[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010038143A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2010038143A
JP2010038143A JP2008205787A JP2008205787A JP2010038143A JP 2010038143 A JP2010038143 A JP 2010038143A JP 2008205787 A JP2008205787 A JP 2008205787A JP 2008205787 A JP2008205787 A JP 2008205787A JP 2010038143 A JP2010038143 A JP 2010038143A
Authority
JP
Japan
Prior art keywords
fuel
pressure
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008205787A
Other languages
English (en)
Inventor
Kazuchika Tajima
一親 田島
Masahiko Teraoka
正彦 寺岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008205787A priority Critical patent/JP2010038143A/ja
Publication of JP2010038143A publication Critical patent/JP2010038143A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

【課題】切替弁の開閉により燃料噴射圧を切り替える燃圧切替手段を備えた内燃機関にあって切替弁の動作異常を検知することにより燃焼安定性や排気性状を向上した内燃機関の燃料供給装置を提供することにある。
【解決手段】内燃機関10は、デリバリパイプ内の設定燃圧を切替弁34を開状態にすることにより低燃圧状態にする一方、閉状態にすることで高燃圧状態にする。電子制御装置50は、設定燃圧を高燃圧状態とする指令信号を切替弁34に出力しているときに、そのときの実空燃比と目標空燃比との比に基づいて切替弁34の異常を診断する。そして、切替弁34に異常がある旨の判断がなされると、低燃圧状態における機関回転速度毎の最大燃料噴射量よりもその時々の目標燃料噴射量が大きいときには、スロットルバルブ15を駆動制御して吸入空気量を制限し、リーン状態の混合気の燃焼を抑制する。
【選択図】図1

Description

本発明は、燃料供給経路を切替弁にて切り替えることにより燃料噴射圧を切り替える内燃機関の制御装置に関する。
近年、内燃機関にあっては、ガソリン燃料よりも理論空燃比の小さなアルコールとガソリンとの混合燃料の使用や内燃機関のさらなる高出力化等の要望に応えるべく、燃料噴射量の適切な制御が要求されている。このような要求に対しては、内燃機関の運転状態に応じて燃料噴射量を増大させる必要があり、一般には燃料噴射弁が接続されたデリバリパイプに供給される燃料の圧力を変更することにより対応している。こうした燃料供給を可能にする装置としては、例えば特許文献1に示されるように、低圧燃料ポンプと高圧燃料ポンプとを備え、低圧燃料ポンプから送り出された低燃圧状態の燃料を高圧ポンプによって昇圧することにより高圧ポンプの稼動状態に応じた高燃圧状態の燃料を燃料噴射弁に供給する燃料供給装置が知られている。この燃料供給装置は、燃料噴射圧を検出する燃圧センサを備え、高圧ポンプから燃料噴射弁へ供給する燃料量をその燃圧センサの検出信号に基づいて調整して燃料を所望圧力の高燃圧状態にする。またこの他には、特許文献2に示されるように、燃料噴射圧が所定圧力以上になったときに余剰燃料を燃料タンクに還流するリターン通路として、高圧レギュレータが設けられた高圧リターン通路と低圧レギュレータが設けられた低圧リターン通路とを備え、これら2つのリターン通路における流通を切替弁によって切り替えることにより燃料噴射圧を内燃機関の運転状態に応じて複数段階に可変する燃料供給装置も知られている。そして、いずれの燃料供給装置においても燃料を高燃圧状態に保持することで燃料噴射弁の単位開弁期間における燃料噴射量を増大させることにより運転状態に応じた燃料噴射量を確保している。
特開2000−130232号公報 特開平5−59976号公報
ところで、燃料噴射圧を可変する燃料供給装置においては、燃料ポンプから吐出される低燃圧状態の燃料を上述する各種の構成により昇圧して高燃圧状態を生成するために、昇圧するための各種の構成に異常が発生する場合には、燃料を高燃圧状態に維持できなくなってしまう。このような場合であっても、低回転低負荷運転状態時のように空燃比フィードバック制御の実行中であれば、その時々の空燃比が理論空燃比となるように空燃比補正係数を算出し、その空燃比補正係数に基づいて燃料噴射量が調整されるため、燃料噴射量の過不足は自律的に修正されることになる。一方、高回転高負荷運転状態のように機関出力を確保したい状況にあっては、上述した空燃比フィードバック制御が実行されず、予めリッチに設定された目標空燃比となるように燃料噴射量が調整される、いわゆるオープン制御が実行されるために、燃料供給装置の異常により実際には低燃圧状態の燃料が供給されている場合であっても、燃料噴射弁の開弁時間が高燃圧状態の燃料に対応した時間になってしまう。この結果、吸入空気量に応じた燃料噴射量を確保し難いことはもとより、着火性の低下による失火によって未燃焼混合気が排気浄化装置に供給されて浄化触媒の過度な昇温による該浄化触媒の劣化という問題を招いてしまう。
この問題に対して特許文献1では、燃圧センサの検出信号等に基づいて燃料を高燃圧状態に維持できない判断がなされた場合に、高圧ポンプを停止させて燃料を低燃圧状態に保持するとともに燃料噴射量が回転速度毎の許容燃料噴射量以下となるように吸入空気量を制限することにより失火を抑制している。しかしながら、こうした燃料供給制御にあって
は、高燃圧状態を維持できるか否かを判断する上において燃圧センサが必要とされるために、燃圧センサを搭載していない燃料供給装置へ適用できない、あるいは燃圧センサを別途設けなければならなくなる。特に特許文献2のような切替弁を用いた燃料供給装置においては、切替弁によって燃料供給経路を切り替えるだけで燃料を所望燃圧状態とすることができる利点から燃圧センサを搭載していない例が多い。それゆえ、こうした燃圧センサを搭載していない燃料供給装置においては、高燃圧状態を維持できるか否か、言い換えれば切替弁に異常が発生したことを検知する術がないために、結局のところ上述するように燃焼安定性の低下やこれに伴う排気性状の低下などを招いてしまう。
本発明は、上記実状を鑑みてなされたものであり、その目的は、切替弁の開閉により燃料噴射圧を切り替える燃圧切替手段を備えた内燃機関にあって切替弁の動作異常を検知することにより燃焼安定性や排気性状を向上した内燃機関の燃料供給装置を提供することにある。
以下、上記目的を達成するための手段及びその作用効果について記載する。
請求項1に記載の発明は、内燃機関の燃料タンクに貯留された燃料を燃料噴射機構へ圧送し、前記燃料タンクと前記燃料噴射機構との間における燃料の流通経路を変更可能にした切替弁により前記燃料噴射機構内の燃圧を第1の圧力と前記第1の圧力よりも高い第2の圧力とに切替える燃圧切替手段と、前記内燃機関への吸入空気量を制御する吸入空気量制御手段とを備え、前記内燃機関における空燃比が目標空燃比になるように、前記内燃機関の運転状態に基づいて前記燃料噴射機構内の燃圧を選択して該選択した燃圧に対応する噴射期間により前記燃料噴射機構の燃料噴射量を制御する内燃機関の制御装置であって、前記第2の圧力を選択している際に、前記第2の圧力への切替が不能である場合には前記内燃機関への吸入空気量を制限することを要旨とする。
こうした構成にあって燃圧切替手段により第2の圧力が選択された場合、燃料を噴射するための噴射期間は、燃料噴射機構における燃圧が第2の圧力であることを前提にして規定される。こうした状態で切替弁に異常が発生して第2の圧力への切替えが不能になった場合には、第1の圧力の下にある燃料が第2の圧力に対応する噴射期間で噴射されてしまう。その結果、燃料噴射圧の不足により単位噴射期間の燃料噴射量が減少してしまい、所望の燃料噴射量を確保できなくなり、内燃機関における混合気の空燃比が目標空燃比に対してリーンな状態となる。この発明によれば、第2の圧力への切替が不能である場合には、吸入空気量が制限されることから、混合気のリーンな状態を抑制することができ、ひいては燃焼安定性や排気性状を向上することができる。
請求項2に記載の発明は、前記第2の圧力を選択している際に、前記内燃機関における空燃比と前記目標空燃比との乖離度合が規定値以上であることを条件に前記第2圧力への切替が不能であることを判断することを要旨とする。
この発明によれば、第2の圧力への切替が不能であることの判断、言い換えれば切替弁に動作異常がある旨の判断が、内燃機関における空燃比と目標空燃比との乖離度合いに基づいてなされることから、内燃機関における混合気のリーンな状態により上記動作異常を適切に判断することができる。それゆえ、こうした乖離度合に基づく判断により、燃圧センサを用いることなく切替弁の動作異常を検知することができる。そして切替弁に異常があると判断された場合には吸入空気量が制限されることから、混合気のリーンな状態を即座に抑制することができ、ひいては燃焼安定性や排気性状を向上することができる。
請求項3に記載の発明は、前記第2の圧力への切替が不能である旨を判断した場合にあって、前記燃料噴射機構の燃料噴射量が前記第1の圧力にて噴射可能な最大の燃料噴射量
である最大燃料噴射量よりも大きくなるときに前記内燃機関への吸入空気量を制限することを要旨とする。
この発明によれば、燃料噴射機構における燃料噴射量が第1の圧力における最大燃料噴射量を超えないように吸入空気量の制限が実行される。それゆえ第2の圧力への切替が不能である場合であっても、要求される燃料噴射量が第1の圧力にて噴射可能なものであれば吸入空気量に関わる制限がなされない。すなわち燃料噴射機構の燃料噴射量が最大燃料噴射量よりも大きくなるときにだけ吸入空気量が制限されるために、切替が不能である期間の全体で吸入空気量を制限する場合に比べて、内燃機関への要求負荷に応じた吸入空気量を実現することができ、ひいては同要求負荷に応じた機関出力を実現することができる。
請求項4に記載の発明は、前記乖離度合が前記内燃機関における空燃比と前記目標空燃比との比であることを要旨とする。
第2の圧力への切替が不能である場合には、内燃機関における空燃比と目標空燃比との違いが、燃料噴射機構における実際の燃料噴射量とその目標値との違いにより支配される。こうした構成によれば、上述する切替不能の判断基準である乖離度合が内燃機関における空燃比と目標空燃比との比であることから、内燃機関における空燃比と目標空燃比との差分値などを乖離度合とする場合に比べて、乖離度合に対する吸入空気量の影響を軽減させることができる。そして切替不能の判断基準である乖離度合が実際の燃料噴射量とその目標値との違いの指標として精度良く機能するため、ひいては切替弁の異常を精度良く判断することができる。
請求項5に記載の発明は、前記燃圧切替手段が、前記燃料タンクと前記燃料噴射機構とを接続するメイン通路と、前記メイン通路から分岐して形成されて前記メイン通路内の燃料を前記燃料タンクに戻す低圧リターン通路と、前記低圧リターン通路に設けられて前記低圧リターン通路内の燃圧が前記第1の圧力以上のときに開弁して前記燃料タンク側に燃料を排出する低圧レギュレータと、前記燃料噴射機構に接続されて前記燃料噴射機構内の燃料を前記燃料タンクに戻す高圧リターン通路と、前記高圧リターン通路に設けられて前記高圧リターン通路内の燃圧が前記第2の圧力以上のときに開弁して前記燃料タンク側に燃料を排出する高圧レギュレータとを備え、前記切替弁は、低圧リターン通路の開放と閉塞とを切り替えることを要旨とする。
こうした構成にあっては、第2の圧力を選択すべく閉弁指令が切替弁に出力される場合、燃料を噴射するための噴射期間は、燃料噴射機構における燃圧が第2の圧力であることを前提にして規定される。こうした状態で切替弁が閉弁不能になった場合には、第1の圧力の下にある燃料が第2の圧力に対応する噴射期間で噴射されてしまう。その結果、燃料噴射圧の不足により単位噴射期間の燃料噴射量が減少してしまい、所望の燃料噴射量を確保できなくなり、内燃機関における混合気の空燃比が目標空燃比に対してリーンな状態となる。
この発明によれば、切替弁が閉弁不能である旨の判断が、内燃機関における空燃比と目標空燃比との乖離度合いに基づいてなされることから、内燃機関における混合気のリーンな状態により閉弁不能であることを適切に判断することができる。そして切替弁に異常あると判断された場合には吸入空気量が制限されることから、混合気のリーンな状態を抑制することができ、ひいては燃焼安定性や排気性状を向上することができる。
以下、本発明にかかる内燃機関の制御装置をフレキシブルフューエルビークル(FFV:Flexible Fuel Vehicle)に搭載される内燃機関の制御装置に具
体化した一実施形態について図1〜図5を参照して説明する。なお、FFVとは、アルコール燃料のみ(アルコール濃度100%)や、ガソリン燃料(アルコール濃度0%)のみ、或いはアルコールとガソリンとを任意に混合させた混合燃料を使用可能な車両のことをいう。
図1は、本実施形態にかかる内燃機関10とその周辺構成を示している。同図に示される内燃機関10は、アルコールとガソリンとを任意に混合させた混合燃料を使用することのできる機関であって複数の気筒11を有し、この気筒11内にはピストン12が往復動可能にそれぞれ収容されている。そして、ピストン12の頂面と気筒11の内周面とによって燃焼室13が区画形成されている。
この燃焼室13に空気を供給する吸気通路14には、同吸気通路14を流通する吸入空気量GAの流量を調整する吸入空気量制御手段としてのスロットルバルブ15と、同スロットルバルブ15を開閉駆動するスロットルバルブアクチュエータ16とが設けられている。さらに、吸気通路14には、上記各気筒11に対応して吸気ポート14aが形成されるとともに、この吸気ポート14a内に燃料を噴射供給する燃料噴射弁17がそれぞれ設けられている。この燃料噴射弁17から噴射される燃料は、吸気通路14を流通する空気と混合されて燃焼室13に供給される。こうして燃焼室13に供給された混合気は点火プラグ18により点火されて燃焼して燃焼後の排気が排気通路19に排出される。排気通路19には、同排気通路19を流通する排気を浄化するための排気浄化触媒19aが設けられている。
燃料タンク20には、アルコールとガソリンとが任意に混合された混合燃料が貯留されるとともに、同燃料タンク20内には、燃料ポンプ21が設けられている。燃料ポンプは、電動式の燃料ポンプであって、バッテリ22から給電される電圧により稼動して機関運転中において継続的に燃料を吐出する。この燃料ポンプ21は、燃料に含まれる細かな異物を除去するフィルタ23を介してメイン通路30に接続されている。
メイン通路30には、同メイン通路30から分岐して形成されるとともに同メイン通路30内における余剰燃料を燃料タンク20に戻すための低圧リターン通路31と、メイン通路30からの燃料を一時的に貯留するデリバリパイプ32とが接続されている。
低圧リターン通路31には、同低圧リターン通路31内の燃料圧力が第1の圧力Pl(例えば284kPa)以上のときに開弁して燃料タンク20側に燃料を排出する低圧レギュレータ33が取り付けられている。また低圧リターン通路31には、この低圧リターン通路31の開放と閉塞とを内燃機関10の運転状態に応じて切り替える切替弁34が設けられている。この切替弁34は非作動時には開弁して電圧が印加されることにより閉弁する常開ソレノイドバルブであって、この切替弁34が閉弁されることにより低圧リターン通路31が閉塞される。
デリバリパイプ32には、上記各吸気ポート14aに接続されてデリバリパイプ32内の燃料を噴射する燃料噴射弁17と、デリバリパイプ32内の余剰燃料を燃料タンク20に戻す高圧リターン通路35とが接続されている。この燃料噴射弁17とデリバリパイプ32とにより燃料噴射機構が構成されている。高圧リターン通路35には、同高圧リターン通路35内の燃料圧力が前記第1の圧力Plよりも高い第2の圧力Ph(例えば400kPa)以上のときに開弁して燃料タンク20側に燃料を排出する高圧レギュレータ36が取り付けられている。
こうした構成により、切替弁34による低圧リターン通路31の開放と閉塞との切替を通じて、デリバリパイプ32内の燃料圧力が切り替えられる。具体的には、切替弁34に
より低圧リターン通路31が閉塞されて高圧レギュレータ36による調圧が行われることにより、高圧リターン通路35における高圧レギュレータ36の上流側の部分であるデリバリパイプ32内及びメイン通路30内の燃料圧力が第2の圧力Ph(高圧側)に調圧されて、デリバリパイプ32内の燃料が高燃圧状態に保持される。一方、切替弁34により低圧リターン通路31が開放されて低圧レギュレータ33による調圧が行われることにより、低圧リターン通路31における低圧レギュレータ33の上流側の部分であるメイン通路30内及びデリバリパイプ32内の燃料圧力が第1の圧力Pl(低圧側)に調圧されて、デリバリパイプ32内の燃料が低燃圧状態に保持される。
ちなみに、開弁期間が同じである場合には、高燃圧状態(400kPa)における燃料噴射量が低燃圧状態(284kPa)における燃料噴射量に比べて約18%だけ増量されるようになっている。言い換えれば、高燃圧状態における単位開弁期間当たりの燃料噴射量が低燃圧状態における単位期間当たりの燃料噴射量に比べて約18%だけ増量されるように、前記第2の圧力Phと前記第1の圧力Plとが設定されている。
この内燃機関には、その機関運転状態を含めて種々の情報を検出するための各種センサが設けられている。例えばスロットルバルブ15にはそのスロットル開度TAを検出するスロットル開度センサ41が取り付けられており、クランクシャフト(図示略)の近傍にはその回転速度、すなわち機関回転速度NEを検出するための機関回転速度センサ42が設けられている。また、アクセルペダル(図示略)の近傍には運転者によるアクセルペダルの踏み込み量であるアクセル操作量ACCPを検出するアクセルポジションセンサ43が設けられており、吸気通路14には吸入空気量GAを検出する吸入空気量センサ44が設けられている。さらに、燃料タンク20にはその内部の燃料量FLを検出する燃料量センサ45が設けられている。
また、排気通路19における排気浄化触媒19aの上流側の部分には、燃焼室13で燃焼された混合気の空燃比AFを把握するために排気中の酸素濃度及び未燃燃料濃度を検知する空燃比センサ46が取り付けられており、空燃比センサ46は燃焼に供された混合気の空燃比AFを連続値として検出する。ちなみに、デリバリパイプ32内の燃料のエタノール濃度は常に一定ではなく、給油操作等によってその燃料性状が変化することから、本実施形態では、この空燃比センサ46の検出信号から、デリバリパイプ32内の燃料性状、すなわちエタノール濃度(アルコール濃度)を算出するようにしている。なお、これら空燃比センサ46は、その素子温度が所定の活性化温度未満であるときには高い精度をもって酸素濃度を検出することができない。このため、空燃比センサ46には、排気温度や外気温が低いときに素子を加熱して素子温度を活性化温度にまで上昇させるためのヒータが内蔵されている。
以上の各種センサ41〜46の検出信号はいずれも内燃機関の電子制御装置50に取り込まれる。この電子制御装置50は、各種制御プログラムや演算用マップ、各種制御の実行に際して算出されるデータ等を記憶保持する記憶部を備えている。電子制御装置50は、これらセンサ41〜46を含め各種センサの検出信号に基づいて燃料噴射弁17や、切替弁34、スロットルバルブ15等を駆動することにより、燃料噴射量や燃料噴射圧、燃料の循環態様、吸入空気量等々、燃料噴射にかかる各種制御を実行する。
次に、この電子制御装置50により実行される燃料噴射制御について図2〜図5を参照して説明する。電子制御装置50による燃料噴射制御では、まず、内燃機関の運転状態に基づいて燃料噴射量が算出される。燃料噴射量の算出に際しては、ガソリン燃料を使用する条件の下で理論空燃比を実現すべく構築されたマップ、例えば吸入空気量GA及び機関回転速度NEに対して基本燃料噴射量TAUBが関連付けられたマップに基づいて燃料噴射弁17の基本燃料噴射量TAUBが算出される。次に、以下の式(1)に従って、空燃
比補正係数KAF及び濃度学習値KALCを基本燃料噴射量TAUBに乗ずることにより目標燃料噴射量TAUが算出される。
TAU ← TAUB×KAF×KALC … (1)
上記式(1)における空燃比補正係数KAFは、空燃比AFをより理論空燃比に近づけるために内燃機関10の運転状態に基づいて目標燃料噴射量TAUを補正する係数である。例えば低負荷運転時などに実行される空燃比フィードバック制御時には、空燃比AFと理論空燃比との乖離を打ち消すように算出される空燃比フィードバック補正値がこの空燃比補正係数KAFとして適用される。一方、高負荷運転時などに機関出力を確保するために実行されるオープン制御時には、理論空燃比よりもリッチな目標空燃比AFTを実現すべく、目標燃料噴射量TAUを増量するための補正値(>1.0)がこの空燃比補正係数KAFとして適用される。なお、オープン制御時における空燃比補正係数KAFは、アクセル操作量ACCPに基づく要求負荷KL及び機関回転速度NEに対して空燃比補正係数KAFを関連付けたマップを利用することにより算出される。ちなみに、こうしたオープン制御における目標空燃比AFTは、目標空燃比AFT=吸入空気量GA/目標燃料噴射量TAU=理論空燃比/空燃比補正係数KAFで表すことができる。
上記式(1)における濃度学習値KALCは、上記空燃比フィードバック補正値を利用して実行されるアルコール濃度学習制御により得られる学習値である。内燃機関10においてはガソリン燃料よりも理論空燃比が低い燃料である前記混合燃料も使用するため、ガソリンを理論空燃比のもとで燃焼させた燃焼性状と前記混合燃料の燃焼性状とが近くなるように、上記混合燃料を使用する場合には該燃料中のアルコール濃度に応じて前記目標燃料噴射量TAUを増量補正する必要がある。この濃度学習値KALCは、混合燃料中のアルコール濃度に応じて得られる空燃比AFと目標空燃比AFTとの間の定常的な乖離を打ち消すように上記アルコール濃度学習制御により算出される学習値であり、アルコール濃度に応じて前記目標燃料噴射量TAUを増量補正するための係数である。
ここで、内燃機関10において燃料噴射弁17から噴射される燃料噴射量は、燃料噴射弁17の開弁期間によって制御されている。そのため、高負荷高回転運転時のように目標燃料噴射量TAUが高く、かつ機関回転速度NEが高い運転状態である場合には、短い開弁期間で大量の燃料を噴射する必要が生じる。
そこで、上述するように目標燃料噴射量TAUが算出されると、電子制御装置50による燃料噴射制御では、大量の燃料を噴射する必要がある場合にデリバリパイプ32内の燃料の圧力を昇圧すべく、まずは内燃機関10の運転状態に応じてデリバリパイプ32内の燃料の燃圧状態を切り替える燃圧切替制御が実行される。この燃圧切替制御は、デリバリパイプ32内の燃料を低燃圧状態あるいは高燃圧状態に切り替える上記切替弁34の開閉制御により実行される。すなわち電子制御装置50では、目標燃料噴射量TAU及び機関回転速度NEに対して各燃圧状態を関連付けたマップ、いわゆる燃圧切替マップに、上記目標燃料噴射量TAU及び機関回転速度NEが適用されて燃圧状態が選択される。そして、低燃圧状態が選択される場合には、燃圧の選択状態を示すフラグである高燃圧フラグがオフ(OFF)にセットされて、切替弁34を開状態にするための指令信号が同切替弁34に出力される。一方、高燃圧状態が選択される場合には、上記高燃圧フラグがオン(ON)にセットされて、切替弁34を閉状態にするための指令信号が同切替弁34に出力される。
また、上述するように目標燃料噴射量TAUが算出されると、電子制御装置50による燃料噴射制御では、クランク角に応じて機関回転速度センサ42から出力されるパルスが利用されて、機関回転速度NEに応じた燃料噴射時期が算出される。こうした燃料噴射時期の算出としては、例えば燃料噴射時期が上死点等の基準クランク角に対する進角値とし
て設定されており、最適燃焼を得るための燃料噴射時期を吸入空気量GA及び機関回転速度NEに対応付けたマップ、いわゆる噴射時期マップが利用される。そして、吸入空気量GA及び機関回転速度NEがこの噴射時期マップに適用されることにより燃料噴射時期が算出される。燃料噴射時期が算出されると、電子制御装置50が実行する燃料噴射制御では、上記高燃圧フラグの状態(ONあるいはOFF)に基づいて、すなわちその時々の燃圧状態に基づいて、噴射期間である燃料噴射弁17の開弁期間が目標燃料噴射量TAUに応じて算出される。そして、その算出した開弁期間に応じて燃料噴射弁17を駆動制御することにより、内燃機関10の運転状態に応じた適切な燃料噴射制御が実行される。
ところで、上述する切替弁34においては、その指令信号の伝送線路おける断線や機械的な駆動部位への異物の噛み込みなどといった各種の動作異常が発生すると、燃料経路を切り替えられなくなるために、所望する燃圧状態を実現できなくなってしまう。このような切替弁34の動作異常が上記空燃比フィードバック制御の実行時に発生している場合であれば、その時々の空燃比AFが理論空燃比となるように空燃比フィードバック補正値を用いて燃料噴射量が調整されるため、高燃圧状態への切替が無い場合であっても燃料噴射量が自律的に修正されるようになる。一方、このような切替弁34の動作異常が上記オープン制御の実行時に発生している場合にあっては、切替弁34が常時開状態となってしまうため、高燃圧状態の開弁期間によって燃料噴射弁17を駆動制御しても、実際には低燃圧状態の下で燃料噴射が実行されてしまう。そのため、燃料噴射圧の不足により吸入空気量GAに応じた目標燃料噴射量TAUを確保し難いばかりか、空燃比AFが過度なリーンとなる場合には、着火性の低下による失火によって未燃焼混合気が排気浄化装置に供給されて排気浄化触媒19aの過度な昇温による該排気浄化触媒19aの劣化が進んでしまう。そこで、本実施形態では、切替弁34が常時開状態となる異常を診断すべく、切替弁34を閉状態にする指令信号が出力されている状態における空燃比を利用した切替弁診断処理が実行される。
次に、上述した切替弁診断処理について、図2を参照して説明する。図2は、切替弁診断処理の処理手順を示すフローチャートである。このフローチャートに示す一連の処理は、電子制御装置50によって所定の周期をもって繰り返し実行される。
図2に示されるように、この一連の処理ではまず、電子制御装置50による燃圧切替制御によって、切替弁34を閉状態にする指令信号が出力されている状態、すなわち高燃圧フラグがONであるか否かの判断がなされる(ステップS101)。そしてここで、高燃圧フラグがONである判断がなされると(ステップS101:YES)、続いて空燃比センサ46からの検出信号に基づく空燃比AFと上記オープン制御時における内燃機関10の運転状態に基づいて算出される空燃比補正係数KAFとを取得し(ステップS102)、次のステップS103の処理に移行する。
ステップS103の処理では、上記取得した空燃比AFと空燃比補正係数KAFとが以下の式(2)に適用されて切替弁34の動作異常の有無を診断するための判別値が算出されて、その判別値が所定の規定値以上であるか否かの判断がなされる。
判別値=AF×KAF/14.6=AF/(14.6/KAF) … (2)
式(2)における「14.6」は本実施形態における理論空燃比を示し、「14.6/KAF」の項は上述したようにオープン制御時の目標空燃比AFTを示す。こうした式(2)により得られる判別値は、目標空燃比AFTに対する空燃比AFの比であるものの、空燃比AFに関わる吸入空気量GAと目標空燃比AFTに関わる吸入空気量GAとの比が略一定であるがために、実際の燃料噴射量と目標燃料噴射量TAUとの比を示す指標として利用することができる。それゆえ、切替弁34が正常である場合、例えば実際の燃料噴射量と目標燃料噴射量TAUとが略等しい場合における判別値を上記規定値に適用するこ
とにより切替弁34における動作異常の有無が診断可能になる。
例えば、切替弁34に何ら動作異常がない場合には、切替弁34を閉状態にする指令信号に応答して切替弁34が閉弁されて、高燃圧状態の開弁期間によって高燃圧状態の燃料が噴射される。それゆえ、空燃比AFと目標空燃比AFTとが略等しい値となり、これに基づいて切替弁34に動作異常が無い旨を判断することができる。
一方、切替弁34に常時開状態となる異常が発生している場合には、燃料が低燃圧状態であるにも関わらず、高燃圧状態に応じた開弁期間によってその燃料が噴射される。そのため、実際の燃料噴射量が目標燃料噴射量TAUよりも少なくなり、空燃比AFがリーンを示す値、すなわち目標空燃比AFTよりも大きな値となる。詳しくは、上述したように単位開弁期間における高燃圧状態時の燃料噴射量が低燃圧状態時の燃料噴射量に比べて約18%だけ増量されているために、切替弁34に動作異常が発生している場合には、目標燃料噴射量に対して実燃料噴射量が上記約18%の分だけ減少し、上述する判別値がその分だけ増大するようになる。それゆえ、上記判断値が前記規定値以上になることに基づいて切替弁34に動作異常がある旨を判断することができる。
そして、演算式(2)による判別値が上記規定値以上であったと判断された場合には(ステップS103:YES)、切替弁34に常時開状態となる異常が発生しているとの判断がなされて切替弁34の動作異常を示すフラグである異常フラグをONにセットし(ステップS105)、一連の処理を終了する。
一方、高燃圧フラグがOFFに設定されている場合(ステップS101:NO)、上記判別値が規定値以下であった場合(ステップS103:NO)には、切替弁34に動作異常が発生していないものとみなして異常フラグをOFFにセットし(ステップS105)、一連の処理を終了する。
ここで、上述した切替弁診断制御によって切替弁34の異常フラグがOFFにセットされた場合には、スロットルバルブ15のスロットル開度に関わる通常制御が電子制御装置50により実行される。電子制御装置50が実行するスロットルバルブ15の通常制御では、アクセル操作量ACCPに基づく要求負荷KLや機関回転速度NEなどに基づいて内燃機関10の運転状態が把握され、その運転状態に基づいた目標スロットル開度TATが求められる。そして、スロットル開度センサ41の検出信号に基づいて実際のスロットル開度TAが求められて、スロットル開度TAが上記目標スロットル開度TATと一致するようにスロットルバルブアクチュエータ16が制御される。
一方、上述した切替弁診断制御によって切替弁34の異常フラグがONにセットされた場合には、内燃機関10は、デリバリパイプ32内の燃料を低燃圧状態にしか保持することができない。そのため、吸入空気量GA及び機関回転速度NEに基づいて算出された目標燃料噴射量TAUが、その時々の機関回転速度NEにおける低燃圧状態での噴射可能な最大燃料噴射量T720を超えてしまう場合がある。そのような場合には、空燃比がリーンな状態で燃焼が行われるため、その排気により排気浄化触媒19aが過度に昇温されて同排気浄化触媒19aの劣化が促進されてしまう虞がある。
そこで、本実施形態では、切替弁34の異常フラグがONである場合であって、算出された目標燃料噴射量TAUが最大燃料噴射量T720を超えると判断される場合には、燃焼安定性を確保して空燃比がリーンになることを回避するための吸気量制限制御が実行される。本実施形態では、この吸気量制限制御は、スロットルバルブ15のスロットル開度TAを制御することにより実施される。
次に、上記吸気量制限制御の実行手順を図3に従って説明する。図3は、本実施形態における吸気量制限制御の実行手順を示すフローチャートである。このフローチャートに示す一連の処理は、上述する切替弁診断処理の後に継続して実行されるものであり、上記切替弁診断処理と同じく電子制御装置50によって所定の周期をもって繰り返し実行される。
この一連の処理ではまず、切替弁34に関わる異常フラグの状態がONであるかOFFであるかの判断がなされる(ステップS201)。異常フラグがONであると判断されると、続いて要求負荷KL及び機関回転速度NEが取得されて(ステップS202)、低燃圧状態の燃料を用いて噴射可能な最大の燃料噴射量である最大燃料噴射量T720が算出されるとともに、要求負荷KLに応じた目標スロットル開度TATが設定されて、その時の吸入空気量GAと機関回転速度NEとに基づいて目標燃料噴射量TAUが算出される(ステップS203)。そして、算出された目標燃料噴射量TAUと最大燃料噴射量T720とが比較されて目標燃料噴射量TAUが最大燃料噴射量T720を上回るか否かの判断がなされる(ステップS204)。
なお、最大燃料噴射量T720とは、機関回転速度NEごとに規定される燃料噴射弁17の最大の開弁期間に前記第1の圧力Plの燃料を噴射し続けた場合に得られる燃料噴射量であり、例えば図4に示すような機関回転速度NEと上記最大燃料噴射量T720とを関連付けたマップに対して機関回転速度NEを適用することにより算出される。ちなみに、機関回転速度NEが高くなるほど燃料噴射弁17の最大開弁時間が短くなることから、この最大燃料噴射量T720は、図4に示されるように、機関回転速度NEが高くなるほど減少するように設定される。
そして目標燃料噴射量TAUが最大燃料噴射量T720よりも大きいと判断される場合には(ステップS204:YES)、上述する燃料噴射制御において目標燃料噴射量TAUが最大燃料噴射量T720よりも大きくなることを回避すべく、スロットルバルブ15の目標スロットル開度TATを制限して吸入空気量GAを制限する。例えば電子制御装置50は、図5に示されるように、上記要件を満足する目標スロットル開度TATの上限である上限スロットル開度TALと機関回転速度NEとを関連付けたマップに機関回転速度NEを適用することにより上限スロットル開度TALを算出し、スロットルバルブ15の目標スロットル開度TATに上記上限スロットル開度TALを設定する。ちなみに、機関回転速度NEが大きくなるほど最大燃料噴射量T720が減少することから、上限スロットル開度TALは、図5に示されるように、機関回転速度NEが大きくなるほどスロットル開度が閉じる方向に設定される。
そして、スロットル開度TAが上記目標スロットル開度TATと一致するようにスロットルバルブアクチュエータ16が制御されることにより、スロットル開度TAが上限スロットル開度TALに制限される(ステップS205)。こうしたスロットルバルブ15の開度の制限により吸入空気量GAが制限されるため、上述する燃料噴射制御においては目標燃料噴射量TAUが最大燃料噴射量T720よりも大きくなることを回避できる。それゆえ、切替弁34が常時開状態となる異常が発生して高燃圧状態を実現できない場合であっても、空燃比がリーンな状態での燃焼を回避することができる。
以上説明したように、本実施形態における内燃機関の制御装置によれば、以下のような効果を得ることができる。
(1)切替弁34を閉状態にする指令信号が同切替弁34に出力されて高燃圧フラグがONである場合に、目標空燃比AFTと空燃比AFとの比を示す判別値を算出した。これによれば、切替弁34に常時開状態となる異常が発生している場合に、低燃圧状態の下で高燃圧状態における開弁期間で燃料が噴射されることから、空燃比AFがリーンを示す値
となり判別値が大きくなる。また、単位開弁期間における高燃圧状態時の燃料噴射量は、低燃圧状態時の燃料噴射量に比べて約18%だけ増量されるため、切替弁34が常時開状態となっている場合の目標燃料噴射量と実燃料噴射量との比は、低燃圧状態と高燃圧状態とにおける単位開弁期間あたりの燃料噴射量の比に基づいた値、すなわち規定値以上の値となる。それゆえ判別値が規定値以上となることにより、燃圧センサを用いることなく切替弁34が常時開状態となっている異常を確実に検出できる。
(2)切替弁34に常時開状態となる異常が発生している場合には、空燃比AFと目標空燃比AFTとの違いが実際の燃料噴射量と目標燃料噴射量TAUとの違いにより支配される。上述する構成であれば判別値が目標空燃比AFTと空燃比AFとの比で規定されるために、空燃比AFと目標空燃比AFTとの差分値などを判別値とする場合に比べて、判別値に対する吸入空気量GAの影響を軽減させることができる。こうした判別値であれば実際の燃料噴射量と目標燃料噴射量TAUとの違いの指標として精度良く機能するために、切替弁34の動作異常を精度良く判断することができる。
(3)また、切替弁34の動作異常を検知した場合にあって、要求負荷KLに基づき算出された目標燃料噴射量TAUが機関回転速度NE毎に設定された低燃圧状態における最大燃料噴射量T720よりも大きい場合には、スロットルバルブ15を駆動制御して吸入空気量GAを制限した。これにより、スロットルバルブ15を用いることで容易に吸入空気量GAの制限を実行できるとともに、燃料噴射量の減少に起因する混合気がリーンな状態での燃焼が回避されて、排気により排気浄化触媒19aの過度な昇温が抑制することができ、ひいては同排気浄化触媒19aの劣化を抑制することができる。
尚、上記実施形態は以下のように変更してもよい。
・上記実施形態では、内燃機関の吸気ポート内に燃料を噴射するポート噴射式の内燃機関を例にして説明したが、燃料噴射弁が接続されたデリバリパイプ内の燃料の燃圧状態を切替弁にて切り替える構成の内燃機関であれば、気筒内に直接燃料を噴射する筒内噴射式の内燃機関であっても上記効果と同様の効果もしくはそれに準ずる効果を得ることができる。
・上記実施形態では、吸気量制御手段であるスロットルバルブ15のスロットル開度TAを調整することにより吸入空気量GAを制限した。これに限らず、吸入空気量GAを制限する方法としては、例えば吸気管長を可変にした可変吸気システムや吸気バルブの開弁位相や作用角を可変にした可変バルブタイミングシステム、さらにはこれらとスロットルバルブとの組み合わせ等を吸気量制御手段として利用して吸入空気量GAを制限することもでき、こうした構成によれば吸入空気量GAを一層精度良く制限することもできる。
・上記実施形態においては、切替弁34が常時開状態であって高燃圧フラグがONであるときには、高燃圧状態に基づく短い開弁期間に低燃圧状態の燃料が噴射されることから、空燃比AFが常にリーンを示す値となる。そこで、切替弁34の異常を診断する上では、切替弁34が異常であるときの空燃比AF(リーンを示す値)を閾値として設けて、高燃圧フラグがONであることを条件として、空燃比AFがその閾値以上であるか否かを判断するようにしてもよい。あるいは、切替弁34が異常であるときの空燃比AF(リーンを示す値)と目標空燃比AFTとの差分を閾値として設けて、高燃圧フラグがONであることを条件として、空燃比AFと目標空燃比AFTとの差分がその閾値以上であるか否かを判断するようにしてもよい。すなわち、上記実施形態においては空燃比AFと目標空燃比AFTとの比を判別値として利用したが、切替弁34における異常の有無を診断する上では、空燃比AFと目標空燃比AFTとの差分を判別値として利用することもできる。
・上記各実施形態では、設定燃圧FPを第2の圧力Phと第1の圧力Plとの2段階に
切り替える例を示したが、こうした設定燃圧FPの段階については、2段階に限られず、さらに多くの段階に切り替える燃圧切替手段を備えていてもよい。また、燃圧切替手段における切替弁34等の設置箇所等についても、上述した例に限らず図6〜図8に示される構成を採用してもよい。
図6においては、上記第2の圧力Ph以上で開弁する高圧レギュレータ142を有した高圧リターン通路141がメイン通路120から分岐して燃料タンク20へ接続され、上記第1の圧力Pl以上で開弁する低圧レギュレータ144を有した低圧リターン通路143がデリバリパイプ32から燃料タンク20へ接続される。そして低圧リターン通路143の開放と閉塞とを機関運転状態に応じて切り替える切替弁140が低圧リターン通路143に設けられる。
図7においては、上記第2の圧力Ph以上で開弁する高圧レギュレータ242を有した高圧リターン通路241がメイン通路120から分岐して燃料タンク20へ接続され、上記第1の圧力Pl以上で開弁する低圧レギュレータ244を有した低圧リターン通路243がメイン通路120から分岐して燃料タンク20へ接続される。そして低圧リターン通路243の開放と閉塞とを機関運転状態に応じて切り替える切替弁240が低圧リターン通路243に設けられる。
これらの構成であっても、切替弁140,240によって低圧リターン通路143,243が閉塞されると、高圧レギュレータ142、242によりデリバリパイプ32内の燃料圧力が調圧されて相対的に高い設定燃圧FPである第2の圧力Phに保持される。また、切替弁140、240によって低圧リターン通路143,243が開放されると、低圧レギュレータ144、244によりデリバリパイプ32内の燃料圧力が調圧されて相対的に低い設定燃圧FPである第1の圧力Plに保持される。それゆえ、上記効果と同様の効果もしくはそれに準ずる効果を得ることができる。
図8においては、上記第2の圧力Ph以上で開弁する高圧レギュレータ342を有した高圧リターン通路341がデリバリパイプ32から燃料タンク20へ接続され、上記第1の圧力Pl以上で開弁する低圧レギュレータ344を有した低圧リターン通路343がメイン通路120から分岐して燃料タンク20へ接続される。さらに第2の圧力Phと第1の圧力Plとの間の第3の圧力Pm以上で開弁する中圧レギュレータ346を有した中圧リターン通路345がメイン通路120から分岐して燃料タンク20へ接続される。そして低圧リターン通路343の開放と閉塞と切り替える第1切替弁340aと、中圧リターン通路345の開放と閉塞とを切り替える第2切替弁340bとが低圧リターン通路343と中圧リターン通路345とに設けられる。
このような構成によれば、第1切替弁340a及び第2切替弁340bを機関運転状態に応じて切り替えることにより、第2の圧力Ph,第1の圧力Pl,第3の圧力Pmの3段階に設定燃圧FPを切り替えることができる。そして第3の圧力Pmを設定燃圧FPとする機関運転中においては、第2の圧力Phに対応する燃圧状態を低燃圧状態、第3の圧力Pmに対応する燃圧状態を高燃圧状態と規定することにより第1切替弁340aの異常を診断できる。また、第3の圧力Pmを設定燃圧FPとする機関運転中においては、第3の圧力Pmに対応する燃圧状態を低燃圧状態、第1の圧力Plに対応する燃圧状態を高燃圧状態と規定することにより第2切替弁340bの異常を診断できる。そして、異常である旨が判断された切替弁に応じて吸入空気量GAの制限を実施することにより燃焼安定性や排気性状を向上することができる。
本発明を具体化した内燃機関の制御装置をその周辺構成とともに示す概略構成図。 本実施形態における切替弁診断処理の制御ルーチンを説明するためのフローチャート。 本実施形態における吸気量制限制御の制御ルーチンを説明するためのフローチャート。 本実施形態における機関回転速度と最大燃料噴射量との関係を表すグラフ。 本実施形態における機関回転速度と上限スロットル開度との関係を示すグラフ。 本発明にかかる燃圧切替手段の変形例について示す概略構成図。 本発明にかかる燃圧切替手段の他の変形例について示す概略構成図。 本発明にかかる燃圧切替手段の他の変形例について示す概略構成図。
符号の説明
ACCP…アクセル操作量、AF…空燃比、AFT…目標空燃比、FL…燃料量、FP…設定燃圧、GA…吸入空気量、KL…要求負荷、KALC…濃度学習値、NE…機関回転速度、Pl…第1の圧力、Ph…第2の圧力、TA…スロットル開度、TAL…上限スロットル開度、TAT…目標スロットル開度、TAU…燃料噴射量、TAUB…基本燃料噴射量、T720…最大燃料噴射量、10…内燃機関、11…気筒、12…ピストン、13…燃焼室、14…吸気通路、14a…吸気ポート、15…スロットルバルブ、16…スロットルバルブアクチュエータ、17…燃料噴射弁、18…点火プラグ、19…排気通路、19a…排気浄化触媒、20…燃料タンク、21…燃料ポンプ、22…バッテリ、23…フィルタ、30…メイン通路、31…低圧リターン通路、32…デリバリパイプ、33…低圧レギュレータ、34…切替弁、35…高圧リターン通路、36…高圧レギュレータ、41…スロットル開度センサ、42…回転速度センサ、43…アクセルポジションセンサ、44…吸入空気量センサ、45…燃料量センサ、46…空燃比センサ、50…電子制御装置、120,220,320…メイン通路、140,240…切替弁、141,241,341…高圧リターン通路、142,242,342…高圧レギュレータ、143,243,343…低圧リターン通路、144,244,344…低圧レギュレータ、340a…第1切替弁、340b…第2切替弁、345…中圧リターン通路、346…中圧レギュレータ。

Claims (5)

  1. 内燃機関の燃料タンクに貯留された燃料を燃料噴射機構へ圧送し、前記燃料タンクと前記燃料噴射機構との間における燃料の流通経路を変更可能にした切替弁により前記燃料噴射機構内の燃圧を第1の圧力と前記第1の圧力よりも高い第2の圧力とに切替える燃圧切替手段と、
    前記内燃機関への吸入空気量を制御する吸入空気量制御手段とを備え、
    前記内燃機関における空燃比が目標空燃比になるように、前記内燃機関の運転状態に基づいて前記燃料噴射機構内の燃圧を選択して該選択した燃圧に対応する噴射期間により前記燃料噴射機構の燃料噴射量を制御する内燃機関の制御装置であって、
    前記第2の圧力を選択している際に、前記第2の圧力への切替が不能である場合には前記内燃機関への吸入空気量を制限することを特徴とする内燃機関の制御装置。
  2. 前記第2の圧力を選択している際に、前記内燃機関における空燃比と前記目標空燃比との乖離度合が規定値以上であることを条件に前記第2圧力への切替が不能であることを判断する
    請求項1に記載の内燃機関の制御装置。
  3. 前記第2の圧力への切替が不能である場合にあって、前記燃料噴射機構の燃料噴射量が前記第1の圧力にて噴射可能な最大の燃料噴射量である最大燃料噴射量よりも大きくなるときに前記内燃機関への吸入空気量を制限する
    請求項1または2に記載の内燃機関の制御装置。
  4. 前記乖離度合が前記内燃機関における空燃比と前記目標空燃比との比である
    請求項2または3に記載の内燃機関の制御装置。
  5. 前記燃圧切替手段は、
    前記燃料タンクと前記燃料噴射機構とを接続するメイン通路と、
    前記メイン通路から分岐して形成されて前記メイン通路内の燃料を前記燃料タンクに戻す低圧リターン通路と、
    前記低圧リターン通路に設けられて前記低圧リターン通路内の燃圧が前記第1の圧力以上のときに開弁して前記燃料タンク側に燃料を排出する低圧レギュレータと、
    前記燃料噴射機構に接続されて前記燃料噴射機構内の燃料を前記燃料タンクに戻す高圧リターン通路と、
    前記高圧リターン通路に設けられて前記高圧リターン通路内の燃圧が前記第2の圧力以上のときに開弁して前記燃料タンク側に燃料を排出する高圧レギュレータとを備え、
    前記切替弁は、低圧リターン通路の開放と閉塞とを切り替える
    請求項1〜4のいずれか一項に記載の内燃機関の制御装置。
JP2008205787A 2008-08-08 2008-08-08 内燃機関の制御装置 Pending JP2010038143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205787A JP2010038143A (ja) 2008-08-08 2008-08-08 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205787A JP2010038143A (ja) 2008-08-08 2008-08-08 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2010038143A true JP2010038143A (ja) 2010-02-18

Family

ID=42010935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205787A Pending JP2010038143A (ja) 2008-08-08 2008-08-08 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2010038143A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031766A (ja) * 2012-08-03 2014-02-20 Toyota Motor Corp 燃料圧力制御装置
US9745937B2 (en) 2011-10-06 2017-08-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN114076050A (zh) * 2020-08-11 2022-02-22 丰田自动车株式会社 燃料喷射控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932617A (ja) * 1995-07-13 1997-02-04 Nissan Motor Co Ltd 火花点火式内燃機関
JP2000130232A (ja) * 1998-10-27 2000-05-09 Toyota Motor Corp 内燃機関の制御装置
JP2001221085A (ja) * 2000-02-04 2001-08-17 Unisia Jecs Corp 内燃機関の燃料供給装置
JP2007056849A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp エンジンの制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0932617A (ja) * 1995-07-13 1997-02-04 Nissan Motor Co Ltd 火花点火式内燃機関
JP2000130232A (ja) * 1998-10-27 2000-05-09 Toyota Motor Corp 内燃機関の制御装置
JP2001221085A (ja) * 2000-02-04 2001-08-17 Unisia Jecs Corp 内燃機関の燃料供給装置
JP2007056849A (ja) * 2005-08-26 2007-03-08 Toyota Motor Corp エンジンの制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9745937B2 (en) 2011-10-06 2017-08-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2014031766A (ja) * 2012-08-03 2014-02-20 Toyota Motor Corp 燃料圧力制御装置
CN114076050A (zh) * 2020-08-11 2022-02-22 丰田自动车株式会社 燃料喷射控制装置
CN114076050B (zh) * 2020-08-11 2023-07-21 丰田自动车株式会社 燃料喷射控制装置

Similar Documents

Publication Publication Date Title
US7412968B2 (en) Fuel supply apparatus for engine and control method of same apparatus
US7472690B2 (en) Fuel supply apparatus for engine and control method of same
JP5982062B2 (ja) 内燃機関の制御装置
US7909020B2 (en) Controller for internal combustion engine
WO2008026567A1 (fr) Contrôleur de moteur à combustion interne
US11112333B2 (en) Sensor failure diagnostic apparatus
US8215288B2 (en) Control system and method for controlling an engine in response to detecting an out of range pressure signal
US7373918B2 (en) Diesel engine control system
US20120158269A1 (en) Vehicle control apparatus
JP4872832B2 (ja) 内燃機関の制御装置
JP2013253560A (ja) 燃料供給装置
KR101858785B1 (ko) 내연 기관의 레일 압력을 제어하는 방법
JP2017210876A (ja) 気体燃料系システム
JP2010038143A (ja) 内燃機関の制御装置
JP2008050988A (ja) 燃料添加装置
US7890245B2 (en) Diagnostic method and device for controlling an internal combustion engine
JP4259570B2 (ja) バルブの異常判定装置、異常判定方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
JP2017044172A (ja) 内燃機関の制御装置
JP2009191650A (ja) 内燃機関の制御装置
JP4637036B2 (ja) 内燃機関の制御装置
US20210324814A1 (en) Control Device and Diagnostic Method for Internal Combustion Engine
JP2006161675A (ja) 内燃機関の燃料系統診断装置
JP2010024852A (ja) 内燃機関の燃料供給装置
JP4657170B2 (ja) エンジンの燃料供給装置
JP5644354B2 (ja) 内燃機関の燃料供給系異常診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821