[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010027217A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2010027217A
JP2010027217A JP2008183548A JP2008183548A JP2010027217A JP 2010027217 A JP2010027217 A JP 2010027217A JP 2008183548 A JP2008183548 A JP 2008183548A JP 2008183548 A JP2008183548 A JP 2008183548A JP 2010027217 A JP2010027217 A JP 2010027217A
Authority
JP
Japan
Prior art keywords
fuel cell
hydrogen
pressure
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008183548A
Other languages
English (en)
Inventor
Michihito Tanaka
道仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008183548A priority Critical patent/JP2010027217A/ja
Publication of JP2010027217A publication Critical patent/JP2010027217A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】システムを複雑化することなく燃料電池の暖機を行うことにより、低温時における燃料電池の始動を行う。
【解決手段】燃料電池システムは、水素と酸素との電気化学反応によって発電を行う燃料電池と、水素を貯蔵する水素貯蔵手段と、燃料電池に供給される水素の一部を吸蔵することで発熱し、燃料電池と熱交換可能な水素吸蔵合金と、燃料電池の温度を測定する測定手段と、燃料電池の温度に応じて水素貯蔵手段から燃料電池への水素の供給を開始する制御手段と、を備え、制御手段は、燃料電池への水素の供給が開始された後の燃料電池の温度に応じて水素貯蔵手段から燃料電池への水素の供給圧力を制御する。
【選択図】図3

Description

本発明は、発電時において水を発生する燃料電池及び燃料電池システムに関する。
近年、運転効率および環境性に優れる電源として燃料電池が注目されている。例えば、固体高分子電解質膜型の燃料電池は、アノード電極に燃料ガスとして水素を供給し、カソード電極に酸化剤ガスとして酸素又は空気を供給することにより、電気化学反応にて電力を発電する。燃料電池は様々な環境状況にて使用され、氷点下雰囲気においては、燃料電池本体やガス供給流路の凍結を抑制するため、燃料電池本体を昇温させることが行われている。高圧水素タンクと燃料電池との間に水素吸蔵合金タンクを設置し、水素吸蔵合金タンクと燃料電池との間の熱交換を冷却液を介して行う技術がある(例えば、特許文献3参照)。
特開2004−30979号公報 特開2004−53208号公報 特開2005−174724号公報
従来の技術では、水素吸蔵合金タンクを車体に設置するため、車体重量が重くなるとともに、コスト増にもなる。また、水素吸蔵合金タンクと燃料電池との間の熱交換を冷却液を介して行う場合、システムが複雑化する。本発明は、上記問題に鑑みてなされたものであり、システムを複雑化することなく燃料電池の暖機を行うことにより、低温時における燃料電池の始動を行うことを目的とする。
本発明は、上述した課題を解決するために、以下の手段を採用する。すなわち、本発明は、水素と酸素との電気化学反応によって発電を行う燃料電池と、水素を貯蔵する水素貯蔵手段と、燃料電池に供給される水素の一部を吸蔵することで発熱し、燃料電池と熱交換可能な水素吸蔵合金と、燃料電池の温度を測定する第1の測定手段と、燃料電池の温度に応じて水素貯蔵手段から燃料電池への水素の供給を開始する制御手段と、を備え、制御手段は、燃料電池への水素の供給が開始された後の燃料電池の温度に応じて水素貯蔵手段から燃料電池への水素の供給圧力を制御する燃料電池システムである。
上記燃料電池システムによれば、水素吸蔵合金は、燃料電池に供給される水素の一部を吸蔵することで発熱する。そのため、燃料電池への水素の供給を開始した場合、水素吸蔵合金と燃料電池との間で熱交換が行われることにより燃料電池は昇温する。水素吸蔵合金は、水素の印加圧力を増加すると発熱量も増加する傾向にある。水素吸蔵合金は燃料電池に供給される水素の一部を吸蔵するため、燃料電池への水素の供給圧力を増加すれば、水素吸蔵合金に対する水素の印加圧力も増加する。したがって、燃料電池への水素の供給圧力を制御することで、水素吸蔵合金の発熱量を制御することができる。そして、燃料電池への水素の供給圧力を制御することで、燃料電池を所望の温度まで上昇させることが可能となる。
また、上記燃料電池システムは、燃料電池に酸素を含む空気を供給する空気供給手段を更に備え、制御手段は、燃料電池内の水素の圧力と空気の圧力とが同圧となるように、空気供給手段から燃料電池への空気の供給圧力を制御するようにしてもよい。上記燃料電池システムによれば、空気供給手段から燃料電池への空気の供給圧力を制御することで、燃
料電池内の水素の圧力と空気の圧力とを同圧にすることができる。これにより、燃料電池内の水素の圧力と空気の圧力との不均衡による燃料電池内の電解質膜の破損を抑制することが可能となる。
また、上記燃料電池システムは、燃料電池から送出される水素の送出を停止する停止手段を更に備え、水素吸蔵合金は燃料電池内に設けられてもよい。上記燃料電池システムによれば、燃料電池から送出される水素の送出を停止することにより、燃料電池内の水素の圧力を上昇させることができる。そして、燃料電池内に水素吸蔵合金が設けられることにより、水素吸蔵合金に対する水素の印加圧力をより速やかに増加することが可能となる。これにより、燃料電池への水素の供給圧力を増加させずに、水素吸蔵合金の発熱量を増加させることができる。
また、上記燃料電池システムは、燃料電池に酸素を含む空気を供給する空気供給手段を更に備え、制御手段は、空気供給手段から燃料電池への空気の供給圧力を、水素貯蔵手段から燃料電池への水素の供給圧力と同圧に制御するようにしてもよい。上記燃料電池システムによれば、空気供給手段から燃料電池への空気の供給圧力を、水素貯蔵手段から燃料電池への水素の供給圧力と同圧に制御することで、燃料電池内の水素の圧力と空気の圧力とを同圧にすることができる。これにより、燃料電池内の水素の圧力と空気の圧力との不均衡による燃料電池内の電解質膜の破損を抑制することが可能となる。
また、上記燃料電池システムは、外気温度を測定する第2の測定手段を更に備え、制御手段は、外気温度に応じて水素貯蔵手段から燃料電池への水素の供給を開始するようにしてもよい。上記燃料電池システムによれば、外気温度を基準として水素貯蔵手段から燃料電池への水素の供給を開始することが可能となる。
本発明によれば、システムを複雑化することなく燃料電池の暖機を行うことにより、低温時における燃料電池の始動を行うが可能となる。
以下、図面を参照して本発明の実施をするための最良の形態(以下、実施形態という)に係る燃料電池システムについて説明する。以下の実施形態の構成は例示であり、本発明は実施形態の構成には限定されない。
本発明の実施形態に係る燃料電池システムを図1から図4を参照して説明する。図1は、本実施形態に係る燃料電池システムが備える燃料電池スタック1が有する燃料電池セル2を示す斜視図である。図2は、本実施形態に係る燃料電池システムが備える燃料電池スタック1が有する燃料電池セル2の上面図である。
燃料電池スタック1は、複数の燃料電池セル2が積層されて構成されている。燃料電池セル2は、セパレータ3、4、膜電極接合体(MEA)5及び水素吸蔵合金6を有する。膜電極接合体5は、セパレータ3とセパレータ4との間に設けられている。水素吸蔵合金6は、膜電極接合体5とセパレータ4との間に設けられている。
膜電極接合体5は、電解質膜7、触媒層8、9及びガス拡散層10、11を有する。図1では、触媒層8は電解質膜7の表側に備え付けられており、触媒層9は電解質膜7の裏側に備え付けられている。触媒層9は電解質膜7の裏側に備え付けられているため、図1では図示されていない。
電解質膜7は、例えば、固体高分子膜である。触媒層8、9は、電解質膜7と接するよ
うに電解質膜7の両側にそれぞれ備え付けられる。触媒層8は、カソード(酸素極)として機能する。触媒層9は、アノード(水素極)として機能する。
ガス拡散層10は、触媒層8と接するように膜電極接合体5とセパレータ3との間に設けられる。セパレータ3には、カソード側内部流路12が形成されている。セパレータ3とガス拡散層10とが近接して配置されることで、カソード側内部流路12の内壁面の一部はセパレータ3によって構成され、カソード側内部流路12の内壁面の他の一部はガス拡散層10によって構成される。燃料電池スタック1に供給される空気(カソードガスともいう)は、図1の矢印Aで示す方向に向かってカソード側内部流路12を流通する。
ガス拡散層11は、触媒層9と接するように膜電極接合体5セパレータ4との間に設けられる。セパレータ4には、アノード側内部流路13が形成されている。セパレータ4と水素吸蔵合金6とが近接して配置されることで、アノード側内部流路13の内壁面の一部はセパレータ4によって構成され、アノード側内部流路13の内壁面の他の一部は水素吸蔵合金6によって構成される。燃料電池スタック1に供給される水素は、図1の矢印Bで示す方向に向かってアノード側内部流路13を流通する。
触媒層9には、アノード側内部流路13を流通する水素が水素吸蔵合金6及びガス拡散層11を介して供給される。触媒層9では、水素から水素イオンが生成される。触媒層8には、カソード側内部流路12を流通する空気がガス拡散層10を介して供給される。燃料電池セル2では、水素と酸素の電気化学反応が起こり、電気エネルギが発生する。また、触媒層8では、水素から生成した水素イオンと酸素とが結合することにより水が生成される。
水素吸蔵合金6は、セパレータ4と接するように備え付けられる。例えば、水素吸蔵合金6をセパレータ4に貼り付けるようにしてもよい。また、セパレータ4のうちアノード側内部流路13が形成されている箇所のみを覆うように水素吸蔵合金6を備え付けるようにしてもよい。
水素吸蔵合金6は、加圧又は冷却することにより水素を吸蔵し、減圧又は加熱することにより水素を放出する。また、水素吸蔵合金6は、水素の吸蔵時に発熱し、水素の放出時に吸熱する。水素吸蔵合金6は、供給される水素の圧力(印加される水素の圧力)が大きくなるにつれて発熱量が増加する。
本実施形態では、水素吸蔵合金6を膜電極接合体5とセパレータ4との間に設けているが、これに替えて、ガス拡散層11の材料を水素吸蔵合金6としてもよい。すなわち、水素吸蔵合金6がガス拡散層11の機能を果たすように燃料電池セル2を構成してもよい。水素吸蔵合金6がガス拡散層11の機能を果たすように燃料電池セル2を構成することで、燃料電池セル2の小型化が可能である。燃料電池セル2を小型化することにより、燃料電池スタック1の小型化が可能である。また、水素吸蔵合金6を触媒層9に溶かし込むことで、水素吸蔵合金6と触媒層9とを一体化してもよい。
水素吸蔵合金6が水素を吸蔵する状態にある場合、水素吸蔵合金6はアノード側内部流路13を流通する水素を吸蔵する。すなわち、水素吸蔵合金6はアノード側内部流路13を流通する水素の一部を吸蔵して発熱する。そして、水素吸蔵合金6が水素を吸蔵する際に発生する熱は燃料電池セル2全体に伝達される。すなわち、水素吸蔵合金6が発生する熱は、燃料電池セル2と熱交換される。燃料電池セル2の温度が、水素吸蔵合金6の温度よりも低い場合には、水素吸蔵合金6の水素吸蔵に伴う発熱により燃料電池セル2の温度が上昇する。水素吸蔵合金6が水素を放出する状態にある場合、水素吸蔵合金6から放出される水素は膜電極接合体5及びアノード側内部流路13に供給される。
図3は、本実施形態に係る燃料電池システムの構成例を示す図である。図3に示すように、本実施形態に係る燃料電池システムは、燃料電池スタック1、水素タンク20、アノードガス通路21、アノードオフガス通路22、アノードオフガス循環通路23、入口側水素調圧弁24、出口側水素調圧弁25、気液分離器26、ドレンタンク27、排気排水弁28、水素ポンプ29、フィルタ30、カソードガス通路31、エアポンプ32、入口側空気調圧弁33、出口側空気調圧弁34、セル温度センサ35、圧力センサ36、電子制御ユニット(ECU)37、外気温度センサ38及びカソードオフガス通路39を備える。
水素タンク20は、水素を貯蔵するとともに、アノードガス通路21に水素を供給する。アノードガス通路21は、水素を燃料電池スタック1に供給するための通路である。燃料電池スタック1に供給される水素は、入口側水素調圧弁24により所定圧力に調整される。すなわち、燃料電池スタック1への水素の供給圧力は、入口側水素調圧弁24の開度によって制御される。入口側水素調圧弁24の開度の制御は、電子制御ユニット37からの制御信号によって行われる。
燃料電池スタック1に供給された水素のうち未反応の水素及び触媒層8から透過する窒素等を含むガス(以下、アノードオフガスと表記する)は、燃料電池スタック1からアノードオフガス通路22に送出される。アノードオフガス通路22に送出されるアノードオフガスは、出口側水素調圧弁25により所定圧力に調整される。すなわち、アノードオフガス通路22へのアノードオフガスの送出圧力は、出口側水素調圧弁25の開度によって制御される。出口側水素調圧弁25の開度の制御は、電子制御ユニット37からの制御信号によって行われる。
燃料電池スタック1から送出されたアノードオフガスは、アノードオフガス通路22及びアノードオフガス循環通路23を通り、水素タンク20から供給される水素とともに再び燃料電池スタック1へ供給される。また、アノードオフガス通路22は、燃料電池スタック1から送出されたアノードオフガスを気液分離器26に供給する。
アノードオフガス通路22に設けられた気液分離器26は、燃料電池スタック1から送出されたアノードオフガスに含まれる水と水素とを分離する。気液分離器26にて水が分離された水素は、水素ポンプ29によりアノードオフガス循環通路23を通り、アノードガス通路21に供給される。アノードオフガス循環通路23は、水素ポンプ29から送出される水素をアノードガス通路21に供給するための通路である。アノードオフガス通路22及びアノードオフガス循環通路23により、燃料電池システムの循環経路が構成されている。
ドレンタンク27は、気液分離器26が分離した水を貯留する。排気排水弁28の開閉を行うことにより、ドレンタンク27に貯留されている水はカソードオフガス通路39に送出されるとともに、アノードオフガス中の不純物(N2)を循環経路から排出すること
が可能である。カソードオフガス通路39に送出された水は外気に排出される。また、排気排水弁28は、ドレンタンク27に貯留される水が溢れないように、あるいは不純物の濃度が高くならないように適度に開閉される。
カソードガス通路31は、空気を燃料電池スタック1に供給するための通路である。エアポンプ32が駆動することにより、フィルタ30を介して燃料電池システム外から吸入される空気が燃料電池スタック1に供給される。燃料電池スタック1に供給される空気は、入口側空気調圧弁33により所定圧力に調整される。すなわち、燃料電池スタック1への空気の供給圧力は、入口側空気調圧弁33の開度によって制御される。入口側空気調圧
弁33の開度の制御は、電子制御ユニット37からの制御信号によって行われる。
また、燃料電池スタック1に供給された空気のうち未反応の空気(カソードオフガスともいう)は、燃料電池スタック1からカソードオフガス通路39に送出される。カソードオフガス通路39に送出される空気は、出口側空気調圧弁34により所定圧力に調整される。すなわち、カソードオフガス通路39への空気の送出圧力は、出口側空気調圧弁34の開度によって制御される。出口側空気調圧弁34の開度の制御は、電子制御ユニット37からの制御信号によって行われる。
電子制御ユニット37は、入口側水素調圧弁24、出口側水素調圧弁25、入口側空気調圧弁33、出口側空気調圧弁34、セル温度センサ35、圧力センサ36及び外気温度センサ38とそれぞれ電気的に接続されている。電子制御ユニット37は、その内部にCPU(Central Processing Unit)や不揮発性のROM(Read Only Memory)等を備えて
おり、CPUはROMに記録される制御プログラムに従って各種の処理を実行する。電子制御ユニット37は、セル温度センサ35、圧力センサ36及び外気温度センサ38の駆動を制御する。また、電子制御ユニット37は、入口側水素調圧弁24、出口側水素調圧弁25、入口側空気調圧弁33及び出口側空気調圧弁34の駆動及び開度を制御する。
セル温度センサ35は、燃料電池セル2の温度を継続的又は定期的に測定する。セル温度センサ35によって測定される燃料電池セル2の温度のデータは、電子制御ユニット37に送られる。燃料電池セル2が複数ある場合、電子制御ユニット37に送られる燃料電池セル2の温度のデータは、個々のデータ、平均値のデータであってもよい。また、セル温度センサ35は、燃料電池スタック1の温度を測定することにより、複数の燃料電池セル2の温度として、電子制御ユニット37にデータを送るようにしてもよい。
圧力センサ36は、燃料電池セル2内の圧力を継続的又は定期的に測定する。より詳細には、圧力センサ36は、アノード側内部流路13の内圧及びカソード側内部流路12の内圧を継続的又は定期的に測定する。圧力センサ36によって測定されるアノード側内部流路13の内圧のデータは、電子制御ユニット37に送られる。また、圧力センサ36によって測定されるカソード側内部流路12の内圧のデータは、電子制御ユニット37に送られる。
外気温度センサ38は、外気温度を継続的又は定期的に測定する。外気温度センサ38によって測定される外気温度のデータは、電子制御ユニット37に送られる。
次に、本実施形態に係る燃料電池システムによる燃料電池スタック1の暖機処理(以下、単に「暖機処理」という)の原理について説明する。暖機処理は、燃料電池スタック1内の燃料電池セル2の温度を上昇させる処理である。なお、暖機処理を行っている間は、燃料電池スタック1の発電は行わないようにしておく。以下、燃料電池スタック1に発電を行わせる処理を発電処理という。
暖機処理を行う場合、電子制御ユニット37は、入口側水素調圧弁24の開度を制御し、アノードガス通路21から燃料電池スタック1へ水素を供給する。そして、電子制御ユニット37は、出口側水素調圧弁25の開度を制御し、燃料電池スタック1からアノードオフガス通路22へのアノードオフガスの送出を停止する。
燃料電池スタック1からアノードオフガス通路22へのアノードオフガスの送出を停止した状態で、アノードガス通路21から燃料電池スタック1へ水素を供給すると、燃料電池セル2のアノード側内部流路13の内圧が上昇する。すなわち、アノード側内部流路13を流通する水素の圧力が上昇する。燃料電池セル2のアノード側内部流路13の内圧が
一定値を超えると、水素吸蔵合金6はアノード側内部流路13を流通する水素を吸蔵して発熱する。水素吸蔵合金6が発生する熱は燃料電池セル2に伝達される。燃料電池セル2の温度が、水素吸蔵合金6の温度よりも低い場合には燃料電池セル2の温度が上昇する。
暖機処理における燃料電池スタック1への水素の供給について説明する。暖機処理の開始時の燃料電池スタック1への水素の供給圧力は所定圧力P1とする。所定圧力P1は、燃料電池セル2のアノード側内部流路13の内圧が上昇し、水素吸蔵合金6が発熱を開始する場合の水素の供給圧力の下限値である。所定圧力P1は、予め実験又はシミュレーションによって求めておけばよい。所定圧力P1のデータは、電子制御ユニット37が備えるROMに記録しておく。
電子制御ユニット37は、セル温度センサ35から燃料電池セル2の温度のデータを所定間隔で取得する。また、電子制御ユニット37は、セル温度センサ35から燃料電池セル2の温度のデータを連続的に取得してもよい。そして、電子制御ユニット37は、燃料電池セル2の温度が上昇しているか否かを判定する。燃料電池セル2の温度が上昇している場合には、燃料電池スタック1への水素の供給圧力を維持する。
一方、燃料電池セル2の温度が上昇していない場合には、燃料電池スタック1への水素の供給圧力を増加する。燃料電池スタック1への水素の供給圧力を増加することにより、水素吸蔵合金6への水素の印加圧力(供給圧力)が増加する。そのため、燃料電池スタック1への水素の供給圧力を増加する前よりも、水素吸蔵合金6の発熱量は増加する。
電子制御ユニット37は、入口側水素調圧弁24の開度を制御することにより、燃料電池スタック1への水素の供給圧力を増加させる。この場合、燃料電池セル2の温度が上昇するように、燃料電池スタック1への水素の供給圧力を増加させる。すなわち、電子制御ユニット37は、セル温度センサ35から取得する燃料電池セル2の温度のデータを参照しながら、燃料電池スタック1への水素の供給圧力の増加の制御を行う。
なお、暖機処理の開始時の燃料電池スタック1への水素の供給圧力を、電解質膜7の破損等が起こらない範囲で可能な限り高く設定してもよい。高圧の水素を燃料電池スタック1へ供給するほど、水素吸蔵合金6の発熱量が増加し、燃料電池セル2の温度上昇が速やかに行われる。
また、暖機処理を行う場合、電子制御ユニット37は、入口側空気調圧弁33の開度を制御し、カソードガス通路31から燃料電池スタック1へ空気を供給する。そして、電子制御ユニット37は、出口側空気調圧弁34の開度を制御し、燃料電池スタック1からカソードオフガス通路39のカソードオフガスの送出を停止する。なお、燃料電池スタック1からカソードオフガス通路39のカソードオフガスの送出を停止しないようにしてもよい。
燃料電池スタック1からカソードオフガス通路39へのカソードオフガスの送出を停止した状態で、カソードガス通路31から燃料電池スタック1へ空気を供給すると、燃料電池セル2のカソード側内部流路12の内圧が上昇する。すなわち、燃料電池セル2のカソード側内部流路12を流通する空気の圧力が上昇する。
この場合、アノード側内部流路13の内圧とカソード側内部流路12の内圧とが同圧となるようにする。アノード側内部流路13の内圧がカソード側内部流路12の内圧よりも高い場合又はカソード側内部流路12の内圧がアノード側内部流路13の内圧よりも高い場合、電解質膜7が破損する可能性がある。アノード側内部流路13の内圧とカソード側内部流路12の内圧とが同圧となるようにすることにより、電解質膜7の破損を回避する
ことが可能となる。
電子制御ユニット37は、圧力センサ36からアノード側内部流路13の内圧のデータ及びカソード側内部流路12の内圧のデータを取得する。電子制御ユニット37は、アノード側内部流路13の内圧のデータとカソード側内部流路12の内圧のデータとを比較する。
そして、電子制御ユニット37は、入口側空気調圧弁33の開度を制御し、アノード側内部流路13の内圧とカソード側内部流路12の内圧とが同圧となるように、空気の供給圧力を調整する。また、燃料電池スタック1からカソードオフガス通路39へのカソードオフガスの送出を停止しない状態で、カソードガス通路31から燃料電池スタック1へ空気を供給する場合も、電子制御ユニット37は同様の制御を行う。
暖機処理を終了して燃料電池スタック1の通常運転を開始する場合、電子制御ユニット37は、出口側水素調圧弁25の開度を制御し、燃料電池スタック1からアノードオフガス通路22へのアノードオフガスの送出を開始する。そして、電子制御ユニット37は、出口側空気調圧弁34の開度を制御し、燃料電池スタック1からカソードオフガス通路39へのカソードオフガスの送出を開始する。
なお、燃料電池スタック1からアノードオフガス通路22へのアノードオフガスの送出を停止しない状態で、アノードガス通路21から燃料電池スタック1へ水素を供給してもよい。この場合、燃料電池スタック1からカソードオフガス通路39へのカソードオフガスの送出を停止しない状態で、カソードガス通路31から燃料電池スタック1へ空気を供給する。
そして、上記の場合、電子制御ユニット37は、燃料電池スタック1への空気の供給圧力が水素の供給圧力と同圧となるように、空気の供給圧力を制御する。燃料電池スタック1への空気の供給圧力については、水素吸蔵合金6の発熱によって燃料電池セル2が昇温するのに必要十分な値となるように、入口側空気調圧弁33の開度を調整すればよい。
図4は、本実施形態に係る燃料電池システムの処理の流れを示すフローチャートである。本実施形態に係る燃料電池システムは、燃料電池システムに対して始動開始の処理が行われた場合に図4の処理を実行する。例えば、イグニッションスイッチがONにされた場合、電子制御ユニット37は、燃料電池システムの始動開始の指令があったと判断し、図4の処理を実効してもよい。
セル温度センサ35は、燃料電池セル2の温度の測定を開始する。外気温度センサ38は、外気温度の測定を開始する(S01)。セル温度センサ35による燃料電池セル2の温度の測定の開始は、電子制御ユニット37からの開始信号によって行われる。また、外気温度センサ38による外気温度の測定の開始は、電子制御ユニット37からの開始信号によって行われる。電子制御ユニット37は、セル温度センサ35が測定した燃料電池セル2の温度のデータをセル温度センサ35から取得する。また、電子制御ユニット37は、外部温度センサが測定した外気温度のデータを外気温度センサ38から取得する。
そして、電子制御ユニット37は、燃料電池セル2の温度が所定の閾値T1以下であるか否かを判定する(S02)。例えば、所定の閾値T1を0℃としてもよい。燃料電池セル2内部に存在する水が凍結すると、触媒層8への空気の供給及び触媒層9への水素の供給が妨げられ、発電効率が低下又は発電が行われなくなる。したがって、所定の閾値T1を、燃料電池セル2内部に存在する水が凍結する温度範囲の上限値としてもよい。燃料電池セル2内部に存在する水が凍結する温度範囲は、予め実験又はシミュレーションにより
求めておけばよい。
燃料電池セル2の温度が所定の閾値T1以下である場合(S02の処理でYES)、電子制御ユニット37は、暖機処理を開始する(S03)。
一方、燃料電池セル2の温度が所定の閾値T1以下でない場合(S02の処理でNO)、電子制御ユニット37は、外気温度が所定の閾値T2以下であるか否かを判定する(S04)。例えば、所定の閾値T2を0℃としてもよい。また、所定の閾値T2を、燃料電池セル2内部に存在する水が凍結する温度範囲の上限値としてもよい。
外気温度が所定の閾値T2以下である場合(S04の処理でYES)、S03の処理に進む。すなわち、電子制御ユニット37は、暖機処理を開始する。
一方、外気温度が所定の閾値T2以下でない場合(S04の処理でNO)、電子制御ユニット37は、暖機処理を行わずに燃料電池スタック1の通常運転を開始する(S05)。
暖機処理を開始する場合、電子制御ユニット37は、セル温度センサ35が測定した燃料電池セル2の温度のデータをセル温度センサ35から取得する。次に、電子制御ユニット37は、燃料電池セル2の温度が所定の閾値T3以上であるか否かを判定する(S06)。
所定の閾値T3を、燃料電池セル2内部に存在する水が凍結しない温度範囲の下限値としてもよい。また、所定の閾値T3を、燃料電池スタック1から定格出力を得ることができる温度範囲の下限値としてもよい。また、所定の閾値T3を、燃料電池スタック1から定格出力を得ることができる温度範囲の下限値と、燃料電池セル2内部に存在する水が凍結しない温度範囲の下限値の間に設定してもよい。
燃料電池セル2の温度が所定の閾値T3以上である場合(S06の処理でYES)、電子制御ユニット37は、暖機処理を終了する(S07)。そして、電子制御ユニット37は、燃料電池スタック1の通常運転を開始する(S08)。
一方、燃料電池セル2の温度が所定の閾値T3以上でない場合(S07の処理でNO)、燃料電池セル2の温度が所定の閾値T3以上となるまで、電子制御ユニット37は、燃料電池セル2の温度のデータの取得及び燃料電池セル2の温度が所定の閾値T3以上であるか否かの判定を繰り返す。
なお、電子制御ユニット37の処理で、図4のS02及びS04の処理の双方が必須ということではなく、いずれか一方だけの判定にしたがって、暖機処理を開始するようにしてもよい。
本実施形態によれば、暖機処理を開始した場合、水素吸蔵合金6が発熱状態となる圧力の空気が燃料電池スタック1に供給される。水素吸蔵合金6の発熱により燃料電池セル2が昇温する。したがって、燃料電池セル2内部に存在する水が凍結するような低温時であっても、燃料電池スタック1の暖機を速やかに行うことができる。そして、本実施形態形態は、燃料電池セル2内に水素吸蔵合金6を備えるという簡易な構造であるとともに、燃料電池セル2に供給する水素の圧力を制御するため、燃料電池システムを複雑化することなしに、燃料電池セル2を所望の温度まで上昇させることが可能となる。
〈変形例〉
図4に示す燃料電池システムの処理におけるS07の処理では、燃料電池セル2の温度が所定の閾値T3以上である場合、暖機処理を終了させた。これに替えて、暖機処理の開始からの経過時間が所定時間hに達した場合、暖機処理を終了させるようにしてもよい。
この場合、暖機処理の開始時における燃料電池スタック1に供給する水素の供給圧力を所定圧力P2に変更する。所定圧力P2は、燃料電池スタック1に供給する水素の供給圧力を電解質膜7の破損等が起こらない範囲で可能な限り高く設定した値である。所定圧力P2は、予め実験又はシミュレーションによって求めておけばよい。所定圧力P2のデータは、電子制御ユニット37が備えるROMに記録しておく。
ここで、電子制御ユニット37は、所定時間hを次のように算出してもよい。まず、所定の閾値T1に相当する温度から所定の閾値T3に相当する温度まで燃料電池セル2を昇温させるのに必要な熱量HM1を算出する。例えば、熱量HM1は、燃料電池セル2の温度を上昇させるのに必要な熱量(kJ/℃)に、所定の閾値T3から所定の閾値T1を引いた値をかけることにより算出する。
そして、熱量HM1(kJ)を熱量HM2(kJ/h)で割ることにより所定時間hを算出する。熱量HM2(kJ/h)は、所定圧力P2で燃料電池スタック1に水素を供給する場合の単位時間当たりの水素吸蔵合金6の発熱量(kJ)である。熱量HM2(kJ/h)は、予め実験又はシミュレーションによって求めておけばよい。熱量HM2(kJ/h)のデータは、電子制御ユニット37が備えるROMに記録しておく。
本実施形態に係る燃料電池システムが備える燃料電池スタック1が有する燃料電池セル2を示す斜視図である。 本実施形態に係る燃料電池システムが備える燃料電池スタック1が有する燃料電池セル2の上面図である。 本実施形態に係る燃料電池システムの構成例を示す図である。 本実施形態に係る燃料電池システムの処理の流れを示すフローチャートである。
符号の説明
1 燃料電池スタック
2 燃料電池セル
3、4 セパレータ
5 膜電極接合体(MEA)
6 水素吸蔵合金
7 電解質膜
8、9 触媒層
10、11 ガス拡散層
12 カソード側内部流路
13 アノード側内部流路
20 水素タンク
21 アノードガス通路
22 アノードオフガス通路
23 アノードオフガス循環通路
24 入口側水素調圧弁
25 出口側水素調圧弁
26 気液分離器
27 ドレンタンク
28 排気排水弁
29 水素ポンプ
30 フィルタ
31 カソードガス通路
32 エアポンプ
33 入口側空気調圧弁
34 出口側空気調圧弁
35 セル温度センサ
36 圧力センサ
37 電子制御ユニット(ECU)
38 外気温度センサ
39 カソードオフガス通路

Claims (5)

  1. 水素と酸素との電気化学反応によって発電を行う燃料電池と、
    水素を貯蔵する水素貯蔵手段と、
    前記燃料電池に供給される水素の一部を吸蔵することで発熱し、前記燃料電池と熱交換可能な水素吸蔵合金と、
    前記燃料電池の温度を測定する第1の測定手段と、
    前記燃料電池の温度に応じて前記水素貯蔵手段から前記燃料電池への水素の供給を開始する制御手段と、を備え、
    前記制御手段は、前記燃料電池への水素の供給が開始された後の前記燃料電池の温度に応じて前記水素貯蔵手段から前記燃料電池への水素の供給圧力を制御する燃料電池システム。
  2. 前記燃料電池に酸素を含む空気を供給する空気供給手段を更に備え、
    前記制御手段は、前記燃料電池内の水素の圧力と空気の圧力とが同圧となるように、前記空気供給手段から前記燃料電池への空気の供給圧力を制御する請求項1に記載の燃料電池システム。
  3. 前記燃料電池から送出される空気の送出を停止する停止手段を更に備え、
    前記水素吸蔵合金は前記燃料電池内に設けられる請求項1又は2に記載の燃料電池システム。
  4. 前記燃料電池に酸素を含む空気を供給する空気供給手段を更に備え、
    前記制御手段は、前記空気供給手段から前記燃料電池への空気の供給圧力を、前記水素貯蔵手段から前記燃料電池への水素の供給圧力と同圧に制御する請求項1又は2に記載の燃料電池システム。
  5. 外気温度を測定する第2の測定手段を更に備え、
    前記制御手段は、前記外気温度に応じて前記水素貯蔵手段から前記燃料電池への水素の供給を開始する請求項1から4の何れか一項に記載の燃料電池システム。
JP2008183548A 2008-07-15 2008-07-15 燃料電池システム Withdrawn JP2010027217A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183548A JP2010027217A (ja) 2008-07-15 2008-07-15 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183548A JP2010027217A (ja) 2008-07-15 2008-07-15 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2010027217A true JP2010027217A (ja) 2010-02-04

Family

ID=41732878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183548A Withdrawn JP2010027217A (ja) 2008-07-15 2008-07-15 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2010027217A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142247A1 (ja) 2010-05-11 2011-11-17 コニカミノルタホールディングス株式会社 燃料電池装置
WO2012147318A1 (ja) * 2011-04-28 2012-11-01 三洋電機株式会社 燃料電池システムおよびその制御方法
WO2013161804A1 (ja) * 2012-04-27 2013-10-31 スズキ株式会社 車両用燃料電池装置
WO2016067830A1 (ja) * 2014-10-29 2016-05-06 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142247A1 (ja) 2010-05-11 2011-11-17 コニカミノルタホールディングス株式会社 燃料電池装置
WO2012147318A1 (ja) * 2011-04-28 2012-11-01 三洋電機株式会社 燃料電池システムおよびその制御方法
WO2013161804A1 (ja) * 2012-04-27 2013-10-31 スズキ株式会社 車両用燃料電池装置
GB2514728A (en) * 2012-04-27 2014-12-03 Suzuki Motor Corp Fuel cell device for vehicle
JPWO2013161804A1 (ja) * 2012-04-27 2015-12-24 スズキ株式会社 車両用燃料電池装置
US9705140B2 (en) 2012-04-27 2017-07-11 Suzuki Motor Corporation Vehicle fuel cell apparatus with improved air intake
GB2514728B (en) * 2012-04-27 2019-07-03 Suzuki Motor Corp Fuel cell apparatus for vehicles
WO2016067830A1 (ja) * 2014-10-29 2016-05-06 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
JP2016091609A (ja) * 2014-10-29 2016-05-23 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの制御方法
CN107148695A (zh) * 2014-10-29 2017-09-08 丰田自动车株式会社 燃料电池系统以及燃料电池系统的控制方法
US10586991B2 (en) 2014-10-29 2020-03-10 Toyota Jidosha Kabushiki Kaisha Fuel cell system and fuel cell system control method
CN107148695B (zh) * 2014-10-29 2020-07-24 丰田自动车株式会社 燃料电池系统以及燃料电池系统的控制方法

Similar Documents

Publication Publication Date Title
JP4867094B2 (ja) 燃料電池システム
JP3999498B2 (ja) 燃料電池システム及びその停止方法
CN103597642B (zh) 燃料电池系统及燃料电池系统的控制方法
JP2020017420A (ja) 燃料電池システム
JP4644064B2 (ja) 燃料電池システム
CA2473213C (en) Method of starting up operation of fuel cell at low temperature
JP2005044795A (ja) 燃料電池の低温起動方法
JP2008059922A (ja) 燃料電池システム
JP2007305334A (ja) 燃料電池システム
JP6258378B2 (ja) 燃料電池システムの制御方法
JP2010027217A (ja) 燃料電池システム
JP6313347B2 (ja) 燃料電池システムの制御方法
WO2009104368A1 (ja) 燃料電池システム、および、燃料電池システムの制御方法
JP6307536B2 (ja) 燃料電池システムの低温起動方法
JP4803996B2 (ja) 燃料電池の低温起動方法及び燃料電池システム
JP6155870B2 (ja) 燃料電池システム
JP4542911B2 (ja) 燃料電池システムの掃気処理装置及び掃気処理方法
JP2010153067A (ja) 燃料電池システム
JP2010170926A (ja) 燃料電池システムの掃気処理装置および掃気処理方法
JP2006093025A (ja) 燃料電池システム
CN116666689B (zh) 一种燃料电池系统低温冷启动控制方法及燃料电池系统
JP2020170650A (ja) 燃料電池システム
JP7367611B2 (ja) 燃料電池システム
JP2006012550A (ja) 燃料電池システム
JP4814508B2 (ja) 燃料電池システム

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111004