[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010029839A - Electrostatic dust collecting device - Google Patents

Electrostatic dust collecting device Download PDF

Info

Publication number
JP2010029839A
JP2010029839A JP2009000503A JP2009000503A JP2010029839A JP 2010029839 A JP2010029839 A JP 2010029839A JP 2009000503 A JP2009000503 A JP 2009000503A JP 2009000503 A JP2009000503 A JP 2009000503A JP 2010029839 A JP2010029839 A JP 2010029839A
Authority
JP
Japan
Prior art keywords
electrode plate
dust
semiconductive
dust collector
collector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009000503A
Other languages
Japanese (ja)
Inventor
Akira Kato
亮 加藤
Kengo Nakahara
健吾 中原
Masakazu Kusakabe
正和 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009000503A priority Critical patent/JP2010029839A/en
Publication of JP2010029839A publication Critical patent/JP2010029839A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems in an electrostatic dust collecting device wherein, when using semiconductive electrode plates, lowering of an electric field occurs in a wide range in structure of the electrode plates bridgingly contacting with each other due to spacers for setting spaces for introducing air, to greatly lower the dust collection performance. <P>SOLUTION: In the electrostatic dust collecting device provided with a dust collection part 4 formed by fixing layers formed by alternately stacking dust repelling electrode plates 2 and dust collection electrode plates 3 with a frame 12, at least any one of the dust repelling electrode plates 2 and dust collection electrode plates 3 is the semiconductive electrode plate composed of a material having semiconductivity or insulation property and having a surface resistivity of 10<SP>7-11</SP>Ω/sq., and the dust repelling electrode plates 2 are connected to the dust collection electrode plates 3 with insulators 13 provided outside the frame. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、空気清浄の分野において空気中の粒子状浮遊物質を除去する集塵装置に関する。   The present invention relates to a dust collector for removing particulate suspended matters in the air in the field of air purification.

空気中に存在する粒子状浮遊物質、すなわち粉塵は喘息などの疾病の原因として知られており従来から除去の対象となる物質であったが、近年の研究において粒子径2.5マイクロメートル以下の粉塵(いわゆるPM2.5)が肺ガンなどの疾病を誘起する可能性があるとの報告があり、捕集技術の更なる向上が求められている。その中で電気集塵技術を用いた集塵装置は粒子径がマイクロメートル以下の小粒径の粉塵を捕集することに優れており、また低圧損な特性を持つことから注目を集め、更なる性能向上が求められている。   Particulate suspended matter in the air, that is, dust, has been known as a cause of illnesses such as asthma and has been a target for removal in the past, but in recent studies, the particle size is 2.5 micrometers or less. There is a report that dust (so-called PM2.5) may induce diseases such as lung cancer, and further improvement of the collection technology is required. Among them, dust collectors that use electrostatic precipitating technology are excellent at collecting small particles with a particle size of micrometer or less, and have a low-pressure loss characteristic. There is a need for improved performance.

従来、この種の集塵装置として、放電によって粉塵を帯電する荷電部を前段に設け、その後段に、電極を積層し、交互に異なる電圧を印加して電場を形成して帯電した粉塵を捕集する集塵部を設けたものが知られている。この構成を応用した例として、特許文献1には集塵部において一方の電圧が印加される電極を絶縁体である樹脂製のフィルムで被覆した集塵装置が示されている。以下、その集塵装置について図18を参照しながら説明する。図18に示すように、荷電部101は線状の荷電部放電電極102と荷電部対向電極板103とからなり、また、荷電部101の下流側には電圧印加電極板105と集塵電極板106とを一定の間隔を開けて交互に積層した集塵部104を設けている。また、図には示していないが電圧印加電極板105は絶縁体である樹脂フィルムで被覆されている。通常、荷電部101においては荷電部放電電極102と荷電部対向電極板103との間に5〜15kV、また、集塵部104の電圧印加電極板105と集塵電極板106との間に2〜6kVの電位差を与えるように高圧電源107によってそれぞれの電極に所定の電圧が印加されている。   Conventionally, as a dust collector of this type, a charging unit that charges dust by electric discharge is provided in the previous stage, and electrodes are stacked in the subsequent stage, and different voltages are applied alternately to form an electric field to collect charged dust. The thing which provided the dust collection part which collects is known. As an example to which this configuration is applied, Patent Document 1 discloses a dust collector in which an electrode to which one voltage is applied in a dust collector is covered with a resin film as an insulator. Hereinafter, the dust collector will be described with reference to FIG. As shown in FIG. 18, the charging unit 101 includes a linear charging unit discharge electrode 102 and a charging unit counter electrode plate 103, and a voltage application electrode plate 105 and a dust collecting electrode plate on the downstream side of the charging unit 101. A dust collecting section 104 is provided in which 106 and 106 are alternately stacked at a predetermined interval. Although not shown in the figure, the voltage application electrode plate 105 is covered with a resin film which is an insulator. Usually, in the charging unit 101, 5 to 15 kV is provided between the charging unit discharge electrode 102 and the charging unit counter electrode plate 103, and 2 between the voltage applying electrode plate 105 and the dust collecting electrode plate 106 of the dust collecting unit 104. A predetermined voltage is applied to each electrode by the high voltage power source 107 so as to give a potential difference of ˜6 kV.

上記構成において、荷電部101では荷電部放電電極102と荷電部対向電極板103との間で不平等な電場が作られており、この時線状の形状を有する荷電部放電電極102近傍には非常に強い電場が作られている。そのため空気イオンといった空気中に当初から僅かに含まれる電荷保有物質が加速されて空気分子と衝突を起こし、空気分子から電子が分離する。分離した電子もまた加速されて空気分子と衝突を起こし、空気分子から電子が分離する。電子との衝突によって空気分子から電子が分離する現象を電離と呼ぶ。   In the above configuration, in the charging unit 101, an unequal electric field is created between the charging unit discharge electrode 102 and the charging unit counter electrode plate 103. At this time, in the vicinity of the charging unit discharge electrode 102 having a linear shape, A very strong electric field is created. For this reason, the charge-holding substance that is slightly contained in the air, such as air ions, is accelerated and collides with the air molecules, and the electrons are separated from the air molecules. The separated electrons are also accelerated and collide with air molecules, and the electrons are separated from the air molecules. The phenomenon where electrons are separated from air molecules by collision with electrons is called ionization.

また、電離を繰り返すことによって多数の電子が空気分子から分離する現象を電子なだれと呼ぶが、この電子なだれによって電子が分離したプラス極性の空気イオンや、分離した電子と結合してマイナス極性の空気イオンが作られる。そして荷電部放電電極102と異なる極性の空気イオンは荷電部放電電極102に電荷を吸収されて空気分子に戻り、逆に同じ極性の空気イオンは電場によって荷電部放電電極102から反発する方向の力を受け、荷電部対向電極板103の方向へと拡散移動する。このように電離や電子なだれを起こすことで荷電部放電電極102近傍の空気を空気イオンにする放電現象をコロナ放電というが、コロナ放電によって作られ、主に荷電部放電電極102と同じ極性の空気イオンが荷電部101を通過する粉塵に付着することで粉塵が帯電する。帯電した粉塵は送風の流れにそって集塵部104に導入され、電圧印加電極板105と集塵電極板106の間で作られる電場の力を受けて主に集塵電極板106に付着して取り除かれ、清浄な空気が集塵部104の後方から吹出される。電圧印加電極板は絶縁性の樹脂フィルムで覆われているため、集塵電極板と接触しても短絡を起こさず、同時に集塵電極板との間で起こりうる火花放電(以下スパーク)を防止する構造となっている。   In addition, the phenomenon in which a large number of electrons separate from air molecules by repeated ionization is called electron avalanche, but positive-polarity air ions that are separated by this avalanche, or negative-polarity air that combines with separated electrons. Ions are created. Then, air ions having a polarity different from that of the charged portion discharge electrode 102 are absorbed by the charged portion discharge electrode 102 and returned to air molecules, and conversely, air ions having the same polarity are repelled from the charged portion discharge electrode 102 by the electric field. Is received and diffused and moved in the direction of the charged portion counter electrode plate 103. The discharge phenomenon in which the air near the charged portion discharge electrode 102 is turned into air ions by causing ionization and electron avalanche is called corona discharge. The discharge phenomenon is generated by corona discharge and mainly has the same polarity as the charged portion discharge electrode 102. As the ions adhere to the dust passing through the charging unit 101, the dust is charged. The charged dust is introduced into the dust collecting portion 104 along the flow of the air flow, and adheres mainly to the dust collecting electrode plate 106 under the force of the electric field created between the voltage applying electrode plate 105 and the dust collecting electrode plate 106. Then, clean air is blown out from behind the dust collecting unit 104. Since the voltage application electrode plate is covered with an insulating resin film, it does not cause a short circuit even when it comes into contact with the dust collection electrode plate, and at the same time prevents spark discharge (hereinafter referred to as spark) that may occur between the electrode plate and the dust collection electrode plate. It has a structure to do.

また、従来の集塵装置の他の例として特許文献2に記載されるような集塵装置が知られている。実用新案文献2記載の集塵装置について図19、図20および図21を用いて説明する。ちなみに図20は図19におけるコレクタ電極板107のA−Bの断面を示す図となっている。図19および図20に示すように集塵装置の集塵部を構成するコレクタ電極板107は中央部分に導電面108を備えた絶縁性の電極基板109の表面に半導電層110が設けられている。また、電極基板109をくぼませることで得たスペーサ突起111が複数設けられている。コレクタ電極板107は図21に示すようにスペーサ突起111の先端とコレクタ電極板107の裏面が接触することである一定の空間を開けながら積層され、積層ごとに交互に異なる電圧をコレクタ電極107に設けられた導電面108に印加することで空間に電場を設け、粉塵を捕集する仕組みになっている。そして半導電層110の上には電圧が印加された導電層108から電荷が与えられ、広がるように分布する。このため積層したコレクタ電極板107の間に設けられる電場の領域が広がって高い集塵性能が得られる。また同時に半導電層110は半導電性を有することから電荷の急激な移動が起こらない。すなわち異なる電圧が印加されたコレクタ電極板107との間で発生しうるスパークを防止することが可能となっている。
特許第3261167号公報 特許第2662553号公報
Moreover, the dust collector as described in patent document 2 is known as another example of the conventional dust collector. The dust collector described in Utility Model Document 2 will be described with reference to FIGS. Incidentally, FIG. 20 is a view showing a cross section taken along line AB of the collector electrode plate 107 in FIG. As shown in FIGS. 19 and 20, the collector electrode plate 107 constituting the dust collecting portion of the dust collector has a semiconductive layer 110 provided on the surface of an insulating electrode substrate 109 having a conductive surface 108 in the center. Yes. A plurality of spacer protrusions 111 obtained by recessing the electrode substrate 109 are provided. As shown in FIG. 21, the collector electrode plate 107 is laminated while opening a certain space where the tip of the spacer protrusion 111 and the back surface of the collector electrode plate 107 are in contact with each other, and different voltages are alternately applied to the collector electrode 107 for each lamination. By applying to the conductive surface 108 provided, an electric field is provided in the space and dust is collected. Then, electric charges are applied from the conductive layer 108 to which a voltage is applied on the semiconductive layer 110 and are distributed so as to spread. For this reason, the electric field region provided between the stacked collector electrode plates 107 is widened, and high dust collection performance is obtained. At the same time, since the semiconductive layer 110 has semiconductivity, a rapid movement of electric charge does not occur. That is, it is possible to prevent a spark that may occur between the collector electrode plate 107 to which a different voltage is applied.
Japanese Patent No. 3261167 Japanese Patent No. 2662553

特許文献1に記載されるような集塵装置においては絶縁性の樹脂フィルムで被覆することで電圧印加電極板の絶縁性を確保しているため、確実に絶縁性とするためにはしっかりした被覆が必要となり、高度な加工技術を要する。また、電圧印加電極板は通常金属板を用いることが多いが、剛性を得るためには板厚を大きくする必要があり、それに伴い集塵部の重量が増加して取扱い性を損なう。   In the dust collector as described in Patent Document 1, since the insulation of the voltage application electrode plate is ensured by coating with an insulating resin film, a solid coating is required to ensure insulation. Requires advanced processing techniques. Further, the voltage application electrode plate is usually a metal plate, but it is necessary to increase the plate thickness in order to obtain rigidity. As a result, the weight of the dust collecting part increases and the handling property is impaired.

また、特許文献2に記載されるようなコレクタ電極板107を積層した集塵部104の課題について図21を用いて説明する。図21に示すように空気中の粉塵を除去するためには積層したコレクタ電極板A112とコレクタ電極板B113との間に空気を通過させる構造とする必要がある。そのためスペーサ突起111を数多く用いてコレクタ電極板A112とコレクタ電極板B113と間に空間を設ける必要がある。すなわち数多くのスペーサ突起111によってコレクタ電極板A112とコレクタ電極板B113とが多数の箇所で接触することになる。   Moreover, the problem of the dust collection part 104 which laminated | stacked the collector electrode plate 107 as described in patent document 2 is demonstrated using FIG. As shown in FIG. 21, in order to remove dust in the air, it is necessary to have a structure that allows air to pass between the stacked collector electrode plate A112 and collector electrode plate B113. Therefore, it is necessary to provide a space between the collector electrode plate A112 and the collector electrode plate B113 using many spacer protrusions 111. That is, the collector electrode plate A112 and the collector electrode plate B113 are brought into contact with each other at a number of locations by the numerous spacer protrusions 111.

また、粉塵を捕集するためにコレクタコレクタ電極板A112に数kVの高電圧を印加し、コレクタ電極板B113をアースに接続して0kVとすることでコレクタ電極板A112とコレクタ電極板B113との間に電場を設けるが、それぞれのコレクタ電極板に設けられた半導電層110にスペーサが接触することによって半導電層110の上に分布した電荷が逃げる。   Further, a high voltage of several kV is applied to the collector / collector electrode plate A112 to collect dust, and the collector electrode plate B113 is connected to the ground to be 0 kV, whereby the collector electrode plate A112 and the collector electrode plate B113 are connected to each other. Although an electric field is provided between them, the charge distributed on the semiconductive layer 110 escapes when the spacer contacts the semiconductive layer 110 provided on each collector electrode plate.

例えば高電圧が印加されたコレクタ電極板A112の半導電層110の表面電位が低下してしまう。逆にコレクタ電極板B113の半導電層110の表面電位は上昇し、コレクタ電極板A112とコレクタ電極板B113の間に設けられた電場が弱まって集塵性能が低下する。スペーサ突起111の絶縁性が高い場合は電荷の逃げる度合いは少なくて済むが、粉塵を捕集してスペーサ突起111表面の電気抵抗が少しでも低下すると電荷の逃げる度合いは非常に大きくなり、コレクタ電極板A112の半導電層110の表面電位は大きく低下する。半導電層110は導電体と比べて電気抵抗値が非常に高いため、コレクタ電極板A112の半導電層110における表面電位の低下とコレクタ電極板B113の半導電層110における表面電位の上昇はスペーサの接触箇所とそれぞれのコレクタ電極板の中央部に設けられた導電面108とを結んだ線上で広範囲に起こる。すなわちそれぞれのコレクタ電極板の間に設けられた電場の強度はスペーサの接触箇所でゼロとなり、接触箇所から導電面108へ近づくに従って徐々に大きくなる。   For example, the surface potential of the semiconductive layer 110 of the collector electrode plate A112 to which a high voltage is applied is lowered. On the contrary, the surface potential of the semiconductive layer 110 of the collector electrode plate B113 rises, the electric field provided between the collector electrode plate A112 and the collector electrode plate B113 is weakened, and the dust collection performance is lowered. If the insulating property of the spacer protrusion 111 is high, the degree of charge escape is small, but if the electrical resistance of the surface of the spacer protrusion 111 is reduced even if dust is collected, the degree of charge escape becomes very large. The surface potential of the semiconductive layer 110 of the plate A112 is greatly reduced. Since the semiconductive layer 110 has an extremely high electric resistance value compared to the conductor, the decrease in the surface potential of the semiconductive layer 110 of the collector electrode plate A112 and the increase of the surface potential of the semiconductive layer 110 of the collector electrode plate B113 are caused by spacers. This occurs in a wide range on a line connecting the contact point and the conductive surface 108 provided at the center of each collector electrode plate. That is, the intensity of the electric field provided between the collector electrode plates becomes zero at the contact point of the spacer, and gradually increases as it approaches the conductive surface 108 from the contact point.

したがってコレクタ電極板A112とコレクタ電極板B113とがスペーサ突起111で接触することによって電場の低下が広範囲で起こり、集塵性能の低下が顕著に現れる。この課題を解決するためにはコレクタ電極板どうしが出来る限り接触しない構造とすることが必要となる。   Therefore, when the collector electrode plate A112 and the collector electrode plate B113 are in contact with each other by the spacer protrusion 111, the electric field is lowered in a wide range, and the dust collection performance is significantly lowered. In order to solve this problem, it is necessary to have a structure in which the collector electrode plates are not in contact with each other as much as possible.

本発明はこのような従来の課題を解決するものであり、容易に作成可能でかつ軽量、また電極板の間で起こるスパークを防止するとともに高い集塵性能を得ることが可能な集塵装置を提供することを目的としている。   The present invention solves such a conventional problem, and provides a dust collector that can be easily produced, is lightweight, prevents sparking between electrode plates, and obtains high dust collection performance. The purpose is that.

本発明の集塵装置は上記目的を達成するために、粉塵反発電極板と集塵電極板を交互に積層したものをフレームで固定した集塵部を備える集塵装置において、粉塵反発電極板および集塵電極板の少なくともどちらか一方が半導電性もしくは絶縁性を有する材料で構成されると同時に10の7〜11乗Ω/□の表面抵抗率を有し、かつ粉塵反発電極板と集塵電極板とがフレームの外側に設けられた碍子でつながっていることを特徴とするものである。   In order to achieve the above object, the dust collector of the present invention is a dust collector including a dust collecting section in which dust repelling electrode plates and dust collecting electrode plates are alternately laminated and fixed by a frame. At least one of the dust collecting electrode plates is made of a material having semiconductivity or insulation, and at the same time has a surface resistivity of 10 7 to 11th power Ω / □, and the dust repelling electrode plate and the dust collecting electrode plate The electrode plate is connected with an insulator provided outside the frame.

本発明によれば、容易に作成可能でかつ軽量、また電極板の間で起こるスパークを防止するとともに高い集塵性能を得ることが可能な集塵装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dust collector which can be produced easily, is lightweight, can prevent the spark which arises between electrode plates, and can acquire high dust collection performance can be provided.

本発明の集塵装置は上記目的を達成するために、粉塵反発電極板と集塵電極板を交互に積層したものをフレームで固定した集塵部を備える集塵装置において、粉塵反発電極板および集塵電極板の少なくともどちらか一方が半導電性もしくは絶縁性を有する材料で構成されると同時に10の7〜11乗Ω/□の表面抵抗率を有する半導電電極板であり、かつ粉塵反発電極板と集塵電極板とがフレームの外側に設けられた碍子でつながっていることを特徴とするものである。   In order to achieve the above object, the dust collector of the present invention is a dust collector including a dust collecting section in which dust repelling electrode plates and dust collecting electrode plates are alternately laminated and fixed by a frame. At least one of the dust collecting electrode plates is made of a material having semiconductivity or insulation, and at the same time is a semiconducting electrode plate having a surface resistivity of 10 7-11 Ω / □, and dust repulsion The electrode plate and the dust collecting electrode plate are connected by an insulator provided outside the frame.

帯電した粉塵(以下帯電粉塵)を導入するために粉塵反発電極板と集塵電極板は空間を空けながら対向して設けられており、また、帯電粉塵を捕集するために粉塵反発電極板と集塵電極板との間には電場が設けられている。具体的には粉塵反発電極板から集塵電極板へと粉塵が移動するようにそれぞれの電極板には異なる電圧が印加される。例えば帯電粉塵がプラスの極性に帯電している場合、粉塵反発電極には+6kV、集塵電極板には0kVがそれぞれ印加され、帯電粉塵がマイナスの極性に帯電している場合、粉塵反発電極板には−6kV、集塵電極板には0kVがそれぞれ印加されるという具合である。従来の粉塵反発電極板と集塵電極板は金属板のような導電体がよく用いられ、高圧電源の端子を接続してそれぞれの電極板に異なる電圧を印加すればそれぞれの電極板全体に所定の電圧が印加され、電場が設けられる。   In order to introduce charged dust (hereinafter referred to as charged dust), the dust repellent electrode plate and the dust collecting electrode plate are provided facing each other with a space between them, and in order to collect charged dust, An electric field is provided between the dust collecting electrode plates. Specifically, different voltages are applied to each electrode plate so that the dust moves from the dust repellent electrode plate to the dust collecting electrode plate. For example, when charged dust is charged with a positive polarity, +6 kV is applied to the dust repellent electrode and 0 kV is applied to the dust collecting electrode plate. When the charged dust is charged with a negative polarity, the dust repellent electrode plate -6 kV and 0 kV are applied to the dust collecting electrode plate, respectively. Conventional dust repellent electrode plates and dust collecting electrode plates are often made of a conductive material such as a metal plate. If different voltages are applied to each electrode plate by connecting the terminals of a high voltage power source, the entire electrode plate is predetermined. Is applied and an electric field is provided.

しかしながら例えば粉塵が電極板の上にスパークの基点となるような尖った形状で堆積したした場合にはそれぞれの電極板の間に火花を伴う放電、すなわちスパークが起こりうる。これはそれぞれの電極板が導電体であり、高圧電源の端子から供給された電荷が電極板を急速に移動することが可能なためであり、スパークが発生した時には大量の電荷が急激に流れている。   However, for example, when dust accumulates on the electrode plate in a sharp shape that becomes the starting point of the spark, a discharge accompanied by a spark, that is, a spark, can occur between the electrode plates. This is because each electrode plate is a conductor, and the charge supplied from the terminals of the high-voltage power supply can move rapidly through the electrode plate. When a spark occurs, a large amount of charge flows rapidly. Yes.

本発明においては粉塵反発電極板および集塵電極板の少なくともどちらか一方が導電体以外の材料で構成されると同時に10の7〜11乗Ω/□の表面抵抗率を有するため、高圧電源の端子から電極板の表面に一様に電荷が供給され、粉塵反発電極板と集塵電極板との間に電位差すなわち電場が設けられる。それと同時に粉塵が電極板の上にスパークの基点となるような尖った形状で堆積しても電極板を構成する材料が導電体ではなく、かつ表面抵抗率が10の7〜11乗Ω/□とある程度高い値となっているため急激な電荷移動を防いでスパークを防止することが可能となる。   In the present invention, since at least one of the dust repellent electrode plate and the dust collecting electrode plate is made of a material other than a conductor and has a surface resistivity of 10 7 to 11 11 Ω / □, Electric charges are uniformly supplied from the terminals to the surface of the electrode plate, and a potential difference, that is, an electric field is provided between the dust repellent electrode plate and the dust collecting electrode plate. At the same time, even if dust accumulates on the electrode plate in a sharp shape that becomes the starting point of the spark, the material constituting the electrode plate is not a conductor and the surface resistivity is 10 to 7 to the 11th power Ω / □ Therefore, it is possible to prevent sparks by preventing rapid charge movement.

また、空間を設けるために粉塵反発電極板と集塵電極板とがスペーサによってブリッジするように接触させるとその接触部分で電荷の移動が起こり、接触部分を中心に表面電位の低下が起こり、電場が弱まる。このような理由で集塵性能の低下が生じることになるが、本発明においては粉塵反発電極板と集塵電極板とがフレームの外側に設けられた碍子のみでつながっている、すなわちフレームの外側に設けられた碍子によって粉塵反発電極板と集塵電極板それぞれの表面が一切接触せず、一定の空間を開けながら保持されている。そのためスペーサがブリッジを形成するようにそれぞれの電極板の表面に接触することで起こる表面電位の低下が起こらず、電場は一定に保持される。このため高い集塵性能を得ることが可能となっている。   In addition, when the dust repellent electrode plate and the dust collecting electrode plate are brought into contact with each other so as to be bridged by a spacer in order to provide a space, charge movement occurs at the contact portion, and the surface potential is lowered around the contact portion. Is weakened. For this reason, the dust collection performance is degraded. In the present invention, the dust repellent electrode plate and the dust collection electrode plate are connected only by the insulator provided outside the frame, that is, outside the frame. The surfaces of the dust repellent electrode plate and the dust collecting electrode plate are not in contact with each other by the insulator provided in the holder, and are held while opening a certain space. Therefore, the surface potential is not lowered by the contact of the spacer with the surface of each electrode plate so as to form a bridge, and the electric field is kept constant. For this reason, it is possible to obtain high dust collection performance.

スペーサを用いずに粉塵反発電極板と集塵電極板との間に空間を設ける具体的な方法として請求項3に記載するように粉塵反発電極板および集塵電極板それぞれに貫通孔を設け、導電性のシャフトを挿入しながら粉塵反発電極板と導電性の円筒状スペーサ、集塵極板と導電性の円筒状スペーサの順で設けることが挙げられる。シャフトを粉塵反発電極板と円筒状スペーサ、集塵極板と円筒状スペーサの順で挿入し、粉塵反発電極板と集塵電極板とが交互に積層された構造を作る。   As a specific method of providing a space between the dust repellent electrode plate and the dust collecting electrode plate without using a spacer, a through hole is provided in each of the dust repellent electrode plate and the dust collecting electrode plate as described in claim 3, For example, a dust repellent electrode plate and a conductive cylindrical spacer, and a dust collecting electrode plate and a conductive cylindrical spacer may be provided in this order while inserting a conductive shaft. The shaft is inserted in the order of the dust repellent electrode plate and the cylindrical spacer, the dust collecting electrode plate and the cylindrical spacer in this order, and a structure in which the dust repellent electrode plate and the dust collecting electrode plate are alternately laminated is made.

この時粉塵反発電極板と集塵電極板とが接触しては電圧を印加することができないため、例えばシャフトおよび円筒状スペーサと接触しないように円筒状スペーサの外径よりも大きい貫通孔を粉塵反発電極板に設ける。このままでは粉塵反発電極板を支持できないため、別のシャフトを用いて同様の順番でシャフトを挿入し、電極板を支持する。この時は粉塵反発電極板の貫通孔をシャフトの径と同じにし、逆に集塵電極板に円筒状スペーサの外径よりも大きい貫通孔を設ける。このままではそれぞれの電極板をしっかりと固定できないため、それぞれの電極板を支持するシャフトは2本以上、計4本以上が望ましい。そして碍子を用いてそれぞれの電極板を支持するシャフトを接続して固定する。このような構造とすることで粉塵反発電極板および集塵電極板の表面どうしが一切接触することなく、空間を設けながらそれぞれの電極板を支持固定することが可能となる。   At this time, since a voltage cannot be applied if the dust repellent electrode plate and the dust collecting electrode plate are in contact with each other, for example, a through hole larger than the outer diameter of the cylindrical spacer is dusted so as not to contact the shaft and the cylindrical spacer. Provided on the repulsive electrode plate. Since the dust repellent electrode plate cannot be supported as it is, the shaft is inserted in the same order using another shaft to support the electrode plate. At this time, the through hole of the dust repellent electrode plate is made the same as the diameter of the shaft, and conversely, a through hole larger than the outer diameter of the cylindrical spacer is provided in the dust collecting electrode plate. Since each electrode plate cannot be firmly fixed in this state, it is desirable that the number of shafts that support each electrode plate is two or more, that is, a total of four or more. And the shaft which supports each electrode plate is connected and fixed using a lever. By adopting such a structure, it becomes possible to support and fix each electrode plate while providing a space without any contact between the surfaces of the dust repellent electrode plate and the dust collecting electrode plate.

また、半導電電極板が絶縁性基板の表面に10の7〜11乗Ω/□の表面抵抗率を有する半導電層を設けたものであることを特徴とするものである。粉塵反発電極板および集塵電極板の間に電場を設けるにはそれぞれの電極板表面の間で電位差を生じさせればよい。すなわち表面のみに電荷を与えればよいため、電極板の支持基材として絶縁性基板を用い、その表面に10の7〜11乗Ω/□の表面抵抗率を有する半導電層を設けることで容易に10の7〜11乗Ω/□の表面抵抗率を有する電極板を形成することが可能となる。絶縁性基板の材質としては樹脂やセラミック、もしくはガラス繊維シートをエポキシ樹脂などで固めた積層シートなどが挙げられる。   The semiconductive electrode plate is characterized in that a semiconductive layer having a surface resistivity of 10 7-11 Ω / □ is provided on the surface of the insulating substrate. In order to provide an electric field between the dust repellent electrode plate and the dust collecting electrode plate, a potential difference may be generated between the respective electrode plate surfaces. In other words, since it is only necessary to charge only the surface, it is easy to use an insulating substrate as a support base for the electrode plate and to provide a semiconductive layer having a surface resistivity of 10 7 to 11th power / square on the surface. It is possible to form an electrode plate having a surface resistivity of 10 7-11 Ω / □. Examples of the material for the insulating substrate include resin, ceramic, and a laminated sheet obtained by hardening a glass fiber sheet with an epoxy resin.

また、10の7〜11乗Ω・cmの体積抵抗率を有する樹脂フィルムを絶縁性基板の表面に設けたものを半導電電極板とすることを特徴とするものである。10の7〜11乗Ω・cmの体積抵抗率を有するフィルムの材質の例として、ナイロン、ポリフッ化ビニリデン、もしくは可塑剤を添加した塩化ビニルや塩化ビニリデンなどが挙げられる。またはナイロンやポリエーテルエステルアミドといった吸水性の高いアミド結合を有するポリマーや、ポリフッ化ビニリデン、もしくは塩化ビニルや塩化ビニリデンなどといった半導電性を有する樹脂とポリプロピレンやポリエステル、ポリスチレンなどの絶縁性樹脂とをブレンドして共重合させたコポリマー樹脂が挙げられる。また別の例としては、ゼオライトなどのシラノール基を有する無機成分や、酸化スズ、酸化亜鉛などの金属酸化物といった半導電性を有する材料を前述した絶縁性樹脂に混ぜてフィルムに成型したものが挙げられる。このような樹脂フィルムは内部に電荷を僅かに通す性質を持ち、10の7〜11乗Ω・cmの体積抵抗率を有するようになる。接着や溶着などの方法でこのような樹脂フィルムを絶縁性基板の表面に設けることによって、絶縁性基板の表面に10の7〜11乗Ω/□の表面抵抗率を有する半導電層を設けることが容易に可能となる。   In addition, a semiconductive electrode plate is formed by providing a resin film having a volume resistivity of 10 7 to 11 11 Ω · cm on the surface of an insulating substrate. Examples of the material of the film having a volume resistivity of 10 7 to 11 11 Ω · cm include nylon, polyvinylidene fluoride, or vinyl chloride or vinylidene chloride to which a plasticizer is added. Or a polymer with a highly water-absorbing amide bond such as nylon or polyether ester amide, a resin having a semiconductivity such as polyvinylidene fluoride or vinyl chloride or vinylidene chloride, and an insulating resin such as polypropylene, polyester or polystyrene. Examples thereof include a copolymer resin blended and copolymerized. As another example, an inorganic component having a silanol group such as zeolite or a semiconductive material such as a metal oxide such as tin oxide or zinc oxide is mixed with the insulating resin described above and molded into a film. Can be mentioned. Such a resin film has a property of passing a slight amount of electric charge therein, and has a volume resistivity of 10 7 to the 11th power Ω · cm. By providing such a resin film on the surface of the insulating substrate by a method such as adhesion or welding, a semiconductive layer having a surface resistivity of 10 7-11 Ω / □ is provided on the surface of the insulating substrate. Is easily possible.

また、塗布面が10の7〜11乗Ω/□となる半導電塗料を絶縁性基板の表面に塗布し、乾燥して半導電層を設けたものを半導電電極板とすることを特徴とするものである。具体的な例としてポリビニルアルコールやポリアクリル酸ナトリウム、アミロースといった吸水性ポリマーを含有する塗料を絶縁性基板の表面に塗布して乾燥することで10の7〜11乗Ω/□の表面抵抗率を有する半導電性膜を得る方法が挙げられる。吸水性ポリマーは空気中の水分を吸収しやすい性質を有しており、空気中の水分を吸収することで電気を僅かに通す性質を有するようになる。吸水性ポリマーを含有する塗料を絶縁性基板の表面に塗布して乾燥することで、10の7〜11乗Ω/□の表面抵抗率を有する半導電層が得られる。   In addition, a semiconductive electrode plate is obtained by applying a semiconductive paint having a coating surface of 10 7 to 11th power Ω / □ on the surface of an insulating substrate and drying to provide a semiconductive layer. To do. As a specific example, a surface resistivity of 10 7-11 Ω / □ is obtained by applying a coating containing a water-absorbing polymer such as polyvinyl alcohol, sodium polyacrylate, and amylose on the surface of the insulating substrate and drying it. The method of obtaining the semiconductive film | membrane which has is mentioned. The water-absorbing polymer has a property of easily absorbing moisture in the air, and has a property of passing electricity slightly by absorbing moisture in the air. A semiconductive layer having a surface resistivity of 10 7 to 11 11 Ω / □ is obtained by applying a coating containing a water-absorbing polymer to the surface of the insulating substrate and drying.

また、半導電塗料が半導電性材料および半導電性材料を塗布面に固着させるバインダ成分を含むことを特徴とするものである。前述したような吸水性ポリマーの場合、半導電性材料がポリマーであるため、溶媒で溶解して溶液とし、それを塗布して乾燥するだけで絶縁性基板の表面にある程度強固な半導電層を設けることが可能であるが、半導電性材料が粉体である場合には粉体を固着させる何らかの手段が必要であり、また、それとは別に半導電層自体の機械的強度をより高めたい場合がある。そのような場合の有効な手段として溶媒に溶解可能な樹脂、例えば熱可塑性ポリエステル樹脂やポリオール樹脂などをバインダ成分として用い、溶媒に溶かして半導電性材料と混合したものを半導電塗料として用いることで、粉体状の半導電性材料を半導電層の中に固着し、また半導電層の機械的強度を向上させることが可能となる。   In addition, the semiconductive paint includes a binder component that fixes the semiconductive material and the semiconductive material to the application surface. In the case of the water-absorbing polymer as described above, since the semiconductive material is a polymer, a semiconductive layer that is somewhat strong on the surface of the insulating substrate is obtained by dissolving it in a solvent to form a solution, and applying and drying it. It is possible to provide, but when the semiconductive material is powder, some means for fixing the powder is necessary, and in addition to that, when it is desired to increase the mechanical strength of the semiconductive layer itself There is. As an effective means in such a case, a resin that is soluble in a solvent, such as a thermoplastic polyester resin or a polyol resin, is used as a binder component, and a resin that is dissolved in a solvent and mixed with a semiconductive material is used as a semiconductive paint. Thus, the powdery semiconductive material can be fixed in the semiconductive layer, and the mechanical strength of the semiconductive layer can be improved.

また、半導電性材料がイオン導電性ポリマーであることを特徴とするものである。イオン導電性ポリマーの例として4級アンモニウム塩を分子構造中に有するポリマーが挙げられる。4級アンモニウム塩は中心のアンモニア原子に4つのアルキル基が結合しており、全体としてプラスの電荷を有している。そこに塩素イオンなどの陰イオンがイオン結合した構造となっているためイオン導電性を有することから僅かに電荷を通す性質を有する。また、イオン導電性を有する4級アンモニウム塩をあらかじめその分子中に有しているために湿度の影響を受けにくく、低湿度の時でも電荷を僅かに通す特性を確保することができるという特徴を有する。イオン導電性ポリマーを形成するには分子構造中に4級アンモニウム塩と不飽和炭素結合を有する単量体を重合する方法があるが、分子構造中に4級アンモニウム塩と不飽和炭素結合とを有する単量体としてジメチルアミノメタアクリレートのクロライド塩などが挙げられる。ジメチルアミノメタアクリレートのクロライド塩の水溶液をアルコールに溶かし、成膜性を確保するために低分子量であるメチルメタアクリレートを加えた後にアゾビスイソブチロニトリルなどの重合開始剤を加えて重合反応させることで4級アンモニウム塩を含むポリマー溶液を得ることができる。また、アクリル酸のようなカルボキシル基と不飽和炭素結合とを分子中に有する単量体を重合して得たポリマーの溶液を加えることで塗布面への接着性を確保することが可能となる。また、塗布面に形成される塗布膜は分子量が大きいポリマーからなるため非水溶性を示す。このようにして作成した半導電塗料を塗布乾燥して形成する半導電層は低湿度時でも電荷を僅かに通し、また、塗布面からはがれることがなく耐水性をも有するという特徴を有する。このようなイオン導電性ポリマーを絶縁性基板の表面に塗布して乾燥することで10の7〜11乗Ω/□の表面抵抗率を有し、また、湿度の影響を受けにくい半導電層を容易に形成することが可能となる。   The semiconductive material is an ion conductive polymer. Examples of the ion conductive polymer include a polymer having a quaternary ammonium salt in the molecular structure. The quaternary ammonium salt has four alkyl groups bonded to the central ammonia atom, and has a positive charge as a whole. Since it has a structure in which anions such as chlorine ions are ion-bonded therewith, it has an ionic conductivity and therefore has a property of passing a slight charge. In addition, since the quaternary ammonium salt having ionic conductivity is included in the molecule in advance, it is not easily affected by humidity, and it is possible to ensure characteristics that allow a slight charge to pass even at low humidity. Have. In order to form an ion conductive polymer, there is a method of polymerizing a monomer having a quaternary ammonium salt and an unsaturated carbon bond in the molecular structure, but the quaternary ammonium salt and the unsaturated carbon bond are included in the molecular structure. Examples of the monomer having dimethylamino methacrylate include chloride salt. Dissolve an aqueous solution of dimethylamino methacrylate chloride salt in alcohol, add low molecular weight methyl methacrylate to ensure film-forming properties, and then add a polymerization initiator such as azobisisobutyronitrile to cause a polymerization reaction. Thus, a polymer solution containing a quaternary ammonium salt can be obtained. In addition, it is possible to ensure adhesion to the coated surface by adding a polymer solution obtained by polymerizing a monomer having a carboxyl group such as acrylic acid and an unsaturated carbon bond in the molecule. . Moreover, since the coating film formed on the coating surface is made of a polymer having a large molecular weight, it exhibits water insolubility. The semiconductive layer formed by applying and drying the semiconductive paint thus prepared has a characteristic that it allows a slight charge to pass even at low humidity, and has water resistance without being peeled off from the coated surface. By applying such an ion conductive polymer to the surface of an insulating substrate and drying, a semiconductive layer having a surface resistivity of 10 7 to 11 11 Ω / □ and being hardly affected by humidity is obtained. It can be formed easily.

また、半導電性材料が半導電性の金属酸化物であることを特徴とするものである。吸水性ポリマーを含有する半導電層は湿度の高低によって表面抵抗率が変動しやすい。湿度の影響を受けにくい半導電層を設ける方法として半導電性を有する金属酸化物を半導電性材料として用いる方法が挙げられる。酸化亜鉛やチタン酸カリウムといった半導電性を有する金属酸化物を半導電性材料に用いることで、10の7〜11乗Ω/□の表面抵抗率を有し、かつ湿度の影響を受けにくい半導電層が得られる。   Further, the semiconductive material is a semiconductive metal oxide. The semiconductive layer containing the water-absorbing polymer tends to vary in surface resistivity depending on the humidity level. As a method of providing a semiconductive layer that is not easily affected by humidity, a method of using a semiconductive metal oxide as a semiconductive material can be given. By using a semiconductive metal oxide such as zinc oxide or potassium titanate as a semiconductive material, it has a surface resistivity of 10 7-11 Ω / □ and is not easily affected by humidity. A conductive layer is obtained.

また、金属酸化物が酸化スズ、もしくはアンチモンをドープした酸化スズであることを特徴とするものである。酸化スズは印加電圧の大小による抵抗値の変化が小さい。これは酸化スズの導電メカニズムが結晶格子中の酸素欠陥に起因しているためである。また、酸化スズは酸やアルカリに溶解しにくい性質を有する。そのため酸化スズを半導電性材料として用いることで化学的かつ電気的に安定な半導電層を得ることが可能となる。また、酸化スズにアンチモンをドープすることでN型の半導体構造が得られる。そのためアンチモンをドープしない場合に比べて導電性がよくなり、より少ない量で半導電層としての半導電性を得ることが可能となる。   Further, the metal oxide is tin oxide or tin oxide doped with antimony. Tin oxide has a small change in resistance value due to the magnitude of the applied voltage. This is because the conductive mechanism of tin oxide is due to oxygen defects in the crystal lattice. Further, tin oxide has a property that it is difficult to dissolve in acid or alkali. Therefore, a chemically and electrically stable semiconductive layer can be obtained by using tin oxide as a semiconductive material. Further, an n-type semiconductor structure can be obtained by doping antimony into tin oxide. Therefore, the conductivity is improved as compared with the case where no antimony is doped, and the semiconductivity as the semiconductive layer can be obtained with a smaller amount.

また、半導電性材料が酸化スズもしくはアンチモンをドープした酸化スズをそれよりも大きい粒子径を有する担持体粒子に添着したものであることを特徴とするものである。酸化スズによって得られた半導電層が半導電性を有するためには半導電層の中で酸化スズの粒子どうしが接触してつながる必要があるが、酸化スズの粒子単体でそれを実現するためには高価な酸化スズ粒子が大量に必要となり高いコストを要することとなる。酸化スズどうしが接触していれば同等の半導電性が得られる。そのため、酸化チタンなどの化学的に安定な材料で作った大き目の担持体粒子の表面に、より小さい粒子である酸化スズを添着することによって、少量の酸化スズで半導電性を得ることが可能となる。   Further, the semiconductive material is characterized in that tin oxide doped with tin oxide or antimony is attached to carrier particles having a larger particle diameter. In order for the semiconductive layer obtained by tin oxide to have semiconductivity, it is necessary for the particles of tin oxide to be in contact with each other in the semiconductive layer. Requires a large amount of expensive tin oxide particles, which requires high costs. If the tin oxides are in contact, equivalent semiconductivity can be obtained. Therefore, semi-conductivity can be obtained with a small amount of tin oxide by attaching tin oxide, which is a smaller particle, to the surface of large support particles made of chemically stable materials such as titanium oxide. It becomes.

また、担持体粒子が針形状であることを特徴とするものである。前述したとおり半導電性を得るためには酸化スズどうしが接触する必要がある。ここで球状に比べて針形状の粒子の方が、粒子どうしが重なって接触しやすくなる。そのため針状の酸化チタン粒子など針形状を有する材料を担持体粒子としてその表面に、より小さい粒子である酸化スズを添着することによって、より少量の酸化スズで半導電性を得ることが可能となる。   Further, the carrier particles are needle-shaped. As described above, in order to obtain semiconductivity, tin oxides need to contact each other. Here, the needle-shaped particles are easier to come into contact with each other than the spherical particles. Therefore, it is possible to obtain semiconductivity with a smaller amount of tin oxide by attaching a material having a needle shape such as acicular titanium oxide particles to the surface of the material as a support particle and tin oxide as a smaller particle. Become.

また、バインダ成分を樹脂とし、分子架橋剤を添加した半導電塗料を用いることを特徴とする。バインダ成分に熱可塑性ポリエステル樹脂や塩ビ樹脂、ポリオール樹脂といった樹脂を用いる場合、塗料としての形態を成すために溶媒に対する溶解性が高い、すなわち分子量の比較的小さな状態の樹脂が使用される。低分子の樹脂は油や界面活性剤に溶解しやすく、例えば空気中の油粒子や界面活性剤粒子を捕集した場合、表面に付着した油粒子や界面活性剤粒子が半導電層中の樹脂を溶解し、結果として半導電層の劣化を引き起こす。ここでポリイソシアネートなどの高分子架橋剤を半導電塗料に添加することで樹脂中のOH基が架橋され、樹脂が高分子化する。そのため油や界面活性剤に対して樹脂が溶解しない、化学的に安定な半導電層を得ることが可能となる。   In addition, a semiconductive paint using a binder component as a resin and a molecular crosslinking agent added thereto is used. When a resin such as a thermoplastic polyester resin, a vinyl chloride resin, or a polyol resin is used as the binder component, a resin having a high solubility in a solvent, that is, a relatively low molecular weight is used in order to form a coating material. Low molecular weight resins are easy to dissolve in oil and surfactant. For example, when oil particles and surfactant particles in the air are collected, the oil particles and surfactant particles attached to the surface are resin in the semiconductive layer. As a result, the semiconductive layer is deteriorated. Here, by adding a polymer cross-linking agent such as polyisocyanate to the semiconductive paint, the OH groups in the resin are cross-linked, and the resin is polymerized. Therefore, it is possible to obtain a chemically stable semiconductive layer in which the resin does not dissolve in oil or surfactant.

また、半導電塗料をスクリーン印刷法で絶縁性基板に塗布して半導電層を設けることを特徴とするものである。機械的強度と化学的安定性を有する半導電層を得るためにはある程度の厚みを必要とする。スクリーン印刷法で半導電層を得ることで、10〜50μmほどのある程度厚い半導電層を得ることが可能である。また、請求項20に記載するような絶縁性基板の端部に半導電層を設けないようにすることも、スクリーン次第で自在なパターンを印刷できるスクリーン印刷法であれば容易に実現することが可能である。   Further, a semiconductive layer is provided by applying a semiconductive paint to an insulating substrate by a screen printing method. In order to obtain a semiconductive layer having mechanical strength and chemical stability, a certain thickness is required. By obtaining a semiconductive layer by a screen printing method, it is possible to obtain a semiconductive layer that is thick to some extent of about 10 to 50 μm. Further, it is possible to easily avoid the provision of the semiconductive layer at the end portion of the insulating substrate as described in claim 20 by a screen printing method capable of printing a free pattern depending on the screen. Is possible.

半導電層の端部とは絶縁性基板に塗布した際のきわの部分を指す。すなわち絶縁性基板の端面まで塗布すれば半導電層の端部は半導電電極板それ自体の端部を意味する。ここで電圧および電極板どうしの間隔次第では高電圧が印加される電極板の半導電層の端部からもう一方の電極板の半導電層に向かってコロナ放電が発生する。このコロナ放電の大きさによっては大量のオゾンが発生し、また、半導電層の表面電位の低下を引き起こす。このコロナ放電を積極的に利用する方法も別途考案しているが、集塵装置の捕集部としての性能安定化とオゾン抑制だけを考えると半導電層の端部で発生するコロナ放電は抑制したほうがよい。抑制する具体的な方法としては、請求項18に記載するように粉塵反発電極板および集塵電極板のうち、高電圧が印加される側の電極板に設けられた半導電層の端部を、もう一方の電極板の半導電層で挟まない位置に設ける方法が挙げられる。たとえば粉塵反発電極板に高電圧を、集塵電極板に0kVを印加するという条件において、集塵電極板の半導電層の端部を集塵装置の中側に設け、粉塵反発電極板の半導電層の端部をできるだけ外側に位置させることで粉塵反発電極板の半導電層の端部を集塵電極板の半導電層で挟まない構造とすることができる。このようにすることで高電圧が印加される粉塵反発電極板の半導電層の端部から見て0Vが印加される集塵電極板の半導電層が近傍に無い構造となり、高電圧が印加される粉塵反発電極板の半導電層の端部から発生しうるコロナ放電を抑制することが可能となる。   The edge part of a semiconductive layer points out the part of a crack at the time of apply | coating to an insulating board | substrate. That is, if the coating is applied up to the end surface of the insulating substrate, the end of the semiconductive layer means the end of the semiconductive electrode plate itself. Here, depending on the voltage and the distance between the electrode plates, corona discharge is generated from the end of the semiconductive layer of the electrode plate to which a high voltage is applied toward the semiconductive layer of the other electrode plate. Depending on the magnitude of the corona discharge, a large amount of ozone is generated, and the surface potential of the semiconductive layer is lowered. A method of positively utilizing this corona discharge has been devised separately, but the corona discharge generated at the end of the semiconductive layer is suppressed considering only the stabilization of performance as the collection part of the dust collector and the suppression of ozone. You had better. As a specific method for suppressing, the end of the semiconductive layer provided on the electrode plate on the side to which the high voltage is applied among the dust repellent electrode plate and the dust collecting electrode plate as described in claim 18 is used. The method of providing in the position which is not pinched | interposed with the semiconductive layer of the other electrode plate is mentioned. For example, under the condition that a high voltage is applied to the dust repellent electrode plate and 0 kV is applied to the dust collecting electrode plate, the end of the semiconductive layer of the dust collecting electrode plate is provided inside the dust collecting device, By positioning the end portion of the conductive layer as far as possible, the end portion of the semiconductive layer of the dust repellent electrode plate can be prevented from being sandwiched between the semiconductive layers of the dust collecting electrode plate. By doing so, the structure is such that the semiconductive layer of the dust collecting electrode plate to which 0 V is applied is not seen when viewed from the end of the semiconductive layer of the dust repellent electrode plate to which the high voltage is applied, and the high voltage is applied. It is possible to suppress corona discharge that may occur from the end of the semiconductive layer of the dust repellent electrode plate.

また、コロナ放電を抑制する他の方法としては、請求項19に記載するように粉塵反発電極板および集塵電極板のうち、少なくとも高電圧が印加される側における電極板の半導電層の端部を絶縁体で被覆する方法が挙げられる。高電圧が印加される側の電極板における半導電層の端部を絶縁性フィルムやコーキング剤などの絶縁体で被覆することで空気と接触しない構造とする。また、集塵装置の外部に接地されて0Vとなっている物体、特に導電体が存在する場合、その物体に向かって発生するコロナ放電を抑制するためには、請求項20に記載するように、粉塵反発電極板および集塵電極板のうち、少なくとも高電圧が印加される側の電極板において、絶縁性基板の端部に半導電層を設けない構造とすることが有効である。このようにすることで高電圧が印加される電極板の半導電層の端部が集塵装置の外部に対して露出しない構造とすることが可能となる。   In addition, as another method for suppressing corona discharge, as described in claim 19, at least the end of the semiconductive layer of the electrode plate on the side to which a high voltage is applied among the dust repellent electrode plate and the dust collecting electrode plate The method of coat | covering a part with an insulator is mentioned. The end of the semiconductive layer on the electrode plate to which a high voltage is applied is covered with an insulator such as an insulating film or a caulking agent so that it does not come into contact with air. Further, in the case where an object grounded to the outside of the dust collector and having a voltage of 0 V, in particular, a conductor is present, in order to suppress corona discharge generated toward the object, as described in claim 20, Of the dust repellent electrode plate and the dust collecting electrode plate, it is effective that at least the electrode plate to which a high voltage is applied has a structure in which a semiconductive layer is not provided at the end of the insulating substrate. By doing in this way, it becomes possible to set it as the structure where the edge part of the semiconductive layer of the electrode plate to which a high voltage is applied is not exposed with respect to the exterior of a dust collector.

また、半導電電極板に貫通孔を設けることを特徴とするものである。集塵部において粉塵反発電極板と集塵電極板は交互に積層される構造であるため、粉塵反発電極板と集塵電極板の間に一様な電場を設けるためには半導電電極板の表と裏の電荷が同様の分布を有する必要がある。半導電電極板に貫通孔を設けることで、貫通孔の壁面を通じて半導電電極板の表と裏の表面にともに一様な電荷を与えることが可能となり、粉塵反発電極板と集塵電極板の間に一様な電場を容易に設けることが可能となる。   Further, the semiconductive electrode plate is provided with a through hole. Since the dust repellent electrode plate and the dust collecting electrode plate are alternately stacked in the dust collecting part, in order to provide a uniform electric field between the dust repellent electrode plate and the dust collecting electrode plate, The charge on the back should have a similar distribution. By providing a through hole in the semiconductive electrode plate, it is possible to apply a uniform charge to both the front and back surfaces of the semiconductive electrode plate through the wall surface of the through hole, and between the dust repellent electrode plate and the dust collecting electrode plate. A uniform electric field can be easily provided.

また、貫通孔の壁面に導電性を持たせることを特徴とする。貫通孔の壁面に導電性を持たせることで半導電電極板の表と裏の表面に与えられる電荷の分布をより確実に同じにすることが可能となる。   Further, the wall surface of the through hole is made conductive. By imparting conductivity to the wall surface of the through hole, it is possible to more reliably make the distribution of electric charges given to the front and back surfaces of the semiconductive electrode plate the same.

また、絶縁性基板が樹脂材料にガラス短繊維およびマイカを充填して押出し成型後に加熱積層プレスを施した樹脂板であることを特徴とするものである。スペーサなどで表面どうしをブリッジさせずにそれぞれの電極板を支持固定するためには電極板が大きく撓んだりせず、また、初めから大きな反りがない必要がある。そのためには電極板自体が高い強度および平面性を有することが必要となる。樹脂材料にガラス短繊維およびマイカを充填して押出し成型後に加熱積層プレスを施すことで高い強度と高い平面性を有する樹脂板が得られ、このような樹脂板を電極板に用いることで電極板の撓みや反りを抑制することが可能となる。   Further, the insulating substrate is a resin plate in which a resin material is filled with short glass fibers and mica and extruded and subjected to a heat lamination press. In order to support and fix each electrode plate without bridging the surfaces with a spacer or the like, it is necessary that the electrode plate does not bend greatly and does not have a large warp from the beginning. For this purpose, the electrode plate itself needs to have high strength and flatness. Resin material is filled with short glass fibers and mica and subjected to heat lamination press after extrusion molding to obtain a resin plate having high strength and high flatness. By using such a resin plate as an electrode plate, an electrode plate Can be suppressed.

また、粉塵反発電極板および集塵電極板をともに半導電電極板とし、半導電電極板における半導電層の表面もしくは絶縁性基板の表面に積層方向から見て重ならないように導電パターンを設け、粉塵反発電極板および集塵電極板の導電パターンにそれぞれ異なる電圧を印加することを特徴とするものである。電荷は高圧電源の端子から供給されるが、端子から近い位置ほど速やかに電荷が供給される。半導電電極板に導電パターンを設け、高圧電源によって導電パターンに電圧を印加することで半導電層の上に電荷を速やかに一様に分布させることが可能となる。一様に分布した電荷によって粉塵反発電極板および集塵電極板の間に設けられた空間に一様な電場を設けることが可能となり、集塵性能をより高めることが可能となる。   Also, both the dust repellent electrode plate and the dust collecting electrode plate are semiconductive electrode plates, and a conductive pattern is provided so as not to overlap the surface of the semiconductive layer or the surface of the insulating substrate in the semiconductive electrode plate when viewed from the stacking direction. Different voltages are applied to the conductive patterns of the dust repellent electrode plate and the dust collecting electrode plate, respectively. The electric charge is supplied from the terminal of the high-voltage power supply, but the electric charge is supplied more quickly as the position is closer to the terminal. By providing a conductive pattern on the semiconductive electrode plate and applying a voltage to the conductive pattern with a high-voltage power supply, it is possible to quickly and uniformly distribute charges on the semiconductive layer. It is possible to provide a uniform electric field in the space provided between the dust repulsion electrode plate and the dust collection electrode plate by the uniformly distributed charge, and it is possible to further improve the dust collection performance.

また、導電パターンを魚の骨状に設けることを特徴とするものである。具体的には1本の導電パターンを設け、それと直交するように魚の骨状に導電パターンを複数本設けることで魚の骨状に導電パターンを形成する。導電パターンが魚の骨状にそれぞれの電極板の表面全体を網羅するように設けられているため、通じて粉塵反発電極板および集塵電極板の表面それぞれに一様な電荷を速やかに供給することが可能となり、集塵性能をより高めることが可能となる。また、それぞれの電極板に設けられた導電パターンどうしによるスパークを防止するためには一定以上の空間絶縁距離を確保する必要がある。そのために粉塵反発電極板および集塵電極板それぞれに設けられた魚の骨状の導電パターンは積層方向から見て重ならないように設けられている。   In addition, the conductive pattern is provided in the shape of a fish bone. Specifically, one conductive pattern is provided, and a plurality of conductive patterns are provided in the shape of a fish bone so as to be orthogonal thereto, thereby forming the conductive pattern in the shape of a fish bone. Since the conductive pattern is provided to cover the entire surface of each electrode plate in the shape of a fish bone, a uniform charge can be quickly supplied to each surface of the dust repellent electrode plate and the dust collecting electrode plate This makes it possible to further improve the dust collection performance. Further, in order to prevent sparks caused by the conductive patterns provided on the respective electrode plates, it is necessary to ensure a certain space insulation distance. Therefore, the fish-bone-like conductive patterns provided on the dust repellent electrode plate and the dust collecting electrode plate are provided so as not to overlap when viewed from the stacking direction.

また、粉塵反発電極板および集塵電極板それぞれに設けられた導電パターンどうしの距離が15mm以上であることを特徴とするものである。一般的に空気の絶縁耐圧は1kV/mmである。スパークの発生条件は粉塵反発電極板および集塵電極板の電位差によって異なるが、電位差としてよく用いられる6〜10kVの条件において、空間絶縁距離が15mm以上であればスパークがほぼ発生しないことから、粉塵反発電極板および集塵電極板それぞれに設けられた導電パターンどうしの距離を15mm以上とすることによってスパークを防止することが可能となる。   Further, the distance between the conductive patterns provided on each of the dust repellent electrode plate and the dust collecting electrode plate is 15 mm or more. Generally, the withstand voltage of air is 1 kV / mm. The spark generation conditions vary depending on the potential difference between the dust repulsion electrode plate and the dust collection electrode plate. However, in the condition of 6 to 10 kV, which is often used as the potential difference, sparks are hardly generated if the space insulation distance is 15 mm or more. Sparks can be prevented by setting the distance between the conductive patterns provided on the repulsive electrode plate and the dust collecting electrode plate to 15 mm or more.

また、集塵部の上流側に粉塵を帯電する荷電部を設けることを特徴とするものである。例えばコロナ放電によって加速されたイオンを粉塵に付着させて帯電粉塵とする荷電部を集塵部の上流側に設けることで、集塵部の電場による高い粉塵捕集作用を得ることが可能となる。荷電部の具体的な構造としては請求項28に記載するように荷電部の放電電極として針状電極を用い、前記針状電極を通風方向に対して水平に設け、針状電極を挟むように荷電部対向電極板を通風方向に対して水平に設けたものが挙げられる。針状電極に高電圧を印加し、荷電部対向電極板に0kVを印加することで針状電極近傍に不平等電場が形成される。そして針状電極の先端近傍でコロナ放電が発生し、針状電極の先端近傍から加速されたイオンが放出され、荷電部対向電極板に向かって拡散する。ここでイオン拡散領域は針状電極の先端から荷電部対向電極板に向かって放物線を描くように広範囲に形成される。針状電極は通風方向に対して水平に設けられているため、広範囲に設けられたイオン拡散領域を空気中の粉塵が通過することが可能となり、粉塵を確実に帯電させることが可能となる。そのため集塵装置の集塵性能をより高いものにすることが可能となる。   In addition, a charging unit for charging the dust is provided on the upstream side of the dust collecting unit. For example, it is possible to obtain a high dust collecting action by the electric field of the dust collecting part by providing a charged part on the upstream side of the dust collecting part by attaching ions accelerated by corona discharge to the dust to make charged dust. . As a specific structure of the charging portion, a needle-like electrode is used as a discharging electrode of the charging portion as described in claim 28, and the needle-like electrode is provided horizontally with respect to the ventilation direction so as to sandwich the needle-like electrode. The thing provided horizontally with respect to the ventilation direction can be mentioned. By applying a high voltage to the needle electrode and applying 0 kV to the charged portion counter electrode plate, an uneven electric field is formed in the vicinity of the needle electrode. Corona discharge is generated in the vicinity of the tip of the needle electrode, and accelerated ions are released from the vicinity of the tip of the needle electrode and diffuse toward the charged portion counter electrode plate. Here, the ion diffusion region is formed over a wide range so as to draw a parabola from the tip of the needle electrode toward the charged portion counter electrode plate. Since the needle-like electrode is provided horizontally with respect to the ventilation direction, dust in the air can pass through an ion diffusion region provided in a wide range, and the dust can be reliably charged. Therefore, the dust collection performance of the dust collection device can be increased.

また、針状電極が両端の尖った両端針状電極であることを特徴とするものである。針状電極の両端を尖らせて両方の先端を荷電部対向電極板で挟むことにより、イオン拡散領域は2倍になる。そのため粉塵をより確実に帯電させることが可能となり、集塵装置の集塵性能をより高いものにすることが可能となる。   Further, the needle-like electrode is a both-ends needle-like electrode with both ends sharpened. By sharpening both ends of the needle-like electrode and sandwiching both ends between the charged portion counter electrode plates, the ion diffusion region is doubled. Therefore, dust can be more reliably charged, and the dust collection performance of the dust collector can be further improved.

また、針状電極と高圧電源との間に抵抗器を設けることを特徴とするものである。針状電極に物理的な力が加わって損傷し、荷電部対向電極板との距離が小さくなってしまった場合に、針状電極と荷電部対向電極板との間でスパークが発生する可能性がある。針状電極と高圧電源との間に抵抗器を設けることで、針状電極と荷電部対向電極板との距離が小さくなった場合に針先から流れる放電電流が大きくなると同時に抵抗器による電圧降下が上昇し、針状電極の電圧が低下する。このため針状電極と荷電部対向電極板との距離が小さくなった場合でも針状電極と荷電部対向電極板との間で起こりうるスパークを防止することが可能となる。この時、抵抗器に接続する針状電極の針先個数が多くなった場合ははじめから電圧降下が大きくなってしまい、結果として針状電極の放電電流を大幅が低下して高い集塵性能を確保できなくなる。請求項31に記載したように抵抗器に接続する針状電極の先端個数1個以上6個以下とすることで針状電極から一定以上の放電電流を得、高い集塵性能を確保することが可能となる。   In addition, a resistor is provided between the needle electrode and the high voltage power source. When a physical force is applied to a needle electrode and it is damaged, and the distance from the charged part counter electrode plate becomes small, a spark may occur between the needle electrode and the charged part counter electrode plate There is. By providing a resistor between the needle electrode and the high-voltage power supply, when the distance between the needle electrode and the charged portion counter electrode plate becomes small, the discharge current flowing from the needle tip increases and at the same time the voltage drop due to the resistor Increases, and the voltage of the needle electrode decreases. For this reason, even when the distance between the needle-shaped electrode and the charged portion counter electrode plate is reduced, it is possible to prevent a spark that may occur between the needle-shaped electrode and the charged portion counter electrode plate. At this time, if the number of needle tips of the needle electrodes connected to the resistor increases, the voltage drop increases from the beginning, resulting in a significant reduction in the discharge current of the needle electrodes and high dust collection performance. It cannot be secured. As described in claim 31, by setting the number of tips of the needle electrodes connected to the resistor to 1 or more and 6 or less, it is possible to obtain a discharge current of a certain level or more from the needle electrodes and ensure high dust collection performance. It becomes possible.

また、抵抗器の抵抗値が20MΩ以上200MΩ以下であることを特徴とするものである。高圧電源と針状電極との間に設ける抵抗器の値が大きすぎる場合は針状電極の電圧降下が大きくなりすぎてしまい、結果として針状電極の放電電流を大幅が低下して高い集塵性能を確保できなくなる。抵抗器の抵抗値を20MΩ以上200MΩ以下とすることで針状電極から一定以上の放電電流を得、高い集塵性能を確保することが可能となる。   Further, the resistance value of the resistor is 20 MΩ or more and 200 MΩ or less. If the value of the resistor provided between the high-voltage power supply and the needle electrode is too large, the voltage drop of the needle electrode becomes too large, resulting in a significant decrease in the discharge current of the needle electrode and high dust collection. Performance cannot be secured. By setting the resistance value of the resistor to 20 MΩ or more and 200 MΩ or less, it is possible to obtain a discharge current of a certain level or more from the needle-like electrode and ensure high dust collection performance.

以下、本発明の実施の形態について図面を参照しながら説明する。ちなみにこれら実施の形態は一例を示すものであり、本発明はこれら実施の形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Incidentally, these embodiments are merely examples, and the present invention is not limited to these embodiments.

(実施の形態1)
集塵装置において、10の7〜11乗Ω/□の表面抵抗率を有する半導電層1を設けた粉塵反発電極板2および集塵電極板3を交互に積層した集塵部4の斜視図を図1に、正面図を図2に示す。ちなみに図2ではフレーム12を箱状の形状のものとして示してあるが、図をわかりやすくするために図1では碍子13を設ける両側の部分のみを記載している。
(Embodiment 1)
The perspective view of the dust collection part 4 which laminated | stacked the dust repulsion electrode plate 2 and the dust collection electrode plate 3 which provided the semiconductive layer 1 which has the surface resistivity of 10 7-11th power / square in a dust collector. Is shown in FIG. 1, and a front view is shown in FIG. Incidentally, in FIG. 2, the frame 12 is shown as having a box shape, but in order to make the drawing easier to understand, only the portions on both sides where the insulator 13 is provided are shown in FIG.

図1および図2に示すように粉塵反発電極板2および集塵電極板3は通電貫通孔5および空間形成貫通孔6が設けられており、図3に示すような円筒状スペーサ7を挟みながらシャフト8を挿入することによって間隔を開けながら固定されている。円筒状スペーサ7およびシャフト8は金属など導電性を有する材料で構成されており、高圧電源9を接続することによって粉塵反発電極板2および集塵電極板3それぞれに設けられた半導電層1に異なる電圧、例えば粉塵反発電極板の半導電層1に−8kV、集塵電極板の半導電層1に0kVを印加することが可能となっている。そのため粉塵反発電極板2および集塵電極板3の間に設けられた空間10には電場が形成されている。空気は通風方向11が示す向きで集塵部4に導入され、空気中の例えばマイナスに帯電された帯電粉塵が空間10を通過する。そして帯電粉塵は空間10に設けられた電場からクーロン力を受けて集塵電極板3に付着し、捕集される。ここで繰り返しになるが粉塵反発電極板2および集塵電極板3は、表面に10の7〜11乗Ω/□の表面抵抗率を有する半導電層1が設けられたいわゆる半導電電極板となっている。表面が導電性である場合、表面の電荷移動が自由かつ急激に起こるためスパークが発生するが、表面が半導電性であるため電荷の移動が急激に起こらない。そのためスパークを防止することができる。また、フレーム12の外側に設けられた碍子13で粉塵反発電極板2を支えることによって粉塵反発電極板2と集塵電極板3の表面どうしが接触しない構造となっている。すなわち表面が接触して起こる表面電位の低下が発生せず、空間10には一様かつ強度の高い電場が常に形成されているためスパークを防止しながら、かつ高い集塵性能を得ることが可能となっている。   As shown in FIGS. 1 and 2, the dust repellent electrode plate 2 and the dust collecting electrode plate 3 are provided with a current-carrying through hole 5 and a space forming through hole 6 while sandwiching a cylindrical spacer 7 as shown in FIG. The shaft 8 is fixed while being spaced apart by inserting the shaft 8. The cylindrical spacer 7 and the shaft 8 are made of a conductive material such as metal, and are connected to the semiconductive layer 1 provided on each of the dust repellent electrode plate 2 and the dust collecting electrode plate 3 by connecting a high voltage power source 9. Different voltages, for example, −8 kV can be applied to the semiconductive layer 1 of the dust repellent electrode plate, and 0 kV can be applied to the semiconductive layer 1 of the dust collecting electrode plate. Therefore, an electric field is formed in the space 10 provided between the dust repellent electrode plate 2 and the dust collecting electrode plate 3. Air is introduced into the dust collecting unit 4 in the direction indicated by the ventilation direction 11, and charged dust, for example, negatively charged in the air passes through the space 10. Then, the charged dust is subjected to the Coulomb force from the electric field provided in the space 10 and adheres to the dust collecting electrode plate 3 and is collected. Here again, the dust repellent electrode plate 2 and the dust collecting electrode plate 3 are so-called semiconductive electrode plates in which a semiconductive layer 1 having a surface resistivity of 10 7-11 Ω / □ is provided on the surface. It has become. When the surface is conductive, sparks are generated because charge transfer on the surface occurs freely and rapidly, but charge transfer does not occur rapidly because the surface is semiconductive. Therefore, sparking can be prevented. Further, the dust repellent electrode plate 2 is supported by the insulator 13 provided outside the frame 12 so that the surfaces of the dust repellent electrode plate 2 and the dust collecting electrode plate 3 do not contact each other. That is, the surface potential does not decrease when the surfaces come into contact with each other, and a uniform and strong electric field is always formed in the space 10, so that high dust collection performance can be obtained while preventing sparks. It has become.

ここで代表的に粉塵反発電極板2の構造について図4および図5を用いて説明する。ちなみに集塵電極板3の構造は粉塵反発電極板2とほぼ同じ構造であり、大きな違いは通電貫通孔5および空間形成貫通孔6の位置が異なるのみである。図4に示すように粉塵反発電極板2は絶縁性基板14の表面に半導電層1が設けられており、同時に通電貫通孔5および空間形成貫通孔6とが設けられている。通電貫通孔5はシャフト8がちょうど入りかつ円筒状スペーサ7と接触する大きさとなっており、円筒状スペーサ7との接触箇所によって固定および通電がなされている。また、空間形成貫通孔6は集塵電極板3を固定し通電する円筒状スペーサ7との空間距離が目安として15mm以上となるような大きさとなっている。例えば円筒状スペーサ7の外径が14mmであれば空間形成貫通孔6の径は44mm以上となっており、集塵電極板3との電位差が−10kV程度であれば集塵電極板3を固定する円筒状スペーサ7との間でスパークを発生しない構造となっている。また、絶縁性基板14の表面に半導電層1を設ける方法としては、塗布面が10の7〜11乗Ω/□となる半導電塗料を塗布して乾燥する、もしくは10の7〜11乗Ω・cmの体積抵抗率を有するフィルムを絶縁性基板の表面に貼るなどの方法が挙げられる。円筒状スペーサ7は高圧電源9と接続されたシャフト8と接触しており、通電貫通孔5の周囲の円筒状スペーサ7との接触部分から印加電圧に相当する電荷が半導電層1に供給される。半導電層1は10の7〜11乗Ω/□の表面抵抗率を有するため、印加電圧に相当する電荷を一様に分布させながらも、急激な電荷の移動を抑制する働きを持っている。そのため大きな粉塵が付着するなどある箇所でスパークの基点となるような状態が形成されたとしても電荷が急激に移動しないためスパークの発生を防止することができる。すなわち印加電圧に相当する電荷を分布させて空間10に一様な電場を形成して高い集塵性能を得ながらスパークを防止することが可能となっている。また、図5には粉塵反発電極板に小さな電荷均一化貫通孔15を複数設けたものを示す。電荷均一化貫通孔15の壁面は表面抵抗率が10の7〜11乗Ω/□といった半導電性か、もしくは10の1〜4乗Ω/□といった導電性を有しており、粉塵反発電極板2の表裏に設けられた半導電層1における電荷の分布を同一状態にする働きを有する。仮に円筒状スペーサ7と通電貫通孔5との接触が悪くなった部分が生じても他の部分の接触が十分であればその部分を通じて表裏の半導電層1の電荷分布を同一にし、空間10において一様な電場を得ることが可能となる。   Here, the structure of the dust repellent electrode plate 2 will be described with reference to FIGS. 4 and 5. FIG. Incidentally, the structure of the dust collecting electrode plate 3 is substantially the same as that of the dust repellent electrode plate 2, and the only significant difference is the positions of the energizing through hole 5 and the space forming through hole 6. As shown in FIG. 4, the dust repellent electrode plate 2 is provided with the semiconductive layer 1 on the surface of the insulating substrate 14, and at the same time, the energizing through hole 5 and the space forming through hole 6 are provided. The current-carrying through hole 5 is sized so that the shaft 8 just enters and comes into contact with the cylindrical spacer 7, and is fixed and energized by the contact point with the cylindrical spacer 7. Further, the space forming through hole 6 has such a size that the spatial distance from the cylindrical spacer 7 to which the dust collecting electrode plate 3 is fixed and energized is 15 mm or more as a guide. For example, if the outer diameter of the cylindrical spacer 7 is 14 mm, the diameter of the space forming through-hole 6 is 44 mm or more. If the potential difference from the dust collection electrode plate 3 is about −10 kV, the dust collection electrode plate 3 is fixed. It has a structure that does not generate sparks with the cylindrical spacer 7. Further, as a method for providing the semiconductive layer 1 on the surface of the insulating substrate 14, a semiconductive paint having a coating surface of 10 7 to the 11th power Ω / □ is applied and dried, or 10 7 to the 11th power. Examples thereof include a method of attaching a film having a volume resistivity of Ω · cm to the surface of an insulating substrate. The cylindrical spacer 7 is in contact with the shaft 8 connected to the high-voltage power source 9, and a charge corresponding to the applied voltage is supplied to the semiconductive layer 1 from the contact portion with the cylindrical spacer 7 around the current-carrying through hole 5. The Since the semiconductive layer 1 has a surface resistivity of 10 7-11 Ω / □, it has a function of suppressing rapid charge movement while uniformly distributing charges corresponding to the applied voltage. . Therefore, even if a state that becomes the base point of the spark is formed at a certain place such as when large dust adheres, the electric charge does not move abruptly, so that the generation of the spark can be prevented. That is, it is possible to prevent a spark while obtaining a high dust collection performance by distributing a charge corresponding to the applied voltage to form a uniform electric field in the space 10. FIG. 5 shows a dust repellent electrode plate provided with a plurality of small charge equalization through holes 15. The wall surface of the charge equalizing through-hole 15 has a semiconductive property such as a surface resistivity of 10 7 to 11th power Ω / □ or a conductivity of 10 1 to 4th power Ω / □, and a dust repellent electrode It has the function of making the charge distribution in the semiconductive layer 1 provided on the front and back of the plate 2 the same. Even if a portion where the contact between the cylindrical spacer 7 and the current-carrying through hole 5 is deteriorated is generated, if the contact of the other portion is sufficient, the charge distribution of the front and back semiconductive layers 1 is made the same throughout that portion, and the space 10 It is possible to obtain a uniform electric field at.

なお、粉塵反発電極板2および集塵電極板3として、絶縁性基板14の表面に半導電層1を設けた半導電電極板を用いる構成で説明を行ったが、もともと表面が10の7〜11乗Ω/□となる材料で構成された半導電電極板を粉塵反発電極板2および集塵電極板3として用いた場合でも同様にスパークを防止しながら高い集塵性能を得ることが可能である。   In addition, although it demonstrated by the structure using the semiconductive electrode plate which provided the semiconductive layer 1 on the surface of the insulating board | substrate 14 as the dust repulsion electrode plate 2 and the dust collection electrode plate 3, originally the surface is 10-7. Even when a semiconductive electrode plate made of a material of 11 11 Ω / □ is used as the dust repulsion electrode plate 2 and the dust collection electrode plate 3, it is possible to obtain high dust collection performance while preventing sparks in the same manner. is there.

(実施の形態2)
半導電性材料、樹脂、溶剤からなるスクリーン印刷用インキを樹脂製の絶縁性基板14にスクリーン印刷法で塗布し乾燥させて得た半導電層1による検証結果を以下に示す。ここでインク中の半導電性材料として球状および針形状を有するアンチモンドープ酸化スズ添着酸化チタンを、また、樹脂として熱可塑性ポリエステル樹脂を用いた。また、半導電層を作成するにあたり、バインダ成分である熱可塑性ポリエステル樹脂を高分子化してバインダとしての強度を確保するために印刷する直前にポリイソシアネート系の分子架橋剤を一定の比率でインキに添加している。スクリーン印刷法で得られた半導電層1の厚みは約10μmであった。半導電性材料の形状と半導電層の表面抵抗率の関係について検討結果を表1に示す。球状の半導電性材料は粒子径約0.3μm、針形状の半導電性材料は太さ約0.2μm、長さ約3μmである。球状および針形状それぞれの半導電材料をもちいて作成した半導電層の表面抵抗率を表1に示す。
(Embodiment 2)
The verification results of the semiconductive layer 1 obtained by applying a screen printing ink composed of a semiconductive material, resin, and solvent to the resin insulating substrate 14 by a screen printing method and drying are shown below. Here, antimony-doped tin oxide-added titanium oxide having spherical and needle shapes was used as the semiconductive material in the ink, and a thermoplastic polyester resin was used as the resin. Also, when creating a semiconductive layer, a polyisocyanate-based molecular crosslinking agent is added to the ink at a certain ratio immediately before printing in order to polymerize the thermoplastic polyester resin as a binder component and ensure the strength as a binder. It is added. The thickness of the semiconductive layer 1 obtained by the screen printing method was about 10 μm. Table 1 shows the results of the study on the relationship between the shape of the semiconductive material and the surface resistivity of the semiconductive layer. The spherical semiconductive material has a particle diameter of about 0.3 μm, and the needle-shaped semiconductive material has a thickness of about 0.2 μm and a length of about 3 μm. Table 1 shows the surface resistivity of the semiconductive layer prepared using spherical and needle-shaped semiconductive materials.

Figure 2010029839
Figure 2010029839

表1に示すように、10の9〜10乗Ω/□の表面抵抗率を得るのに半導電層1中における半導電材料の重量比率は球状のもので60%、針形状のもので22%となった。この結果から、球状よりも針形状の方がより少ない量で半導電性が得られることがわかった。これは針形状の方が、粒子どうしが重なって接触しやすいことによるものである。   As shown in Table 1, in order to obtain a surface resistivity of 10 9 to 10 10 Ω / □, the weight ratio of the semiconductive material in the semiconductive layer 1 is 60% spherical and 22% needle-shaped. %. From this result, it was found that the semiconductivity can be obtained with a smaller amount of the needle shape than the spherical shape. This is because the needle shape is more likely to come into contact with each other because the particles overlap each other.

次に表面抵抗率と表面電位の関係を調べた。図6に示すように、絶縁性基板14の上に90mm角の半導電層1を設け、一つの角と高圧電源9の端子を接触させて−3kVを印加した。そして予め半導電層1の中央部分17に設けておいた非接触式の表面電位計16(モンローエレクトロニクス製MODEL279)によって半導電層1の表面電位を測定し、−3kVに到達するまでの時間を計測した。その結果を表2に示す。   Next, the relationship between surface resistivity and surface potential was investigated. As shown in FIG. 6, the 90 mm square semiconductive layer 1 was provided on the insulating substrate 14, and one corner and a terminal of the high voltage power source 9 were brought into contact with each other to apply −3 kV. Then, the surface potential of the semiconductive layer 1 is measured by a non-contact type surface potential meter 16 (MODEL 279 manufactured by Monroe Electronics) previously provided in the central portion 17 of the semiconductive layer 1, and the time until it reaches -3 kV is determined. Measured. The results are shown in Table 2.

Figure 2010029839
Figure 2010029839

この結果から、表面抵抗率が10の11乗Ω/□以下であれば30秒以内で−3kVに到達するが、それ以上になると−3kVに到達するのに100秒以上必要であることがわかった。すなわち高圧電源から供給される電圧まで速やかに昇圧できる迅速なレスポンスを得るためには半導電層1の表面抵抗率を10の11乗Ω/□以下とする必要があることがわかった。   From this result, it is found that if the surface resistivity is 10 11 Ω / □ or less, it reaches −3 kV within 30 seconds, but if it is more than that, it takes 100 seconds or more to reach −3 kV. It was. That is, it was found that the surface resistivity of the semiconductive layer 1 needs to be 10 11 Ω / □ or less in order to obtain a quick response that can quickly increase the voltage supplied from the high-voltage power supply.

次に、図7に示すように直径50mmの内筒電極18、内径70mmのリング状の外筒電極19を半導電層1の上に置き、内筒電極18を接地して0Vとし、また外筒電極19に1〜8kVの電圧を印加した。そして両電極に流れる電流を計測して表面抵抗率を算出した。ちなみに半導電層1の作成に用いた半導電性材料は針形状のアンチモンドープ酸化スズ添着酸化チタン、そして比較用として粒子径約0.2μmのアルミニウムドープ酸化亜鉛の2種類、表面抵抗率は1kV印加時にそれぞれ約10の12、10および7乗Ω/□の3種類計6種類の半導電層1で試験を行った。結果を表3に示す。   Next, as shown in FIG. 7, an inner cylindrical electrode 18 having a diameter of 50 mm and a ring-shaped outer cylindrical electrode 19 having an inner diameter of 70 mm are placed on the semiconductive layer 1, the inner cylindrical electrode 18 is grounded to 0 V, and the outer A voltage of 1 to 8 kV was applied to the tube electrode 19. The current flowing through both electrodes was measured to calculate the surface resistivity. Incidentally, the semiconductive material used for producing the semiconductive layer 1 is needle-shaped antimony-doped tin oxide-added titanium oxide, and two types of aluminum-doped zinc oxide having a particle diameter of about 0.2 μm for comparison, and the surface resistivity is 1 kV. At the time of application, the test was performed with six types of semiconductive layers 1 in total of about 10, 12, 10 and 7th power Ω / □. The results are shown in Table 3.

Figure 2010029839
Figure 2010029839

表3に示すとおり、アンチモンドープ酸化スズ添着酸化チタンを用いた半導電層1は1、4および8kVと電圧を変化させても表面抵抗率の大幅な変化は見られない。しかしながら、1kVにおける表面抵抗率が5×10の7乗Ω/□のサンプルにおいては一回だけスパークが発生した。その後表面を観察したところ状態の変化は見られなかったが、スパーク防止および安全確保の観点から表面抵抗率は10の7乗Ω/□以下ではスパークが起こる可能性があり、粉塵反発電極板と集塵電極板とが接触する異常時には電流が流れて発熱することなどを考慮して少なくとも10の7乗Ω/□以上が望ましいという結果となった。しかしアルミニウムドープ酸化亜鉛を用いた半導電層1においては1、4、8kVと電圧を大きくするにつれて表面抵抗率が低下し、1kVにおいて表面抵抗率が10の8乗および10乗Ω/□のサンプルにおいてはスパークが発生し、その後通電状態となった。試験後に表面を観察すると一筋の焦げが発生しており、絶縁性基板14が炭化して導通したことを確認した。このように半導電性材料によっては電圧が高くなるにつれて表面抵抗率が導通方向に変化するものもあることがわかり、またアンチモンドープ酸化スズ添着酸化チタンであればそのような変化が大幅に起こらず、安定して所定の表面抵抗率が得られることがわかった。   As shown in Table 3, the semiconductive layer 1 using antimony-doped tin oxide-added titanium oxide shows no significant change in surface resistivity even when the voltage is changed to 1, 4 and 8 kV. However, in the sample having a surface resistivity of 5 × 10 7 Ω / □ at 1 kV, sparking occurred only once. After that, when the surface was observed, no change in state was observed, but from the viewpoint of preventing sparks and ensuring safety, sparks may occur when the surface resistivity is 10 7 Ω / □ or less. In consideration of the fact that an electric current flows and heat is generated when there is an abnormality in contact with the dust collecting electrode plate, the result is that at least 10 7 Ω / □ or more is desirable. However, in the semiconductive layer 1 using aluminum-doped zinc oxide, the surface resistivity decreases as the voltage is increased to 1, 4, and 8 kV, and the sample has a surface resistivity of 10 to the 8th power and 10th power / Ω / □ at 1 kV. In the case of sparks, a spark occurred and the power was turned on. When the surface was observed after the test, a single burn was generated, and it was confirmed that the insulating substrate 14 was carbonized and conducted. Thus, it can be seen that depending on the semiconductive material, the surface resistivity changes in the conduction direction as the voltage increases, and such changes do not occur significantly with antimony-doped tin oxide-added titanium oxide. It was found that a predetermined surface resistivity can be obtained stably.

また、ポリイソシアネート系の分子架橋剤の効果を調べるために界面活性剤と鉱物油を混合した水溶性油に1ヶ月浸漬したところ、分子架橋剤を添加して作成した半導電層1は外観、表面抵抗率ともに変化が無かったが、分子架橋剤を添加せずに作成した半導電層1は白色である半導電性材料の脱落を示す色落ちが発生し、また、表面抵抗率も当初の10の8乗Ω/□が10の12乗Ω/□以上に上昇した。この結果から分子架橋剤を添加することにより樹脂の劣化を防ぎ、半導電性材料の固着性能を高めることができることがわかった。   Further, in order to investigate the effect of the polyisocyanate-based molecular cross-linking agent, when immersed in a water-soluble oil mixed with a surfactant and mineral oil for 1 month, the semiconductive layer 1 prepared by adding the molecular cross-linking agent has an appearance, Although there was no change in the surface resistivity, the semiconductive layer 1 prepared without the addition of the molecular cross-linking agent developed a color fading indicating the loss of the white semiconductive material. 10 8 Ω / □ increased to 10 12 Ω / □ or more. From this result, it was found that the addition of a molecular crosslinking agent can prevent the deterioration of the resin and improve the fixing performance of the semiconductive material.

(実施の形態3)
粉塵反発電極板2および集塵電極板3として絶縁性基板14の表面に半導電層1を設けた半導電電極板を用い、粉塵反発電極板の半導電層の端部20を集塵電極板3の半導電層1で挟まない位置に設けた電極板の一組の積層図を図8に、また、粉塵反発電極板の半導電層の端部20を絶縁シート21で被覆した粉塵反発電極板を図9に示す。ちなみに粉塵反発電極板2に高電圧を、また、集塵電極板3に0Vを印加するという条件で実施の形態を示している。図8に示すとおり粉塵反発電極板の半導電層の端部20は集塵電極板3の半導電層1によって囲まれない位置に設けてあるため粉塵反発電極板の半導電層の端部20から集塵電極板3の半導電層1に向かってコロナ放電が起きない構造となっている。同時に粉塵反発電極板の半導電層の端部20はスクリーン印刷法によって絶縁性基板の端部まで設けないように塗布されている。こうすることにより集塵装置の外部に向けて粉塵反発電極板の半導電層の端部20が露わにならず、集塵装置の外部に接地された物体が存在してもそれに向けてコロナ放電が起きないような構造となっている。
(Embodiment 3)
A semiconductive electrode plate in which the semiconductive layer 1 is provided on the surface of the insulating substrate 14 is used as the dust repellent electrode plate 2 and the dust collecting electrode plate 3, and the end 20 of the semiconductive layer of the dust repellent electrode plate is used as the dust collecting electrode plate. FIG. 8 shows a stack diagram of a set of electrode plates provided at positions not sandwiched by three semiconductive layers 1, and a dust repellent electrode in which the end 20 of the semiconductive layer of the dust repellent electrode plate is covered with an insulating sheet 21. The plate is shown in FIG. Incidentally, the embodiment is shown under the condition that a high voltage is applied to the dust repellent electrode plate 2 and 0 V is applied to the dust collecting electrode plate 3. As shown in FIG. 8, the end 20 of the semiconductive layer of the dust repellent electrode plate is provided at a position not surrounded by the semiconductive layer 1 of the dust collecting electrode plate 3. Thus, no corona discharge occurs from the dust collecting electrode plate 3 toward the semiconductive layer 1. At the same time, the end 20 of the semiconductive layer of the dust repellent electrode plate is applied by screen printing so as not to reach the end of the insulating substrate. By doing so, the end 20 of the semiconductive layer of the dust repellent electrode plate is not exposed toward the outside of the dust collector, and even if a grounded object exists outside the dust collector, the corona is directed toward it. The structure is such that no discharge occurs.

また、図9に示すように粉塵反発電極板の半導電層の端部20は絶縁シート21で被覆されて空気と直接接触しないため、粉塵反発電極板の半導電層の端部20からコロナ放電が起きない構造となっている。絶縁シート21としては絶縁性を有する樹脂のフィルムやテープなどを用いることができる。また、絶縁シート21ではなくシリコーンコーキング剤を塗ってコーキングするなどの手段でも、粉塵反発電極板の半導電層の端部20が絶縁体で被覆されれば同様の効果を得ることが可能である。   Further, as shown in FIG. 9, since the end 20 of the semiconductive layer of the dust repellent electrode plate is covered with the insulating sheet 21 and does not come into direct contact with air, corona discharge is caused from the end 20 of the semiconductive layer of the dust repellent electrode plate. It has a structure that does not occur. As the insulating sheet 21, an insulating resin film or tape can be used. Further, the same effect can be obtained even by means such as coating with a silicone caulking agent instead of the insulating sheet 21 if the end 20 of the semiconductive layer of the dust repellent electrode plate is covered with an insulator. .

(実施の形態4)
魚の骨状の導電パターン22を設け、かつ表面に半導電層1を有する粉塵反発電極板2を図10に、また、魚の骨状の導電パターン22を設け、かつ表面に半導電層1を有する集塵電極板3を図11に示す。図10および図11に示すように通電貫通孔5の周囲の円筒状スペーサ7と接触する部分にも導電パターン22が設けられており、円筒状スペーサ7からの電荷の供給をより確実にする構造となっている。導電パターン22を設けることによって表面の半導電層1に電荷をより均一かつ速やかに供給することが可能となる。導電パターン22は絶縁性基板14の表面もしくは半導電層1の表面のどちらに設けても同様の効果を得ることが可能である。導電パターン22を設ける方法としては以下のようなものが挙げられる。表面に銅などによる導電膜を設け、更にその上にレジストと呼ばれる感光剤を塗布した絶縁性基板14に導電パターンが印刷された透明フィルムを重ねて紫外線を当てて露光した後に現像剤に浸して光の当たった部分に設けられた感光剤を除去し、その後エッチング剤に浸漬して除去された感光剤の下にある導電膜を溶解することで光の当たらなかった部分のみに導電パターン22を得る方法、または、スクリーン印刷によって絶縁性基板14もしくは半導電層1の上に銀やカーボンなどからなる導電インクを印刷し乾燥することで導電パターンを得る方法などである。粉塵反発電極板2および集塵電極板3に設けられた導電パターン22どうしは、積層時には積層方向から見て重ならない位置に設けられている。これは導電パターンどうしには異なる電圧が印加されており、かつ導電性であるためある程度の空間距離を取ってスパークを防止するためである。目安として10kV程度の電位差において15mm以上の空間距離を取る。こうすることで異なる電圧が印加された導電パターンどうしのスパークを防止することが可能である。
(Embodiment 4)
A dust repellent electrode plate 2 having a fish bone-like conductive pattern 22 and having a semiconductive layer 1 on its surface is shown in FIG. 10, and a fish bone-like conductive pattern 22 is provided and having a semiconductive layer 1 on its surface. The dust collecting electrode plate 3 is shown in FIG. As shown in FIGS. 10 and 11, the conductive pattern 22 is also provided in the portion in contact with the cylindrical spacer 7 around the current-carrying through hole 5, so that the supply of charges from the cylindrical spacer 7 can be made more reliable. It has become. By providing the conductive pattern 22, it becomes possible to supply charges to the semiconductive layer 1 on the surface more uniformly and quickly. The same effect can be obtained whether the conductive pattern 22 is provided on either the surface of the insulating substrate 14 or the surface of the semiconductive layer 1. Examples of the method for providing the conductive pattern 22 include the following. A conductive film made of copper or the like is provided on the surface, and a transparent film on which a conductive pattern is printed is superimposed on an insulating substrate 14 coated with a photosensitive agent called a resist on the surface, exposed to ultraviolet rays, and then exposed to a developer. The conductive agent 22 is removed from the exposed portion of light and then immersed in an etching agent to dissolve the conductive film under the removed photosensitive agent, so that the conductive pattern 22 is formed only on the portion not exposed to the light. Or a method of printing a conductive ink made of silver, carbon or the like on the insulating substrate 14 or the semiconductive layer 1 by screen printing and drying to obtain a conductive pattern. The conductive patterns 22 provided on the dust repellent electrode plate 2 and the dust collecting electrode plate 3 are provided at positions where they do not overlap when viewed from the stacking direction. This is because different voltages are applied to the conductive patterns, and since they are conductive, a certain spatial distance is taken to prevent sparks. As a guide, a spatial distance of 15 mm or more is taken at a potential difference of about 10 kV. By doing so, it is possible to prevent sparks between conductive patterns to which different voltages are applied.

(実施の形態5)
両端の尖った針状電極23を水平に設け、針状電極23を挟むように荷電部対向電極板24を通風方向11に対して水平に設けた荷電部25を図12および図13に示す。ここで荷電部25は集塵部4と似た構造であるが、針状電極23は通電貫通孔5を有する放電基板26に固定されており、放電基板26は円筒状スペーサ7を挟みながらシャフト8によって固定され、碍子13によってフレーム12に支持されている。荷電部対向電極板24も同様に円筒状スペーサ7を挟みながらシャフト8によって固定されており、放電基板26と荷電部対向電極板24とは碍子13によって絶縁された構造となっている。このような構造において針状電極23と荷電部対向電極板24との間に高い電位差を与えると針状電極23の先端で放電が起こり、先端付近でイオンが発生する。そして針状電極23は荷電部対向電極板24の、特に針状電極の先端が向いた方向の位置へ向けて広く拡散するようにイオンを加速させる。そのため通風方向11から導入される空気中の粉塵に対して加速したイオンが接触する確率が高くなり、結果として粉塵を確実に帯電させることが可能となる。ここでこの荷電部25と集塵部4との集塵装置における配置を図14に示す。図11に示すように荷電部25の下流側に集塵部4は配置され、荷電部25で確実に帯電された粉塵が集塵部4によって捕集されるため集塵性能が高まる。ここで放電基板26の一例を図15に示す。図15に示す放電基板26は絶縁性基板14の上に針状電極23が複数設けられた構造となっており、通電貫通孔5の周囲と針状電極23とを接続するように導電パターン22が設けられている。そして高圧電源9が接続されたシャフト8と接触した円筒状スペーサ7と導電パターン22とが接触することで針状電極23に例えば−10kVの高電圧を印加する構造となっている。荷電部対向電極板24は金属など導電性を有する材料で構成され、高圧電源9に接続することで例えば0kVの電圧が印加されている。ここで放電基板26の導電パターン22において、針状電極23と通電貫通孔5との導通路の途中で抵抗器27が設けられている。抵抗器27を設けることで例えば針状電極23が例えば曲ってスパークが生じるほどに荷電部対向電極板24に近づいてしまっても放電電流が増えて電圧降下が大きくなる作用によって針状電極23の電圧が低下し、結果としてスパークが始まる距離、いわゆるスパーク距離を小さくすることが可能となる。その結果安全性を高めたり、また、針状電極23と荷電部対向電極板24との距離を小さく設定することで粉塵を帯電させる性能を高めることが可能となる。
(Embodiment 5)
FIGS. 12 and 13 show a charging unit 25 provided with needle-like electrodes 23 with both ends pointed horizontally and the charging unit counter electrode plate 24 provided horizontally with respect to the ventilation direction 11 so as to sandwich the needle-like electrode 23 therebetween. Here, the charging unit 25 has a structure similar to that of the dust collecting unit 4, but the needle-like electrode 23 is fixed to a discharge substrate 26 having a current-carrying through hole 5, and the discharge substrate 26 has a shaft while sandwiching the cylindrical spacer 7. 8 and fixed to the frame 12 by a lever 13. Similarly, the charged portion counter electrode plate 24 is fixed by the shaft 8 with the cylindrical spacer 7 interposed therebetween, and the discharge substrate 26 and the charged portion counter electrode plate 24 are insulated by the insulator 13. In such a structure, when a high potential difference is applied between the needle-like electrode 23 and the charged portion counter electrode plate 24, discharge occurs at the tip of the needle-like electrode 23, and ions are generated near the tip. The acicular electrode 23 accelerates ions so as to diffuse widely toward the position of the charged portion counter electrode plate 24, particularly in the direction in which the tip of the acicular electrode faces. Therefore, the probability that the accelerated ion contacts the dust in the air introduced from the ventilation direction 11 increases, and as a result, the dust can be reliably charged. FIG. 14 shows the arrangement of the charging unit 25 and the dust collecting unit 4 in the dust collecting device. As shown in FIG. 11, the dust collection unit 4 is arranged on the downstream side of the charging unit 25, and the dust collection performance is enhanced because the dust that is positively charged by the charging unit 25 is collected by the dust collection unit 4. An example of the discharge substrate 26 is shown in FIG. The discharge substrate 26 shown in FIG. 15 has a structure in which a plurality of needle-like electrodes 23 are provided on the insulating substrate 14, and the conductive pattern 22 is connected so as to connect the periphery of the current-carrying through hole 5 and the needle-like electrode 23. Is provided. The cylindrical spacer 7 in contact with the shaft 8 to which the high voltage power supply 9 is connected and the conductive pattern 22 are in contact with each other, so that a high voltage of, for example, −10 kV is applied to the needle electrode 23. The charged portion counter electrode plate 24 is made of a conductive material such as metal, and is connected to the high voltage power source 9 to apply a voltage of, for example, 0 kV. Here, in the conductive pattern 22 of the discharge substrate 26, a resistor 27 is provided in the middle of a conduction path between the needle-like electrode 23 and the current-carrying through hole 5. By providing the resistor 27, for example, even if the needle-like electrode 23 is bent and approaches the charged portion counter electrode plate 24 so that a spark is generated, the discharge current increases and the voltage drop becomes large due to the action of the needle-like electrode 23. As a result, the distance at which the voltage decreases and the spark starts, that is, the so-called spark distance can be reduced. As a result, it is possible to improve safety and to improve the performance of charging dust by setting the distance between the needle-like electrode 23 and the charging portion counter electrode plate 24 to be small.

ここで抵抗器27は1個当たりに対して針状電極23の先端の数が6個以下となるように設けることが望ましい。針状電極23の接続数が多くなりすぎると1個あたりの抵抗器27を通過する放電電流が大きくなり電圧降下が過度に大きくなる。電圧降下が過度に大きくなると針状電極23の先端で起こる放電の度合いが小さくなり、発生し加速するイオンの量が小さくなる。その結果集塵性能が低下するためである。また、抵抗器27の抵抗値は20MΩから200MΩの範囲であることが望ましい。これは20MΩ未満であると抵抗器がない場合と比較してスパーク距離がそれほど小さくならないこと、また200MΩよりも大きいと少しの放電電流で大きな電圧降下が生じてしまい、結果として針状電極で発生する放電が小さくなり、イオンの量が小さくなって高い集塵性能を得られないからである。ここで図16に示す実験装置を組み、スパーク距離の変化を検証した。すなわち荷電部対向電極板24として金属板28を設置し、その上に金属板28に対して垂直となるように針状電極23を設け、針状電極23に−8kV、金属板28に0kVの電圧を印加しながら針状電極23の先端を金属板28に近づけていった。この時、針状電極23と高圧電源9との間に直列で任意の抵抗値を有する抵抗器27を接続した。そしてスパークが発生する距離すなわちスパーク距離および針状電極23の先端と金属板28との距離が15mmの時の放電電流を電流計29によって測定した。結果を表1に示す。   Here, it is desirable to provide the resistors 27 so that the number of tips of the needle-like electrodes 23 is 6 or less per one. If the number of needle-shaped electrodes 23 connected is too large, the discharge current passing through one resistor 27 increases, and the voltage drop becomes excessively large. When the voltage drop becomes excessively large, the degree of discharge that occurs at the tip of the needle electrode 23 decreases, and the amount of ions that are generated and accelerated decreases. As a result, the dust collection performance is lowered. The resistance value of the resistor 27 is preferably in the range of 20 MΩ to 200 MΩ. If this is less than 20 MΩ, the spark distance will not be so small compared to the case without a resistor, and if it is greater than 200 MΩ, a large voltage drop will occur with a small discharge current, resulting in a needle electrode. This is because the discharge to be performed becomes small, the amount of ions becomes small, and high dust collection performance cannot be obtained. Here, the experimental apparatus shown in FIG. 16 was assembled and the change in the spark distance was verified. That is, a metal plate 28 is installed as the charged portion counter electrode plate 24, and a needle-like electrode 23 is provided on the metal plate 28 so as to be perpendicular to the metal plate 28. The needle-like electrode 23 has −8 kV and the metal plate 28 has 0 kV. The tip of the needle electrode 23 was brought close to the metal plate 28 while applying a voltage. At this time, a resistor 27 having an arbitrary resistance value was connected in series between the needle electrode 23 and the high-voltage power supply 9. The discharge current when the spark generation distance, that is, the spark distance and the distance between the tip of the needle electrode 23 and the metal plate 28 was 15 mm was measured by an ammeter 29. The results are shown in Table 1.

Figure 2010029839
Figure 2010029839

抵抗器27を接続しないで高圧電源9と針状電極23を直接接続した場合、スパーク距離は5.0mmで放電電流は20.4μAあった。それに対して10MΩではスパーク距離が4.0mmで放電電流が17.2μA、20MΩではスパーク距離が3.0mmで放電電流が15.0μA、40MΩではスパーク距離が2.0mmで放電電流が14.0μA、50MΩではスパーク距離が1.2mmで放電電流が13.6μA、100MΩではスパーク距離が0.8mmで放電電流が11.5μA、200MΩではスパーク距離が0.6mmで放電電流が8.7μA、300MΩではスパーク距離が0.5mmで放電電流が7.0μAであった。このように抵抗器27の抵抗値を大きくすればスパーク距離が小さくなるが、その反面放電電流も低下する。これは抵抗器27の抵抗値が高いほど針状電極23が抵抗器27によって電圧降下を起こす度合いが大きくなることを示している。本検証においては10MΩではスパーク距離がそれほど小さくならず、また300MΩ以上では放電電流が小さくなりすぎてしまう結果となった。スパーク距離を最小限にしながら必要最低限の放電電流を得るためには抵抗器27の抵抗値を最適な範囲にする必要がある。本検証によって20MΩから200MΩが抵抗値の最適な範囲であり、更に言えばスパーク距離を1mm前後まで小さくしながら1/2以上の放電電流を得たい場合は50MΩ以上100MΩ以下が最適な範囲であることがわかった。   When the high voltage power supply 9 and the needle electrode 23 were directly connected without connecting the resistor 27, the spark distance was 5.0 mm and the discharge current was 20.4 μA. In contrast, at 10 MΩ, the spark distance is 4.0 mm and the discharge current is 17.2 μA, at 20 MΩ, the spark distance is 3.0 mm and the discharge current is 15.0 μA, and at 40 MΩ, the spark distance is 2.0 mm and the discharge current is 14.0 μA. At 50 MΩ, the spark distance is 1.2 mm and the discharge current is 13.6 μA. At 100 MΩ, the spark distance is 0.8 mm and the discharge current is 11.5 μA. At 200 MΩ, the spark distance is 0.6 mm and the discharge current is 8.7 μA and 300 MΩ. Then, the spark distance was 0.5 mm and the discharge current was 7.0 μA. Thus, if the resistance value of the resistor 27 is increased, the spark distance is decreased, but the discharge current is also decreased. This indicates that the higher the resistance value of the resistor 27, the greater the degree of voltage drop in the needle electrode 23 caused by the resistor 27. In this verification, the spark distance was not so small at 10 MΩ, and the discharge current was too small at 300 MΩ or more. In order to obtain the minimum necessary discharge current while minimizing the spark distance, the resistance value of the resistor 27 needs to be in an optimum range. 20 MΩ to 200 MΩ is the optimum range of resistance values according to this verification, and more specifically, 50 MΩ or more and 100 MΩ or less is the optimum range when a discharge current of 1/2 or more is desired while reducing the spark distance to around 1 mm. I understood it.

また、1個の抵抗器27に対して針状電極23の先端をいくつ接続すればスパーク距離を小さくしながら必要最低限の放電電流を確保できるかを把握するために、図17に示すように抵抗器が50MΩの抵抗器27に先端が1個、2個、4個、6個、8個、および10個となるように針状電極23を接続した装置を作成し、検証を行った。針状電極23に−8kV、金属板28に0kVを印加した状態で針状電極23の先端1個のみを金属板28に近づけた時のスパーク距離と、針状電極23の先端と金属板28との距離が15mmの時における針状電極23の先端1個あたりの放電電流とを測定した。結果を表2に示す。   In addition, in order to grasp how many tips of the needle-like electrode 23 are connected to one resistor 27 to ensure the minimum necessary discharge current while reducing the spark distance, as shown in FIG. A device in which the needle-like electrode 23 was connected to the resistor 27 having a resistance of 50 MΩ so that the tips were 1, 2, 4, 6, 8, and 10 was created and verified. The spark distance when only one tip of the needle electrode 23 is brought close to the metal plate 28 with −8 kV applied to the needle electrode 23 and 0 kV applied to the metal plate 28, and the tip of the needle electrode 23 and the metal plate 28. And the discharge current per one tip of the needle-like electrode 23 when the distance to is 15 mm. The results are shown in Table 2.

Figure 2010029839
Figure 2010029839

抵抗器27に接続する先端が1個ではスパーク距離1.2mmで放電電流13.6μA、先端が2個ではスパーク距離1.2mmで放電電流11.1μA、先端が4個ではスパーク距離1.2mmで放電電流9.3μA、先端が6個ではスパーク距離1.2mmで放電電流7.3μA、先端が8個ではスパーク距離1.2mmで放電電流6.0μA、先端が10個ではスパーク距離1.2mmで放電電流5.0μAとなった。接続する先端の数を変えてもスパーク距離はほとんど変化しないが、針状電極23と金属板28との距離が15mmの時の放電電流は接続する先端が多くなればなるほど先端1個あたりの放電電流が小さくなる。接続する先端が多くなればなるほど抵抗器27を流れる電流が大きくなって電圧降下が大きくなり、針状電極23の電圧が低下したためである。ここで接続する先端が1個の場合と比べて6個以下であれば1/2以上の放電電流を確保することが可能であるが、8個接続した場合では1個接続した場合の1/2未満となってしまい、高い放電電流を確保できない。すなわち抵抗器1個当たりに接続する針状電極の先端数は6個以下とすることが望ましいことがわかった。   With one tip connected to the resistor 27, a discharge current of 13.6 μA with a spark distance of 1.2 mm, with two tips, a discharge distance of 11.1 μA with a spark distance of 1.2 mm, and with four tips, a spark distance of 1.2 mm Discharge current is 9.3 μA, 6 tips have a spark distance of 1.2 mm and discharge current is 7.3 μA, 8 tips has a spark distance of 1.2 mm and discharge current is 6.0 μA, and 10 tips have a spark distance of 1. The discharge current was 5.0 μA at 2 mm. Although the spark distance hardly changes even if the number of connected tips is changed, the discharge current when the distance between the needle electrode 23 and the metal plate 28 is 15 mm increases the discharge per tip as the number of connected tips increases. The current becomes smaller. This is because as the number of connected tips increases, the current flowing through the resistor 27 increases, the voltage drop increases, and the voltage of the needle electrode 23 decreases. Here, when the number of connected tips is 6 or less, it is possible to secure a discharge current of 1/2 or more when the number of connected tips is 6 or less. Therefore, a high discharge current cannot be secured. That is, it was found that the number of needle-shaped electrodes connected to one resistor is preferably 6 or less.

なお、本発明の針状電極23は先端が放電を起こすだけの十分細い形状を有するものであることを意味し、例えば胴回りの径が0.5mm以下であるなど先端が十分に細くて放電可能な形状であれば必ずしも先端を鋭利にする必要はない。   In addition, the needle-like electrode 23 of the present invention means that the tip has a shape that is thin enough to cause discharge. For example, the diameter of the waist is 0.5 mm or less, and the tip is sufficiently thin and can be discharged. If it is a simple shape, it is not always necessary to sharpen the tip.

本発明の集塵装置は、高い集塵性能を得ながら集塵部および荷電部ともにスパークを防止することが可能であるため、高い集塵性能と安全性が同時に求められる集塵装置、例えば工場のオイルミスト集塵機や家庭用空気清浄機、または給気型換気扇などに搭載する集塵デバイスとして有用である。   The dust collector of the present invention is capable of preventing sparks in both the dust collecting part and the charging part while obtaining high dust collecting performance, so that a dust collector that requires high dust collecting performance and safety at the same time, for example, a factory It is useful as a dust collection device to be installed in oil mist dust collectors, household air purifiers, or air supply type ventilation fans.

本発明の実施の形態1に記載の集塵部を示す斜視構成図The perspective block diagram which shows the dust collection part of Embodiment 1 of this invention 同集塵部を示す正面構成図Front configuration diagram showing the dust collector 同円筒状スペーサを示す構成図Configuration diagram showing the cylindrical spacer 同粉塵反発電極板を示す構成図Configuration diagram showing the dust repellent electrode plate 同電荷均一化貫通孔を設けた粉塵反発電極板を示す構成図Configuration diagram showing dust repulsion electrode plate with the same charge equalization through hole 実施の形態2に記載の検証に用いた実験装置を示す図The figure which shows the experimental apparatus used for the verification as described in Embodiment 2. 同検証に用いた実験装置を示す図Diagram showing the experimental equipment used for the verification 実施の形態3に記載の粉塵反発電極板と集塵電極板の一組を示す構成図The block diagram which shows one set of the dust repulsion electrode plate and dust collection electrode plate as described in Embodiment 3 同絶縁シートで半導電層の端部を被覆した粉塵反発電極板を示す構成図Configuration diagram showing dust repellent electrode plate with end of semiconductive layer covered with insulating sheet 実施の形態4に記載の粉塵反発電極板を示す構成図The block diagram which shows the dust repulsion electrode plate as described in Embodiment 4 同集塵電極板を示す構成図Configuration diagram showing the dust collection electrode plate 実施の形態5に記載の荷電部を示す斜視構成図The perspective block diagram which shows the charge part as described in Embodiment 5. 同荷電部を示す正面構成図Front configuration diagram showing the same charging unit 同放電基板を示す構成図Configuration diagram showing the same discharge substrate 同集塵装置の荷電部および集塵部の配列を示す図The figure which shows the arrangement | sequence of the charge part and dust collection part of the dust collector 同検証に用いた実験装置を示す図Diagram showing the experimental equipment used for the verification 同検証に用いた実験装置を示す図Diagram showing the experimental equipment used for the verification 特許文献1に記載の集塵部を示す構成図The block diagram which shows the dust collection part of patent document 1 特許文献2に記載のコレクタ電極板を示す構成図Configuration diagram showing collector electrode plate described in Patent Document 2 同コレクタ電極板の図14におけるA−B断面を示す図The figure which shows the AB cross section in FIG. 14 of the collector electrode plate 同コレクタ電極板を積層して形成する集塵部を示す図The figure which shows the dust collection part which laminates and forms the same collector electrode plate

1 半導電層
2 粉塵反発電極板
3 集塵電極板
4 集塵部
5 通電貫通孔
6 空間形成貫通孔
7 円筒状スペーサ
8 シャフト
9 高圧電源
10 空間
11 通風方向
12 フレーム
13 碍子
14 絶縁性基板
15 電荷均一化貫通孔
16 表面電位計
17 中央部分
18 内筒電極
19 外筒電極
20 粉塵反発電極板の半導電層の端部
21 絶縁シート
22 導電パターン
23 針状電極
24 荷電部対向電極板
25 荷電部
26 放電基板
27 抵抗器
28 金属板
29 電流計
DESCRIPTION OF SYMBOLS 1 Semiconductive layer 2 Dust repulsion electrode plate 3 Dust collection electrode plate 4 Dust collection part 5 Current supply through-hole 6 Space formation through-hole 7 Cylindrical spacer 8 Shaft 9 High voltage power supply 10 Space 11 Ventilation direction 12 Frame 13 Insulator 14 Insulating substrate 15 Charge uniformizing through hole 16 Surface potential meter 17 Central portion 18 Inner cylinder electrode 19 Outer cylinder electrode 20 End of semiconductive layer of dust repellent electrode plate 21 Insulating sheet 22 Conductive pattern 23 Needle electrode 24 Charging portion counter electrode plate 25 Charging Part 26 discharge board 27 resistor 28 metal plate 29 ammeter

Claims (32)

粉塵反発電極板と集塵電極板を交互に積層したものをフレームで固定した集塵部を備える集塵装置において、粉塵反発電極板および集塵電極板の少なくともどちらか一方が半導電性もしくは絶縁性を有する材料で構成されると同時に10の7〜10乗Ω/□の表面抵抗率を有する半導電電極板であり、かつ粉塵反発電極板と集塵電極板とがフレームの外側に設けられた碍子でつながっていることを特徴とする集塵装置。 In a dust collector equipped with a dust collecting part in which dust repellent electrode plates and dust collecting electrode plates are alternately stacked and fixed by a frame, at least one of the dust repellent electrode plate and the dust collecting electrode plate is semiconductive or insulated And a semi-conductive electrode plate having a surface resistivity of 10 7 to 10 Ω / □, and a dust repellent electrode plate and a dust collecting electrode plate are provided outside the frame. Dust collector characterized by being connected with a coconut shell. 粉塵反発電極板と集塵電極板を交互に積層したものをフレームで固定した集塵部を備える集塵装置において、粉塵反発電極板および集塵電極板の少なくともどちらか一方が半導電性もしくは絶縁性を有する材料で構成されると同時に10の7〜11乗Ω/□の表面抵抗率を有する半導電電極板であり、かつ粉塵反発電極板と集塵電極板とがフレームの外側に設けられた碍子でつながっていることを特徴とする集塵装置。 In a dust collector equipped with a dust collecting part in which dust repellent electrode plates and dust collecting electrode plates are alternately stacked and fixed by a frame, at least one of the dust repellent electrode plate and the dust collecting electrode plate is semiconductive or insulated And a semiconductive electrode plate having a surface resistivity of 10 7-11 Ω / □, and a dust repellent electrode plate and a dust collecting electrode plate are provided outside the frame. Dust collector characterized by being connected with a coconut shell. 粉塵反発電極板および集塵電極板それぞれに貫通孔を設け、導電性のシャフトを挿入しながら粉塵反発電極板と導電性の円筒状スペーサ、集塵極板と導電性の円筒状スペーサの順で設けることを特徴とする請求項1または2記載の集塵装置。 A through-hole is provided in each of the dust repellent electrode plate and the dust collecting electrode plate, and the dust repellent electrode plate and the conductive cylindrical spacer are inserted in this order while the conductive shaft is inserted, and then the dust collecting electrode plate and the conductive cylindrical spacer are arranged in this order. The dust collector according to claim 1, wherein the dust collector is provided. 半導電電極板が絶縁性基板の表面に10の7〜10乗Ω/□の表面抵抗率を有する半導電層を設けたものであることを特徴とする請求項1または3記載の集塵装置。 4. The dust collector according to claim 1 or 3, wherein the semiconductive electrode plate is provided with a semiconductive layer having a surface resistivity of 10 7 to 10 10 Ω / □ on the surface of the insulating substrate. . 半導電電極板が絶縁性基板の表面に10の7〜11乗Ω/□の表面抵抗率を有する半導電層を設けたものであることを特徴とする請求項2または3記載の集塵装置。 4. The dust collector according to claim 2, wherein the semiconductive electrode plate is provided with a semiconductive layer having a surface resistivity of 10 7-11 Ω / □ on the surface of the insulating substrate. . 10の7〜10乗Ω・cmの体積抵抗率を有する樹脂フィルムを絶縁性基板の表面に設けたものを半導電電極板とすることを特徴とする請求項4記載の集塵装置。 5. A dust collector according to claim 4, wherein a resin film having a volume resistivity of 10 <7> to 10 <10> [Omega] .cm is provided on the surface of the insulating substrate as a semiconductive electrode plate. 10の7〜11乗Ω・cmの体積抵抗率を有する樹脂フィルムを絶縁性基板の表面に設けたものを半導電電極板とすることを特徴とする請求項5記載の集塵装置。 6. A dust collector according to claim 5, wherein a semiconductive electrode plate is formed by providing a resin film having a volume resistivity of 10 <7> to 11 <11> [Omega] .cm on the surface of an insulating substrate. 塗布面が10の7〜10乗Ω/□となる半導電塗料を絶縁性基板の表面に塗布し、乾燥して半導電層を設けたものを半導電電極板とすることを特徴とする請求項4記載の集塵装置。 A semiconductive electrode plate is formed by applying a semiconductive paint having a coating surface of 10 7 to 10 Ω / □ on the surface of an insulating substrate and drying to provide a semiconductive layer. Item 5. A dust collector according to Item 4. 塗布面が10の7〜11乗Ω/□となる半導電塗料を絶縁性基板の表面に塗布し、乾燥して半導電層を設けたものを半導電電極板とすることを特徴とする請求項5記載の集塵装置。 A semiconductive electrode plate is obtained by applying a semiconductive paint having a coated surface of 10 7 to 11 to 11 / Ω / □ on the surface of an insulating substrate and drying to provide a semiconductive layer. Item 6. A dust collector according to Item 5. 半導電塗料が半導電性材料および半導電性材料を塗布面に固着させるバインダ成分を含むことを特徴とする請求項8または9記載の集塵装置。 The dust collector according to claim 8 or 9, wherein the semiconductive paint includes a semiconductive material and a binder component for fixing the semiconductive material to the application surface. 半導電性材料がイオン導電性ポリマーであることを特徴とする請求項10記載の集塵装置。 The dust collector according to claim 10, wherein the semiconductive material is an ion conductive polymer. 半導電性材料が半導電性の金属酸化物であることを特徴とする請求項10記載の集塵装置。 The dust collector according to claim 10, wherein the semiconductive material is a semiconductive metal oxide. 金属酸化物が酸化スズ、もしくはアンチモンをドープした酸化スズであることを特徴とする請求項12記載の集塵装置。 13. The dust collector according to claim 12, wherein the metal oxide is tin oxide or tin oxide doped with antimony. 半導電性材料が酸化スズもしくはアンチモンをドープした酸化スズをそれよりも大きい粒子径を有する担持体粒子に添着したものであることを特徴とする請求項10記載の集塵装置。 11. The dust collecting apparatus according to claim 10, wherein the semiconductive material is tin oxide or tin oxide doped with antimony added to carrier particles having a larger particle diameter. 担持体粒子が針形状であることを特徴とする請求項14記載の集塵装置。 15. The dust collector according to claim 14, wherein the carrier particles have a needle shape. バインダ成分を樹脂とし、分子架橋剤を添加した半導電塗料を用いることを特徴とする請求項10乃至15いずれかに記載の集塵装置。 The dust collector according to any one of claims 10 to 15, wherein a semiconductive coating material in which a binder component is a resin and a molecular crosslinking agent is added is used. 半導電塗料をスクリーン印刷法で絶縁性基板に塗布して半導電層を設けることを特徴とする請求項8乃至16いずれかに記載の集塵装置。 The dust collector according to any one of claims 8 to 16, wherein a semiconductive layer is provided by applying a semiconductive paint to an insulating substrate by a screen printing method. 粉塵反発電極板および集塵電極板のうち、高電圧が印加される側の電極板に設けられた半導電層の端部を、もう一方の電極板の半導電層で挟まない位置に設けることを特徴とする請求項1乃至17いずれかに記載の集塵装置。 Of the dust repellent electrode plate and the dust collecting electrode plate, the end of the semiconductive layer provided on the electrode plate on the side to which the high voltage is applied is provided at a position not sandwiched by the semiconductive layer of the other electrode plate. The dust collector according to claim 1, wherein 粉塵反発電極板および集塵電極板のうち、少なくとも高電圧が印加される側における電極板の半導電層の端部を絶縁体で被覆することを特徴とする請求項1乃至18いずれかに記載の集塵装置。 19. The end portion of the semiconductive layer of the electrode plate on at least a side to which a high voltage is applied is covered with an insulator among the dust repellent electrode plate and the dust collecting electrode plate. Dust collector. 粉塵反発電極板および集塵電極板のうち、少なくとも高電圧が印加される側の電極板において、絶縁性基板の端部に半導電層を設けないことを特徴とする請求項1乃至19いずれかに記載の集塵装置。 20. The semiconductor substrate according to claim 1, wherein a semiconductive layer is not provided at an end portion of the insulating substrate in at least an electrode plate to which a high voltage is applied among the dust repellent electrode plate and the dust collecting electrode plate. The dust collector described in 1. 半導電電極板に貫通孔を設けることを特徴とする請求項1乃至20いずれかに記載の集塵装置。 21. The dust collector according to claim 1, wherein a through hole is provided in the semiconductive electrode plate. 貫通孔の壁面に導電性を持たせることを特徴とする請求項21記載の集塵装置。 The dust collector according to claim 21, wherein the wall surface of the through hole is made conductive. 絶縁性基板が樹脂材料にガラス短繊維およびマイカを充填して押出し成型後に加熱積層プレスを施した樹脂板であることを特徴とする請求項4乃至22いずれかに記載の集塵装置。 The dust collector according to any one of claims 4 to 22, wherein the insulating substrate is a resin plate in which a resin material is filled with short glass fibers and mica and extruded and subjected to a heat lamination press. 粉塵反発電極板および集塵電極板をともに半導電電極板とし、半導電電極板における半導電層の表面もしくは絶縁性基板の表面に積層方向から見て重ならないように導電パターンを設け、粉塵反発電極板および集塵電極板の導電パターンにそれぞれ異なる電圧を印加することを特徴とする請求項1乃至23いずれかに記載の集塵装置。 Both the dust repellent electrode plate and the dust collecting electrode plate are semiconductive electrode plates, and a conductive pattern is provided on the semiconductive electrode plate so that it does not overlap the surface of the semiconductive layer or the insulating substrate when viewed from the stacking direction. The dust collector according to any one of claims 1 to 23, wherein different voltages are applied to the conductive patterns of the electrode plate and the dust collecting electrode plate, respectively. 導電パターンを魚の骨状に設けることを特徴とする請求項24記載の集塵装置。 25. The dust collector according to claim 24, wherein the conductive pattern is provided in the shape of a fish bone. 粉塵反発電極板および集塵電極板それぞれに設けられた導電パターンどうしの距離が15mm以上であることを特徴とする請求項24または25記載の集塵装置。 26. The dust collector according to claim 24, wherein a distance between the conductive patterns provided on each of the dust repellent electrode plate and the dust collecting electrode plate is 15 mm or more. 集塵部の上流側に粉塵を帯電する荷電部を設けることを特徴とする請求項1乃至26いずれかに記載の集塵装置。 27. The dust collector according to claim 1, further comprising a charging unit that charges the dust upstream of the dust collecting unit. 荷電部の放電電極として針状電極を用い、前記針状電極を通風方向に対して水平に設け、針状電極を挟むように荷電部対向電極板を通風方向に対して水平に設けることを特徴とする請求項27記載の集塵装置。 A needle-like electrode is used as a discharge electrode of the charging part, the needle-like electrode is provided horizontally with respect to the ventilation direction, and the charging part counter electrode plate is provided horizontally with respect to the ventilation direction so as to sandwich the needle-like electrode. The dust collector according to claim 27. 針状電極が両端の尖った両端針状電極であることを特徴とする請求項28記載の集塵装置。 29. The dust collector according to claim 28, wherein the needle-like electrode is a both-end needle-like electrode having pointed ends. 針状電極と高圧電源との間に抵抗器を設けることを特徴とする請求項28または29記載の集塵装置。 30. The dust collector according to claim 28 or 29, wherein a resistor is provided between the needle electrode and the high voltage power source. 抵抗器に接続する針状電極の先端個数1個以上6個以下とすることを特徴とする請求項30記載の集塵装置。 31. The dust collector according to claim 30, wherein the number of tips of the needle electrodes connected to the resistor is 1 or more and 6 or less. 抵抗器の抵抗値が20MΩ以上200MΩ以下であることを特徴とする請求項30または31記載の集塵装置。 The dust collector according to claim 30 or 31, wherein the resistance value of the resistor is 20 MΩ or more and 200 MΩ or less.
JP2009000503A 2008-07-03 2009-01-06 Electrostatic dust collecting device Pending JP2010029839A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000503A JP2010029839A (en) 2008-07-03 2009-01-06 Electrostatic dust collecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008174148 2008-07-03
JP2009000503A JP2010029839A (en) 2008-07-03 2009-01-06 Electrostatic dust collecting device

Publications (1)

Publication Number Publication Date
JP2010029839A true JP2010029839A (en) 2010-02-12

Family

ID=41734978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000503A Pending JP2010029839A (en) 2008-07-03 2009-01-06 Electrostatic dust collecting device

Country Status (1)

Country Link
JP (1) JP2010029839A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453499B1 (en) * 2013-01-17 2014-10-23 한국기계연구원 An electrostatic precipitator using carbon fibers equipped with edge-coated collection plates
CN107138004A (en) * 2017-05-15 2017-09-08 深圳市德赛工业研究院有限公司 Intelligent building exterior wall dust guard
WO2019203708A1 (en) * 2018-04-18 2019-10-24 Eurus Airtech Ab Electrode elements of high resistivity for two-step electrofilter
KR102072129B1 (en) * 2019-07-16 2020-01-31 이혁기 Complex aerosol filter and filter assembly using the same
JP2020082043A (en) * 2018-11-30 2020-06-04 株式会社富士通ゼネラル Electrostatic precipitator
KR102484494B1 (en) * 2022-06-14 2023-01-04 주식회사 지이테크 Electric dust collector with increased dust collecting efficiency and cleaning efficiency of dust collecting electrodes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101453499B1 (en) * 2013-01-17 2014-10-23 한국기계연구원 An electrostatic precipitator using carbon fibers equipped with edge-coated collection plates
CN107138004A (en) * 2017-05-15 2017-09-08 深圳市德赛工业研究院有限公司 Intelligent building exterior wall dust guard
WO2019203708A1 (en) * 2018-04-18 2019-10-24 Eurus Airtech Ab Electrode elements of high resistivity for two-step electrofilter
US11813617B2 (en) 2018-04-18 2023-11-14 Lightair Holding Ab Electrode elements of high resistivity for two-step electrofilter
JP2020082043A (en) * 2018-11-30 2020-06-04 株式会社富士通ゼネラル Electrostatic precipitator
JP7275548B2 (en) 2018-11-30 2023-05-18 株式会社富士通ゼネラル electric dust collector
KR102072129B1 (en) * 2019-07-16 2020-01-31 이혁기 Complex aerosol filter and filter assembly using the same
KR102484494B1 (en) * 2022-06-14 2023-01-04 주식회사 지이테크 Electric dust collector with increased dust collecting efficiency and cleaning efficiency of dust collecting electrodes

Similar Documents

Publication Publication Date Title
JP2010029839A (en) Electrostatic dust collecting device
JP2007253055A (en) Dust collector and air-conditioning equipment
JP2008012526A (en) Dust collector and air conditioner
JP4929934B2 (en) Dust collector and air conditioner
JP6263736B2 (en) Electric dust filter unit
JP4839898B2 (en) Dust collector and air conditioner
KR100281769B1 (en) Electrical dust collector
WO2014103254A1 (en) Flying organism removal device, trapping electrode and trapping electrode member therefor, and manufacturing method therefor
JPH09262499A (en) Electric al precipitator
Antoniu et al. Accelerated discharge of corona-charged nonwoven fabrics
JP2010063964A (en) Dust collecting apparatus
JP2010227833A (en) Dust collector
JP2006187739A (en) Dust collector and air-conditioner
JP4149526B2 (en) Resin electrode
JP2010227832A (en) Dust collecting apparatus
JP4973335B2 (en) Dust collector filter and dust collector
EP4084243A1 (en) Electrostatic precipitator
CN215571058U (en) Electrostatic precipitator sheet filter core
WO2012002703A2 (en) Apparatus for generating ion clusters
US11070034B2 (en) Method for controlling an ionic wind generator with an AC power source and a DC power source
JP2011016056A (en) Electrostatic precipitator and air cleaner
JPH0871451A (en) Electrostatic precipitator
JP5223424B2 (en) Dust collector
JPWO2021131519A5 (en)
JP2011083674A (en) Electrode plate and dust collector