[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010151112A - Oxygen burning co2 recovery turbine system - Google Patents

Oxygen burning co2 recovery turbine system Download PDF

Info

Publication number
JP2010151112A
JP2010151112A JP2008336216A JP2008336216A JP2010151112A JP 2010151112 A JP2010151112 A JP 2010151112A JP 2008336216 A JP2008336216 A JP 2008336216A JP 2008336216 A JP2008336216 A JP 2008336216A JP 2010151112 A JP2010151112 A JP 2010151112A
Authority
JP
Japan
Prior art keywords
turbine
steam
low
pressure
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008336216A
Other languages
Japanese (ja)
Inventor
Hidehito Moritsuka
秀人 森塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008336216A priority Critical patent/JP2010151112A/en
Publication of JP2010151112A publication Critical patent/JP2010151112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance thermal efficiency and to simplify a system constitution in a CO<SB>2</SB>recovery type water vapor circulation cycle in which a fuel is oxygen-burned, a water vapor is condensed from a mixed gas comprising produced CO<SB>2</SB>and the water vapor, the CO2 of high concentration is directly recovered and condensed water is recycled/utilized. <P>SOLUTION: The fuel is burned by oxygen and outlet water vapor of a high pressure vapor turbine 1 in an oxygen combustion unit 2 to generate the mixed gas comprising the CO<SB>2</SB>and the water vapor of high temperature, and a heat exchange 4 is installed at an outlet of a low pressure gas turbine 3 in a back stream of the oxygen combustion unit 2. The water vapor of high pressure is generated, and a whole amount of the water vapor in the mixed gas is condensed by a condenser 6 installed in a back stream of the heat exchanger 4. Since the water vapor of high pressure enhances the thermal efficiency, motive power is recovered by the high pressure vapor turbine 1, is fed to the oxygen combustion unit 2, is re-heated by combustion of the fuel and is fed to the low pressure gas turbine 3 to perform recovery of the motive power. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

発明の詳細な説明Detailed Description of the Invention

産業上の利用分野Industrial application fields

本発明は、酸素燃焼CO回収タービンシステムに関する。更に詳述すると、本発明は、化石燃料およびバイオ燃料を燃焼させて生成された水蒸気とCOからなる混合ガスによって低圧ガスタービンを駆動し、該低圧ガスタービンを駆動した後の燃焼ガスの熱で発生させた水蒸気によって低圧ガスタービンに連結された高圧蒸気タービンを駆動させるように構成された一部作動流体としてCOを使用する変形ランキンサイクル酸素燃焼CO回収タービンシステムに関する。The present invention relates to an oxyfuel CO 2 recovery turbine system. More specifically, the present invention drives a low-pressure gas turbine with a mixed gas composed of water vapor and CO 2 produced by burning fossil fuel and biofuel, and heat of the combustion gas after driving the low-pressure gas turbine. It relates to a modified Rankine cycle oxyfuel combustion CO 2 recovery turbine system that uses CO 2 as a partial working fluid configured to drive a high pressure steam turbine connected to a low pressure gas turbine by steam generated in step 1.

酸素燃焼CO回収タービンシステムは、燃料を酸素燃焼させることにより、窒素を含まない水蒸気、COからなる混合ガスを生成させ、該混合ガス中の水蒸気を冷却分離することで容易に高濃度のCOが回収できるとして開発が期待されている。しかし、現在当該システムと類似の高効率かつ実現性の高いシステムは開発されていない。The oxyfuel combustion CO 2 recovery turbine system generates a mixed gas composed of water vapor not containing nitrogen and CO 2 by oxyfuel combustion of the fuel, and easily cools and separates the water vapor in the mixed gas to achieve a high concentration. Development is expected as CO 2 can be recovered. However, a highly efficient and highly feasible system similar to the system has not been developed.

また、バイオ燃料は、炭素中立(大気中のCOを固定した物質と考えられるため、燃焼により発生するCOは勘定しない)であり、CO排出の無い発電サイクルとして注目されている。このバイオ燃料燃焼タービンシステムとして、従来、例えば図−6に示す天然ガス焚きガスタービン複合発電が考えられている。Biofuel is carbon-neutral (because it is considered as a substance that fixes CO 2 in the atmosphere, so CO 2 generated by combustion is not counted), and is attracting attention as a power generation cycle without CO 2 emissions. As this biofuel combustion turbine system, for example, a natural gas-fired gas turbine combined power generation shown in FIG. 6 has been conventionally considered.

発明が解決しようとする課題Problems to be solved by the invention

しかしながら、図6のサイクルは発生するCOを回収しない。もし、発生するCOを回収する場合は、排熱回収ボイラの後段に別途CO分離設備が必要となるが、該設備は大規模な設備となり、設備コストが上昇するとともに大量の動力が必要となる。However, the cycle of FIG. 6 does not capture the CO 2 that is generated. If the generated CO 2 is to be recovered, a separate CO 2 separation facility is required after the exhaust heat recovery boiler. However, this facility is a large-scale facility, which increases the equipment cost and requires a large amount of power. It becomes.

本発明は、これらの付帯設備を必要とせずに、比較的簡易なシステム構成により、高濃度のCOを直接回収できることにより、燃料の燃焼により生成するCOの回収・貯留に対する実現性を高めたサイクルを提供することを目的とする。The present invention improves the feasibility of collecting and storing CO 2 generated by fuel combustion by directly recovering high concentration CO 2 with a relatively simple system configuration without requiring these incidental facilities. The purpose is to provide a complete cycle.

本発明のシステムは、天然ガスや軽油等の化石燃料でも駆動できるが、バイオ燃料で駆動した場合は、前記の炭素中立なバイオ燃料から発生するCOを全量回収するため、本システムから回収・貯留するCO量は削減量として勘定することが出来、理論的には大気中のCO濃度を低減することが可能となる。The system of the present invention can be driven by fossil fuels such as natural gas and light oil. However, when it is driven by biofuel, it collects CO 2 generated from the carbon-neutral biofuel so that it can be recovered from this system. The amount of CO 2 stored can be counted as a reduction amount, and theoretically, the CO 2 concentration in the atmosphere can be reduced.

課題を解決するための手段Means for solving the problem

かかる目的を達成するため、本発明は、燃料と純酸素を当量燃焼させた熱で水蒸気、COからなる混合ガスを発生させ、該混合ガスを低圧ガスタービンに導入してこれを駆動し、該低圧ガスタービンの出口混合ガス中の水蒸気を全量復水させて前記純酸素と水素の当量燃焼で発生した水分を系外へ排出してから再び給水する酸素燃料燃焼CO回収タービンシステムにおいて、高圧蒸気タービンと低圧ガスタービンとの間に燃料と純酸素を当量燃焼させて高圧蒸気タービンの出口蒸気を再加熱する酸素燃焼器を設ける一方、前記低圧ガスタービンの出口混合ガスを熱源として前記熱交換器で給水を加熱して水蒸気を発生させ、その発生水蒸気の全量を高圧蒸気タービンに導入すると共に前記高圧蒸気タービンの出口蒸気を上流側の前記酸素燃焼器に導入して再加熱すると共に低圧ガスタービンに導入してこれを駆動するようにしている。In order to achieve such an object, the present invention generates a mixed gas composed of water vapor and CO 2 by heat obtained by equivalent combustion of fuel and pure oxygen, and introduces the mixed gas into a low-pressure gas turbine to drive it. In the oxyfuel combustion CO 2 recovery turbine system that condenses all the water vapor in the outlet gas mixture of the low-pressure gas turbine and discharges the water generated by the equivalent combustion of the pure oxygen and hydrogen out of the system and then supplies water again. An oxygen combustor is provided between the high-pressure steam turbine and the low-pressure gas turbine to equivalently combust fuel and pure oxygen to reheat the outlet steam of the high-pressure steam turbine, while the heat source is the outlet mixed gas of the low-pressure gas turbine. The feed water is heated by the exchanger to generate steam, and the entire amount of the generated steam is introduced into the high-pressure steam turbine, and the outlet steam of the high-pressure steam turbine is used as the upstream acid. And so as to drive this by introducing a low pressure gas turbine with reheating and introduced into the combustor.

また、本発明の酸素燃焼CO回収タービンシステムは、前記熱交換器を通過して低圧蒸気タービンの出口混合ガスを熱源として発生した水蒸気を、前記酸素燃焼器の壁面および前期低圧ガスタービンの第一段静翼内冷却流路に導入して、当該酸素燃焼器内壁面および当該第一段静翼を冷却するとともに、該酸素燃焼器内で燃焼により生成する混合ガスの熱により水蒸気を過熱するようにしている。Further, the oxyfuel CO 2 recovery turbine system of the present invention uses the steam generated by using the outlet mixed gas of the low-pressure steam turbine as a heat source after passing through the heat exchanger, the steam of the oxygen combustor and the first low-pressure gas turbine. Introduced into the cooling passage in the first stage stationary blade, cools the inner wall surface of the oxycombustor and the first stage stationary blade, and superheats the steam by the heat of the mixed gas generated by combustion in the oxycombustor. I am doing so.

作用Action

高圧蒸気タービンの出口水蒸気は燃料と純酸素とを当量燃焼させる酸素燃焼器によって再加熱され、低圧ガスタービンへの入口混合ガス温度を高くして熱効率を上げる。しかも、給水は低圧ガスタービンの出口混合ガスを熱源とする熱交換器により、混合ガスの熱で加熱され蒸気とされる。したがって、サイクル全体で必要とする水蒸気量を全量蒸発させることができる。しかも、高温となる燃料と純酸素の燃焼によって発生する高温の水蒸気、COの混合ガスに前記低温ガスタービンの翼が耐える温度まで高圧ガスタービンの出口蒸気によって当該タービン翼は冷却される。The outlet steam of the high-pressure steam turbine is reheated by an oxycombustor that equivalently burns fuel and pure oxygen, raising the inlet mixed gas temperature to the low-pressure gas turbine and increasing the thermal efficiency. Moreover, the feed water is heated to steam by the heat of the mixed gas by a heat exchanger that uses the mixed gas at the outlet of the low-pressure gas turbine as a heat source. Therefore, the entire amount of water vapor required for the entire cycle can be evaporated. In addition, the turbine blades are cooled by the outlet steam of the high-pressure gas turbine to a temperature at which the blades of the low-temperature gas turbine can withstand the mixed gas of high-temperature steam and CO 2 generated by the combustion of the fuel and the pure oxygen.

また、請求項2の発明の場合、低圧蒸気タービンの出口混合ガスによって、発生した水蒸気を、酸素燃焼器の壁面および前記低圧ガスタービンの第一段静翼内に設けた過熱器により、さらに高温にするとともに、該酸素燃焼器の壁面および該第一段静翼が冷却されるため、高圧蒸気タービンの入口水蒸気の温度を高くするとともに、酸素燃焼器の出口混合ガスの温度を高くでき、システムの熱効率が向上する。  In the case of the invention of claim 2, the steam generated by the mixed gas at the outlet of the low-pressure steam turbine is further heated by the superheater provided in the wall surface of the oxygen combustor and the first stage stationary blade of the low-pressure gas turbine. And the wall of the oxycombustor and the first stage stationary blade are cooled, so that the temperature of the steam at the inlet of the high-pressure steam turbine can be increased and the temperature of the mixed gas at the outlet of the oxycombustor can be increased. The thermal efficiency of is improved.

以下、本発明の構成を図面に示す実施例に基づいて詳細に説明する。  Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings.

図1に本発明の酸素燃焼CO回収タービンシステムの一実施例を示す。図2に本発明の酸素燃焼CO回収タービンの一構造例を示す。この水素燃焼タービンシステムは、発電機9を駆動する高圧蒸気タービン1と低圧ガスタービン3が同軸上に設置され、各タービン1,3に蒸気および混合ガスを通すことによって回転駆動させ、発電機9に回転を与えるようにしている。FIG. 1 shows an embodiment of the oxyfuel combustion CO 2 recovery turbine system of the present invention. FIG. 2 shows a structural example of the oxyfuel CO 2 recovery turbine of the present invention. In this hydrogen combustion turbine system, a high-pressure steam turbine 1 and a low-pressure gas turbine 3 that drive a generator 9 are installed on the same axis, and are rotated by passing steam and mixed gas through the turbines 1 and 3. To give a rotation.

低圧ガスタービン3の上流側(タービン入口側)には、燃料を純酸素で当量燃焼させて高圧蒸気タービンの出口水蒸気を再加熱する酸素燃焼器2が設けられている。本実施例の場合、低圧ガスタービン2の下流側(タービン出口側)には、低圧ガスタービン3から出た混合ガスを熱源として給水を蒸発させて水蒸気とする熱交換器4が設けられている。即ち、酸素燃焼器2の再加熱によって高温にされた低圧ガスタービン3の出口混合ガスによって給水を蒸発させ水蒸気を得るようにしている。該熱交換器4により、生成された水蒸気は直接高圧蒸気タービン1に導入される。  On the upstream side (turbine inlet side) of the low-pressure gas turbine 3, an oxycombustor 2 is provided in which fuel is equivalently burned with pure oxygen to reheat the outlet steam of the high-pressure steam turbine. In the case of the present embodiment, a heat exchanger 4 is provided on the downstream side (turbine outlet side) of the low-pressure gas turbine 2 by evaporating the feed water using the mixed gas output from the low-pressure gas turbine 3 as a heat source to make water vapor. . That is, the feed water is evaporated by the mixed gas at the outlet of the low-pressure gas turbine 3 heated to a high temperature by reheating the oxycombustor 2 to obtain water vapor. The steam generated by the heat exchanger 4 is directly introduced into the high-pressure steam turbine 1.

低圧ガスタービン3の下流の熱交換器4で給水を蒸発させるのに利用された後の混合ガス中の水蒸気は、全量が復水器6で復水分離され、残ガスであるCOは回収される。分離された復水は燃料と酸素の燃焼で発生した水分を系外へ排出した残りを再び給水として循環させる。給水中の残留ガスは脱気器8によって、高圧蒸気タービン出口水蒸気の一部を抽気して昇温されて脱気されてから、熱交換器4に供給される。All the water vapor in the mixed gas after being used to evaporate the feed water in the heat exchanger 4 downstream of the low-pressure gas turbine 3 is condensed in the condenser 6 and the residual gas, CO 2, is recovered. Is done. The separated condensate is circulated again as the feed water after the water generated by the combustion of fuel and oxygen is discharged out of the system. The residual gas in the feed water is deaerated by the deaerator 8 by extracting a part of the water vapor at the outlet of the high-pressure steam turbine, degassed, and then supplied to the heat exchanger 4.

以上のように構成された酸素燃焼CO回収タービンシステムによれば、次のように作動する。The oxyfuel CO 2 recovery turbine system configured as described above operates as follows.

給水ポンプ9によって供給される給水は、低圧ガスタービン3から排出される蒸気を熱源とする熱交換器4に供給され、低圧ガスタービン2の出口混合ガスの熱を利用して水蒸気とされる。熱交換器4で発生した蒸気は高圧蒸気タービン1に導入されこれを駆動する。  The feed water supplied by the feed water pump 9 is supplied to the heat exchanger 4 using the steam discharged from the low-pressure gas turbine 3 as a heat source, and converted into steam using the heat of the outlet mixed gas of the low-pressure gas turbine 2. The steam generated in the heat exchanger 4 is introduced into the high-pressure steam turbine 1 to drive it.

次いで、高圧蒸気タービン1から排出される水蒸気は酸素燃焼器2に導入されて再加熱される。この酸素燃焼器2では燃料と純酸素を当量燃焼させて熱を得る。したがって、燃焼熱は非常に高温となるが、高圧タービン1の出口蒸気によって希釈され、例えば1500℃程度にまで下げられる。  Next, the steam discharged from the high-pressure steam turbine 1 is introduced into the oxycombustor 2 and reheated. In this oxycombustor 2, fuel and pure oxygen are burned in an equivalent amount to obtain heat. Therefore, although the combustion heat becomes very high, it is diluted by the outlet steam of the high-pressure turbine 1 and lowered to, for example, about 1500 ° C.

高圧蒸気タービン1から排出される水蒸気は、酸素燃焼器2に導入されて燃料と純酸素の当量燃焼によって再加熱され、昇温される。再加熱された混合ガスは低圧ガスタービン3に導入されこれを駆動する。このとき、高圧蒸気タービン1の出口の蒸気一部はバイパス流路11を通って低圧ガスタービンの翼の冷却用水蒸気として低圧ガスタービン3に導入される。  The water vapor discharged from the high-pressure steam turbine 1 is introduced into the oxycombustor 2 and reheated by the equivalent combustion of fuel and pure oxygen to be heated. The reheated mixed gas is introduced into the low-pressure gas turbine 3 to drive it. At this time, part of the steam at the outlet of the high-pressure steam turbine 1 is introduced into the low-pressure gas turbine 3 through the bypass passage 11 as cooling steam for the blades of the low-pressure gas turbine.

低圧ガスタービン3を駆動した後の水蒸気、CO混合ガスは熱交換器4へ導入されて給水を蒸発させる熱源として使用された後、混合ガス中の水蒸気が復水器10で全量が復水された後、残ガスであるCOが回収される。酸素燃焼器2での燃焼によって発生した水分は系外へ排出する。また、高圧タービン1の出口水蒸気の一部が抽気され、脱気器8の熱源として使用される。これら脱気器8で使用された水蒸気は水となって給水径るいは復水器10へ還流される。復水された水は脱気器10において脱気され、給水ポンプ9で循環・給水される。After the low-pressure gas turbine 3 is driven, the steam and CO 2 mixed gas is introduced into the heat exchanger 4 and used as a heat source for evaporating the feed water, and then the water vapor in the mixed gas is completely condensed in the condenser 10. After that, CO 2 which is a residual gas is recovered. Moisture generated by combustion in the oxycombustor 2 is discharged out of the system. A part of the outlet steam of the high-pressure turbine 1 is extracted and used as a heat source for the deaerator 8. The water vapor used in these deaerators 8 becomes water and is returned to the water supply diameter or condenser 10. The condensed water is deaerated in the deaerator 10, and is circulated and supplied by the water supply pump 9.

この結果、図3に示すようなT−S線図が得られる。  As a result, a TS diagram as shown in FIG. 3 is obtained.

尚、上述の実施例は本発明の好適な実施の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、高圧蒸気タービン1の入口水蒸気の温度を更に高くすることにより、熱効率向上を図ったシステムとして、図4および図5に示すように、酸素燃焼器2の壁面および低圧ガスタービンの第一段静翼内に冷却管を設け、この中を熱交換器4で生成する水蒸気を通して過熱するとともに、酸素燃焼器2の内壁面および第一段静翼を冷却する。この場合、高圧蒸気タービン1への入口蒸気温度が実施例1のものより高くなるため、熱効率がより高くなる。  The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited to this, and various modifications can be made without departing from the scope of the present invention. For example, as shown in FIGS. 4 and 5, as a system for improving the thermal efficiency by further increasing the temperature of the steam at the inlet of the high-pressure steam turbine 1, the wall of the oxycombustor 2 and the first stage of the low-pressure gas turbine are used. A cooling pipe is provided in the stationary blade, and the inside is superheated through steam generated by the heat exchanger 4, and the inner wall surface of the oxycombustor 2 and the first stage stationary blade are cooled. In this case, the temperature of the inlet steam to the high-pressure steam turbine 1 is higher than that of the first embodiment, so that the thermal efficiency is higher.

また、本実施例では、酸素燃焼器2の壁面と低圧タービン3の第一段静翼の両者に水蒸気による冷却構造を設けているが、どちらか一方に冷却構造を設けても良い。  In the present embodiment, both the wall surface of the oxycombustor 2 and the first stage stationary blade of the low-pressure turbine 3 are provided with a cooling structure using water vapor, but either one may be provided with a cooling structure.

発明の効果The invention's effect

以上の説明より明らかなように、本発明の酸素燃焼CO回収タービンシステムは、高圧蒸気タービン1出口の水蒸気と、燃料と純酸素とを当量燃焼させる酸素燃焼器2によって発生した高温混合ガスで低圧ガスタービン3を駆動しても、十分な量の熱を有しているため、熱交換器4でサイクル全体で必要とする水蒸気を全量生成させることができ、蒸気の一部を圧縮する圧縮機を必要としないし、低圧ガスタービン3の入口蒸気温度を高くして熱効率を上げることができる。As is apparent from the above description, the oxyfuel combustion CO 2 recovery turbine system of the present invention is a high-temperature mixed gas generated by the oxygen combustor 2 that performs equivalent combustion of the water vapor at the outlet of the high-pressure steam turbine 1, fuel and pure oxygen. Even if the low-pressure gas turbine 3 is driven, it has a sufficient amount of heat, so that the heat exchanger 4 can generate all the water vapor required for the entire cycle, and compresses a part of the steam. A machine is not required and the inlet steam temperature of the low-pressure gas turbine 3 can be increased to increase the thermal efficiency.

しかも、高温となる燃料と純酸素の燃焼によって発生する高温の混合ガスに低圧ガスタービン3の翼が耐える温度まで高圧蒸気タービンから排出される水蒸気によって冷却されるので、酸素燃焼CO回収タービンシステムの実用化が容易である。In addition, since it is cooled by steam discharged from the high-pressure steam turbine to a temperature at which the blades of the low-pressure gas turbine 3 can withstand the high-temperature mixed gas generated by the combustion of high-temperature fuel and pure oxygen, the oxyfuel combustion CO 2 recovery turbine system Is easy to put into practical use.

また、請求項2の発明の場合、熱交換器4で生成された水蒸気を酸素燃焼器2の壁面および低圧ガスタービン3に設置した過熱器により、さらに上昇温して高圧蒸気タービン2に供給するため、高圧蒸気タービンの出力が向上し、その分熱効率を上げることができる。  In the case of the invention of claim 2, the water vapor generated in the heat exchanger 4 is further heated up and supplied to the high-pressure steam turbine 2 by the superheater installed in the wall surface of the oxycombustor 2 and the low-pressure gas turbine 3. Therefore, the output of the high-pressure steam turbine is improved, and the heat efficiency can be increased accordingly.

この結果、請求項2の発明の場合、図6に示すようなT−S線図が得られる。  As a result, in the case of the invention of claim 2, a TS diagram as shown in FIG. 6 is obtained.

本発明の酸素燃焼CO回収タービンシステムの一実施例を示すサイクル構成図である。It is a cycle configuration diagram showing an embodiment of the oxyfuel combustion CO 2 recovery turbine system of the present invention. 図1の実施例に係る酸素燃焼CO回収タービンの構造概念図である。FIG. 2 is a structural conceptual diagram of an oxyfuel CO 2 recovery turbine according to the embodiment of FIG. 1. 図1の実施例に係る酸素燃焼CO回収タービンシステムのT−S線図である。FIG. 2 is a TS diagram of the oxyfuel CO 2 recovery turbine system according to the embodiment of FIG. 1. 本発明の酸素燃焼CO回収タービンシステムの他の実施例を示すサイクル構成図である。It is a cycle configuration diagram showing another embodiment of the oxyfuel combustion CO 2 recovery turbine system of the present invention. 図2の実施例に係る酸素燃焼CO回収タービンの構造概念図である。FIG. 3 is a structural conceptual diagram of an oxyfuel CO 2 recovery turbine according to the embodiment of FIG. 2. 図2の実施例に係る酸素燃焼CO回収タービンシステムのT−S線図である。FIG. 3 is a TS diagram of the oxyfuel CO 2 recovery turbine system according to the embodiment of FIG. 2. 本発明の酸素燃焼CO回収タービンシステムと、回収したCOを地下の帯水層へ貯留する一実施例を示す。1 shows an oxyfuel CO 2 recovery turbine system of the present invention and an embodiment for storing the recovered CO 2 in an underground aquifer. 従来のガスタービン複合サイクルシステムの排気ガスから、CO回収装置を用いてCOを回収する一実施例を示す。From a conventional gas turbine exhaust gases of a combined cycle system, showing an embodiment for recovering CO 2 using CO 2 recovery apparatus.

符号の説明Explanation of symbols

1 高圧蒸気タービン
2 酸素燃焼器
3 低圧ガスタービン
4 熱交換器
5 蒸気ドラム
6 復水器
7 脱気器
8 給水ポンプ
9 発電機
10 タービン翼冷却蒸気流路
11 過熱器(燃焼器内壁)
12 過熱器(タービン第一段静翼)
13 タービン車軸
14 スラスト軸受
15 ジャーナル軸受
16 CO圧縮機
17 電動機
18 地下帯水層
19 空気圧縮機
20 燃焼器
21 ガスタービン
22 排熱回収ボイラ
23 蒸気タービン
24 CO吸収塔
25 リボイラ
26 吸収液再生塔
DESCRIPTION OF SYMBOLS 1 High pressure steam turbine 2 Oxygen combustor 3 Low pressure gas turbine 4 Heat exchanger 5 Steam drum 6 Condenser 7 Deaerator 8 Feed water pump 9 Generator 10 Turbine blade cooling steam flow path 11 Superheater (combustor inner wall)
12 Superheater (turbine first stage stationary blade)
13 Turbine axle 14 Thrust bearing 15 Journal bearing 16 CO 2 compressor 17 Motor 18 Underground aquifer 19 Air compressor 20 Combustor 21 Gas turbine 22 Waste heat recovery boiler 23 Steam turbine 24 CO 2 absorber 25 Reboiler 26 Absorbed liquid regeneration Tower

Claims (2)

天然ガス、軽油等の化石燃料およびエタノール、脂肪酸エステル、グリセリン等のバイオマスから製造される燃料(以下バイオ燃料)と純酸素を当量燃焼させて水蒸気とCOからなる混合ガスを発生させ、該混合ガスを低圧ガスタービンに導入してこれを駆動し、低圧ガスタービンの出口に設けた熱交換器により温度を下げた後、海水等により冷却を行うことにより、該混合ガス中の水蒸気を全量復水させて分離し、残りのガスである高濃度のCOを回収するとともに、前記化石燃料およびバイオ燃料と純酸素の当量燃焼で発生した水分を除いた水分を再び給水する酸素燃焼CO回収タービンシステムにおいて、高圧蒸気タービンと低圧ガスタービンを設けると共に高圧蒸気タービンと低圧ガスタービンの間に燃料と純酸素を当量燃焼させて高圧蒸気タービンの出口蒸気を再加熱する酸素燃焼器を設ける一方、前記低圧ガスタービンの出口蒸気を熱源として低圧タービンの出口に設けた熱交換器で給水を加熱して蒸気を発生させ、その発生蒸気の全量を高圧蒸気タービンに導入すると共に前記高圧蒸気タービンの出口蒸気を前記酸素燃焼器に導入して再加熱すると共に低圧ガスタービンに導入してこれを駆動し、該低圧ガスタービンの出口蒸気を下流側の前記熱交換器の熱源として利用する酸素燃焼CO回収タービンシステム。Equivalent combustion of fossil fuels such as natural gas and light oil and fuels (hereinafter referred to as biofuels) produced from biomass such as ethanol, fatty acid esters and glycerin and pure oxygen to generate a mixed gas consisting of water vapor and CO 2 The gas is introduced into a low-pressure gas turbine and driven, and after the temperature is lowered by a heat exchanger provided at the outlet of the low-pressure gas turbine, cooling is performed with seawater or the like, thereby recovering all the water vapor in the mixed gas. Oxygen combustion CO 2 recovery that separates the water and collects high-concentration CO 2 as the remaining gas, and supplies water again excluding water generated by the equivalent combustion of the fossil fuel, biofuel, and pure oxygen In the turbine system, a high pressure steam turbine and a low pressure gas turbine are provided, and fuel and pure oxygen are equivalently burned between the high pressure steam turbine and the low pressure gas turbine. An oxygen combustor that reheats the outlet steam of the high-pressure steam turbine, while generating the steam by heating the feed water with a heat exchanger provided at the outlet of the low-pressure turbine using the outlet steam of the low-pressure gas turbine as a heat source, The total amount of the generated steam is introduced into the high-pressure steam turbine, and the outlet steam of the high-pressure steam turbine is introduced into the oxycombustor and reheated and introduced into the low-pressure gas turbine to drive it. An oxyfuel combustion CO 2 recovery turbine system that uses outlet steam as a heat source of the heat exchanger on the downstream side. 前記の熱交換器を通過して低圧ガスタービンの出口蒸気を熱源として蒸発した蒸気を導入し、前記上流側の酸素燃焼器で燃料の燃焼熱により加熱された水蒸気とCOからなる混合ガスを熱源として過熱する過熱器を該酸素燃焼器の壁面および低圧ガスタービン第一段静翼内部に設置し、同時に酸素燃焼器の壁面および低圧ガスタービン第一段静翼を冷却することを特徴とする請求項1記載の酸素燃焼CO回収タービンシステム。Steam that has passed through the heat exchanger and is evaporated using the outlet steam of the low-pressure gas turbine as a heat source is introduced, and a mixed gas composed of steam and CO 2 heated by the combustion heat of the fuel in the upstream oxygen combustor A superheater that superheats as a heat source is installed inside the wall of the oxycombustor and the first stage stationary blades of the low pressure gas turbine, and at the same time, the wall of the oxycombustor and the first stage stationary blades of the low pressure gas turbine are cooled. The oxyfuel CO 2 recovery turbine system according to claim 1.
JP2008336216A 2008-12-24 2008-12-24 Oxygen burning co2 recovery turbine system Pending JP2010151112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336216A JP2010151112A (en) 2008-12-24 2008-12-24 Oxygen burning co2 recovery turbine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336216A JP2010151112A (en) 2008-12-24 2008-12-24 Oxygen burning co2 recovery turbine system

Publications (1)

Publication Number Publication Date
JP2010151112A true JP2010151112A (en) 2010-07-08

Family

ID=42570463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336216A Pending JP2010151112A (en) 2008-12-24 2008-12-24 Oxygen burning co2 recovery turbine system

Country Status (1)

Country Link
JP (1) JP2010151112A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402811A2 (en) 2010-07-01 2012-01-04 Sony Corporation Information processing apparatus, stage-undulation correcting method, program therefor
JP2012087759A (en) * 2010-10-22 2012-05-10 Toshiba Corp Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2402811A2 (en) 2010-07-01 2012-01-04 Sony Corporation Information processing apparatus, stage-undulation correcting method, program therefor
JP2012087759A (en) * 2010-10-22 2012-05-10 Toshiba Corp Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
US8726662B2 (en) 2010-10-22 2014-05-20 Kabushiki Kaisha Toshiba Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
US9416683B2 (en) 2010-10-22 2016-08-16 Kabushiki Kaisha Toshiba Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system

Similar Documents

Publication Publication Date Title
TWI564476B (en) Stoichiometric combustion with exhaust gas recirculation and direct contact cooler
TWI564475B (en) Low emission triple-cycle power generation systems and methods
US9702270B2 (en) Hybrid Rankine cycle
AU2011239263B2 (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
JP5592025B2 (en) Hybrid biomass process with reheat cycle
RU2012141539A (en) METHOD FOR ENERGY GENERATION BY OXYGEN BURNING OF LOW-CALORNY FUEL
AU2011239324B2 (en) Carbon dioxide recovery method and carbon-dioxide-recovery-type steam power generation system
US8631658B2 (en) Method and system for enhancing power output of renewable thermal cycle power plants
JP7178464B2 (en) Plant and flue gas treatment method
JP2008121668A (en) Power plant that utilizes gas turbine for power generation and process for lowering co2 emission
JP2009248081A (en) Method and apparatus for flue gas treatment
WO2013139884A2 (en) Combined cycle power plant
NO328975B1 (en) Gas power plant with CO2 purification
RU2524588C2 (en) Power plant running on organic fuel with carbon dioxide separator and method of its operation
JP3905967B2 (en) Power generation / hot water system
JP6243700B2 (en) Combined cycle power plant with absorption heat converter
RU2409746C2 (en) Steam-gas plant with steam turbine drive of compressor and regenerative gas turbine
JP2010151112A (en) Oxygen burning co2 recovery turbine system
US10641173B2 (en) Gas turbine combined cycle optimized for post-combustion CO2 capture
RU2273741C1 (en) Gas-steam plant
JP2744090B2 (en) Thermal power plant and thermal power generation method
KR101644237B1 (en) Combined cycle power generation system
KR20190051493A (en) Steam power generation system with two-stage boiler and boiler used therein
Verhaeghe Absorption-based carbon capture energy penalty reduction for micro gas turbine application: pre-assessment of the impact of appropriate amine solvent and process selection
JP2004150356A (en) Power generation plant