[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010035372A - Emergency power supply circuit - Google Patents

Emergency power supply circuit Download PDF

Info

Publication number
JP2010035372A
JP2010035372A JP2008196577A JP2008196577A JP2010035372A JP 2010035372 A JP2010035372 A JP 2010035372A JP 2008196577 A JP2008196577 A JP 2008196577A JP 2008196577 A JP2008196577 A JP 2008196577A JP 2010035372 A JP2010035372 A JP 2010035372A
Authority
JP
Japan
Prior art keywords
voltage
power supply
power
power converter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008196577A
Other languages
Japanese (ja)
Other versions
JP5347362B2 (en
Inventor
Hiroyuki Matsuo
浩之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2008196577A priority Critical patent/JP5347362B2/en
Publication of JP2010035372A publication Critical patent/JP2010035372A/en
Application granted granted Critical
Publication of JP5347362B2 publication Critical patent/JP5347362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emergency power supply circuit that attains device size reduction and easily outputs a variable DC voltage and a variable AC voltage, without having to add transformer and a commutator. <P>SOLUTION: Energy accumulated in a storage battery 7 is supplied to a DC/DC converter 6; the DC/DC converter 6 ensures a DC voltage between DC busbars by a step-up action so as to input the energy to a full-bridge inverter 4 as a DC voltage; the full-bridge inverter 4 converts the DC voltage into an AC voltage so as to output the AC voltage to the AC output side. When a DC voltage, in place of the output of the AC voltage, is outputted to the DC output side, a DC voltage stepped down by utilizing an upper arm (a semiconductor element T<SB>3</SB>, in an illustrated example) of the full-bridge inverter 4 and a reactor L1 is outputted to the DC output side via a contact point of a switching relay 3 switched from the AC output side to the DC output side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、交流電源および直流電源を切換えて使用するエレベータ等の非常用電源において、交流及び直流の出力変換器を共通使用して装置の小型化を図る非常用電源回路に関する。   The present invention relates to an emergency power supply circuit for reducing the size of an apparatus using an AC and DC output converter in common in an emergency power supply such as an elevator that switches between an AC power supply and a DC power supply.

従来、エレベータの非常用電源は、停電時に直流から交流に変換してエレベータの継続運転が可能となるようにするために、エレベータの制御機器をバックアップする交流無停電電源装置が接続されるものが知られている(特許文献1参照)。   Conventionally, an emergency power supply for an elevator is connected to an AC uninterruptible power supply that backs up the control equipment of the elevator in order to convert the direct current to alternating current during a power failure so that the elevator can be continuously operated. It is known (see Patent Document 1).

また従来、エレベータの非常用電源において、緊急時に手動でブレーキを制御可能にするために、交流電源のみならず直流電源を供給できるようにするために、バッテリにDC/DCコンバータを接続して直流電源を確保するようにしている(特許文献2参照)。   Conventionally, in an emergency emergency power supply, a DC / DC converter is connected to the battery in order to be able to supply DC power as well as AC power so that the brake can be controlled manually in an emergency. A power supply is ensured (see Patent Document 2).

このように従来のエレベータの非常用電源においては、非常時に、エレベータの制御機器をバックアップするのに交流出力が、また手動でブレーキを制御するのに直流電圧がそれぞれ必要である。非常時に直流電圧を得る場合、従来は、交流出力が可能なバックアップ電源の出力にトランスで電圧変換を行い、その出力を整流して直流電圧を得る方法、または、交流出力を直接整流した後、DC/DC変換器を用いて直流電圧に変換する方法、または、交流出力電圧を変化させて整流後の電圧を調整する方法で直流電圧を確保する方法、などが採用される場合が多い。
特開平07-232872号公報 特開2002-171783号公報
Thus, in an emergency power supply for a conventional elevator, an AC output is required to back up an elevator control device and a DC voltage is required to manually control a brake in an emergency. In the case of obtaining DC voltage in an emergency, the conventional method is to convert the output to a backup power supply capable of AC output with a transformer and rectify the output to obtain DC voltage, or after directly rectifying the AC output, In many cases, a method of converting to a DC voltage using a DC / DC converter or a method of securing a DC voltage by changing an AC output voltage and adjusting a voltage after rectification is employed.
JP 07-232872 A JP 2002-171783 A

直流電圧を得る場合、上記の従来方法では、整流器やトランスといった部品が必要となり、装置が大型化または高価なものになる。またトランスの場合、電圧を変えたい時はトランスの再設計を実施しなければならず、容易に変更することができない。   In the case of obtaining a DC voltage, the conventional method requires components such as a rectifier and a transformer, and the apparatus becomes large or expensive. In the case of a transformer, when it is desired to change the voltage, the transformer must be redesigned and cannot be easily changed.

またエレベータ用の制御機器の非常時のバックアップ電源として、制御機器に交流電圧ならびに直流電圧を出力できるようにする必要がある。しかし、制御機器を非常時にバックアップしている交流電圧と手動ブレーキ開放用の直流電圧が必ずしも同時に出力できるようにする必要はない。   Moreover, it is necessary to be able to output an AC voltage and a DC voltage to the control device as an emergency backup power source for the elevator control device. However, it is not always necessary to simultaneously output the AC voltage backing up the control device and the DC voltage for releasing the manual brake.

そこで本発明の目的は、上記のようなトランスおよび整流器を追加せずに容易に可変の直流電圧と交流電圧を出力することができ、装置の小型化を図ることができる非常用電源回路を提供することにある。   Accordingly, an object of the present invention is to provide an emergency power supply circuit that can easily output variable DC voltage and AC voltage without adding a transformer and a rectifier as described above, and can reduce the size of the apparatus. There is to do.

上記課題を解決するために本発明は、蓄電池からの直流電力を所望電圧の直流電力に変換する第1電力変換器と、この第1電力変換器に平滑コンデンサを介して接続された第2電力変換器とからなる非常用電源回路を、交流電源と負荷との電源ラインに接続し、常時は前記交流電源から前記負荷へ電力を供給するとともに前記第2電力変換器を介して前記蓄電池を充電する非常用電源回路において、前記第2電力変換器は、4つの半導体素子からなるフルブリッジ回路と少なくとも1つのリアクトルとから構成され、前記第2電力変換器の出力を交流または直流に切換える切換リレー回路を設け、前記第2電力変換器が交流を出力する場合には、4つの半導体素子を制御して交流電圧を出力し、前記第2電力変換器が直流を出力する場合には、少なくとも1相分の上アームの半導体素子を制御して直流電圧を出力する、ことを特徴とする。   In order to solve the above problems, the present invention provides a first power converter that converts DC power from a storage battery into DC power of a desired voltage, and second power connected to the first power converter via a smoothing capacitor. An emergency power supply circuit composed of a converter is connected to a power supply line of an AC power supply and a load, and normally supplies power from the AC power supply to the load and charges the storage battery via the second power converter. In the emergency power supply circuit, the second power converter includes a full-bridge circuit composed of four semiconductor elements and at least one reactor, and a switching relay for switching the output of the second power converter to AC or DC When a circuit is provided and the second power converter outputs an alternating current, four semiconductor elements are controlled to output an alternating voltage, and when the second power converter outputs a direct current And outputs a DC voltage to control the semiconductor elements of the upper arm of at least one phase, characterized in that.

また、蓄電池からの直流電力を所望電圧の直流電力に変換する第1電力変換器と、この第1電力変換器に平滑コンデンサを介して接続された第2電力変換器とからなる非常用電源回路を、交流電源と負荷との電源ラインに接続し、常時は前記交流電源から前記負荷へ電力を供給するとともに前記第2電力変換器を介して前記蓄電池を充電する非常用電源回路において、前記第2電力変換器は、2つの半導体素子からなるハーフブリッジ回路と1つのリアクトルとから構成され、前記第2電力変換器の出力を交流または直流に切換える切換リレー回路を設け、前記第2電力変換器が交流を出力する場合には、2つの半導体素子を制御して交流電圧を出力し、前記第2電力変換器が直流を出力する場合には、上アームの半導体素子を制御して直流電圧を出力することを特徴とする。   An emergency power circuit comprising a first power converter that converts DC power from the storage battery into DC power having a desired voltage, and a second power converter connected to the first power converter via a smoothing capacitor. Is connected to a power supply line of an alternating current power source and a load, and supplies power to the load from the alternating current power source and charges the storage battery via the second power converter at all times. The two power converter includes a half bridge circuit composed of two semiconductor elements and one reactor, and includes a switching relay circuit that switches the output of the second power converter to alternating current or direct current, and the second power converter Controls the two semiconductor elements to output an alternating voltage, and when the second power converter outputs a direct current, controls the upper arm semiconductor element to control the direct current. And outputs the pressure.

本発明によれば、交流または直流を出力する場合に、第2電力変換器(インバータおよびリアクトル)を共通で使用することが可能となり、交流出力および直流出力が同時に必要でない、例えばエレベータ用の制御機器の非常時のバックアップ電源において、装置全体の小型化を実現することが可能となる。   According to the present invention, when outputting AC or DC, the second power converter (inverter and reactor) can be used in common, and AC output and DC output are not required at the same time. For example, control for an elevator It is possible to reduce the size of the entire apparatus in a backup power supply in case of an emergency of the device.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明の実施形態に係る非常用電源回路の構成を示すブロック図である。図1において、1は交流入力電源、2は入力電源異常時に交流入力電源1を切り離すリレー(入力リレー)、3は出力を交流(AC)側又は直流(DC)側に切り換える切換えリレーである。4は上下アームを構成する上側の半導体素子Tと下側の半導体素子Tの直列回路及び、上側の半導体素子Tと下側の半導体素子Tの直列回路を有し、且つこれら2つの直列回路が並列接続されたフルブリッジ構成のインバータ(第2電力変換器)、5は直流母線間に配設された平滑コンデンサ、6は双方向DC/DCコンバータ(第1電力変換器)、7は蓄電池であり、これらの構成要素によって非常用電源回路が構成されている。フルブリッジインバータ4の半導体素子Tと半導体素子Tの直列回路の接続点は交流入力電源1の帰線に接続され、半導体素子Tと半導体素子Tの直列回路の接続点はリアクトルL1の一端に接続され、リアクトルL1の他端は切換リレー3の可動接点に接続されている。切換リレー3の一方の切換接点は交流入力電源1の正極に接続され、切換リレー3の他方の切換接点はDC出力の正極に接続され、平滑コンデンサ5の負極がDC出力の負極に接続されている。なお、AC出力には例えばエレベータ昇降用の主電動機等の交流負荷に接続され、DC出力には例えば手動ブレーキ等の直流負荷に接続される。図1は本発明の実施形態に係る非常用電源回路を常時商用給電型の無停電電源装置に適用したものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of an emergency power supply circuit according to an embodiment of the present invention. In FIG. 1, 1 is an AC input power source, 2 is a relay (input relay) that disconnects the AC input power source 1 when the input power source is abnormal, and 3 is a switching relay that switches the output to an AC (AC) side or a DC (DC) side. 4 has a series circuit of the upper semiconductor element T 1 and the lower series circuit and the semiconductor element T 2 of the upper semiconductor element T 3 and the lower side of the semiconductor element T 4 constituting the upper and lower arms, and these two Full-bridge inverter (second power converter) in which two series circuits are connected in parallel, 5 is a smoothing capacitor disposed between DC buses, 6 is a bidirectional DC / DC converter (first power converter), Reference numeral 7 denotes a storage battery, and an emergency power supply circuit is constituted by these components. Connection point of the series circuit of the semiconductor element T 1 and the semiconductor element T 2 of the full bridge inverter 4 is connected to the return line of the AC input power supply 1, a connection point of the series circuit of the semiconductor device T 3 and the semiconductor element T 4 reactor L1 The other end of the reactor L <b> 1 is connected to the movable contact of the switching relay 3. One switching contact of the switching relay 3 is connected to the positive electrode of the AC input power supply 1, the other switching contact of the switching relay 3 is connected to the positive electrode of the DC output, and the negative electrode of the smoothing capacitor 5 is connected to the negative electrode of the DC output. Yes. The AC output is connected to an AC load such as a main motor for lifting and lowering the elevator, and the DC output is connected to a DC load such as a manual brake. FIG. 1 shows an emergency power supply circuit according to an embodiment of the present invention applied to a commercial power supply type uninterruptible power supply.

次に図1に示す本発明の実施形態に係る非常用電源回路の動作を説明する。交流入力が正常である時には、交流入力電源1からON(閉)になっている入力リレー2の接点を介して交流(AC)出力側にエネルギーを出力するのと同時にフルブリッジインバータ4の半導体素子T1〜T4に逆並列接続されたダイオードD1〜D4を介して直流母線間に配設された平滑コンデンサ5を充電し、双方向DC/DCコンバータ6を介して蓄電池7を充電する。双方向DC/DCコンバータ6は、2つの半導体素子T,TおよびリアクトルL2により構成され、双方向DC/DCコンバータ6の半導体素子Tを図示せざる制御回路によってオンにし平滑コンデンサ5に充電された直流電圧をリアクトルL2によりエネルギーに変換して蓄積し、次いで半導体素子Tを図示せざる制御回路によってオフにしリアクトルL2に蓄積されたエネルギーを蓄電池7に放出することで蓄電池7を充電する。なおコンデンサ8はリップル吸収用のために用意されたコンデンサである。 Next, the operation of the emergency power supply circuit according to the embodiment of the present invention shown in FIG. 1 will be described. When the AC input is normal, energy is output from the AC input power source 1 to the AC (AC) output side via the contact of the input relay 2 that is ON (closed), and at the same time, the semiconductor element of the full bridge inverter 4 The smoothing capacitor 5 disposed between the DC buses is charged via the diodes D 1 to D 4 connected in reverse parallel to the T 1 to T 4 , and the storage battery 7 is charged via the bidirectional DC / DC converter 6. . Bidirectional DC / DC converter 6 is composed of two semiconductor elements T 5, T 6 and a reactor L2, the smoothing capacitor 5 is turned on by forced control circuit shown semiconductor elements T 5 of the bidirectional DC / DC converter 6 converted and stored charging DC voltage by the reactor L2 to the energy and then charge the battery 7 by releasing energy stored in the reactor L2 is turned off by the semiconductor element T 5 the unshown control circuit to the battery 7 To do. The capacitor 8 is a capacitor prepared for ripple absorption.

交流入力が異常になると、入力リレー2がOFF(開)になり、これにより交流入力電源1から平滑コンデンサ5へのエネルギー供給が途絶するため直流母線間に配設された平滑コンデンサ5の電位は下がっていき、予め定めたある一定電位まで下がると、蓄電池7に蓄積されたエネルギーが双方向DC/DCコンバータ6に供給され、双方向DC/DCコンバータ6ではこのエネルギーを昇圧作用により直流母線間の直流電圧を確保してフルブリッジインバータ4に直流電圧として入力し、フルブリッジインバータ4は直流電圧を交流電圧に変換して交流(AC)出力側に出力する。また交流電圧の出力に代えて直流電圧を直流(DC)出力側に出力する際は、フルブリッジインバータ4の一つのアーム(図示例では半導体素子Tと半導体素子Tの直列回路に節点を持つ)とリアクトルL1を利用して降圧した直流電圧を交流出力側から直流出力側に切り換えられた切換リレー3の接点を介して直流(DC)出力側に出力する。この場合、フルブリッジインバータ4は降圧チョッパ回路として機能するものである。なお降圧チョッパ回路を動作させるための制御回路は図示省略している。 When the AC input becomes abnormal, the input relay 2 is turned off (opened), thereby interrupting the supply of energy from the AC input power source 1 to the smoothing capacitor 5, so that the potential of the smoothing capacitor 5 disposed between the DC buses is When the voltage drops and drops to a predetermined constant potential, the energy stored in the storage battery 7 is supplied to the bidirectional DC / DC converter 6, and the bidirectional DC / DC converter 6 boosts this energy between the DC buses by boosting action. The full-bridge inverter 4 converts the direct-current voltage into an alternating-current voltage and outputs the alternating-current (AC) output side. Also when outputting the DC voltage to current (DC) output instead of the output of the AC voltage, the nodes on one arm (series circuit of the semiconductor device T 3 and the semiconductor element T 4 in the illustrated example of the full bridge inverter 4 And the DC voltage stepped down by using the reactor L1 is output to the direct current (DC) output side through the contact of the switching relay 3 switched from the alternating current output side to the direct current output side. In this case, the full bridge inverter 4 functions as a step-down chopper circuit. A control circuit for operating the step-down chopper circuit is not shown.

切換リレー3を切換えるタイミングは、直流電圧が必要な場合(例えば、手動ブレーキを開放する場合)に図示せざる制御回路がフルブリッジインバータ4の交流電圧を生成している半導体素子の高周波スイッチングパターンを一度停止させ、その後に切換リレー3を図示せざる制御回路からリレー切換え信号を出力して切換える。そしてその後、図示せざる制御回路が直流電圧を生成する半導体素子に対して降圧チョッパ動作のためのスイッチングを行う。なお直流(DC)電圧を出力する場合には、上側の半導体素子(図示例では半導体素子T3)をオン/オフ制御して、このときのオンデューティ比を調整することにより、出力する直流電圧を直流母線間の直流電圧以下の任意の直流電圧にすることが可能である。 The timing for switching the switching relay 3 is a high-frequency switching pattern of a semiconductor element in which a control circuit (not shown) generates an AC voltage of the full-bridge inverter 4 when a DC voltage is required (for example, when a manual brake is released). Once stopped, the switching relay 3 is switched by outputting a relay switching signal from a control circuit (not shown). Thereafter, a control circuit (not shown) performs switching for the step-down chopper operation on the semiconductor element that generates the DC voltage. When outputting a direct current (DC) voltage, the upper semiconductor element (in the illustrated example, the semiconductor element T 3 ) is controlled to be turned on / off, and the on-duty ratio at this time is adjusted to output the direct current voltage. Can be set to an arbitrary DC voltage equal to or lower than the DC voltage between the DC buses.

図2は、本発明の実施形態に係る非常用電源回路において直流出力の容量を増やす場合の具体例を示す図である。図2は、改善を施したフルブリッジインバータ4の構成についてのみ説明し、その余の構成については図1の説明と重複するので省略する。図2においては、フルブリッジインバータ4のもう一方のアーム(図示例では半導体素子Tと半導体素子Tの直列回路に節点を持つ)に別のリアクトルL3を接続し、それに対応して切換リレー3の接点数を増加させている。この構成において、出力する直流電圧の容量を増やす場合、それぞれのアームに接続されている上側の半導体素子(図示例では半導体素子T1,T3)に対して同じ信号が供給されるようそれぞれの半導体素子への入力を制御して、このときのオンデューティ比を調整することにより、出力する直流電圧を直流母線間の直流電圧以下の任意の直流電圧にすることが可能である。このようにリアクトルL3を接続するとともに、それぞれのアームに同じ信号を入力して制御することで、直流電圧の容量を2倍にすることが可能となる。 FIG. 2 is a diagram showing a specific example in the case of increasing the capacity of the DC output in the emergency power supply circuit according to the embodiment of the present invention. FIG. 2 illustrates only the configuration of the improved full-bridge inverter 4, and the remaining configuration is the same as the description of FIG. In Figure 2, connect another reactor L3 to the other arm of the full bridge inverter 4 (in the illustrated example has a node in the series circuit of the semiconductor element T 1 and the semiconductor element T 2), changeover relay correspondingly 3 is increased. In this configuration, when increasing the capacity of the output DC voltage, the same signal is supplied to the upper semiconductor elements (in the illustrated example, the semiconductor elements T 1 and T 3 ) connected to the respective arms. By controlling the input to the semiconductor element and adjusting the on-duty ratio at this time, it is possible to set the output DC voltage to an arbitrary DC voltage equal to or lower than the DC voltage between the DC buses. By connecting the reactor L3 in this way and inputting and controlling the same signal to each arm, the DC voltage capacity can be doubled.

図3は、本発明の実施形態に係る非常用電源回路においてフルブリッジインバータ構成に代えてハーフブリッジインバータ構成とした場合の具体例を示す図である。図3において、ハーフブリッジインバータ4’の構成とするために、図1のフルブリッジインバータ4の構成では備えていた平滑コンデンサ5に代えてコンデンサ51およびコンデンサ52を設け、コンデンサ51とコンデンサ52を直列に接続し、直列接続した両コンデンサの中点から交流(AC)出力側の帰線を得るようにしている。そしてこれら半導体素子Tおよび半導体素子Tの直列回路とコンデンサ51およびコンデンサ52の直列回路を並列接続する。このように半導体素子Tおよび半導体素子Tが不要になるため、高価な部品点数を減らせるので非常用電源回路を安価に提供することができる。 FIG. 3 is a diagram illustrating a specific example of a case where a half-bridge inverter configuration is used instead of the full-bridge inverter configuration in the emergency power supply circuit according to the embodiment of the present invention. 3, in order to obtain the configuration of the half-bridge inverter 4 ′, a capacitor 51 and a capacitor 52 are provided instead of the smoothing capacitor 5 provided in the configuration of the full-bridge inverter 4 of FIG. 1, and the capacitor 51 and the capacitor 52 are connected in series. The return line on the alternating current (AC) output side is obtained from the middle point of both capacitors connected in series. The parallel connection of the series circuit of the series circuit and the capacitor 51 and the capacitor 52 of the semiconductor element T 3 and the semiconductor element T 4. Thus since the semiconductor element T 1 and the semiconductor element T 2 is not required, it is possible to provide an inexpensive emergency power supply circuit since the reduce the expensive parts.

なお、上記した図1〜図3において、直流(DC)電圧を出力する際に、ブリッジインバータのアームにリアクトルが接続された半導体素子のスイッチング損失を低減させるための構成として、図示していない制御回路により、蓄電池7から双方向DC/DCコンバータ6の昇圧作用により平滑コンデンサ5への直流母線電圧をDC出力の出力段で必要とする直流出力電圧より少し高い電圧に設定することにより、降圧チョッパ動作をさせるブリッジインバータ(またはハーフブリッジインバータ)のアームの印加電圧の低下とスイッチング回数の低減により装置全体で発生する損失を低減させることができる。   In FIGS. 1 to 3 described above, when a direct current (DC) voltage is output, control not shown as a configuration for reducing the switching loss of the semiconductor element in which the reactor is connected to the arm of the bridge inverter. By setting the DC bus voltage from the storage battery 7 to the smoothing capacitor 5 to a voltage slightly higher than the DC output voltage required at the output stage of the DC output by the boosting action of the bidirectional DC / DC converter 6 by the circuit, the step-down chopper The loss generated in the entire apparatus can be reduced by lowering the voltage applied to the arm of the bridge inverter (or half bridge inverter) to be operated and reducing the number of times of switching.

本発明の実施形態に係る非常用電源回路の構成を示すブロック図である。It is a block diagram which shows the structure of the emergency power supply circuit which concerns on embodiment of this invention. 本発明の実施形態に係る非常用電源回路において直流出力の容量を増やす場合の具体例を示す図である。It is a figure which shows the specific example in the case of increasing the capacity | capacitance of DC output in the emergency power supply circuit which concerns on embodiment of this invention. 本発明の実施形態に係る非常用電源回路においてフルブリッジインバータ構成に代えてハーフブリッジインバータ構成とした場合の具体例を示す図である。It is a figure which shows the specific example at the time of setting it as a half bridge inverter structure instead of a full bridge inverter structure in the emergency power supply circuit which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 交流入力電源
2 入力リレー
3 切換えリレー
4 フルブリッジインバータ(第2電力変換器)
4’ ハーフブリッジインバータ(第2電力変換器)
5 平滑用コンデンサ
6 双方向DC/DCコンバータ(第1電力変換器)
7 蓄電池
8 リップル吸収用コンデンサ
51,52 コンデンサ
1〜T6 半導体素子
1〜D6 ダイオード
1〜L リアクトル(AC/DC兼用)
1 AC input power 2 Input relay 3 Switching relay 4 Full bridge inverter (second power converter)
4 'half-bridge inverter (second power converter)
5 Smoothing capacitor 6 Bidirectional DC / DC converter (first power converter)
7 Storage battery 8 Ripple absorption capacitor
51, 52 Capacitor T 1 to T 6 Semiconductor element D 1 to D 6 Diode L 1 to L 3 Reactor (AC / DC)

Claims (3)

蓄電池からの直流電力を所望電圧の直流電力に変換する第1電力変換器と、この第1電力変換器に平滑コンデンサを介して接続された第2電力変換器とからなる非常用電源回路を、交流電源と負荷との電源ラインに接続し、常時は前記交流電源から前記負荷へ電力を供給するとともに前記第2電力変換器を介して前記蓄電池を充電する非常用電源回路において、
前記第2電力変換器は、4つの半導体素子からなるフルブリッジ回路と少なくとも1つのリアクトルとから構成され、
前記第2電力変換器の出力を交流または直流に切換える切換リレー回路を設け、
前記第2電力変換器が交流を出力する場合には、4つの半導体素子を制御して交流電圧を出力し、
前記第2電力変換器が直流を出力する場合には、少なくとも1相分の上アームの半導体素子を制御して直流電圧を出力することを特徴とする非常用電源回路。
An emergency power circuit comprising a first power converter that converts DC power from a storage battery into DC power of a desired voltage, and a second power converter connected to the first power converter via a smoothing capacitor, In an emergency power supply circuit that is connected to a power supply line of an AC power supply and a load, and normally supplies power from the AC power supply to the load and charges the storage battery via the second power converter,
The second power converter includes a full bridge circuit composed of four semiconductor elements and at least one reactor,
A switching relay circuit for switching the output of the second power converter to AC or DC;
When the second power converter outputs alternating current, the semiconductor device is controlled to output an alternating voltage,
When the second power converter outputs a direct current, the emergency power supply circuit outputs a direct current voltage by controlling the semiconductor element of the upper arm for at least one phase.
蓄電池からの直流電力を所望電圧の直流電力に変換する第1電力変換器と、この第1電力変換器に平滑コンデンサを介して接続された第2電力変換器とからなる非常用電源回路を、交流電源と負荷との電源ラインに接続し、常時は前記交流電源から前記負荷へ電力を供給するとともに前記第2電力変換器を介して前記蓄電池を充電する非常用電源回路において、
前記第2電力変換器は、2つの半導体素子からなるハーフブリッジ回路と1つのリアクトルとから構成され、
前記第2電力変換器の出力を交流または直流に切換える切換リレー回路を設け、
前記第2電力変換器が交流を出力する場合には、2つの半導体素子を制御して交流電圧を出力し、
前記第2電力変換器が直流を出力する場合には、上アームの半導体素子を制御して直流電圧を出力することを特徴とする非常用電源回路。
An emergency power circuit comprising a first power converter that converts DC power from a storage battery into DC power of a desired voltage, and a second power converter connected to the first power converter via a smoothing capacitor, In an emergency power supply circuit that is connected to a power supply line of an AC power supply and a load, and normally supplies power from the AC power supply to the load and charges the storage battery via the second power converter,
The second power converter includes a half bridge circuit composed of two semiconductor elements and a reactor.
A switching relay circuit for switching the output of the second power converter to AC or DC;
When the second power converter outputs alternating current, the two semiconductor elements are controlled to output alternating voltage,
When the second power converter outputs a direct current, the emergency power supply circuit outputs a direct current voltage by controlling a semiconductor element of the upper arm.
前記請求項1または2に記載された非常用電源回路において、直流を出力する場合、前記第1電力変換器を制御して前記直流電圧を下げるとともに、前記第2電力変換器の半導体素子のスイッチング回数を減らしてスイッチング損失を低減させることを特徴とする非常用電源回路。   3. The emergency power supply circuit according to claim 1 or 2, wherein when direct current is output, the first power converter is controlled to lower the direct current voltage, and the semiconductor element of the second power converter is switched. An emergency power supply circuit characterized by reducing the number of times to reduce switching loss.
JP2008196577A 2008-07-30 2008-07-30 Emergency power circuit Active JP5347362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008196577A JP5347362B2 (en) 2008-07-30 2008-07-30 Emergency power circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008196577A JP5347362B2 (en) 2008-07-30 2008-07-30 Emergency power circuit

Publications (2)

Publication Number Publication Date
JP2010035372A true JP2010035372A (en) 2010-02-12
JP5347362B2 JP5347362B2 (en) 2013-11-20

Family

ID=41739187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008196577A Active JP5347362B2 (en) 2008-07-30 2008-07-30 Emergency power circuit

Country Status (1)

Country Link
JP (1) JP5347362B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143056A (en) * 2010-12-28 2012-07-26 Fuji Electric Co Ltd Power supply device for elevator
CN103682524A (en) * 2012-09-24 2014-03-26 三星Sdi株式会社 Temperature controlling system and method of battery
WO2014196121A1 (en) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 Charge/discharge device
JP2015077703A (en) * 2013-10-15 2015-04-23 住友重機械工業株式会社 Injection molding machine
JP2017135890A (en) * 2016-01-28 2017-08-03 パナソニックIpマネジメント株式会社 Power conversion device, and power conversion system
KR102010181B1 (en) * 2018-05-08 2019-08-12 임한용 Smart Bypass Backup Power Supply For Charger
CN112039081A (en) * 2020-07-10 2020-12-04 常州博瑞电力自动化设备有限公司 Power supply system with high-power alternating-current power supply voltage stabilization and energy storage functions and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207668A (en) * 1992-01-24 1993-08-13 Nissan Motor Co Ltd Charger
JP2001197685A (en) * 2000-01-07 2001-07-19 Fuji Electric Co Ltd Uninterruptible power supply system
JP2003087997A (en) * 2001-09-11 2003-03-20 Kansai Electric Power Co Inc:The Power storage system
JP2003319645A (en) * 2002-04-24 2003-11-07 Fuji Electric Co Ltd Dc-dc converter
JP2008182775A (en) * 2007-01-23 2008-08-07 Chubu Electric Power Co Inc Power supply system equipped with power failure compensation function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207668A (en) * 1992-01-24 1993-08-13 Nissan Motor Co Ltd Charger
JP2001197685A (en) * 2000-01-07 2001-07-19 Fuji Electric Co Ltd Uninterruptible power supply system
JP2003087997A (en) * 2001-09-11 2003-03-20 Kansai Electric Power Co Inc:The Power storage system
JP2003319645A (en) * 2002-04-24 2003-11-07 Fuji Electric Co Ltd Dc-dc converter
JP2008182775A (en) * 2007-01-23 2008-08-07 Chubu Electric Power Co Inc Power supply system equipped with power failure compensation function

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012143056A (en) * 2010-12-28 2012-07-26 Fuji Electric Co Ltd Power supply device for elevator
CN103682524A (en) * 2012-09-24 2014-03-26 三星Sdi株式会社 Temperature controlling system and method of battery
JP2014067697A (en) * 2012-09-24 2014-04-17 Samsung Sdi Co Ltd Battery temperature control system, power storage system having the same, and control method of the same
EP2720358A3 (en) * 2012-09-24 2014-10-01 Samsung SDI Co., Ltd. Temperature controlling system and method of battery
US9209500B2 (en) 2012-09-24 2015-12-08 Samsung Sdi Co., Ltd. Temperature controlling system and method of battery
WO2014196121A1 (en) * 2013-06-03 2014-12-11 パナソニックIpマネジメント株式会社 Charge/discharge device
JP2015077703A (en) * 2013-10-15 2015-04-23 住友重機械工業株式会社 Injection molding machine
JP2017135890A (en) * 2016-01-28 2017-08-03 パナソニックIpマネジメント株式会社 Power conversion device, and power conversion system
KR102010181B1 (en) * 2018-05-08 2019-08-12 임한용 Smart Bypass Backup Power Supply For Charger
CN112039081A (en) * 2020-07-10 2020-12-04 常州博瑞电力自动化设备有限公司 Power supply system with high-power alternating-current power supply voltage stabilization and energy storage functions and control method

Also Published As

Publication number Publication date
JP5347362B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5929703B2 (en) DC / DC converter
JP5347362B2 (en) Emergency power circuit
WO2013121665A1 (en) Dc/dc converter
US7141892B2 (en) Power supply method of a line interactive UPS and the line interactive UPS
US7098558B2 (en) Starting circuit for power-converting apparatus
JP3829846B2 (en) Uninterruptible power system
JP6533016B2 (en) Power converter and power conversion system
JP7027576B1 (en) Uninterruptible power supply system
JP2008283729A (en) Uninterruptible power supply unit
JP4370965B2 (en) Power converter
JP5586096B2 (en) Power converter
KR101643705B1 (en) Apparatus and method for controlling ups
JP5360408B2 (en) Power converter
JP2017123703A (en) Dc-dc converter
JP2011193704A (en) Dc-ac power converter
JP2002320390A (en) Power storage apparatus
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JP4138497B2 (en) Power factor improvement method for power supply system, power supply system, switching power supply device and uninterruptible power supply device
JP5862480B2 (en) Uninterruptible power system
KR101343953B1 (en) Double conversion uninterruptible power supply of eliminated battery discharger
JP2009177901A (en) Uninterruptible power supply device
JP4119985B2 (en) Series electric double layer capacitor device
JP2011101456A (en) Power converter
JP2016146681A (en) Power conversion device
CN112075019A (en) Buck matrix rectifier with boost switch and operation thereof during one phase loss

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R150 Certificate of patent or registration of utility model

Ref document number: 5347362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250