[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010036123A - Carbon dioxide concentration membrane and carbon dioxide concentration method - Google Patents

Carbon dioxide concentration membrane and carbon dioxide concentration method Download PDF

Info

Publication number
JP2010036123A
JP2010036123A JP2008202641A JP2008202641A JP2010036123A JP 2010036123 A JP2010036123 A JP 2010036123A JP 2008202641 A JP2008202641 A JP 2008202641A JP 2008202641 A JP2008202641 A JP 2008202641A JP 2010036123 A JP2010036123 A JP 2010036123A
Authority
JP
Japan
Prior art keywords
carbon dioxide
membrane
film
ionic liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008202641A
Other languages
Japanese (ja)
Other versions
JP5078798B2 (en
Inventor
Masakazu Ikeda
雅一 池田
Kaori Takano
香織 高野
Shunsuke Maekawa
俊輔 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2008202641A priority Critical patent/JP5078798B2/en
Publication of JP2010036123A publication Critical patent/JP2010036123A/en
Application granted granted Critical
Publication of JP5078798B2 publication Critical patent/JP5078798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide concentration membrane and a carbon dioxide concentration method by which a user can concentrate CO<SB>2</SB>at a relatively high temperature from high-temperature and high-pressure gas containing CO<SB>2</SB>and H<SB>2</SB>without allowing a sweep gas to flow through the permeation side. <P>SOLUTION: The carbon dioxide concentration membrane has a multilayer structure comprising: a liquid membrane including an ionic liquid of which the 5% thermal weight loss temperature is ≥250°C, or a polymer gel made by polymerizing the ionic liquid in an inorganic porous substrate; and a sealing membrane which is not permeated by the ionic liquid and is a membrane of which the 5% thermal weight loss temperature is ≥250°C, wherein the liquid membrane is sandwiched between two layers of sealing membranes. The carbon dioxide concentration method uses the carbon dioxide concentration membrane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、二酸化炭素を含むガス、特には二酸化炭素と水素とを含む高温高圧ガス中の、二酸化炭素を濃縮するための膜および方法に関する。   The present invention relates to a membrane and method for concentrating carbon dioxide in a gas containing carbon dioxide, particularly in a high-temperature high-pressure gas containing carbon dioxide and hydrogen.

近年、地球温暖化防止の観点から、二酸化炭素を濃縮する技術が注目されている。従来から知られているCO2分離法には、化学吸収法もしくは物理吸着法、あるいはCO2膜分離技術がある。 In recent years, technology for concentrating carbon dioxide has attracted attention from the viewpoint of preventing global warming. Conventionally known CO 2 separation methods include a chemical absorption method or a physical adsorption method, or a CO 2 membrane separation technique.

一般的に、化学吸収法や物理吸着法などの分離技術では分離に際し、膨大なエネルギーを必要とする。これに対し膜分離法では、分離しようとするガス混合物中の二酸化炭素の分圧が十分に高ければ、分離・濃縮にかかるエネルギーを極めて小さくすることができる可能性がある。このため二酸化炭素膜分離技術の開発が進められている。   Generally, separation techniques such as chemical absorption and physical adsorption require enormous amounts of energy for separation. On the other hand, in the membrane separation method, if the partial pressure of carbon dioxide in the gas mixture to be separated is sufficiently high, the energy required for separation / concentration can be extremely reduced. For this reason, development of carbon dioxide membrane separation technology is underway.

このような二酸化炭素膜分離技術に関して、特許文献1ならびに非特許文献1および2には高分子膜が、非特許文献3には無機膜が記載される。   Regarding such carbon dioxide membrane separation technology, Patent Document 1 and Non-Patent Documents 1 and 2 describe polymer membranes, and Non-Patent Document 3 describes inorganic membranes.

一方、製油所の水素製造装置(ナフサ、液化石油ガスまたはメタンのスチームリフォーミングを行なう)やガス化複合発電装置(IGCC。石炭、アスファルト、その他重質油のガス化を行なう)では、CO2および水素を主とする高圧、高温の混合ガスが発生する。
特開2008−36463号公報 Journal of Membrane Science 291 (2007)157−164 Journal of Membrane Science 314 (2008)1−4 Adv. Mater. 2008,20,729−732
On the other hand, in refinery hydrogen production equipment (naphtha, liquefied petroleum gas or methane steam reforming) and gasification combined power generation equipment (IGCC. Gasification of coal, asphalt, and other heavy oils), CO 2 In addition, a high-pressure and high-temperature mixed gas mainly composed of hydrogen is generated.
JP 2008-36463 A Journal of Membrane Science 291 (2007) 157-164 Journal of Membrane Science 314 (2008) 1-4 Adv. Mater. 2008, 20, 729-732

特許文献1および非特許文献1には、CO2/H2分離係数が高い高分子膜(PVA−PAA)を用いる技術が記載されるが、この技術では、透過側にスイープガスを流して全圧差を等しくした条件でガスを透過させている。例えば製油所等、透過側にスイープガスを流すことが困難な場合も少なくない。また、高分子膜(PVA−PAA)は耐熱温度がおよそ160℃までと低い。 Patent Document 1 and Non-Patent Document 1 describe a technique using a polymer membrane (PVA-PAA) having a high CO 2 / H 2 separation factor. In this technique, a sweep gas is allowed to flow on the permeate side. Gas is permeated under the condition of equal pressure difference. For example, there are many cases where it is difficult to flow the sweep gas to the permeate side, such as a refinery. The polymer film (PVA-PAA) has a heat resistant temperature as low as about 160 ° C.

非特許文献2に記載される膜は、耐熱温度がおよそ70℃までとさらに低い。   The film described in Non-Patent Document 2 has an even lower heat resistance temperature of approximately 70 ° C.

非特許文献3に記載される無機膜は高温・高圧で使用できるが、分子の大きさが近いCO2と、H2およびH2Oとの分離には限界がある。 The inorganic membrane described in Non-Patent Document 3 can be used at high temperatures and high pressures, but there is a limit to the separation between CO 2 , which has a close molecular size, and H 2 and H 2 O.

本発明の目的は、製油所の水素製造装置などCO2およびH2を含む高温高圧のガスから、透過側にスイープガスを流すことを必要とせずに、比較的高温でCO2を濃縮することを可能とする二酸化炭素濃縮膜および二酸化炭素濃縮方法を提供することである。 An object of the present invention is to concentrate CO 2 at a relatively high temperature without requiring a sweep gas to flow to the permeate side from a high-temperature and high-pressure gas containing CO 2 and H 2 such as a hydrogen production apparatus in a refinery. And providing a carbon dioxide concentration membrane and a carbon dioxide concentration method.

本発明により、無機多孔質支持体中に5%熱重量減少温度が250℃以上であるイオン液体またはイオン液体を重合させたポリマーゲルを含んだ、液膜と、
イオン液体を透過させない、5%熱重量減少温度が250℃以上の膜である封止膜と
を有し、二層の封止膜によって液膜が挟まれた多層構造を有する、二酸化炭素濃縮膜が提供される。
According to the present invention, a liquid membrane comprising an ionic liquid or a polymer gel obtained by polymerizing an ionic liquid having a 5% thermal weight loss temperature of 250 ° C. or higher in an inorganic porous support;
A carbon dioxide-enriched membrane having a multilayer structure in which a liquid film is sandwiched between two layers of sealing films, the sealing film being a film having a 5% thermal weight loss temperature of 250 ° C. or higher that does not transmit ionic liquid Is provided.

前記液膜が、10以上の二酸化炭素/水素の分離係数を有することが好ましい。   The liquid membrane preferably has a carbon dioxide / hydrogen separation factor of 10 or more.

前記封止膜が、1.5以上の二酸化炭素/メタンの分離係数を有することが好ましい。   The sealing film preferably has a carbon dioxide / methane separation factor of 1.5 or more.

前記封止膜が、1.5×10-6mol−CO2/m2/s/kPa以上の二酸化炭素透過度を有することが好ましい。 It is preferable that the sealing film has a carbon dioxide permeability of 1.5 × 10 −6 mol-CO 2 / m 2 / s / kPa or more.

本発明により、圧力が0.6MPa以上3.5MPa以下で温度が200℃以上600℃以下の、少なくとも二酸化炭素と水素を含む混合ガスから、上記二酸化炭素濃縮膜を用いて、二酸化炭素が濃縮されたガスを得る二酸化炭素濃縮方法が提供される。   According to the present invention, carbon dioxide is concentrated from a mixed gas containing at least carbon dioxide and hydrogen at a pressure of 0.6 MPa to 3.5 MPa and a temperature of 200 ° C. to 600 ° C. using the carbon dioxide concentration membrane. A method for concentrating carbon dioxide to obtain a gas is provided.

本発明により、製油所の水素製造装置などCO2およびH2を含む高温高圧のガスから、透過側にスイープガスを流すことを必要とせずに、比較的高温でCO2を濃縮することを可能とする二酸化炭素濃縮膜および二酸化炭素濃縮方法が提供される。 According to the present invention, it is possible to concentrate CO 2 at a relatively high temperature without requiring a sweep gas to flow to the permeate side from a high-temperature and high-pressure gas containing CO 2 and H 2 such as a hydrogen production device at a refinery. A carbon dioxide concentration membrane and a carbon dioxide concentration method are provided.

以下図面を用いて本発明の形態について詳しく説明するが、本発明はこれによって限定されるものではない。   Hereinafter, the embodiments of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto.

図1は、本発明の二酸化炭素濃縮膜の一形態を示す模式図である。二酸化炭素濃縮膜は、液膜1と封止膜を少なくとも有する多層構造であって、二層の封止膜2−1(非透過側封止膜)および2−2(透過側封止膜)によって液膜1が挟まれた多層構造を有する。液膜1を挟んで二層の封止膜2−1および2−2が存在することにより、イオン液体(もしくはイオン液体を重合させたポリマーゲル)1cの消失を防ぐことができる。   FIG. 1 is a schematic view showing an embodiment of the carbon dioxide enrichment membrane of the present invention. The carbon dioxide enriched film has a multilayer structure having at least the liquid film 1 and the sealing film, and is a two-layer sealing film 2-1 (non-permeation side sealing film) and 2-2 (permeation side sealing film). Has a multilayer structure in which the liquid film 1 is sandwiched. Due to the presence of the two sealing films 2-1 and 2-2 with the liquid film 1 in between, the disappearance of the ionic liquid (or polymer gel obtained by polymerizing the ionic liquid) 1c can be prevented.

液膜には、二酸化炭素の溶解度を高めるために、塩基性化合物や二酸化炭素吸着剤などの添加物1bを添加することができる。   In order to increase the solubility of carbon dioxide, an additive 1b such as a basic compound or a carbon dioxide adsorbent can be added to the liquid film.

例えば、二酸化炭素、水素、一酸化炭素、メタン、水蒸気、炭化水素(メタン以外)および硫黄酸化物を含む混合ガスを二酸化炭素濃縮膜に供給した場合、非透過側封止膜2−1によって一酸化炭素、メタン、炭化水素および硫黄酸化物と、二酸化炭素、水素および水蒸気が分離され、次いで、液膜1によって水素と、二酸化炭素および水蒸気とが分離され、そして、疎水膜3によって水蒸気と二酸化炭素とが分離され、透過側に二酸化炭素が濃縮されたガスが得られる。   For example, when a mixed gas containing carbon dioxide, hydrogen, carbon monoxide, methane, water vapor, hydrocarbon (other than methane) and sulfur oxide is supplied to the carbon dioxide enriched membrane, the non-permeate side sealing membrane 2-1 Carbon oxide, methane, hydrocarbons and sulfur oxides are separated from carbon dioxide, hydrogen and water vapor, then hydrogen, carbon dioxide and water vapor are separated by liquid membrane 1, and water vapor and carbon dioxide are separated by hydrophobic membrane 3. A gas in which carbon is separated and carbon dioxide is concentrated on the permeate side is obtained.

〔液膜〕
液膜は、無機多孔質支持体1aを有する。
[Liquid film]
The liquid film has an inorganic porous support 1a.

無機多孔質支持体の中には、イオン液体またはイオン液体を重合させたポリマーゲル1cが含まれる。   The inorganic porous support includes an ionic liquid or a polymer gel 1c obtained by polymerizing the ionic liquid.

液膜は、水素と二酸化炭素のうち二酸化炭素をより多く透過させる膜である。つまり、水素をバリアして二酸化炭素を濃縮する。   The liquid film is a film that allows more carbon dioxide to pass through between hydrogen and carbon dioxide. That is, carbon dioxide is concentrated by barriering hydrogen.

5%熱重量減少温度は、試料を120℃で12時間乾燥させた後、熱重量測定装置で50℃から5℃/分で昇温した時に、初期質量の5質量%だけ質量が減少したときの温度である。本明細書において、「耐熱性」もしくは「耐熱性がある」という表現は、5%熱重量減少温度が250℃以上であることを意味する。   5% thermogravimetric decrease temperature is when the sample is dried at 120 ° C. for 12 hours and then heated from 50 ° C. at 5 ° C./min with a thermogravimetry device, the mass decreases by 5 mass% of the initial mass. Temperature. In the present specification, the expression “heat resistance” or “having heat resistance” means that the 5% thermal weight loss temperature is 250 ° C. or higher.

より効率良く二酸化炭素濃縮を行なう観点から、前記液膜が、10以上の二酸化炭素/水素分離係数を有することが好ましい。   From the viewpoint of more efficient carbon dioxide concentration, the liquid membrane preferably has a carbon dioxide / hydrogen separation factor of 10 or more.

ここでいう二酸化炭素/水素分離係数は80℃での二酸化炭素透過係数/水素透過係数で表される。液膜の二酸化炭素/水素分離係数は以下の方法で測定できる。例えば多層構造の二酸化炭素濃縮膜が液膜1を封止膜2−1と2−2で挟んだ構造を持った膜である場合、まずJISに規定される試験方法(K7126−1、またはK7126−2)にて、評価温度80℃で、多層構造の二酸化炭素濃縮膜の二酸化炭素透過係数と水素透過係数と、封止膜2−1および2−2のそれぞれ単独での二酸化炭素透過係数と水素透過係数を求める。試験装置として例えば(株)ラウンドサイエンス製フロー式ガス透過率測定装置(RGP−3000型)を用いることができる。透過係数は膜の形状、面積、膜厚に寄らず一定であるため、同じ素材を用いた膜であるならば常に同じ値を示す。   The carbon dioxide / hydrogen separation coefficient here is represented by carbon dioxide permeability coefficient / hydrogen permeability coefficient at 80 ° C. The carbon dioxide / hydrogen separation factor of the liquid membrane can be measured by the following method. For example, when the multi-layered carbon dioxide concentration film is a film having a structure in which the liquid film 1 is sandwiched between the sealing films 2-1 and 2-2, first, a test method (K7126-1 or K7126 specified by JIS) is used. -2), the carbon dioxide permeation coefficient and hydrogen permeation coefficient of the multi-layer structure carbon dioxide-enriched membrane at an evaluation temperature of 80 ° C., and the carbon dioxide permeation coefficients of the sealing membranes 2-1 and 2-2, respectively, Obtain hydrogen permeability coefficient. As the test apparatus, for example, a flow type gas permeability measuring apparatus (RGP-3000 type) manufactured by Round Science Co., Ltd. can be used. Since the permeability coefficient is constant regardless of the shape, area, and film thickness of the film, it always shows the same value if the film uses the same material.

透過係数をP、膜厚をLで表した時、二酸化炭素および水素のそれぞれについて次式が成り立つ。ここで
L(多層):二酸化炭素濃縮膜(多層構造)の膜厚、
P(多層):二酸化炭素濃縮膜(多層構造)の透過係数、
L(1):液膜1の膜厚、
P(1):液膜1の透過係数、
L(2−1):封止膜2−1の膜厚、
P(2−1):封止膜2−1の透過係数、
L(2−2):封止膜2−2の膜厚、
P(2−2):封止膜2−2の透過係数
である。
When the transmission coefficient is represented by P and the film thickness is represented by L, the following equations hold for each of carbon dioxide and hydrogen. Where L (multilayer): film thickness of carbon dioxide enriched membrane (multilayer structure),
P (multilayer): Permeability coefficient of carbon dioxide enriched membrane (multilayer structure),
L (1): film thickness of the liquid film 1,
P (1): Permeability coefficient of the liquid film 1
L (2-1): film thickness of the sealing film 2-1,
P (2-1): Permeability coefficient of sealing film 2-1.
L (2-2): Film thickness of the sealing film 2-2,
P (2-2): Permeability coefficient of the sealing film 2-2.

Figure 2010036123
Figure 2010036123

P(1)以外は明らかなため、この式から液膜の二酸化炭素透過係数と水素透過係数とをそれぞれ知ることができ、二酸化炭素透過係数を水素透過係数で除することによって液膜の二酸化炭素/水素分離係数を求めることができる。   Since other than P (1) is clear, the carbon dioxide permeability coefficient and hydrogen permeability coefficient of the liquid film can be known from this equation, respectively, and the carbon dioxide permeability of the liquid film can be obtained by dividing the carbon dioxide permeability coefficient by the hydrogen permeability coefficient. / Hydrogen separation factor can be determined.

・無機多孔質支持体
液膜の無機多孔質支持体は、開口率30%以上70%以下であることが好ましい。
-Inorganic porous support The liquid porous inorganic porous support preferably has an aperture ratio of 30% to 70%.

また、無機多孔質支持体は、細孔径5μm以下、特に0.5μm以下のものが好ましい。無機多孔質支持体の細孔径の測定方法としては、バブルポイント法、グラスビーズ法、水銀ポロシメーターによる測定、走査型電子顕微鏡観察による測定、などの測定法から、無機多孔質支持体の形状等に応じて、適宜選択することができる。例えば、無機多孔質支持体が円盤状であればグラスビーズ法、チューブ状であれば水銀ポロシメーターによる測定が好適である。   The inorganic porous support preferably has a pore diameter of 5 μm or less, particularly 0.5 μm or less. As a method for measuring the pore diameter of the inorganic porous support, from the measurement method such as bubble point method, glass bead method, measurement by mercury porosimeter, measurement by scanning electron microscope, etc., to the shape of the inorganic porous support, etc. Depending on the situation, it can be appropriately selected. For example, measurement by a glass bead method is suitable if the inorganic porous support is a disc shape, and measurement by a mercury porosimeter if it is a tube shape.

液膜の無機多孔質支持体の材料としてアルミナ、シリカ、チタニア、ジルコニアまたはその複合材料、ステンレス繊維やガラス繊維のフィルター、または銀メンブレンフィルターを用いることができる。   Alumina, silica, titania, zirconia or a composite material thereof, a stainless fiber or glass fiber filter, or a silver membrane filter can be used as the material for the inorganic porous support of the liquid membrane.

・イオン液体
無機多孔質支持体に含浸させるイオン液体は5%熱重量減少温度が250℃以上のイオン液体である。ここでいうイオン液体とは、融点が300℃以下、好ましくは100℃以下、より好ましくは50℃以下である、溶媒を用いないイオンからなる液体である。融点が低温であれば、加熱することなく無機多孔質支持体への含浸作業を行うことができる点で優れている。ただしイオン液体を重合させたポリイオン液体からなるゲルは元のイオン液体の融点が300℃以下であるならばゲルの融点が300℃以下でなくてもよい。これらのゲルは例えばMacromolecules 2005,38,2037−2039に記載の手法で調製することができる。
-Ionic liquid The ionic liquid impregnated in the inorganic porous support is an ionic liquid having a 5% thermal weight loss temperature of 250 ° C or higher. The ionic liquid here is a liquid composed of ions that do not use a solvent and have a melting point of 300 ° C. or lower, preferably 100 ° C. or lower, more preferably 50 ° C. or lower. If the melting point is low, the inorganic porous support can be impregnated without heating. However, a gel made of a polyionic liquid obtained by polymerizing an ionic liquid may not have a melting point of 300 ° C. or lower as long as the melting point of the original ionic liquid is 300 ° C. or lower. These gels can be prepared, for example, by the technique described in Macromolecules 2005, 38, 2037-2039.

イオン液体の5%熱重量減少温度の上限値については、特段の制限はないものの、例えば600℃以下、多くのイオン液体について400℃以下程度である。   The upper limit value of the 5% thermal weight loss temperature of the ionic liquid is, for example, 600 ° C. or lower, and about 400 ° C. or lower for many ionic liquids, although there is no particular limitation.

イオン液体もしくはそのゲルを含んだ無機多孔質支持体の厚みは、好ましくは10μm以上500μm以下、より好ましくは30μm以上150μm以下である。液膜部に欠陥が生じることを防ぎ、かつガス透過性を維持することを容易とするにはこの厚みが好ましい。   The thickness of the inorganic porous support containing the ionic liquid or gel thereof is preferably 10 μm or more and 500 μm or less, more preferably 30 μm or more and 150 μm or less. This thickness is preferable in order to prevent defects in the liquid film part and to easily maintain gas permeability.

イオン液体としては、下記のカチオン、アニオンの組合せからなる化合物を用いることができる。   As the ionic liquid, a compound comprising a combination of the following cation and anion can be used.

カチオンには1,3位に以下の置換基を有するイミダゾリウムで、置換基としてアルキル基、ヒドロキシアルキル基、アリル基、アミノアルキル基を有するもの、特に1つの側鎖にアミノ基とヒドロキシル基を有するアミノヒドロキシアルキル基を有するものが好ましく、さらには末端がアミノ基でアミノ基と結合した炭素原子の隣の炭素原子がヒドロキシル基と結合した1−アミノ−2−ヒドロキシアルキル基をもつものが好ましい。   The cation is an imidazolium having the following substituents at the 1 and 3 positions, and has an alkyl group, a hydroxyalkyl group, an allyl group, or an aminoalkyl group as a substituent, particularly an amino group and a hydroxyl group in one side chain. Those having an aminohydroxyalkyl group are preferable, and those having a 1-amino-2-hydroxyalkyl group in which the carbon atom adjacent to the carbon atom bonded to the amino group is bonded to the hydroxyl group are preferable. .

アニオンには四フッ化ホウ素イオン、ビス(トリフルオロメタンスルホニル)イミドイオン、ヘキサフルオロリン酸イオン、トリフルオロメタンスルホン酸イオン、ラク酸イオン、酢酸イオン、メチルカルボン酸イオン、重炭酸イオン、アミノ酸イオン、特にビス(トリフルオロメタンスルホニル)イミドイオンが好ましい。   Anions include boron tetrafluoride ion, bis (trifluoromethanesulfonyl) imide ion, hexafluorophosphate ion, trifluoromethanesulfonate ion, lactate ion, acetate ion, methylcarboxylate ion, bicarbonate ion, amino acid ion, especially bis (Trifluoromethanesulfonyl) imide ion is preferred.

・添加物
液膜部の二酸化炭素との親和性を高めるために、イオン液体に塩基性化合物を添加物として加えることもできる。塩基性化合物は融点150℃以上の化合物が好ましい。融点が高ければ添加物の気化による二酸化炭素の溶解度の低下を防ぐことが容易にできる。好ましい塩基性化合物としてp−アミノ安息香酸などが挙げられる。
Additive In order to increase the affinity of the liquid film portion with carbon dioxide, a basic compound can be added to the ionic liquid as an additive. The basic compound is preferably a compound having a melting point of 150 ° C. or higher. If the melting point is high, a decrease in the solubility of carbon dioxide due to the vaporization of the additive can be easily prevented. P-aminobenzoic acid etc. are mentioned as a preferable basic compound.

イオン液体に塩基性化合物を溶解させる場合、イオン液体の分解防止の観点から、添加後のイオン液体のpHが7〜10になるようにpHを測定しながら溶解させることが好ましい。塩基性化合物の影響でイオン液体が分解することを抑制できるからである。   When the basic compound is dissolved in the ionic liquid, it is preferable to dissolve the ionic liquid while measuring the pH so that the pH of the ionic liquid after the addition is 7 to 10 from the viewpoint of preventing the decomposition of the ionic liquid. It is because it can suppress that an ionic liquid decomposes | disassembles under the influence of a basic compound.

無機の塩基性化合物を添加する場合、イオン液体に直接溶解させるのではなく、支持体に塩基性化合物を担持することが好ましい。担持法としてはIncipient Wetness法などの含浸法を用いることができる。そうすることでイオン液体の分解を抑制することが容易にできる。   When adding an inorganic basic compound, it is preferable to carry | support a basic compound on a support body instead of dissolving directly in an ionic liquid. As the supporting method, an impregnation method such as an Incipient Wetness method can be used. By doing so, decomposition of the ionic liquid can be easily suppressed.

イオン液体を構成するカチオン、アニオンにアミノ基を導入することで塩基性を高めてもよく、この方法がより好ましい。アミノ基を持ったイオン液体としてN−アミノプロピル−3−ブチルイミダゾリウムテトラフルオロボレートが挙げられる。このイオン液体は例えばJ.Am.Chem.Soc.124(2002)926−927に記載の手法で合成できる。   Basicity may be increased by introducing an amino group into the cation or anion constituting the ionic liquid, and this method is more preferred. Examples of the ionic liquid having an amino group include N-aminopropyl-3-butylimidazolium tetrafluoroborate. This ionic liquid is, for example, J. Am. Chem. Soc. 124 (2002) 926-927.

アミノ基を持つイオン液体の中でも特にヒドロキシル基を持った化合物が好ましく、アミノ基とヒドロキシル基の構造としては、末端がアミノ基で、アミノ基と結合した炭素原子の隣の炭素原子がヒドロキシル基と結合した1−アミノ−2−ヒドロキシアルキル基をもつものが好ましい。   Among the ionic liquids having an amino group, a compound having a hydroxyl group is particularly preferred, and the structure of the amino group and the hydroxyl group is that the terminal is an amino group and the carbon atom adjacent to the carbon atom bonded to the amino group is a hydroxyl group. Those having a linked 1-amino-2-hydroxyalkyl group are preferred.

イオン液体にCO2を吸着する無機吸着材を加えても良い。吸着材としてはJ.Am.Chem.Soc. 2005,127,17998−17999にあるようなMOF(Metal −Organic frameworks)と呼ばれるCu3(Btc)2(Btc=benzenetricarboxylate)、[Cu(PF62(bpetha)2]n(bpetha=1,2−bis(4−pyridyl)ethane)、Zn4O(1,3,5−benzenetribenzoate)2などの金属錯体が好ましい。 An inorganic adsorbent that adsorbs CO 2 may be added to the ionic liquid. As an adsorbent, J.A. Am. Chem. Soc. 2005, 127, 17998-17999, called MO 3 (Metal-Organic frameworks) called Cu 3 (Btc) 2 (Btc = benzeneticboxylate), [Cu (PF 6 ) 2 (bpetha) 2 ] n (bpetha = 1, Metal complexes such as 2-bis (4-pyridyl) ethane) and Zn 4 O (1,3,5-benzotribenzoate) 2 are preferred.

金属錯体は、定容法を用いたCO2吸着量測定装置にて測定した室温(25℃)、2MPaでのCO2吸着量が7mmol/g以上であることが好ましい。金属錯体がイオン液体中に溶解しない場合、錯体をミルで粉砕し粒径0.5μm未満にしてイオン液体中に添加し分散させることが好ましい。錯体の添加量はイオン液体に対して0.01質量%以上1.0質量%以下が好ましい。二酸化炭素の溶解度を高めつつ、イオン液体の無機多孔質支持体への含浸を容易にするためである。 The metal complex preferably has a CO 2 adsorption amount of 7 mmol / g or more at room temperature (25 ° C.) and 2 MPa as measured by a CO 2 adsorption amount measuring apparatus using a constant volume method. When the metal complex does not dissolve in the ionic liquid, it is preferable to pulverize the complex with a mill so that the particle size is less than 0.5 μm and add and disperse it in the ionic liquid. The addition amount of the complex is preferably 0.01% by mass or more and 1.0% by mass or less with respect to the ionic liquid. This is to facilitate impregnation of the ionic liquid into the inorganic porous support while increasing the solubility of carbon dioxide.

液膜の二酸化炭素溶解度が高く、かつ水素バリア性が高いほど、分子の大きさが近いCO2とH2との分離を優れて行うことができる。 The higher the solubility of carbon dioxide in the liquid membrane and the higher the hydrogen barrier property, the better the separation between CO 2 and H 2 having a close molecular size.

〔封止膜〕
封止膜2は、イオン液体を透過させない5%熱重量減少温度が250℃以上の膜である。封止膜がイオン液体を透過させるか否かは窒素ガス吸着装置にて細孔容積を測定することで簡便に推察できる。細孔内への窒素吸着が観察されない非多孔膜であればイオン液体を透過させない。ゼオライトは多孔膜であるが、X線回折装置を用い、結晶構造にアモルファスを含まず、かつ細孔の環構造に含まれる酸素原子が10員環以下骨格構造を有する場合、イオン液体を透過しない。
[Sealing film]
The sealing film 2 is a film having a 5% thermal weight loss temperature of 250 ° C. or higher that does not allow the ionic liquid to permeate. Whether or not the sealing film permeates the ionic liquid can be easily estimated by measuring the pore volume with a nitrogen gas adsorption device. If it is a non-porous film in which nitrogen adsorption into the pores is not observed, the ionic liquid is not permeated. Zeolite is a porous film, but when an X-ray diffractometer is used and the crystal structure does not contain amorphous and the oxygen atom contained in the pore ring structure has a skeleton structure of 10-membered ring or less, it does not penetrate the ionic liquid. .

封止膜2として、分子の大きさが3.5Å(3.5×10-10m)以下の分子を、3.5Åより大きな分子より優先的に透過させる膜を用いることができる。具体的には、二酸化炭素、水素および水蒸気を、一酸化炭素およびメタンより優先的に透過させる膜を用いることができる。ここで優先的に透過させるとは、透過係数がより大きいことを意味する。つまり封止膜2として、一酸化炭素、メタンに対するバリア性を有する膜を用いることができる。 As the sealing film 2, a film that allows molecules having a molecular size of 3.5 Å (3.5 × 10 −10 m) or less to permeate preferentially over molecules larger than 3.5 Å can be used. Specifically, a membrane that allows permeation of carbon dioxide, hydrogen, and water vapor more preferentially than carbon monoxide and methane can be used. Here, preferentially transmitting means that the transmission coefficient is larger. That is, as the sealing film 2, a film having a barrier property against carbon monoxide and methane can be used.

より効率良く二酸化炭素濃縮を行なう観点から、封止膜が、1.5以上の二酸化炭素/メタン分離係数を有することが好ましい。   From the viewpoint of more efficient carbon dioxide concentration, it is preferable that the sealing membrane has a carbon dioxide / methane separation factor of 1.5 or more.

より効率良く二酸化炭素濃縮を行なう観点から、封止膜が、1.5×10-6mol−CO2/m2/s/kPa以上の二酸化炭素透過度を有することが好ましい。 From the viewpoint of more efficiently concentrating carbon dioxide, the sealing film preferably has a carbon dioxide permeability of 1.5 × 10 −6 mol-CO 2 / m 2 / s / kPa or more.

ここでいう二酸化炭素/メタン分離係数は80℃での二酸化炭素透過係数/メタン透過係数で表される。各ガスの透過係数はJISに規定される試験方法(K7126−1、またはK7126−2)で求められ、二酸化炭素透過度も同じ試験方法で求めることができる。試験装置として例えば(株)ラウンドサイエンス製フロー式ガス透過率測定装置(RGP−3000型)を用いることができる。   The carbon dioxide / methane separation coefficient here is represented by carbon dioxide permeability coefficient / methane permeability coefficient at 80 ° C. The permeation coefficient of each gas can be determined by a test method (K7126-1 or K7126-2) defined in JIS, and the carbon dioxide permeability can also be determined by the same test method. As the test apparatus, for example, a flow type gas permeability measuring apparatus (RGP-3000 type) manufactured by Round Science Co., Ltd. can be used.

封止膜には、ポリイミド、ポリジフェニルアセチレン、ポリトリメチルシリルプロピン等の有機材料;MFI型、CHA型(特にSAPO34)、DDR型、T型等のゼオライト;ポリジメチルシロキサン等のゴム;もしくはこれらの複合材料を用いることができる。   For the sealing film, organic materials such as polyimide, polydiphenylacetylene, polytrimethylsilylpropyne; zeolites such as MFI type, CHA type (especially SAPO34), DDR type, T type; rubbers such as polydimethylsiloxane; or these Composite materials can be used.

封止膜によって芳香族やSOxをバリアすることができるので、液膜の劣化を優れて抑制することができる。   Since the aromatic or SOx can be barriered by the sealing film, the deterioration of the liquid film can be excellently suppressed.

〔疎水膜〕
必要に応じ、水の透過を抑制するために、前記多層構造が、二酸化炭素と水を分離する膜(二酸化炭素と水のうちの二酸化炭素を選択的に透過させる膜)であって、5%熱重量減少温度が250℃以上の膜である疎水膜3を有することができる。
[Hydrophobic membrane]
In order to suppress the permeation of water as required, the multilayer structure is a membrane for separating carbon dioxide and water (a membrane that selectively permeates carbon dioxide and carbon dioxide in water), and 5% It is possible to have a hydrophobic film 3 which is a film having a thermogravimetric temperature reduction temperature of 250 ° C. or higher.

疎水膜は、二酸化炭素透過側の封止膜2−2の外側(液膜1とは反対側)に設けることができる。   The hydrophobic film can be provided outside the sealing film 2-2 on the carbon dioxide permeation side (the side opposite to the liquid film 1).

より効率的に二酸化炭素濃縮を行なう観点から、疎水膜が、二酸化炭素と水素を分離できる(二酸化炭素と水素のうちの二酸化炭素を選択的に透過させることができる)ことが好ましい。   From the viewpoint of more efficiently concentrating carbon dioxide, it is preferable that the hydrophobic membrane can separate carbon dioxide and hydrogen (can selectively permeate carbon dioxide of carbon dioxide and hydrogen).

疎水膜としては、CO2透過係数とH2O透過係数の比で表されたCO2/H2O分離係数1.2以上の、耐熱性のある膜が好ましい。ここでいうCO2/H2O分離係数は80℃でのCO2透過係数/水蒸気透過係数で表される。CO2と水蒸気の透過係数はJISに規定される試験方法(K7129)で求めることができる。試験装置として例えば(株)ラウンドサイエンス製フロー式ガス透過率測定装置(RGP−3000型)を用いることができる。 As the hydrophobic membrane, a heat-resistant membrane having a CO 2 / H 2 O separation coefficient of 1.2 or more expressed by the ratio of the CO 2 permeability coefficient and the H 2 O permeability coefficient is preferable. The CO 2 / H 2 O separation coefficient here is expressed as CO 2 permeability coefficient / water vapor permeability coefficient at 80 ° C. The permeability coefficient of CO 2 and water vapor can be determined by a test method (K7129) defined in JIS. As the test apparatus, for example, a flow type gas permeability measuring apparatus (RGP-3000 type) manufactured by Round Science Co., Ltd. can be used.

例えば膜厚50μmで内部にTiを含んだ構造を持つ日本化学会第86春季年会講演予稿集3D105(2006)に記載されるようなシルセスキオキサンゲルを疎水膜の素材として用いることができる。   For example, silsesquioxane gel as described in 3D105 (2006) of the 86th Annual Meeting of the Chemical Society of Japan, having a thickness of 50 μm and containing Ti can be used as the material of the hydrophobic film.

〔二酸化炭素濃縮方法〕
本発明の二酸化炭素濃縮膜を用いて、製油所の水素製造装置やIGCCで製造された混合ガスの製造時の圧力を利用して低エネルギーでCO2を分離・濃縮することができる。
[CO2 enrichment method]
Using the carbon dioxide concentrating membrane of the present invention, CO 2 can be separated and concentrated with low energy by using the pressure at the time of production of the mixed gas produced by the refinery hydrogen production apparatus or IGCC.

製油所の水素製造装置やIGCCで製造された混合ガス中の主な成分はCO2および水素であり、かつこれらの装置は高圧装置であるため混合ガス中のCO2分圧は非常に高い。この圧力を有効利用することにより、コンプレッサーでガスを昇圧することなく、低いエネルギーでCO2を分離できる可能性がある。このために高温で使用可能な二酸化炭素濃縮膜が望まれるが、本発明の二酸化炭素濃縮膜はこのような場合に特に有用である。 The main components in the refinery hydrogen production apparatus and the mixed gas produced by IGCC are CO 2 and hydrogen, and since these apparatuses are high-pressure apparatuses, the CO 2 partial pressure in the mixed gas is very high. By effectively using this pressure, there is a possibility that CO 2 can be separated with low energy without increasing the pressure of the gas with a compressor. For this reason, a carbon dioxide enriched membrane that can be used at high temperatures is desired, but the carbon dioxide enriched membrane of the present invention is particularly useful in such cases.

具体的には、圧力が0.6MPa以上で3.5MPa以下、温度が200℃以上600℃以下の、少なくとも二酸化炭素と水素を含む混合ガスから、本発明の二酸化炭素濃縮膜を用いて、二酸化炭素が濃縮されたガスを得ることができる。   Specifically, from a mixed gas containing at least carbon dioxide and hydrogen having a pressure of 0.6 MPa or more and 3.5 MPa or less and a temperature of 200 ° C. or more and 600 ° C. or less, using the carbon dioxide enriched membrane of the present invention, A gas enriched with carbon can be obtained.

この混合ガスには、二酸化炭素および水素の他に、CO、メタン、H2Oが含まれることができ、さらにはメタン以外の炭化水素やNOx、SOxが含まれることができる。二酸化炭素の濃度が50vol%以上、さらに二酸化炭素、水素、CO、メタン、H2O以外のガスの濃度は1vol%以下が好ましい。 This mixed gas can contain CO, methane, and H 2 O in addition to carbon dioxide and hydrogen, and can further contain hydrocarbons other than methane, NOx, and SOx. The concentration of carbon dioxide is preferably 50 vol% or more, and the concentration of gases other than carbon dioxide, hydrogen, CO, methane, and H 2 O is preferably 1 vol% or less.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by this.

〔5%熱重量減少温度〕
評価に用いる二酸化炭素濃縮液膜を構成する材料から試料を採取し、120℃で12時間乾燥させた後、熱重量測定装置(島津製作所製、TGA−50)を用い、50℃から5℃/分で昇温した時に、初期質量の5質量%だけ質量が減少したときの温度が5%熱重量減少温度である。
[5% thermal weight loss temperature]
A sample was taken from the material constituting the carbon dioxide concentrated liquid film used for evaluation, dried at 120 ° C. for 12 hours, and then heated from 50 ° C. to 5 ° C./5° C. using a thermogravimetric apparatus (manufactured by Shimadzu Corporation, TGA-50). When the temperature is raised in minutes, the temperature when the mass is reduced by 5% by mass of the initial mass is the 5% thermal weight reduction temperature.

〔評価方法〕
実施例1、実施例2、比較例1および比較例2において、膜の評価は以下の方法で行った。これらの例では円盤状の二酸化炭素濃縮膜を用いた。
〔Evaluation methods〕
In Example 1, Example 2, Comparative Example 1 and Comparative Example 2, the film was evaluated by the following method. In these examples, a disk-shaped carbon dioxide enriched membrane was used.

使用した評価装置の概略を図2に示す。二酸化炭素濃縮膜14を評価用のセル13に取り付けた。このセルは、サンプリングライン12から混合ガスを供給し、非透過ガスライン17から非透過ガス19が排出され、透過ガスライン18から透過ガス20が排出されるように構成されている。非透過ガスラインには非透過ガス圧力表示計15が接続され、透過ガスラインには透過ガス圧力表示計16が接続されている。サンプリングバルブ21を切り替えることにより、サンプリングライン22を経て透過ガスをガス組成分析計23に導くことができるようになっている。   An outline of the evaluation apparatus used is shown in FIG. The carbon dioxide enriched membrane 14 was attached to the cell 13 for evaluation. This cell is configured such that a mixed gas is supplied from the sampling line 12, the non-permeate gas 19 is discharged from the non-permeate gas line 17, and the permeate gas 20 is discharged from the permeate gas line 18. A non-permeate gas pressure indicator 15 is connected to the non-permeate gas line, and a permeate gas pressure indicator 16 is connected to the permeate gas line. By switching the sampling valve 21, the permeated gas can be guided to the gas composition analyzer 23 via the sampling line 22.

評価ガス11として水素/CO2/CO/メタン=70/20/5/5(モル比)の混合ガスを、ガス流量100ml/分で、サンプリングライン12に供給した。このとき、非透過ガスの圧力(P1)を0.98MPa−Gに、透過ガス20の圧力(P2)を0.20MPa−Gに設定し、二酸化炭素濃縮膜の温度を80℃または300℃に設定した。評価ガスの温度は二酸化炭素濃縮膜の温度と同じにした。透過ガスのCO2濃度をガス組成分析装置にて分析した。 A mixed gas of hydrogen / CO 2 / CO / methane = 70/20/5/5 (molar ratio) was supplied to the sampling line 12 as the evaluation gas 11 at a gas flow rate of 100 ml / min. At this time, the pressure (P1) of the non-permeating gas is set to 0.98 MPa-G, the pressure (P2) of the permeating gas 20 is set to 0.20 MPa-G, and the temperature of the carbon dioxide enriched membrane is set to 80 ° C. or 300 ° C. Set. The temperature of the evaluation gas was the same as the temperature of the carbon dioxide enriched membrane. The CO 2 concentration of the permeated gas was analyzed with a gas composition analyzer.

なお、圧力単位における「G」は、ゲージ圧を意味する。   Note that “G” in the pressure unit means a gauge pressure.

実施例3および実施例4において、膜の評価は以下の方法で行った。これらの例では、チューブ状(中空円筒状)の二酸化炭素濃縮膜を用いた。   In Examples 3 and 4, the film was evaluated by the following method. In these examples, a tubular (hollow cylindrical) carbon dioxide enriched membrane was used.

使用した評価装置の概略を図3に示す。チューブ状の二酸化炭素濃縮膜24を、円筒状の評価ケース26の中に通し、評価ケースと二酸化炭素濃縮膜との間をガラスシール25によって封止した。非透過ガス圧力表示計15がチューブ状二酸化炭素濃縮膜の内部に接続され、非透過ガス19が二酸化炭素濃縮膜の内部から排出される。二酸化炭素濃縮膜を透過した透過ガス20は、評価ケースの内部から排出される。透過ガスの出口には透過ガス圧力表示計16が接続される。透過ガスを、サンプリングバルブ21、サンプリングライン22を経て、ガス組成分析計23に導くことができるようになっている。   An outline of the evaluation apparatus used is shown in FIG. The tube-shaped carbon dioxide concentration membrane 24 was passed through a cylindrical evaluation case 26 and the space between the evaluation case and the carbon dioxide concentration membrane was sealed with a glass seal 25. A non-permeating gas pressure indicator 15 is connected to the inside of the tubular carbon dioxide concentrating membrane, and a non-permeating gas 19 is discharged from the carbon dioxide concentrating membrane. The permeated gas 20 that has permeated the carbon dioxide enriched membrane is discharged from the inside of the evaluation case. A permeate gas pressure indicator 16 is connected to the outlet of the permeate gas. The permeated gas can be led to the gas composition analyzer 23 through the sampling valve 21 and the sampling line 22.

評価ガスとして水素/CO2/CO/メタン=70/20/5/5(モル比)の混合ガスを、ガス流量100ml/分で、チューブ状二酸化炭素濃縮膜の内側に供給した。このとき、非透過ガス圧力(P1)を0.98MPa−Gに、透過ガス圧力(P2)を0.20MPa−Gに設定し、二酸化炭素濃縮膜の温度を80℃または300℃に設定した。評価ガスの温度は二酸化炭素濃縮膜の温度と同じにした。透過ガスのCO2濃度をガス組成分析装置にて分析した。 As an evaluation gas, a mixed gas of hydrogen / CO 2 / CO / methane = 70/20/5/5 (molar ratio) was supplied to the inside of the tubular carbon dioxide enriched membrane at a gas flow rate of 100 ml / min. At this time, the non-permeate gas pressure (P1) was set to 0.98 MPa-G, the permeate gas pressure (P2) was set to 0.20 MPa-G, and the temperature of the carbon dioxide enriched membrane was set to 80 ° C. or 300 ° C. The temperature of the evaluation gas was the same as the temperature of the carbon dioxide enriched membrane. The CO 2 concentration of the permeated gas was analyzed with a gas composition analyzer.

〔実施例1〕
膜厚50μm、直径47mm、細孔径5μmの親水性銀メンブレンフィルター(Sterlitech製)を無機多孔質支持体(円盤状)として、これをp−アミノ安息香酸を1モル%溶解させたイオン液体(関東化学(株)製、アリルエチルイミダゾリウム ビス(トリフルオロメチルスルホニル)イミド)中に浸して多孔質支持体にイオン液体を含浸させ、液膜を得た。
[Example 1]
A hydrophilic silver membrane filter (made by Sterlitech) having a film thickness of 50 μm, a diameter of 47 mm, and a pore diameter of 5 μm is used as an inorganic porous support (disc shape), and this is an ionic liquid in which 1 mol% of p-aminobenzoic acid is dissolved (Kanto). A porous membrane was impregnated with an ionic liquid by immersion in allylethylimidazolium bis (trifluoromethylsulfonyl) imide (manufactured by Chemical Co., Ltd.) to obtain a liquid film.

膜厚20μm、直径50mmのポリパラトリメチルシリルジフェニルアセチレン(Macromolecules 2005,38,4096−4102に記載される方法によって製造した)を封止膜として上記液膜の両面にそれぞれ設け、二酸化炭素濃縮液膜を得た。   A polyparatrimethylsilyldiphenylacetylene (manufactured by the method described in Macromolecules 2005, 38, 4096-4102) having a film thickness of 20 μm and a diameter of 50 mm was provided on both sides of the liquid film as a sealing film, respectively, Obtained.

この二酸化炭素濃縮膜を、前述の評価方法に従って評価した。その結果を表1に示す。   This carbon dioxide enriched membrane was evaluated according to the evaluation method described above. The results are shown in Table 1.

〔実施例2〕
膜厚50μm、直径47mm、細孔径5μmの親水性銀メンブレンフィルター(Sterlitech製)を無機多孔質支持体(円盤状)として、これにアミノ基を有するイオン液体(N−アミノプロピル−3−ブチルイミダゾリウムテトラフルオロボレート(J.Am.Chem.Soc.124(2002)926−92)に記載される方法によって製造した)を含浸させ液膜を得た。
[Example 2]
A hydrophilic silver membrane filter (made by Sterlitech) having a film thickness of 50 μm, a diameter of 47 mm, and a pore diameter of 5 μm is used as an inorganic porous support (disc-shaped), and an ionic liquid (N-aminopropyl-3-butylimidazo) having an amino group thereon. A liquid film was obtained by impregnating with lithium tetrafluoroborate (produced by the method described in J. Am. Chem. Soc. 124 (2002) 926-92).

膜厚20μm、直径50mmのポリパラトリメチルシリルジフェニルアセチレン(Macromolecules 2005,38,4096−4102に記載される方法によって製造した)を封止膜として上記液膜の両面にそれぞれ設け、二酸化炭素濃縮膜を得た。   A polyparatrimethylsilyldiphenylacetylene having a thickness of 20 μm and a diameter of 50 mm (manufactured by the method described in Macromolecules 2005, 38, 4096-4102) was provided on both sides of the liquid film as a sealing film to obtain a carbon dioxide concentrated film It was.

この二酸化炭素濃縮膜を、前述の評価方法に従って評価した。その結果を表1に示す。   This carbon dioxide enriched membrane was evaluated according to the evaluation method described above. The results are shown in Table 1.

〔実施例3〕
外径10mm、内径7mm、長さ50mm、細孔径0.1μmの円筒形のアルミナチューブ(SPGテクノ(株)製、商品名:SPG膜)に、1規定水酸化カリウム水溶液を用いてIncipient Wetness法で(Pore Filling法などでもよい)カリウムを含浸させ担持させた。これを、400℃×1時間焼成して多孔質支持体を得た。
Example 3
Incipient wetness method using 1N potassium hydroxide aqueous solution on cylindrical alumina tube (SPG Techno Co., Ltd., trade name: SPG membrane) having an outer diameter of 10 mm, inner diameter of 7 mm, length of 50 mm, and pore diameter of 0.1 μm. (Or may be the Pore Filling method) and impregnated with potassium. This was fired at 400 ° C. for 1 hour to obtain a porous support.

このチューブ状多孔質支持体の中心部(長さ40mm)の内壁と外壁にそれぞれ、封止膜としてAdv. Mater. 2008,20,729−732に記載の手法によってSAPO34のゼオライト膜を形成した。ゼオライト膜の膜厚は走査型電子顕微鏡で測定したところ10μmであった。   Adv. As a sealing film on the inner wall and outer wall of the central part (length 40 mm) of the tubular porous support, respectively. Mater. A SAPO34 zeolite membrane was formed by the method described in 2008, 20, 729-732. The thickness of the zeolite membrane was 10 μm as measured with a scanning electron microscope.

その後、チューブ状多孔質支持体の端部から、アミノ基を有するイオン液体(N−アミノプロピル−3−ブチルイミダゾリウムテトラフルオロボレート(J.Am.Chem.Soc.124(2002)926−92に記載される方法によって製造した))を含浸させた。   Thereafter, an ionic liquid having an amino group (N-aminopropyl-3-butylimidazolium tetrafluoroborate (J. Am. Chem. Soc. 124 (2002) 926-92) is formed from the end of the tubular porous support. Impregnated by the method described))).

チューブ状多孔質支持体の両端部10mmをガラスシールし、二酸化炭素濃縮膜を得た。   Both ends 10 mm of the tubular porous support were glass sealed to obtain a carbon dioxide concentrated membrane.

この二酸化炭素濃縮膜を、前述の評価方法に従って評価した。その結果を表1に示す。   This carbon dioxide enriched membrane was evaluated according to the evaluation method described above. The results are shown in Table 1.

〔実施例4〕
外径10mm、内径7mm、長さ50mm、細孔径0.1μmの円筒形のアルミナチューブ(SPGテクノ(株)製、商品名:SPG膜)を多孔質支持体として用いた。
Example 4
A cylindrical alumina tube (manufactured by SPG Techno Co., Ltd., trade name: SPG membrane) having an outer diameter of 10 mm, an inner diameter of 7 mm, a length of 50 mm, and a pore diameter of 0.1 μm was used as the porous support.

このチューブ状支持体の中心部(長さ40mm)の内壁と外壁にそれぞれ、封止膜としてAdv. Mater. 2008,20,729−732に記載の手法によってSAPO34のゼオライト膜を形成した。ゼオライト膜の膜厚は走査型電子顕微鏡で測定したところ10μmであった。   Adv. As a sealing film on the inner wall and the outer wall of the central part (length 40 mm) of this tubular support, respectively. Mater. A SAPO34 zeolite membrane was formed by the method described in 2008, 20, 729-732. The thickness of the zeolite membrane was 10 μm as measured with a scanning electron microscope.

次いで、CO2吸着材としてCu3(Btc)2(Btc=benzenetricarboxylate)(特開2002−204953号公報に記載される方法によって製造した)を0.1質量%添加したイオン液体(関東化学(株)製、アリルエチルイミダゾリウムビス(トリフルオロメチルスルホニル)イミドを、チューブ状多孔質支持体に含浸させた後、ゲル化させ(Macromolecules 2005,38,2037−2039に記載される方法に従ってゲル化した)、両端部10mmをガラスシールして二酸化炭素濃縮膜を得た。 Next, an ionic liquid (Kanto Chemical Co., Ltd.) added with 0.1% by mass of Cu 3 (Btc) 2 (Btc = benzenetic boxylate) (produced by the method described in JP-A-2002-204953) as a CO 2 adsorbent. ), Allylethylimidazolium bis (trifluoromethylsulfonyl) imide was impregnated into a tubular porous support, and then gelled (gelled according to the method described in Macromolecules 2005, 38, 2037-2039). ), 10 mm at both ends were glass-sealed to obtain a carbon dioxide concentrated membrane.

この二酸化炭素濃縮膜を、前述の評価方法に従って評価した。その結果を表1に示す。   This carbon dioxide enriched membrane was evaluated according to the evaluation method described above. The results are shown in Table 1.

〔比較例1〕
膜厚100μm、直径47mm、細孔径0.1μmのポリフッ化ビニリデンからなる親水性メンブレンフィルター(日本ミリポア(株)製)を多孔質支持体(円盤状)として用いた。
[Comparative Example 1]
A hydrophilic membrane filter (manufactured by Nihon Millipore Co., Ltd.) made of polyvinylidene fluoride having a film thickness of 100 μm, a diameter of 47 mm, and a pore diameter of 0.1 μm was used as a porous support (disc shape).

この多孔質支持体上に、Ind.Eng.Chem.Res.2007,46,2272−2279に記載されているようにポリビニルアルコール/水酸化カリウム/2−アミノ酪酸カリウム塩/ポリアリルアミン=40/20/20/20(重量%)からなるゲルをキャストし(これによりゲルが多孔質支持体にしみ込む)、120℃×6h乾燥させて、二酸化炭素濃縮膜を得た。   On this porous support, Ind. Eng. Chem. Res. As described in 2007, 46, 2272-2279, a gel composed of polyvinyl alcohol / potassium hydroxide / 2-aminobutyric acid potassium salt / polyallylamine = 40/20/20/20 (% by weight) was cast (this) The gel soaked into the porous support) and dried at 120 ° C. for 6 hours to obtain a carbon dioxide concentrated membrane.

この二酸化炭素濃縮膜を、前述の評価方法に従って評価した。その結果を表1に示す。なお、本例においては、封止膜は存在しない。   This carbon dioxide enriched membrane was evaluated according to the evaluation method described above. The results are shown in Table 1. In this example, there is no sealing film.

〔比較例2〕
膜厚100μm、直径47mm、細孔径0.1μmのポリフッ化ビニリデンからなる親水性メンブレンフィルター(日本ミリポア(株)製)を多孔質支持体(円盤状)として用いた。
[Comparative Example 2]
A hydrophilic membrane filter (manufactured by Nihon Millipore Co., Ltd.) made of polyvinylidene fluoride having a film thickness of 100 μm, a diameter of 47 mm, and a pore diameter of 0.1 μm was used as a porous support (disc shape).

この多孔質支持体に、アミノ基を有するイオン液体(N−アミノプロピル−3−ブチルイミダゾリウムテトラフルオロボレート(J.Am.Chem.Soc.124(2002)926−92に記載される方法によって製造した))を含浸させて液膜を得た。   This porous support was prepared by an ionic liquid having an amino group (N-aminopropyl-3-butylimidazolium tetrafluoroborate (J. Am. Chem. Soc. 124 (2002) 926-92). ))) Was impregnated to obtain a liquid film.

エチルセルロース膜(J.Mem. Sci.,Vol.312(2008),207−216)を封止膜として上記液膜の両面にそれぞれ設け、二酸化炭素濃縮膜を得た。   An ethyl cellulose membrane (J. Mem. Sci., Vol. 312 (2008), 207-216) was provided on both sides of the liquid membrane as a sealing membrane to obtain a carbon dioxide concentrated membrane.

この二酸化炭素濃縮膜を、前述の評価方法に従って評価した。その結果を表1に示す。   This carbon dioxide enriched membrane was evaluated according to the evaluation method described above. The results are shown in Table 1.

Figure 2010036123
Figure 2010036123

本発明は、例えば、製油所の水素製造装置やIGCCで得られる、二酸化炭素と水素を含む混合ガス中の二酸化炭素を濃縮する際に好適に用いられる。濃縮した二酸化炭素は、例えば圧縮液化して地中に隔離することが考えられる。   The present invention is suitably used, for example, when concentrating carbon dioxide in a mixed gas containing carbon dioxide and hydrogen obtained by a refinery hydrogen production apparatus or IGCC. It is conceivable that the concentrated carbon dioxide is, for example, compressed into a liquid and sequestered in the ground.

二酸化炭素濃縮膜の一例を示す模式図である。It is a schematic diagram which shows an example of a carbon dioxide concentration membrane. 二酸化炭素濃縮膜評価装置を示す模式図である。It is a schematic diagram which shows a carbon dioxide concentration film | membrane evaluation apparatus. 別の二酸化炭素濃縮膜評価装置を示す模式図である。It is a schematic diagram which shows another carbon dioxide concentration film | membrane evaluation apparatus.

符号の説明Explanation of symbols

1 液膜
1a 無機多孔質支持体
1b 添加物
1c イオン液体
2 封止膜
3 疎水膜
11 評価ガス
12 評価ガスライン
13 セル
14 二酸化炭素濃縮膜(円盤状)
15 非透過ガス圧力表示計
16 透過ガス圧力表示計
17 非透過ガスライン
18 透過ガスライン
19 非透過ガス
20 透過ガス
21 サンプリングバルブ
22 サンプリングライン
23 ガス組成分析計
24 二酸化炭素濃縮膜(チューブ状)
25 ガラスシール
26 評価ケース
DESCRIPTION OF SYMBOLS 1 Liquid membrane 1a Inorganic porous support 1b Additive 1c Ionic liquid 2 Sealing membrane 3 Hydrophobic membrane 11 Evaluation gas 12 Evaluation gas line 13 Cell 14 Carbon dioxide concentration membrane (disc shape)
DESCRIPTION OF SYMBOLS 15 Non-permeate gas pressure indicator 16 Permeate gas pressure indicator 17 Non-permeate gas line 18 Permeate gas line 19 Non-permeate gas 20 Permeate gas 21 Sampling valve 22 Sampling line 23 Gas composition analyzer 24 Carbon dioxide concentration membrane (tube shape)
25 Glass seal 26 Evaluation case

Claims (5)

無機多孔質支持体中に5%熱重量減少温度が250℃以上であるイオン液体またはイオン液体を重合させたポリマーゲルを含んだ、液膜と、
イオン液体を透過させない、5%熱重量減少温度が250℃以上の膜である封止膜と
を有し、二層の封止膜によって液膜が挟まれた多層構造を有する、二酸化炭素濃縮膜。
A liquid film comprising an ionic liquid or a polymer gel obtained by polymerizing an ionic liquid having a 5% thermal weight loss temperature of 250 ° C. or higher in an inorganic porous support;
A carbon dioxide enriched membrane having a multilayer structure in which a liquid film is sandwiched between two layers of sealing films, the sealing film being a film having a 5% thermal weight loss temperature of 250 ° C. or higher that does not transmit ionic liquid .
前記液膜が、10以上の二酸化炭素/水素の分離係数を有する請求項1記載の二酸化炭素濃縮膜。   The carbon dioxide-enriched membrane according to claim 1, wherein the liquid membrane has a carbon dioxide / hydrogen separation factor of 10 or more. 前記封止膜が、1.5以上の二酸化炭素/メタンの分離係数を有する請求項1または2記載の二酸化炭素濃縮膜。   The carbon dioxide concentration membrane according to claim 1 or 2, wherein the sealing membrane has a carbon dioxide / methane separation factor of 1.5 or more. 前記封止膜が、1.5×10-6mol−CO2/m2/s/kPa以上の二酸化炭素透過度を有する請求項1〜3の何れか一項記載の二酸化炭素濃縮膜。 The sealing film is, 1.5 × 10 -6 mol-CO 2 / m 2 / s / kPa or more according to one of the carbon dioxide concentration membrane of claim 1 having a carbon dioxide permeability. 圧力が0.6MPa以上3.5MPa以下で温度が200℃以上600℃以下の、少なくとも二酸化炭素と水素を含む混合ガスから、請求項1〜4の何れか一項記載の二酸化炭素濃縮膜を用いて、二酸化炭素が濃縮されたガスを得る二酸化炭素濃縮方法。   The carbon dioxide-enriched membrane according to any one of claims 1 to 4 is used from a mixed gas containing at least carbon dioxide and hydrogen at a pressure of 0.6 MPa to 3.5 MPa and a temperature of 200 ° C to 600 ° C. A carbon dioxide enrichment method for obtaining a gas enriched with carbon dioxide.
JP2008202641A 2008-08-06 2008-08-06 Carbon dioxide concentration membrane and carbon dioxide concentration method Active JP5078798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008202641A JP5078798B2 (en) 2008-08-06 2008-08-06 Carbon dioxide concentration membrane and carbon dioxide concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202641A JP5078798B2 (en) 2008-08-06 2008-08-06 Carbon dioxide concentration membrane and carbon dioxide concentration method

Publications (2)

Publication Number Publication Date
JP2010036123A true JP2010036123A (en) 2010-02-18
JP5078798B2 JP5078798B2 (en) 2012-11-21

Family

ID=42009216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202641A Active JP5078798B2 (en) 2008-08-06 2008-08-06 Carbon dioxide concentration membrane and carbon dioxide concentration method

Country Status (1)

Country Link
JP (1) JP5078798B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101063697B1 (en) 2011-05-25 2011-09-07 한국가스공사연구개발원 Membrane for carbon dioxide/hydrogen separation in dme preparation process
WO2011114676A1 (en) * 2010-03-16 2011-09-22 日野自動車株式会社 Fuel tank for vehicle
WO2012086836A1 (en) * 2010-12-24 2012-06-28 株式会社ルネッサンス・エナジー・リサーチ Gas separation device, membrane reactor, and hydrogen production device
WO2012096114A1 (en) * 2011-01-12 2012-07-19 富士フイルム株式会社 Method and apparatus for manufacturing complex for carbon dioxide separation
CN102718185A (en) * 2012-07-20 2012-10-10 河南科技大学 Separation device and separation method of hydrogen gas in hydrogen production through fermentation
JP2012210589A (en) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp Gas separation membrane
JP2012245505A (en) * 2011-05-31 2012-12-13 Jx Nippon Oil & Energy Corp Gas separation gel membrane
WO2014038187A1 (en) 2012-09-04 2014-03-13 日東電工株式会社 Separation membrane, composite separation membrane and process for producing separation membrane
JP2016197627A (en) * 2015-04-02 2016-11-24 Necトーキン株式会社 Solid electrolytic capacitor
JP2020032325A (en) * 2018-08-28 2020-03-05 Jfeエンジニアリング株式会社 Selective combined gas permeable membrane with metal-organic framework layer and method for manufacturing the same
CN110950339A (en) * 2019-12-31 2020-04-03 中船重工(邯郸)派瑞特种气体有限公司 Preparation method and preparation device of high-purity carbon dioxide
CN114425246A (en) * 2020-09-28 2022-05-03 中国石油化工股份有限公司 Ionic liquid supported composite membrane and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281105A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Control method of ionic liquid using nano pore
JP2007105683A (en) * 2005-10-17 2007-04-26 Ngk Insulators Ltd Method and apparatus for recovering gas
JP2008036463A (en) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Facilitated transport membrane for carbon dioxide and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281105A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Control method of ionic liquid using nano pore
JP2007105683A (en) * 2005-10-17 2007-04-26 Ngk Insulators Ltd Method and apparatus for recovering gas
JP2008036463A (en) * 2006-08-01 2008-02-21 Renaissance Energy Research:Kk Facilitated transport membrane for carbon dioxide and its manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114676A1 (en) * 2010-03-16 2011-09-22 日野自動車株式会社 Fuel tank for vehicle
US8685149B2 (en) 2010-03-16 2014-04-01 Hino Motors, Ltd. Fuel tank for vehicle
KR101330336B1 (en) 2010-12-24 2013-11-15 가부시키가이샤 르네상스 에너지 리서치 Gas separation device, membrane reactor, hydrogen production device, gas separation method, hydrogen production method
WO2012086836A1 (en) * 2010-12-24 2012-06-28 株式会社ルネッサンス・エナジー・リサーチ Gas separation device, membrane reactor, and hydrogen production device
US8784531B2 (en) 2010-12-24 2014-07-22 Renaissance Energy Research Corporation Gas separation apparatus, membrane reactor, and hydrogen production apparatus
AU2011345735B2 (en) * 2010-12-24 2016-03-31 Renaissance Energy Research Corporation Gas separation device, membrane reactor, and hydrogen production device
JP5555332B2 (en) * 2010-12-24 2014-07-23 株式会社ルネッサンス・エナジー・リサーチ Gas separation device, membrane reactor, hydrogen production device
US9242206B2 (en) 2010-12-24 2016-01-26 Renaissance Energy Research Corporation Gas separation apparatus, membrane reactor, and hydrogen production apparatus
WO2012096114A1 (en) * 2011-01-12 2012-07-19 富士フイルム株式会社 Method and apparatus for manufacturing complex for carbon dioxide separation
CN103313777A (en) * 2011-01-12 2013-09-18 富士胶片株式会社 Method and apparatus for manufacturing complex for carbon dioxide separation
US8916238B2 (en) 2011-01-12 2014-12-23 Fujifilm Corporation Method and apparatus of producing composite for carbon dioxide separation
JP2012210589A (en) * 2011-03-31 2012-11-01 Jx Nippon Oil & Energy Corp Gas separation membrane
KR101063697B1 (en) 2011-05-25 2011-09-07 한국가스공사연구개발원 Membrane for carbon dioxide/hydrogen separation in dme preparation process
JP2012245505A (en) * 2011-05-31 2012-12-13 Jx Nippon Oil & Energy Corp Gas separation gel membrane
CN102718185B (en) * 2012-07-20 2014-03-26 河南科技大学 Separation device and separation method of hydrogen gas in hydrogen production through fermentation
CN102718185A (en) * 2012-07-20 2012-10-10 河南科技大学 Separation device and separation method of hydrogen gas in hydrogen production through fermentation
JP2014046305A (en) * 2012-09-04 2014-03-17 Nitto Denko Corp Separation membrane, composite separation membrane and process for producing separation membrane
WO2014038187A1 (en) 2012-09-04 2014-03-13 日東電工株式会社 Separation membrane, composite separation membrane and process for producing separation membrane
JP2016197627A (en) * 2015-04-02 2016-11-24 Necトーキン株式会社 Solid electrolytic capacitor
JP2020032325A (en) * 2018-08-28 2020-03-05 Jfeエンジニアリング株式会社 Selective combined gas permeable membrane with metal-organic framework layer and method for manufacturing the same
JP7012288B2 (en) 2018-08-28 2022-01-28 Jfeエンジニアリング株式会社 A selective composite gas permeable membrane having a metal-organic framework layer and a method for producing the same.
CN110950339A (en) * 2019-12-31 2020-04-03 中船重工(邯郸)派瑞特种气体有限公司 Preparation method and preparation device of high-purity carbon dioxide
CN114425246A (en) * 2020-09-28 2022-05-03 中国石油化工股份有限公司 Ionic liquid supported composite membrane and preparation method and application thereof
CN114425246B (en) * 2020-09-28 2023-04-11 中国石油化工股份有限公司 Ionic liquid supported composite membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP5078798B2 (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP5078798B2 (en) Carbon dioxide concentration membrane and carbon dioxide concentration method
Li et al. Inorganic microporous membranes for H2 and CO2 separation—Review of experimental and modeling progress
Bae et al. A high‐performance gas‐separation membrane containing submicrometer‐sized metal–organic framework crystals
Gong et al. ZIF-8-based membranes for carbon dioxide capture and separation
Sorribas et al. Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural-and bio-gas upgrading
Basu et al. Asymmetric Matrimid®/[Cu3 (BTC) 2] mixed-matrix membranes for gas separations
Gascon et al. Practical approach to zeolitic membranes and coatings: state of the art, opportunities, barriers, and future perspectives
Albo et al. Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation
Basu et al. MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations
Zhang et al. Current status and development of membranes for CO2/CH4 separation: A review
Close et al. CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance
Nordin et al. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation
Hong et al. Healing of microdefects in SSZ-13 membranes via filling with dye molecules and its effect on dry and wet CO2 separations
Tawalbeh et al. Highly permeable tubular silicalite-1 membranes for CO2 capture
Pimentel et al. Enabling kinetic light hydrocarbon separation via crystal size engineering of ZIF-8
Kim et al. Functionalized mesoporous silica membranes for CO2 separation applications
Cerón et al. Surpassing the conventional limitations of CO2 separation membranes with hydroxide/ceramic dual-phase membranes
Lu et al. Asymmetric thin samarium doped cerium oxide–carbonate dual-phase membrane for carbon dioxide separation
Sublet et al. Technico‐economical assessment of MFI‐type zeolite membranes for CO2 capture from postcombustion flue gases
Raza et al. Development of high performance amine functionalized zeolitic imidazolate framework (ZIF‐8)/cellulose triacetate mixed matrix membranes for CO2/CH4 separation
Rasheed et al. Covalent organic frameworks‐based membranes as promising modalities from preparation to separation applications: an overview
Pizzoccaro-Zilamy et al. Initial steps toward the development of grafted ionic liquid membranes for the selective transport of CO2
Silva et al. Encapsulated amino acid-based ionic liquid for CO2 separation membranes
KR101650236B1 (en) Facilitated transport membranes for carbon dioxide separation using ionic liquids in nanoporous materials
Caro Supported zeolite and mof molecular sieve membranes: Preparation, characterization, application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250