residue and its processed food, loaded onto a Sep-Pak C18 cartridge, removed the water-soluble fraction, and eluted the adsorbed fraction with a 50% ethanol solution. Use the solution as a sample.

上記のようにSep-PakC18処理して得られた試料から回収したACE阻害精製ペプチド8000μgを、100μlの精製水に溶解し、C-18カラムを用いた高速液体クロマトグラフに2000μg/25μl負荷し、ペプチドを分画した。以下に条件を記す。
カラム:Cosmosil 5C-18 ARII (4.6mm ID × 250mm L、ナカライ化学製)
移動層:5-35%CH3CN in0.1%TFA(10-40分)
流速:0.4ml/min
温度:35℃
検出:UV 210nm
合成品のLeu−Val−Trpを標品として1μg/μl負荷した。Leu−Val−Trpの溶出時間は、51.50分であった。
8000 μg of ACE-inhibited purified peptide recovered from the sample obtained by treatment with Sep-PakC18 as described above was dissolved in 100 μl of purified water, and loaded on a high-performance liquid chromatograph using a C-18 column at 2000 μg / 25 μl. Peptides were fractionated. The conditions are described below.
Column: Cosmosil 5C-18 ARII (4.6 mm ID × 250 mm L, manufactured by Nacalai Chemical)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.4ml / min
Temperature: 35 ° C
Detection: UV 210nm
A synthetic product, Leu-Val-Trp, was loaded as a standard at 1 μg / μl. The elution time of Leu-Val-Trp was 51.50 minutes.

上記の条件で得られた画分(1分間隔)フラクション52,53を分取し、減圧乾固後、蒸留水100μlに溶解して、下記のUPLCに供した。   Fractions (1 minute intervals) fractions 52 and 53 obtained under the above conditions were collected, dried under reduced pressure, dissolved in 100 μl of distilled water, and subjected to the following UPLC.

フラクション52,53の減圧乾固後、100μlの精製水に溶解し、20μl をODSカラムを用いた超高速液体クロマトグラフに負荷し、ペプチドを分離した。以下にクロマトグラフィの実施条件を記す。
カラム:Acquity UPLC BEH C18(2.1mm ID ×100mm L、1.7μm)
移動層:5-35%CH3CN in0.1%TFA(10-40分)
流速:0.2ml/min
温度:40℃
検出:UV 210nm
フラクション70,71の画分を分取して、アミノ酸分析、TOF MS解析(Waters)、アミノ酸シーケンサー(Applied Biosystems Procise492cLC)により、上記の分離したペプチドは、Leu−Val−Trpであることが判った。
Fractions 52 and 53 were dried under reduced pressure, dissolved in 100 μl of purified water, and 20 μl was loaded onto an ultrahigh performance liquid chromatograph using an ODS column to separate peptides. The conditions for performing chromatography are described below.
Column: Acquity UPLC BEH C18 (2.1 mm ID × 100 mm L, 1.7 μm)
Moving layer: 5-35% CH 3 CN in 0.1% TFA (10-40 minutes)
Flow rate: 0.2ml / min
Temperature: 40 ° C
Detection: UV 210nm
Fractions 70 and 71 were fractionated, and the separated peptide was found to be Leu-Val-Trp by amino acid analysis, TOF MS analysis (Waters), and amino acid sequencer (Applied Biosystems Procise 492cLC). .

標準品Leu−Val−Trpを上述と同じ条件下でAcquity UPLC BEH C18に負荷し、ピーク面積を負荷量に対してプロットすることにより、検量線を作成した。   A standard curve was prepared by loading the standard Leu-Val-Trp onto the Acquity UPLC BEH C18 under the same conditions as described above and plotting the peak area against the load.

Acquity UPLC BEH C18カラムクロマトグラフィーからのLeu−Val−Trp画分のピーク面積を、この検量線へ適用した。結果、鰹節熱水抽出残渣タンパク質由来ヒイロタケ産生酵素分解物100g中のLeu−Val−Trpのトリペプチドの量は、15mgであった。   The peak area of the Leu-Val-Trp fraction from Acquity UPLC BEH C18 column chromatography was applied to this calibration curve. As a result, the amount of the Leu-Val-Trp tripeptide in 100 g of the hydrolyzed bamboo shoot-producing enzyme degradation product derived from bonito hot water extraction residue protein was 15 mg.

実施例6
ACE阻害ペプチドのプラント製造:
鰹節タンパク質21.9kgを95℃、35分間熱水抽出して、可溶性タンパク質5.5kgを出汁(めんつゆ)に使用する。副産物として得た鰹節熱水抽出残渣としての水不溶性タンパク質16.4Kgを原料として用い、これをヒイロタケ産生タンパク質分解酵素により分解した。酵素分解反応混合物を、スクリーン(100メッシュ)、デラバル(3層連続排出遠心分離機)、シャープレス(超遠心分離機15000回転/分)、セライトろ過(ハイフロスーパーセライト:Hyflo Super Cell 0.4%)後、ろ過液を得た。このろ過液をスプレードライ(噴霧乾燥機、入口温度150〜200℃、出口温度90℃以下)することにより、粉末品(10kg)を得ることが出来た。また、この粉末品について、アンジオテンシン変換酵素阻害活性のIC50は65.0μg/mlであった。
Example 6
Plant production of ACE inhibitory peptides:
21.9 kg of bonito protein is extracted with hot water at 95 ° C. for 35 minutes, and 5.5 kg of soluble protein is used for the soup stock. Using 16.4 kg of water-insoluble protein as a koji-bush hot-water extraction residue obtained as a by-product as a raw material, this was decomposed by a oyster mushroom-producing protease. The enzymatic decomposition reaction mixture was screened (100 mesh), DeLaval (three-layer continuous discharge centrifuge), shear press (ultracentrifugation 15000 rpm), celite filtration (Hyflo Super Celite: Hyflo Super Cell 0.4%) ) After that, a filtrate was obtained. The filtrate was spray-dried (spray dryer, inlet temperature 150 to 200 ° C., outlet temperature 90 ° C. or less) to obtain a powder product (10 kg). Further, this powder product had an IC 50 of angiotensin converting enzyme inhibitory activity of 65.0 μg / ml.

上記のろ過液(タンパク質10kg) を600リットルの水に溶解し、疎水性吸着樹脂(セパビーズSP-207、三菱化学)を充填して予め水で平衡化したカラム(φ45cm×150cm)に負荷し、吸着を行なわせ、次に600Lの水で溶出した後、10%、25%、50%、99.5%エタノール液600Lにてステップワイズグラジエント溶出を行った。
ここで用いた疎水性吸着樹脂は、スチレン−ジビニルベンゼン系樹脂を用いたが、逆相分配系樹脂は、オクタデシルシリカ(株式会社ワイエムシー)他、何れの逆相分配系樹脂、疎水性吸着樹脂も使用できる。また、溶出にエタノールを用いたがこれにかぎるものではない。
更に、上記のグラジエント溶出で得られた各溶出画分を減圧濃縮(固形量40%)後、スプレードライ(噴霧乾燥機)して、収量とアンジオテンシン変換酵素阻害活性を測定した。その結果を後記の表3に示す。表3で示されるように、水(0%エタノール)溶出画分、即ち非吸着成分にはアンジオテンシン変換酵素阻害活性は認められなかった。

Figure 2010155788
The above filtrate (10 kg protein) was dissolved in 600 liters of water, loaded onto a column (φ45 cm × 150 cm) that had been packed with a hydrophobic adsorption resin (Separbeads SP-207, Mitsubishi Chemical) and previously equilibrated with water, Adsorption was carried out, followed by elution with 600 L of water, followed by stepwise gradient elution with 600 L of 10%, 25%, 50%, 99.5% ethanol solution.
The hydrophobic adsorption resin used here was a styrene-divinylbenzene resin, but the reverse phase distribution resin was octadecyl silica (YMC Co., Ltd.) or any other reverse phase distribution resin, hydrophobic adsorption resin. Can also be used. Moreover, although ethanol was used for elution, it is not limited to this.
Furthermore, each elution fraction obtained by the above gradient elution was concentrated under reduced pressure (solid content 40%) and then spray-dried (spray dryer), and the yield and angiotensin converting enzyme inhibitory activity were measured. The results are shown in Table 3 below. As shown in Table 3, no angiotensin converting enzyme inhibitory activity was observed in the fraction eluted with water (0% ethanol), that is, the non-adsorbed component.
Figure 2010155788

また、10%、25%、50%エタノール溶出画分に高活性が認められた。このことからアンジオテンシン変換酵素阻害ペプチドは、疎水性吸着樹脂に吸着する性質を有していると思われる。また、この結果から明らかなように一回の操作によりアンジオテンシン変換酵素阻害活性の高い物質を高収量で得ることができる。その活性本体の単離・精製を行った。また、単離した成分の各トリペプチドのACE阻害活性IC50および構造解析の結果は、前出の表1に示したものと同様の結果が得られた。 Further, high activity was observed in the fractions eluted with 10%, 25% and 50% ethanol. This suggests that the angiotensin converting enzyme-inhibiting peptide has a property of adsorbing to the hydrophobic adsorption resin. Further, as is clear from this result, a substance having a high angiotensin converting enzyme inhibitory activity can be obtained in a high yield by a single operation. The active body was isolated and purified. Further, the ACE inhibitory activity IC 50 and the structural analysis results of each tripeptide of the isolated component were the same as those shown in Table 1 above.

以上説明したように、本発明によれば、長い食経験から安全性が立証されている食材である鰹節を原料として、ヒイロタケが産生するタンパク質分解酵素との反応により、アンジオテンシン変換酵素阻害活性をもつ新しい5種類のトリペプチドを得ることが出来た。また、酵素分解物を疎水性吸着樹脂に吸着させ、含水有機溶媒で溶出することにより、さらに、高活性なペプチド画分を生産できることも判った。本発明の新規トリペプチドは日常摂取する食品として安全で有効性の高い素材であることが明らかであり、今後の高齢化社会にとって非常に意義の有る食品素材であり、特定保健用食品、機能性食品等への利用が期待される。   As described above, according to the present invention, an angiotensin converting enzyme inhibitory activity is obtained by reaction with proteolytic enzymes produced by agaric bamboo shoots using bonito, which is a food material that has been proven safe from a long dietary experience. Five new tripeptides were obtained. It was also found that a highly active peptide fraction can be produced by adsorbing the enzymatic degradation product on a hydrophobic adsorption resin and eluting it with a water-containing organic solvent. It is clear that the novel tripeptide of the present invention is a safe and highly effective material for daily ingested food, and is a food material that is very meaningful for the future aging society. Expected to be used for food.

Claims (13)

Val−Ile−Proのアミノ酸配列を有するトリペプチド、または、Phe−Ile−Tyrのアミノ酸配列を有するトリペプチド、または、Leu−Pro−Tyrのアミノ酸配列を有するトリペプチド、または、Phe−Ile−Pheのアミノ酸配列を有するトリペプチド、または、Leu−Val−Trpのアミノ酸配列を有するトリペプチドであって、アンジオテンシン変換酵素阻害活性をもつトリペプチド、あるいはその酸付加塩。   Tripeptide having the amino acid sequence of Val-Ile-Pro, Tripeptide having the amino acid sequence of Phe-Ile-Tyr, Tripeptide having the amino acid sequence of Leu-Pro-Tyr, or Phe-Ile-Phe Or a tripeptide having an amino acid sequence of Leu-Val-Trp and having an angiotensin converting enzyme inhibitory activity, or an acid addition salt thereof. 鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干またはその他雑節の魚肉性タンパク質を熱水で抽出し、その熱水抽出後に残留する水不溶性タンパク質を粉砕し、得られた粉砕物を水分に分散して該水不溶性タンパク質の水分散液を作り、該水分散液中で、分散された水不溶性タンパク質の粒子に、ヒイロタケ産生酵素をpH2.0〜6.0、好ましくはpH3.0〜5.0の酸性条件下に30〜70℃、好ましくは40〜60℃の温度で反応させ、これにより該水不溶性タンパク質の酵素的加水分解を行い、その後、酵素反応を停止させ、そして得られた含水の加水分解反応混合物から水不溶性の粒子を除去し、これにより、水溶性ポリペプチドおよび水溶性アミノ酸を含む水溶液を収得し、該水溶液から逆相クロマトグラフィー法により、請求項1に記載されるVal−Ile−ProまたはPhe−Ile−TyrまたはLeu−Pro−TyrまたはPhe−Ile−PheまたはLeu−Val−Trpで表されるアミノ酸配列を有するトリペプチドの少なくとも1つを分離することから成る、請求項1に記載のトリペプチドの製造法。   Extract hot-water extract of fish protein from bonito, bonito, bonito, soda, suda, sushi, bonito, sardine, bonito, salmon, bonito, boiled or other miscellaneous knots The water-insoluble protein remaining later is pulverized, and the obtained pulverized product is dispersed in water to form an aqueous dispersion of the water-insoluble protein. In the aqueous dispersion, The produced enzyme is reacted under acidic conditions of pH 2.0 to 6.0, preferably pH 3.0 to 5.0 at a temperature of 30 to 70 ° C., preferably 40 to 60 ° C. Hydrolytic hydrolysis, after which the enzymatic reaction is stopped and the water-insoluble particles are removed from the resulting hydrous hydrolysis reaction mixture, thereby obtaining an aqueous solution containing a water-soluble polypeptide and a water-soluble amino acid. From the aqueous solution A bird having an amino acid sequence represented by Val-Ile-Pro or Phe-Ile-Tyr or Leu-Pro-Tyr or Phe-Ile-Phe or Leu-Val-Trp according to claim 1 by a matography method. 2. A process for producing a tripeptide according to claim 1, comprising separating at least one of the peptides. 請求項1に記載されるVal−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheまたはLeu−Val−Trpでそれぞれ表されるアミノ酸配列を有するトリペプチドまたは該トリペプチドの酸付加塩の少なくとも1つを有効成分として含有するアンジオテンシン変換酵素阻害剤。   A tripeptide having an amino acid sequence represented by Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe or Leu-Val-Trp, respectively, according to claim 1, An angiotensin converting enzyme inhibitor comprising at least one peptide acid addition salt as an active ingredient. 経口投与のための1回の投与単位中0.001mg〜100mgの量で請求項1に記載のトリペプチドを含む、請求項3に記載のアンジオテンシン変換酵素阻害剤。   4. An angiotensin converting enzyme inhibitor according to claim 3, comprising the tripeptide according to claim 1 in an amount of 0.001 mg to 100 mg in a single dosage unit for oral administration. 請求項1に記載されるVal−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheまたはLeu−Val−Trpでそれぞれ表されるアミノ酸配列を有するトリペプチドまたは該トリペプチドの酸付加塩の少なくとも1つを有効成分として含有する血圧降下剤。   A tripeptide having an amino acid sequence represented by Val-Ile-Pro, Phe-Ile-Tyr, Leu-Pro-Tyr, Phe-Ile-Phe or Leu-Val-Trp, respectively, according to claim 1, An antihypertensive agent containing at least one peptide acid addition salt as an active ingredient. 経口投与のための1回の投与単位体中に0.001mg〜100mgの量で請求項1に記載のトリペプチドを含む、請求項5に記載の血圧降下剤。   6. The blood pressure lowering agent according to claim 5, comprising the tripeptide according to claim 1 in an amount of 0.001 mg to 100 mg in a single dosage unit for oral administration. 鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干またはその他雑節の魚肉性タンパク質を熱水で抽出し、その熱水抽出後に熱水抽出残渣として残留する不溶性タンパク質をヒイロタケ産生酵素で加水分解して得られたところの、請求項1に記載の5種のトリペプチドまたはその酸付加塩の少なくとも1つを含有するアンジオテンシン変換酵素阻害剤。   Extract hot-water extract of fish protein from bonito, bonito, bonito, soda, suda, sushi, bonito, sardine, bonito, salmon, bonito, boiled or other miscellaneous knots 2. Angiotensin conversion containing at least one of the five tripeptides or acid addition salts thereof according to claim 1, obtained by hydrolyzing an insoluble protein that remains as a hot water extraction residue later with an agaric enzyme. Enzyme inhibitor. 鰹、鰹荒節、鰹枯節、宗田鰹、宗田鰹節、鰯、鰯節、鯵、鯵節、鯖、鯖節、煮干またはその他雑節の魚肉性タンパク質を熱水で抽出し、その後に熱水抽出残渣として残留する不溶性タンパク質をヒイロタケ産生酵素で分解して得られたところの、請求項1に記載の5種のトリペプチドまたはその酸付加塩の少なくとも1つを含有する血圧降下剤。   Extract fish protein of bonito, bonito bonito, bonito bonito, soda bonito, mulberry bonito, bonito, bonito, bonito, bonito, bonito, bonito, boiled or other miscellaneous fish with hot water, then hot water An antihypertensive agent comprising at least one of the five tripeptides or acid addition salts thereof according to claim 1, which is obtained by degrading an insoluble protein remaining as an extraction residue with an agaricum-producing enzyme. 鰹節タンパク質を、熱水で抽出し、その熱水抽出後に残る残渣としての不溶性タンパク質をヒイロタケ産生酵素で分解後、得られた酵素加水分解反応混合物から不溶性粒子を除去し、これにより水溶性ペプチドとアミノ酸を含む水溶液を収得し、この水溶液を直ちに疎水性吸着樹脂に吸着させ、その吸着成分を、該樹脂から含水有機溶媒で溶出することを特徴とする、Val−Ile−Pro、Phe−Ile−Tyr、Leu−Pro−Tyr、Phe−Ile−PheおよびLeu−Val−Trpでそれぞれ表されるアミノ酸配列をもつトリペプチドの5種よりなるアンジオテンシン変換酵素阻害物質の製造法。   Extraction of bonito protein with hot water, insoluble protein remaining as a residue after the hot water extraction is decomposed with agaricum-producing enzyme, and then insoluble particles are removed from the resulting enzyme hydrolysis reaction mixture. An aqueous solution containing an amino acid is obtained, this aqueous solution is immediately adsorbed on a hydrophobic adsorption resin, and the adsorbed component is eluted from the resin with a water-containing organic solvent, Val-Ile-Pro, Phe-Ile- A method for producing an angiotensin converting enzyme inhibitor comprising five types of tripeptides each having an amino acid sequence represented by Tyr, Leu-Pro-Tyr, Phe-Ile-Phe and Leu-Val-Trp. 鰹節タンパク質を熱水抽出処理して残渣として得られた不溶性なタンパク質を、ヒイロタケ産生酵素により加水分解して、得られた酵素加水分解反応混合物を直ちに疎水性吸着樹脂に負荷し、この疎水性吸着樹脂に吸着した成分を、含水有機溶媒により樹脂から溶出して、その溶出した吸着成分であるトリペプチドを主要成分として含有するアンジオテンシン変換酵素阻害物質を作ることを特徴とする、アンジオテンシン変換酵素阻害物質の製造方法。   The insoluble protein obtained as a residue after extraction with bonito protein is hydrolyzed by the oyster mushroom-producing enzyme, and the resulting enzyme hydrolysis reaction mixture is immediately loaded onto the hydrophobic adsorption resin. An angiotensin-converting enzyme inhibitor, characterized by eluting the component adsorbed on the resin with a water-containing organic solvent and producing an angiotensin-converting enzyme inhibitor containing the tripeptide that is the eluted adsorbent as the main component Manufacturing method. 鰹節タンパク質を熱水抽出処理して残渣として得られた不溶性なタンパク質を、ヒイロタケ産生酵素により加水分解し、得られた酵素分解反応混合物を、疎水性吸着樹脂に負荷し、その疎水性吸着樹脂から含水有機溶媒により溶出した吸着成分を、阻害物質の主要成分として含有するアンジオテンシン変換酵素阻害物質。   The insoluble protein obtained as a residue after extraction with bonito protein is hydrolyzed by the oyster mushroom-producing enzyme, and the resulting enzyme degradation reaction mixture is loaded onto the hydrophobic adsorption resin, and then the hydrophobic adsorption resin is used. An angiotensin converting enzyme inhibitor containing an adsorbed component eluted with a water-containing organic solvent as a main component of the inhibitor. 鰹節タンパク質を熱水抽出処理して残渣として得られた不溶性タンパク質を、ヒイロタケ産生酵素により分解して得られた酵素分解反応混合物を、疎水性吸着樹脂に負荷し、含水有機溶媒により溶出させ、その溶出した吸着成分を含む溶出液から、アンジオテンシン変換酵素阻害活性のあるトリペプチドを単離し、精製することを特徴とする、アンジオテンシン変換酵素阻害物質の製造方法。   The insoluble protein obtained as a residue after extraction with bonito protein is hydrolyzed with the oyster mushroom-producing enzyme, and the enzyme-decomposition reaction mixture is loaded on a hydrophobic adsorption resin and eluted with a water-containing organic solvent. A method for producing an angiotensin converting enzyme inhibitory substance, comprising isolating and purifying a tripeptide having angiotensin converting enzyme inhibitory activity from an eluate containing an eluted adsorbing component. 請求項1に記載されるVal−Ile−ProまたはPhe−Ile−TyrまたはLeu−Pro−TyrまたはPhe−Ile−PheまたはLeu−Val−Trpで表されるアミノ酸配列をもち且つアンジオテンシン変換酵素への阻害活性をもつトリペプチドあるいは該トリペプチドの酸付加塩が配合されてあることを特徴とする、飲食料。   It has an amino acid sequence represented by Val-Ile-Pro or Phe-Ile-Tyr or Leu-Pro-Tyr or Phe-Ile-Phe or Leu-Val-Trp according to claim 1 and converts it into an angiotensin converting enzyme. A food or beverage comprising a tripeptide having inhibitory activity or an acid addition salt of the tripeptide.
JP2008333554A 2008-12-26 2008-12-26 Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors Active JP5416964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333554A JP5416964B2 (en) 2008-12-26 2008-12-26 Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333554A JP5416964B2 (en) 2008-12-26 2008-12-26 Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors

Publications (2)

Publication Number Publication Date
JP2010155788A true JP2010155788A (en) 2010-07-15
JP5416964B2 JP5416964B2 (en) 2014-02-12

Family

ID=42573991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333554A Active JP5416964B2 (en) 2008-12-26 2008-12-26 Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors

Country Status (1)

Country Link
JP (1) JP5416964B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071897A (en) * 2011-09-27 2013-04-22 Yamaki Co Ltd Method for producing angiotensin converting enzyme-inhibitory hypotensive peptide composition
WO2014002571A1 (en) * 2012-06-26 2014-01-03 ヤマキ株式会社 Angiotensin-converting-enzyme inhibiting dipeptide
WO2014037438A1 (en) * 2012-09-05 2014-03-13 Novozymes A/S Polypeptides having protease activity
JP5456144B1 (en) * 2012-11-21 2014-03-26 ヤマキ株式会社 Angiotensin converting enzyme inhibitory dipeptide
JP5872725B1 (en) * 2015-02-26 2016-03-01 ヤマキ株式会社 Dipeptidyl peptidase IV inhibitory composition derived from bonito
CN113508828A (en) * 2021-07-08 2021-10-19 泉州师范学院 Preparation method of mackerel antihypertensive active peptide and application of mackerel antihypertensive active peptide in bread

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007093A1 (en) * 1993-09-08 1995-03-16 City Of Hope Method for design of substances that enhance memory and improve the qualilty of life
JP2000044595A (en) * 1997-08-15 2000-02-15 Chugai Pharmaceut Co Ltd Phenethylamine derivative
US20050010036A1 (en) * 2003-07-01 2005-01-13 Han-Chung Wu Peptide marker targeting to nasopharyngeal carcinoma cell and application thereof
WO2006108211A1 (en) * 2005-02-25 2006-10-19 The Murdoch Childrens Research Institute Fragments of von willebrand factor a-related protein

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995007093A1 (en) * 1993-09-08 1995-03-16 City Of Hope Method for design of substances that enhance memory and improve the qualilty of life
JP2000044595A (en) * 1997-08-15 2000-02-15 Chugai Pharmaceut Co Ltd Phenethylamine derivative
US20050010036A1 (en) * 2003-07-01 2005-01-13 Han-Chung Wu Peptide marker targeting to nasopharyngeal carcinoma cell and application thereof
WO2006108211A1 (en) * 2005-02-25 2006-10-19 The Murdoch Childrens Research Institute Fragments of von willebrand factor a-related protein

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JPN6013040451; Bioorg. Med. Chem. vol.10, no.11, 2002, pp.3685-3691 *
JPN6013040452; J. Agric. Food Chem. vol.50, no.14, 2002, pp.3919-3925 *
JPN6013040454; J. Chem. Eng. Jpn. vol.40, no.1, 2007, pp.59-62 *
JPN6013040455; Biosci. Biotech. Biochem. vol.56, no.10, 1992, pp.1541-1545 *
JPN6013040457; Biosci. Biotech. Biochem. vol.57, no.10, 1993, pp.1743-1744 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013071897A (en) * 2011-09-27 2013-04-22 Yamaki Co Ltd Method for producing angiotensin converting enzyme-inhibitory hypotensive peptide composition
WO2014002571A1 (en) * 2012-06-26 2014-01-03 ヤマキ株式会社 Angiotensin-converting-enzyme inhibiting dipeptide
WO2014037438A1 (en) * 2012-09-05 2014-03-13 Novozymes A/S Polypeptides having protease activity
US9771570B2 (en) 2012-09-05 2017-09-26 Novozymes A/S Polypeptides having protease activity
US10006017B2 (en) 2012-09-05 2018-06-26 Novozymes A/S Animal feed additives comprising a protease and methods of using
US10563188B2 (en) 2012-09-05 2020-02-18 Novozymes A/S Polypeptides having protease activity
JP5456144B1 (en) * 2012-11-21 2014-03-26 ヤマキ株式会社 Angiotensin converting enzyme inhibitory dipeptide
JP5872725B1 (en) * 2015-02-26 2016-03-01 ヤマキ株式会社 Dipeptidyl peptidase IV inhibitory composition derived from bonito
JP2016164136A (en) * 2015-02-26 2016-09-08 ヤマキ株式会社 Dipeptidyl peptidase iv inhibitory composition derived from dried bonito
CN113508828A (en) * 2021-07-08 2021-10-19 泉州师范学院 Preparation method of mackerel antihypertensive active peptide and application of mackerel antihypertensive active peptide in bread

Also Published As

Publication number Publication date
JP5416964B2 (en) 2014-02-12

Similar Documents

Publication Publication Date Title
JP4369985B2 (en) Angiotensin converting enzyme inhibitory peptide
US9006171B2 (en) Angiotensin converting enzyme inhibitory peptide
JP5416964B2 (en) Novel tripeptides, methods for producing these tripeptides, and methods for producing angiotensin converting enzyme inhibitors
JP5417405B2 (en) Method for producing angiotensin converting enzyme inhibitory antihypertensive peptide composition
WO2009035169A1 (en) Peptide having anti-hypertensive activity
WO2014002571A1 (en) Angiotensin-converting-enzyme inhibiting dipeptide
JP3592593B2 (en) Angiotensin converting enzyme inhibitor
JP5456100B2 (en) Angiotensin converting enzyme inhibitory dipeptide
JP5456144B1 (en) Angiotensin converting enzyme inhibitory dipeptide
JP3186781B2 (en) New oligopeptide
JPH04275298A (en) Peptide and angiotensinase inhibitor containing the peptide as active component
JP3726106B2 (en) Angiotensin converting enzyme inhibitor and antihypertensive agent
JP2001106699A (en) New hexapeptide and angiotensin-converting enzyme inhibitor
JP3108920B1 (en) Novel tetrapeptide and angiotensin converting enzyme inhibitors
JP4187633B2 (en) Angiotensin I converting enzyme inhibitor and method for producing the same
JP3972104B2 (en) Novel hexapeptide and angiotensin converting enzyme inhibitors
JP2001106698A (en) New tetrapeptide and angiotensin-converting enzyme inhibitor
JP2866872B2 (en) Antihypertensive
JPH03284694A (en) New tripeptide and hypotensor
JP3733376B2 (en) Peptide and prolyl endopeptidase inhibitor, functional food and animal feed containing the same
KR0150798B1 (en) Novel oligopeptides, pharmaceutical composition and food containing the same, and use of oligopeptides
JP2006199672A (en) New tripeptide and angiotensin-converting enzyme inhibitor
JP2001122802A (en) Inhibitor of angiotensin converting enzyme and hypotensive agent
JPH0236195A (en) Novel peptide and angiotensin converting enzyme inhibitor
JP2001106700A (en) New pentapeptide and angiotensin-converting enzyme inhibitor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131118

R150 Certificate of patent or registration of utility model

Ref document number: 5416964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250