[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010017717A - Flux-filled wire - Google Patents

Flux-filled wire Download PDF

Info

Publication number
JP2010017717A
JP2010017717A JP2008177537A JP2008177537A JP2010017717A JP 2010017717 A JP2010017717 A JP 2010017717A JP 2008177537 A JP2008177537 A JP 2008177537A JP 2008177537 A JP2008177537 A JP 2008177537A JP 2010017717 A JP2010017717 A JP 2010017717A
Authority
JP
Japan
Prior art keywords
amount
mass
wire
flux
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008177537A
Other languages
Japanese (ja)
Other versions
JP5314339B2 (en
Inventor
Masaki Shimamoto
正樹 島本
Hitoshi Ishida
斉 石田
Koichi Sakamoto
浩一 坂本
Hideji Sasakura
秀司 笹倉
Tomoki Kakizaki
智紀 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008177537A priority Critical patent/JP5314339B2/en
Priority to CN2009101475331A priority patent/CN101623802B/en
Priority to KR1020090061405A priority patent/KR101134841B1/en
Publication of JP2010017717A publication Critical patent/JP2010017717A/en
Application granted granted Critical
Publication of JP5314339B2 publication Critical patent/JP5314339B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3608Titania or titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/361Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux-filled wire having excellent high temperature cracking resistance. <P>SOLUTION: In the flux-filled wire, the flux filling rate to the total mass of the wire is 10 to 20 mass%, and the wire includes, to the total mass of the wire, 0.03 to 0.08 mass% C, 0.10 to 1.00 mass% Si (the total of Si quantity calculated from all Si sources comprised in the wire), 2.30 to 3.75 mass% Mn (the total of Mn quantity calculated from all Mn sources contained in the wire), 0.15 to 1.00 mass% Ti, 5.0 to 8.0 mass% TiO<SB>2</SB>, 0.05 to 0.50 mass% Al, 0.05 to 0.50 mass% Al<SB>2</SB>O<SB>3</SB>, and the balance Fe with inevitable impurities, and also, provided that, the Ti quantity calculated only from the above Ti is defined as Ti calculated quantity and the total of Si quantity calculated from all Si sources contained in the wire is defined as Si calculated quantity, the relation of (Ti calculated quantity/Si calculated quantity)>0.20 is satisfied. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスシールドアーク溶接に用いられるフラックス入りワイヤに関するものである。   The present invention relates to a flux-cored wire used for gas shielded arc welding.

従来、ガスシールドアーク溶接に用いられるフラックス入りワイヤとしては、以下に示すような構成を備えたものが提案されている。例えば、特許文献1には、ワイヤ全質量に対し、所定量のC、Si、Mn、TiOおよびNを含有することを特徴とする溶接用フラックス入りワイヤが記載され、このフラックス入りワイヤは、前記成分に加えて、Ti、B、Ni、Cr、Mo、Al、Mg、NbおよびTaの群から選ばれた1種または2種以上の成分を所定量含有してもよいことが記載されている。また、特許文献2には、フラックスがワイヤ全質量に対し、所定量のTiO、希土類フッ化物、Mg、Al、Si、Mn、BおよびNiを含有し、かつ金属状Tiを実質的に含まないことを特徴とするガスシールドアーク溶接用ワイヤが記載されている。
特開昭62−33094号公報 特開昭63−273594号公報
Conventionally, as a flux-cored wire used for gas shielded arc welding, a wire having the following configuration has been proposed. For example, Patent Document 1 describes a flux-cored wire for welding characterized by containing a predetermined amount of C, Si, Mn, TiO 2 and N with respect to the total mass of the wire. In addition to the above components, it is described that a predetermined amount of one or more components selected from the group consisting of Ti, B, Ni, Cr, Mo, Al, Mg, Nb and Ta may be contained. Yes. Further, in Patent Document 2, the flux contains a predetermined amount of TiO 2 , rare earth fluoride, Mg, Al, Si, Mn, B and Ni with respect to the total mass of the wire, and substantially contains metallic Ti. There is described a gas shielded arc welding wire characterized in that it is not.
JP-A-62-33094 JP-A 63-273594

しかしながら、特許文献1のフラックス入りワイヤは、溶接部の靭性を向上させることで衝撃特性を改善し、併せて溶接作業性をも改善し得るものであるが、耐高温割れ性において満足できるものではないという問題があった。また、特許文献2のフラックス入りワイヤは、拡散性水素量が少なくかつ優れた低温靭性を有するが、耐高温割れ性において満足できるものではないという問題があった。   However, the flux-cored wire of Patent Document 1 can improve the impact characteristics by improving the toughness of the welded portion, and can also improve the welding workability, but is not satisfactory in hot crack resistance. There was no problem. Further, the flux-cored wire of Patent Document 2 has a problem that it has a low amount of diffusible hydrogen and excellent low-temperature toughness, but is not satisfactory in hot crack resistance.

そこで、本発明は、このような問題点を解決すべく創案されたもので、その目的は、優れた耐高温割れ性を有するフラックス入りワイヤを提供することにある。   Accordingly, the present invention has been made to solve such problems, and an object thereof is to provide a flux-cored wire having excellent hot crack resistance.

前記課題を解決するために、本発明に係るフラックス入りワイヤは、鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、ワイヤ全質量に対するフラックス充填率が10〜20質量%であり、ワイヤ全質量に対して、C:0.03〜0.08質量%、Si(ワイヤに含有される全てのSi源から算出されるSi量の総和):0.10〜1.00質量%、Mn(ワイヤに含有される全てのMn源から算出されるMn量の総和):2.30〜3.75質量%、Ti:0.15〜1.00質量%、TiO:5.0〜8.0質量%、Al:0.05〜0.50質量%、Al:0.05〜0.50質量%を含有し、残部がFeおよび不可避的不純物からなり、かつ、前記Tiのみから算出されるTi量をTi算出量、前記ワイヤに含有される全てのSi源から算出されるSi量の総和をSi算出量としたとき、(Ti算出量/Si算出量)>0.20の関係を満足することを特徴とする。 In order to solve the above problems, the flux-cored wire according to the present invention is a flux-cored wire in which a flux is filled in a steel outer sheath, and a flux filling rate with respect to the total mass of the wire is 10 to 20% by mass, C: 0.03 to 0.08% by mass with respect to the total mass of the wire, Si (total amount of Si calculated from all Si sources contained in the wire): 0.10 to 1.00% by mass, Mn (sum of Mn amount calculated from all Mn source contained in the wire): 2.30 to 3.75 mass%, Ti: .15-1.00 wt%, TiO 2: 5.0 to 8.0% by mass, Al: 0.05 to 0.50% by mass, Al 2 O 3 : 0.05 to 0.50% by mass, the balance being Fe and inevitable impurities, and the Ti Ti amount calculated from only Ti calculated amount, When the sum of the Si amount calculated from all of the Si source contained in the tire was set to Si calculated amount, and satisfies the relationship (Ti calculated content / Si calculated amount)> 0.20.

前記構成によれば、ワイヤ全質量に対するフラックス充填率が所定量であって、ワイヤ全質量に対して、所定量のC、Si、Mn、Ti、TiO、AlおよびAlを含有することによって、溶接の際、スパッタ発生、ヒューム発生が抑制され、スラグ剥離性が改善されると共に、溶接継手の強度が向上し、かつ、高温割れが抑制される。また、Ti算出量とSi算出量とが、所定の関係を満足する、すなわち、(Ti算出量/Si算出量)>0.20を満足することによって、溶接時にTiが脱酸反応に寄与し、溶接金属中に生成するTi系酸化物の組成を核生成促進に効果的な組成に制御できる。その結果、溶接継手の凝固組織を微細化でき、高温割れの抑制作用が向上する。 According to the above configuration, the flux filling rate with respect to the total mass of the wire is a predetermined amount, and the predetermined amount of C, Si, Mn, Ti, TiO 2 , Al, and Al 2 O 3 is contained with respect to the total mass of the wire. As a result, the occurrence of spatter and fumes is suppressed during welding, the slag peelability is improved, the strength of the welded joint is improved, and hot cracking is suppressed. Further, when the Ti calculation amount and the Si calculation amount satisfy a predetermined relationship, that is, (Ti calculation amount / Si calculation amount)> 0.20, Ti contributes to the deoxidation reaction during welding. The composition of the Ti-based oxide generated in the weld metal can be controlled to a composition effective for promoting nucleation. As a result, the solidification structure of the welded joint can be refined, and the action of suppressing high temperature cracking is improved.

本発明に係るフラックス入りワイヤによれば、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO、AlおよびAlを含有し、かつ、フラックス入りワイヤに含まれるTi量とSi量とが所定の関係を満足することによって、優れた溶接作業性(ビード外観を含む)、継手強度および耐高温割れ性を有する。 According to the flux-cored wire according to the present invention, the flux filling rate is a predetermined amount, contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al and Al 2 O 3 , and the flux-cored wire By satisfying a predetermined relationship between the Ti content and the Si content contained in the steel, it has excellent welding workability (including bead appearance), joint strength, and hot crack resistance.

本発明に係るフラックス入りワイヤについて詳細に説明する。図1(a)〜(d)は、フラックス入りワイヤの構成を示す断面図である。
図1(a)〜(d)に示すように、フラックス入りワイヤ(以下、ワイヤと称す)1は、筒状に形成された鋼製外皮2と、その筒内に充填されたフラックス3とからなる。また、ワイヤ1は、図1(a)に示すような継目のない鋼製外皮2の筒内にフラックス3が充填されたシームレスタイプ、図1(b)〜(d)に示すような継目4のある鋼製外皮2の筒内にフラックス3が充填されたシームタイプのいずれの形態でもよい。
The flux cored wire according to the present invention will be described in detail. Fig.1 (a)-(d) is sectional drawing which shows the structure of a flux cored wire.
As shown in FIGS. 1A to 1D, a flux-cored wire (hereinafter referred to as a wire) 1 includes a steel outer shell 2 formed in a cylindrical shape and a flux 3 filled in the cylinder. Become. Moreover, the wire 1 is a seamless type in which a flux 3 is filled in a seamless steel outer shell 2 as shown in FIG. 1 (a), and a seam 4 as shown in FIGS. 1 (b) to 1 (d). Any form of a seam type in which a flux 3 is filled in a cylinder of a steel outer shell 2 having a certain shape.

そして、ワイヤ1は、フラックス充填率が所定量であって、所定量のC、Si、Mn、Ti、TiO、AlおよびAlを含有し、残部がFeおよび不可避的不純物からなり、かつ、Ti算出量とSi算出量とが所定の関係を満足する(具体的には、(Ti算出量/Si算出量)が所定値を超える)。 And the wire 1 has a predetermined amount of flux filling, contains a predetermined amount of C, Si, Mn, Ti, TiO 2 , Al and Al 2 O 3 , and the balance consists of Fe and inevitable impurities, In addition, the Ti calculation amount and the Si calculation amount satisfy a predetermined relationship (specifically, (Ti calculation amount / Si calculation amount) exceeds a predetermined value).

以下に、ワイヤ成分(フラックス充填率および成分量)の数値範囲を、その限定理由と共に記載する。フラックス充填率は、鋼製外皮2内に充填されるフラックスの質量を、ワイヤ1(鋼製外皮2+フラックス3)の全質量に対する割合で規定する。また、成分量は、鋼製外皮2とフラックス3における成分量の総和で表し、ワイヤ1(鋼製外皮2+フラックス3)に含まれる各成分の質量を、ワイヤ1の全質量に対する割合で規定する。なお、ワイヤ1を構成する成分のうち、C、Si、Mn、Ti、TiO、AlおよびAlは、鋼製外皮2から添加するか、フラックス3から添加するかは特に問わず、鋼製外皮2およびフラックス3の少なくとも一方に添加されていればよい。 Below, the numerical range of a wire component (flux filling rate and component amount) is described with the reason for limitation. The flux filling rate defines the mass of the flux filled in the steel outer sheath 2 as a ratio to the total mass of the wire 1 (steel outer sheath 2 + flux 3). The component amount is expressed as the sum of the component amounts in the steel outer sheath 2 and the flux 3, and the mass of each component contained in the wire 1 (steel outer sheath 2 + flux 3) is defined as a ratio to the total mass of the wire 1. . Of the components constituting the wire 1, C, Si, Mn, Ti, TiO 2 , Al and Al 2 O 3 are added regardless of whether they are added from the steel outer shell 2 or the flux 3, It may be added to at least one of the steel outer skin 2 and the flux 3.

(フラックス充填率:10〜20質量%)
フラックス充填率が10%未満では、アークの安定性が悪くなり、スパッタ発生量が増加し、溶接作業性が低下する。また、フラックス充填率が20%超では、ワイヤ1の断線等が発生し、生産性が著しく劣化する。
(Flux filling ratio: 10 to 20% by mass)
When the flux filling rate is less than 10%, the stability of the arc is deteriorated, the amount of spatter is increased, and the welding workability is lowered. On the other hand, if the flux filling rate exceeds 20%, the wire 1 is disconnected and the productivity is remarkably deteriorated.

(C:0.03〜0.08質量%)
Cは、溶接部の焼入れ性を確保するために添加する。C量が0.03質量%未満の場合、焼入れ性不足により、溶接部の強度・靭性が不足する。また、低C量により溶接部に高温割れが発生する。C量が0.08質量%を超えると、溶接時のスパッタ発生量またはヒューム発生量が増加し、溶接作業性が低下する。また、被溶接材である鋼材のC量が多い場合、溶接部(溶接金属)のC量が多くなる。そして、Cが包晶反応を起こす領域になると、溶接部に高温割れが発生しやすくなる。なお、C源としては、例えば、フープ、Fe−Mn等の合金粉、鉄粉等を用いる。
(C: 0.03-0.08 mass%)
C is added to ensure the hardenability of the weld. When the amount of C is less than 0.03% by mass, the strength and toughness of the welded portion are insufficient due to insufficient hardenability. Moreover, a hot crack occurs in the weld due to the low C content. If the amount of C exceeds 0.08% by mass, the amount of spatter generated during fusing or the amount of fume generated increases and welding workability decreases. Moreover, when there is much C amount of the steel materials which are to-be-welded materials, C amount of a welding part (welded metal) will increase. And when C becomes a region where a peritectic reaction occurs, high temperature cracks are likely to occur in the weld. As the C source, for example, hoop, alloy powder such as Fe-Mn, iron powder or the like is used.

(Si:0.10〜1.00質量%)
Siは、溶接部の延性確保、ビード形状維持のために添加する。Si量が0.10質量%未満では、溶接部の延性不足となる。また、ビード形状が悪くなり、特に、立向上進溶接でビードが垂れ、溶接作業性が低下する。Si量が1.00質量%を超えると、靭性が低下しやすくなる。また、溶接部に高温割れが発生する。なお、Si源としては、例えば、フープ、Fe−Si、Fe−Si−Mn等の合金、KSiF等のフッ化物、ジルコンサンド、珪砂、長石等の酸化物を用いる。
(Si: 0.10 to 1.00% by mass)
Si is added to ensure the ductility of the weld and maintain the bead shape. If the amount of Si is less than 0.10% by mass, the ductility of the weld is insufficient. In addition, the bead shape is deteriorated. In particular, the bead hangs down in the vertical improvement welding, and the welding workability is lowered. When the amount of Si exceeds 1.00% by mass, the toughness tends to decrease. Moreover, a hot crack occurs in the weld. As the Si source, for example, an alloy such as hoop, Fe—Si, Fe—Si—Mn, fluoride such as K 2 SiF 6 , oxide such as zircon sand, silica sand, and feldspar is used.

(Mn:2.30〜3.75質量%)
Mnは、溶接部の焼入れ性確保のために添加する。Mn量が2.30質量%未満では、溶接部の焼入れ性が不足し、靭性が低下する。また、不可避的不純物として含有されるSと結合して得られるMnS量も少なくなるため、MnSによる高温割れの抑制作用が小さくなり、溶接部に高温割れが発生する。Mn量が3.75質量%を超えると、溶接部の強度が過多となり、靭性不足となる。また、溶接部に低温割れが発生する。なお、Mn源としては、例えば、フープ、Mn金属粉、Fe−Mn、Fe−Si−Mn等の合金を用いる。
(Mn: 2.30-3.75% by mass)
Mn is added to ensure the hardenability of the weld. When the amount of Mn is less than 2.30% by mass, the hardenability of the welded portion is insufficient and the toughness is lowered. Moreover, since the amount of MnS obtained by combining with S contained as an unavoidable impurity is reduced, the action of suppressing high-temperature cracking by MnS is reduced, and high-temperature cracking occurs in the welded portion. If the amount of Mn exceeds 3.75% by mass, the strength of the weld becomes excessive and the toughness becomes insufficient. In addition, cold cracks occur in the weld. As the Mn source, for example, an alloy such as a hoop, Mn metal powder, Fe-Mn, Fe-Si-Mn, or the like is used.

(Ti:0.15〜1.00質量%、好ましくは0.20〜1.00質量%)
Ti(金属Ti)は、溶接部(溶接金属)の耐高温割れ性を改善するために添加する。Ti(金属Ti)は溶接時に脱酸反応に寄与し、溶接金属中の介在物がTi系酸化物組成に制御でき、その結果、溶接継手(溶接部)の凝固組織を微細にでき、溶接部の耐高温割れ性が改善される。Ti量(金属Ti)が0.15質量%未満では、溶接部に高温割れが発生する。Ti量(金属Ti)が1.00質量%を超えると、溶接金属再熱部が硬くて脆いベイナイト、マルテンサイトになりやすく、靭性が低下する。また、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Ti源としては、例えば、Fe−Ti等の合金粉を用いる。
(Ti: 0.15-1.00 mass%, preferably 0.20-1.00 mass%)
Ti (metal Ti) is added to improve the hot crack resistance of the welded portion (welded metal). Ti (metal Ti) contributes to the deoxidation reaction during welding, and inclusions in the weld metal can be controlled to a Ti-based oxide composition. As a result, the solidification structure of the welded joint (welded part) can be made fine, and the welded part The hot cracking resistance of is improved. If the amount of Ti (metal Ti) is less than 0.15% by mass, hot cracking occurs in the weld. When the amount of Ti (metal Ti) exceeds 1.00% by mass, the weld metal reheated portion tends to be hard and brittle bainite and martensite, and the toughness decreases. In addition, the amount of spatter generated during welding increases and welding workability decreases. In addition, as Ti source, alloy powder, such as Fe-Ti, is used, for example.

(TiO:5.0〜8.0質量%)
TiO(Ti酸化物)は、全姿勢溶接性を確保するために添加する。TiO量(Ti酸化物)が5.0質量%未満では、立向上進溶接でビードが垂れ、溶接作業性が低下する。TiO量(Ti酸化物)が8.0質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。また、フラックスのかさ比重が小さくなり、生産性が劣化する。なお、TiO源としては、例えば、ルチール等を用いる。
(TiO 2: 5.0 to 8.0 wt%)
TiO 2 (Ti oxide) is added to ensure all-position weldability. When the amount of TiO 2 (Ti oxide) is less than 5.0% by mass, the bead drips during the vertical improvement welding, and the workability of welding is lowered. When the amount of TiO 2 (Ti oxide) exceeds 8.0% by mass, the slag removability at the time of welding deteriorates and the welding workability decreases. Further, the bulk specific gravity of the flux is reduced, and the productivity is deteriorated. As the TiO 2 source, for example, rutile or the like is used.

(Al:0.05〜0.50質量%、好ましくは0.05〜0.40質量%)
Alは強脱酸剤であり、適正量の添加であれば、溶接金属の酸素量を低下させ、Mnの歩留まりが安定し、溶接部の耐高温割れ性が改善し、靭性も安定化する。Al量が0.05質量%未満では脱酸が十分でなく、溶接部に高温割れが発生する。Al量が0.50質量%を超えると、溶接時のスパッタ発生量が多くなり、溶接作業性が低下する。なお、Al源としては、例えば、Al金属粉、Fe−Al、Al−Mg等の合金粉を用いる。
(Al: 0.05 to 0.50 mass%, preferably 0.05 to 0.40 mass%)
Al is a strong deoxidizer, and if added in an appropriate amount, the oxygen content of the weld metal is reduced, the yield of Mn is stabilized, the hot cracking resistance of the weld is improved, and the toughness is also stabilized. If the amount of Al is less than 0.05% by mass, deoxidation is not sufficient, and hot cracks occur in the weld. If the Al amount exceeds 0.50% by mass, the amount of spatter generated during welding increases and welding workability decreases. In addition, as Al source, alloy powder, such as Al metal powder, Fe-Al, Al-Mg, is used, for example.

(Al:0.05〜0.50質量%、好ましくは0.05〜0.40質量%)
Alは、水平すみ肉姿勢でのビード形状、立向上進姿勢でのビードの垂れ防止のために添加する。Al量が0.05質量%未満では、水平すみ肉溶接でのビード形状(なじみ)が悪く、また、立向上進溶接でビード垂れが発生し、溶接作業性が低下する。Al量が0.50質量%を超えると、溶接時のスラグ剥離性が劣化し、溶接作業性が低下する。なお、Al源としては、例えば、アルミナや長石等の複合酸化物を用いる。
(Al 2 O 3: 0.05~0.50 wt%, preferably from 0.05 to 0.40 wt%)
Al 2 O 3 is added to prevent the bead from drooping in the horizontal fillet posture and in the standing improvement posture. If the amount of Al 2 O 3 is less than 0.05% by mass, the bead shape (familiarity) in horizontal fillet welding is poor, and bead sagging occurs in vertical improvement welding, resulting in poor welding workability. When the amount of Al 2 O 3 exceeds 0.50% by mass, the slag removability at the time of welding is deteriorated and the welding workability is lowered. As the Al 2 O 3 source, for example, a complex oxide such as alumina or feldspar is used.

((Ti算出量/Si算出量)>0.20)
ワイヤ1に含まれるTi量(金属Ti)を所定範囲内に制御することで、溶接時にTi(金属Ti)が脱酸反応に寄与し、溶接継手(溶接金属)中に生成する介在物の組成を核生成促進に効果的なTi系酸化物組成の介在物に制御できる。その結果、溶接金属の凝固組織を微細にでき、耐高温割れ性を著しく改善できるものである。さらに、核生成促進に効果的なTi系酸化物にはSiOを含有しないことが好ましい。そのため、ワイヤ1に含まれるTi量(金属Ti)を、ワイヤ1に含まれるSi量との関係で規定し、具体的には、Ti算出量とSi算出量との比、すなわち、(Ti算出量/Si算出量)を規定することで、Ti系酸化物組成を凝固組織微細化により効果的な組成に制御可能となり、溶接金属の凝固組織を耐高温割れ性の改善において好ましいものに制御可能となる。
((Ti calculation amount / Si calculation amount)> 0.20)
By controlling the amount of Ti (metal Ti) contained in the wire 1 within a predetermined range, Ti (metal Ti) contributes to the deoxidation reaction during welding, and the composition of inclusions generated in the welded joint (welded metal) Can be controlled to be inclusions of a Ti-based oxide composition effective for promoting nucleation. As a result, the solidification structure of the weld metal can be made fine, and the hot crack resistance can be remarkably improved. Furthermore, it is preferable that the Ti-based oxide effective for promoting nucleation does not contain SiO 2 . Therefore, the Ti amount (metal Ti) contained in the wire 1 is defined by the relationship with the Si amount contained in the wire 1, and specifically, the ratio between the Ti calculated amount and the Si calculated amount, that is, (Ti calculation) By defining the amount / Si calculated amount), the Ti-based oxide composition can be controlled to an effective composition by refining the solidification structure, and the solidification structure of the weld metal can be controlled to be favorable in improving hot cracking resistance. It becomes.

(Ti算出量/Si算出量)≦0.20であると、溶接継手の凝固組織が微細化しない。したがって、(Ti算出量/Si算出量)>0.20、好ましくは(Ti算出量/Si算出量)>0.25、更に好ましくは(Ti算出量/Si算出量)>0.37である。   When (Ti calculation amount / Si calculation amount) ≦ 0.20, the solidification structure of the welded joint is not refined. Therefore, (Ti calculation amount / Si calculation amount)> 0.20, preferably (Ti calculation amount / Si calculation amount)> 0.25, and more preferably (Ti calculation amount / Si calculation amount)> 0.37. .

ここで、Ti算出量とは、ワイヤ1に含有される前記Ti(金属Ti)のみから算出されるTi量で、ワイヤ1に含有された前記TiO(Ti酸化物)から算出(換算)されるTi量は含まない。
また、Si算出量とは、ワイヤ1に含有される前記Si源の全てから算出されるSi量の総和である。なお、前記SiOは、Si源として用いられる、例えば、ジルコンサンド、珪砂、長石等の酸化物に含まれる。
Here, the Ti calculation amount is a Ti amount calculated only from the Ti (metal Ti) contained in the wire 1 and is calculated (converted) from the TiO 2 (Ti oxide) contained in the wire 1. This does not include Ti content.
Further, the Si calculated amount is the total amount of Si calculated from all the Si sources contained in the wire 1. The SiO 2 is used as an Si source, for example, oxides such as zircon sand, silica sand, and feldspar.

(Fe)
残部のFeは、鋼製外皮2を構成するFeに相当し、Fe量は鋼製外皮2におけるFe量である。
(不可避的不純物)
残部の不可避的不純物としては、S、P、Ni、O、Zr等が挙げられ、本発明の効果を妨げない範囲で含有することが許容される。S量、P量、Ni量、O量、Zr量は、それぞれ、0.050質量%以下が好ましく、鋼製外皮2とフラックス3における各成分量の総和である。
なお、鋼製外皮2およびフラックス3は、ワイヤ作製時に前記ワイヤ成分(成分量)が前記範囲内になるように、鋼製外皮2およびフラックス3の各成分(各成分量)を選択する。
(Fe)
The remaining Fe corresponds to Fe constituting the steel outer shell 2, and the Fe amount is the Fe amount in the steel outer shell 2.
(Inevitable impurities)
The remaining inevitable impurities include S, P, Ni, O, Zr and the like, and it is allowed to be contained within a range that does not hinder the effects of the present invention. The amount of S, amount of P, amount of Ni, amount of O, and amount of Zr are each preferably 0.050% by mass or less, and are the total amount of each component in the steel outer sheath 2 and the flux 3.
In addition, as for the steel outer sheath 2 and the flux 3, each component (each component amount) of the steel outer sheath 2 and the flux 3 is selected so that the wire component (component amount) is within the above range at the time of wire production.

本発明に係るフラックス入りワイヤについて、本発明の要件を満足する実施例と、本発明の要件を満足しない比較例とを比較して具体的に説明する。
鋼製外皮(鋼は、C:0.02質量%、Si:0.01質量%、Mn:0.20質量%、P:0.010質量%、S:0.007質量%を含有し、残部Feおよび不可避的不純物からなるものを使用)の内側にフラックスを充填して、表1、表2に示すワイヤ成分からなるワイヤ径1.2mmのフラックス入りワイヤ(実施例:No.1〜23、比較例:No.24〜40)を作製した。
The flux-cored wire according to the present invention will be specifically described by comparing an example that satisfies the requirements of the present invention with a comparative example that does not satisfy the requirements of the present invention.
Steel outer shell (steel contains C: 0.02 mass%, Si: 0.01 mass%, Mn: 0.20 mass%, P: 0.010 mass%, S: 0.007 mass%, A flux cored wire having a wire diameter of 1.2 mm made of the wire components shown in Tables 1 and 2 (Examples: Nos. 1 to 23) is filled inside the balance Fe and inevitable impurities). Comparative Example: No. 24-40).

なお、ワイヤ成分は、以下の測定方法で測定、算出した。
C量は、「赤外線吸収法」によって測定した。Si量およびMn量は、ワイヤ全量を溶解し「ICP発光分光分析法」によって測定した。
The wire component was measured and calculated by the following measurement method.
The amount of C was measured by the “infrared absorption method”. The amount of Si and the amount of Mn were measured by “ICP emission spectroscopy” after dissolving the entire amount of wire.

TiO量(TiO等として存在し、Fe−Ti等は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるTi源(Fe−Ti等)は王水へ溶解するが、TiO源(TiO等)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のTi濃度を「ICP発光分光分析法」で測定した。このTi濃度をTiO量に換算し、TiO量を算出した。 The amount of TiO 2 (present as TiO 2 or the like but not including Fe—Ti or the like) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. Thus, although Ti source contained in the wire 1 (Fe-Ti, etc.) is dissolved in aqua regia, TiO 2 source (TiO 2, etc.) because it insoluble in aqua regia, melt remains. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Ti concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Ti concentration in the TiO 2 amount was calculated amount of TiO 2.

Ti量(Fe−Ti等として存在し、TiO等は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったTiO源(TiO2等)をろ過し、その溶液をワイヤ1に含まれるTi源(Fe−Ti等)とし得ることで、「ICP発光分光分析法」を用い、Ti量(Fe−Ti等)として存在を求めた。 (Present as Fe-Ti and the like, they do not include TiO 2, etc.) Ti amount, the wire the total amount was dissolved into aqua regia, filtered TiO 2 source was insoluble the (TiO2, etc.) by "acid decomposition method" By using the solution as a Ti source (Fe—Ti or the like) contained in the wire 1, the presence of the Ti amount (Fe—Ti or the like) was determined using “ICP emission spectroscopy”.

Al量(アルミナや長石等の複合酸化物として存在し、Al金属粉等の合金粉は含まない)は、「酸分解法」により測定される。酸分解法に使用する溶媒は王水を用い、ワイヤ全量を溶解した。これにより、ワイヤ1に含まれるAl源(Al金属粉等の合金粉)は王水へ溶解するが、Al源(アルミナや長石等の複合酸化物)は王水に対し不溶なため、溶け残る。この溶液を、フィルター(ろ紙は5Cの目の細かさ)を用いてろ過し、フィルターごと残渣をニッケル製るつぼに移し、ガスバーナーで加熱して灰化した。次いで、アルカリ融剤(水酸化ナトリウムと過酸化ナトリウムの混合物)を加え、再度ガスバーナーで加熱して残渣を融解した。次に、18質量%塩酸を加えて融解物を溶液化した後、メスフラスコに移し、さらに純水を加えてメスアップして分析液を得た。分析液中のAl濃度を「ICP発光分光分析法」で測定した。このAl濃度をAl量に換算し、Al量を算出した。 The amount of Al 2 O 3 (present as a composite oxide such as alumina and feldspar, and does not include alloy powder such as Al metal powder) is measured by the “acid decomposition method”. As a solvent used in the acid decomposition method, aqua regia was used, and the entire amount of the wire was dissolved. As a result, the Al source (alloy powder such as Al metal powder) contained in the wire 1 is dissolved in aqua regia, but the Al 2 O 3 source (a composite oxide such as alumina and feldspar) is insoluble in aqua regia. , It remains undissolved. This solution was filtered using a filter (the filter paper has a fineness of 5C). The residue together with the filter was transferred to a nickel crucible and heated with a gas burner to be incinerated. Next, an alkali flux (mixture of sodium hydroxide and sodium peroxide) was added and heated again with a gas burner to melt the residue. Next, 18 mass% hydrochloric acid was added to make the melt into a solution, and then the solution was transferred to a volumetric flask and further diluted with pure water to obtain an analysis solution. The Al concentration in the analysis solution was measured by “ICP emission spectroscopy”. And converting the Al concentration in the amount of Al 2 O 3, it was calculated the amount of Al 2 O 3.

Al量(Al金属粉等の合金粉として存在し、アルミナや長石等の複合酸化物は含まない)は、「酸分解法」によりワイヤ全量を王水へ溶解して、不溶であったAl源(アルミナや長石等の複合酸化物)をろ過し、その溶液をワイヤ1に含まれるAl源(Al金属粉等の合金粉)とし得ることで、「ICP発光分光分析法」を用い、Al量(Al金属粉等の合金粉)として存在を求めた。 (Present as an alloy powder such as Al metal powder, composite oxide of alumina and feldspar and the like are not included) Al amount, by dissolving the wire the total amount to aqua regia by "acid decomposition method", Al 2 was insoluble By filtering the O 3 source (composite oxide such as alumina and feldspar) and using the solution as the Al source (alloy powder such as Al metal powder) contained in the wire 1, the “ICP emission spectroscopy” is used. The presence of Al was determined as an Al amount (alloy powder such as Al metal powder).

Figure 2010017717
Figure 2010017717

Figure 2010017717
Figure 2010017717

作製されたフラックス入りワイヤを用いて、以下に示す方法で、耐高温割れ性、機械的性質(引張強さ、吸収エネルギー)、溶接作業性について評価した。その評価結果に基づいて、実施例および比較例のフラックス入りワイヤの総合評価を行った。   Using the prepared flux-cored wire, hot cracking resistance, mechanical properties (tensile strength, absorbed energy), and welding workability were evaluated by the following methods. Based on the evaluation results, comprehensive evaluation of the flux-cored wires of Examples and Comparative Examples was performed.

(耐高温割れ性)
JIS G3106 SM400B鋼(C:0.12質量%、Si:0.2質量%、Mn:1.1質量%、P:0.008質量%、S:0.013質量%を含有し、残部Feおよび不可避的不純物)からなる溶接母材を、表3に示す溶接条件で片面溶接(下向突合せ溶接)した。
(High temperature crack resistance)
JIS G3106 SM400B steel (C: 0.12% by mass, Si: 0.2% by mass, Mn: 1.1% by mass, P: 0.008% by mass, S: 0.013% by mass, balance Fe And a welding base material composed of unavoidable impurities) was subjected to single-sided welding (downward butt welding) under the welding conditions shown in Table 3.

Figure 2010017717
Figure 2010017717

図2は、耐高温割れ性の評価に使用する溶接母材の開先形状を示す断面図である。図2に示すように、溶接母材11はV形状の開先を有し、このV形状の開先の裏面には、耐火物12およびアルミニウムテープ13等からなる裏当て材が配置されている。そして、開先角度を35°として、裏当て材が配置されている部分のルート間隔を4mmとした。   FIG. 2 is a cross-sectional view showing a groove shape of a weld base material used for evaluation of hot crack resistance. As shown in FIG. 2, the welding base material 11 has a V-shaped groove, and a backing material made of a refractory 12 and an aluminum tape 13 is disposed on the back surface of the V-shaped groove. . The groove angle was set to 35 °, and the route interval of the portion where the backing material was arranged was set to 4 mm.

溶接終了後、初層溶接部(クレータ部を除く)について、X線透過試験(JIS Z 3104)にて、内部割れの有無を確認し、割れ率を算出した。その割れ率で耐高温割れ性を評価した。その結果を表4、表5に示す。   After the end of welding, the first layer welded portion (excluding the crater portion) was checked for the presence of internal cracks in an X-ray transmission test (JIS Z 3104), and the crack rate was calculated. The hot crack resistance was evaluated based on the crack rate. The results are shown in Tables 4 and 5.

なお、評価基準は、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率0%のとき「より一層優れている:◎」、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率5%以下のとき「優れている:○〜◎」、溶接電流240Aで割れ率0%かつ溶接電流260Aで割れ率5%超のとき「良好である:○」、溶接電流240Aで割れ有りかつ溶接電流260Aで割れ有りのとき「劣っている:×」とした。   Note that the evaluation criteria are “much better when the cracking rate is 0% at the welding current 240A and the cracking rate is 0% at the welding current 260A:」 ”, the cracking rate is 0% at the welding current 240A and the cracking rate at the welding current 260A. When it is 5% or less, “excellent: ○ to ◎”, when cracking rate is 0% at welding current 240A and when cracking rate is more than 5% at welding current 260A, “good: ○”, cracking occurs at welding current 240A and When there was a crack at the welding current 260A, it was judged as “Inferior: x”.

(機械的性質)
JIS Z3313に準じて、引張強さ、吸収エネルギーについて評価した。
なお、引張強さの評価基準は、490MPa以上640MPa以下のとき「優れている:○」、490MPa未満または640MPa超のとき「劣っている:×」とした。また、吸収エネルギーの評価基準は、60J以上のとき「優れている:○」、60J未満のとき「劣っている:×」とした。さらに、JIS Z3313に準じて、伸びを評価する場合には、その評価基準は、22%以上のとき「優れている:○」、22%未満のとき「劣っている:×」とした。
(mechanical nature)
According to JIS Z3313, tensile strength and absorbed energy were evaluated.
The evaluation standard of tensile strength was “excellent: ◯” when 490 MPa or more and 640 MPa or less, and “poor: x” when less than 490 MPa or more than 640 MPa. The evaluation criteria for absorbed energy were “excellent: ○” when it was 60 J or more, and “inferior: ×” when it was less than 60 J. Furthermore, when evaluating elongation according to JIS Z3313, the evaluation criterion was “excellent: ◯” when 22% or more, and “inferior: ×” when less than 22%.

(溶接作業性)
耐高温割れ性と同様の溶接母材を使用して、下向きすみ肉溶接、水平すみ肉溶接、立向上進すみ肉溶接、立向下進すみ肉溶接の4種の溶接を行い、作業性を官能評価した。ここで、溶接条件は、前記耐高温割れ性と同様とした(表3参照)。
なお、評価基準は、スパッタ発生、ヒューム発生、ビード垂れ等の溶接不良が発生しないとき「優れている:○」、溶接不良が発生したとき「劣っている:×」とした。
(Welding workability)
Using welding base material similar to high temperature cracking resistance, 4 types of welding, down fillet welding, horizontal fillet welding, upright rise fillet welding, upright down fillet weld, are performed to improve workability. Sensory evaluation was performed. Here, the welding conditions were the same as the hot crack resistance (see Table 3).
The evaluation criteria were “excellent: ◯” when no welding failure such as spattering, fume generation, bead sagging occurred, and “inferior: x” when welding failure occurred.

(総合評価)
総合評価の評価基準は、前記評価項目のうち、耐高温割れ性が「◎」かつ機械的性質および溶接作業性が「○」のとき「より一層優れている:◎」、耐高温割れ性が「○〜◎」かつ機械的性質および溶接作業性が「○」のとき「優れている:○〜◎」、耐高温割れ性が「○」かつ機械的性質および溶接作業性が「○」のとき「良好である:○」、前記評価項目の少なくとも1つが「×」のとき「劣っている:×」とした。
(Comprehensive evaluation)
The evaluation criteria of the comprehensive evaluation are that, among the above evaluation items, when the hot crack resistance is “◎” and the mechanical properties and the welding workability are “◯”, “much better: ◎”, the hot crack resistance is “Excellent: ○-◎” when the mechanical properties and welding workability are “○”, hot cracking resistance is “○”, and mechanical properties and welding workability are “○”. When it was “good: ◯”, when at least one of the evaluation items was “x”, it was “poor: x”.

Figure 2010017717
Figure 2010017717

Figure 2010017717
Figure 2010017717

表1、表4に示すように、実施例(No.1〜23)は、全てのワイヤ成分が本発明の範囲を満足するため、耐高温割れ性、機械的性質および溶接作業性の全てにおいて、優れ(または良好で)、総合評価においても、優れていた(または良好であった)。   As shown in Tables 1 and 4, in Examples (Nos. 1 to 23), all the wire components satisfy the scope of the present invention. Therefore, in all of hot crack resistance, mechanical properties and welding workability. Excellent (or good), and excellent (or good) in the overall evaluation.

表2、表5に示すように、比較例(No.24)は、C量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.25)は、C量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.26)は、Si量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.27)は、Si量が上限値を超えるため、耐高温割れ性に劣り、総合評価も劣っていた。   As shown in Tables 2 and 5, the comparative example (No. 24) was inferior in hot cracking resistance and mechanical properties and inferior in overall evaluation because the C content was less than the lower limit. In Comparative Example (No. 25), the C amount exceeded the upper limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 26), since the Si amount was less than the lower limit value, the welding workability was inferior and the overall evaluation was also inferior. The comparative example (No. 27) was inferior in hot cracking resistance and inferior in overall evaluation because the Si amount exceeded the upper limit.

比較例(No.28)は、Mn量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.29)は、Mn量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。比較例(No.30)は、Ti量が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.31)は、Ti量が上限値を超えるため、機械的性質および溶接作業性に劣り、総合評価も劣っていた。   In Comparative Example (No. 28), since the amount of Mn was less than the lower limit, the hot crack resistance and mechanical properties were inferior, and the overall evaluation was also inferior. In Comparative Example (No. 29), since the amount of Mn exceeded the upper limit, the mechanical properties and welding workability were inferior, and the overall evaluation was also inferior. Since the amount of Ti was less than a lower limit, the comparative example (No. 30) was inferior in hot-cracking resistance and inferior in overall evaluation. The comparative example (No. 31) was inferior in mechanical properties and welding workability because the Ti amount exceeded the upper limit, and the overall evaluation was also inferior.

比較例(No.32)は、TiO量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.33)は、TiO量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.34)は、Al量が下限値未満であるため、耐高温割れ性および機械的性質に劣り、総合評価も劣っていた。比較例(No.35)は、Al量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。 Comparative Example (No.32), since the amount of TiO 2 is less than the lower limit, poor weldability, was inferior overall rating. In Comparative Example (No. 33), the amount of TiO 2 exceeded the upper limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 34), since the Al amount was less than the lower limit value, the hot crack resistance and mechanical properties were inferior, and the overall evaluation was also inferior. The comparative example (No. 35) was inferior in welding workability and inferior in overall evaluation because the Al amount exceeded the upper limit.

比較例(No.36)は、Al量が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.37)は、Al量が上限値を超えるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.38)は、(Ti算出量/Si算出量)が下限値未満であるため、耐高温割れ性に劣り、総合評価も劣っていた。比較例(No.39)は、フラックス充填率が下限値未満であるため、溶接作業性に劣り、総合評価も劣っていた。比較例(No.40)は、フラックス充填率が上限値を超えるため、ワイヤ生産中に断線が発生し、総合評価としては劣っていた。 Since the amount of Al 2 O 3 was less than the lower limit, the comparative example (No. 36) was inferior in welding workability and inferior in overall evaluation. In Comparative Example (No. 37), the amount of Al 2 O 3 exceeded the upper limit value, so that the welding workability was poor and the overall evaluation was also poor. In Comparative Example (No. 38), since (Ti calculation amount / Si calculation amount) was less than the lower limit value, the hot crack resistance was inferior and the overall evaluation was also inferior. The comparative example (No. 39) had poor flux workability and poor overall evaluation because the flux filling rate was less than the lower limit. In the comparative example (No. 40), since the flux filling rate exceeded the upper limit, disconnection occurred during wire production, and the overall evaluation was inferior.

以上の結果から、実施例(No.1〜23)は、比較例(No.24〜40)と比べて、フラックス入りワイヤ1として優れていることが確認された。   From the above results, it was confirmed that the example (No. 1 to 23) is superior as the flux-cored wire 1 as compared with the comparative example (No. 24 to 40).

本発明に係るフラックス入りワイヤの構成を示す断面図である。It is sectional drawing which shows the structure of the flux cored wire which concerns on this invention. 耐高温割れ性の評価に使用する溶接母材の開先形状を示す断面図である。It is sectional drawing which shows the groove shape of the welding preform | base_material used for evaluation of hot cracking resistance.

符号の説明Explanation of symbols

1 フラックス入りワイヤ(ワイヤ)
2 鋼製外皮
3 フラックス
4 継目
11 溶接母材
12 裏当て材
13 アルミニウムテープ
1 Flux-cored wire (wire)
2 Steel outer shell 3 Flux 4 Joint 11 Welding base material 12 Backing material 13 Aluminum tape

Claims (1)

鋼製外皮内にフラックスが充填されたフラックス入りワイヤであって、
ワイヤ全質量に対するフラックス充填率が10〜20質量%であり、
ワイヤ全質量に対して、C:0.03〜0.08質量%、Si(ワイヤに含有される全てのSi源から算出されるSi量の総和):0.10〜1.00質量%、Mn(ワイヤに含有される全てのMn源から算出されるMn量の総和):2.30〜3.75質量%、Ti:0.15〜1.00質量%、TiO:5.0〜8.0質量%、Al:0.05〜0.50質量%、Al:0.05〜0.50質量%を含有し、残部がFeおよび不可避的不純物からなり、かつ、
前記Tiのみから算出されるTi量をTi算出量、前記ワイヤに含有される全てのSi源から算出されるSi量の総和をSi算出量としたとき、(Ti算出量/Si算出量)>0.20の関係を満足することを特徴とするフラックス入りワイヤ。
A flux-cored wire with a flux filled in a steel outer sheath,
The flux filling rate with respect to the total mass of the wire is 10 to 20% by mass,
C: 0.03 to 0.08% by mass with respect to the total mass of the wire, Si (total amount of Si calculated from all Si sources contained in the wire): 0.10 to 1.00% by mass, Mn (sum of Mn amount calculated from all Mn source contained in the wire): 2.30 to 3.75 mass%, Ti: .15-1.00 wt%, TiO 2: 5.0 to 8.0% by mass, Al: 0.05 to 0.50% by mass, Al 2 O 3 : 0.05 to 0.50% by mass, the balance consisting of Fe and inevitable impurities, and
When the Ti amount calculated from only Ti is the Ti calculated amount, and the total Si amount calculated from all the Si sources contained in the wire is the Si calculated amount, (Ti calculated amount / Si calculated amount)> A flux-cored wire characterized by satisfying a relationship of 0.20.
JP2008177537A 2008-07-08 2008-07-08 Flux cored wire Expired - Fee Related JP5314339B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008177537A JP5314339B2 (en) 2008-07-08 2008-07-08 Flux cored wire
CN2009101475331A CN101623802B (en) 2008-07-08 2009-06-18 Flux-cored wire
KR1020090061405A KR101134841B1 (en) 2008-07-08 2009-07-07 Flux cored wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008177537A JP5314339B2 (en) 2008-07-08 2008-07-08 Flux cored wire

Publications (2)

Publication Number Publication Date
JP2010017717A true JP2010017717A (en) 2010-01-28
JP5314339B2 JP5314339B2 (en) 2013-10-16

Family

ID=41519875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008177537A Expired - Fee Related JP5314339B2 (en) 2008-07-08 2008-07-08 Flux cored wire

Country Status (3)

Country Link
JP (1) JP5314339B2 (en)
KR (1) KR101134841B1 (en)
CN (1) CN101623802B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142873A (en) * 2008-12-22 2010-07-01 Kobe Steel Ltd Flux-cored wire
JP2012115878A (en) * 2010-12-01 2012-06-21 Kobe Steel Ltd Flux-cored wire
JP2012115877A (en) * 2010-12-01 2012-06-21 Kobe Steel Ltd Flux-cored wire
CN104690451A (en) * 2015-02-27 2015-06-10 首钢总公司 High-hardness self-protecting flux-cored welding wire for overlaying repair of continuous casting roller
JP2019147167A (en) * 2018-02-27 2019-09-05 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5416605B2 (en) * 2010-02-02 2014-02-12 株式会社神戸製鋼所 Flux cored wire
JP6040133B2 (en) * 2013-10-03 2016-12-07 株式会社神戸製鋼所 Gas shield arc welding method
CN103866892B (en) * 2014-03-26 2016-01-20 山东富达装饰工程有限公司 A kind of easy-to-mount marble light transmission piece

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233093A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JPH07164184A (en) * 1993-12-10 1995-06-27 Nippon Steel Corp Flux cored wire for gas shielded arc welding

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915756B2 (en) * 1979-09-04 1984-04-11 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JP2614969B2 (en) * 1993-03-31 1997-05-28 株式会社神戸製鋼所 Gas shielded arc welding titania-based flux cored wire
CN1027353C (en) * 1992-11-11 1995-01-11 宝鸡石油钢管厂 High-toughness submerged-arc welding wire (of low carbon content, high manganese and silicon content and minute titanium and aluminuim content)
KR100294454B1 (en) * 1997-03-27 2002-11-18 가부시키 가이샤 고베세이코쇼 Flux-cored wire for electrogas arc welding
JP3617605B2 (en) * 1998-10-01 2005-02-09 株式会社神戸製鋼所 Bond flux for submerged arc welding
KR100355581B1 (en) * 2000-09-23 2002-10-11 고려용접봉 주식회사 Flux cored wire for gas shield arc welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233093A (en) * 1985-07-31 1987-02-13 Daido Steel Co Ltd Flux cored wire for welding
JPH07164184A (en) * 1993-12-10 1995-06-27 Nippon Steel Corp Flux cored wire for gas shielded arc welding

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142873A (en) * 2008-12-22 2010-07-01 Kobe Steel Ltd Flux-cored wire
JP2012115878A (en) * 2010-12-01 2012-06-21 Kobe Steel Ltd Flux-cored wire
JP2012115877A (en) * 2010-12-01 2012-06-21 Kobe Steel Ltd Flux-cored wire
CN104690451A (en) * 2015-02-27 2015-06-10 首钢总公司 High-hardness self-protecting flux-cored welding wire for overlaying repair of continuous casting roller
JP2019147167A (en) * 2018-02-27 2019-09-05 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JP7063657B2 (en) 2018-02-27 2022-05-09 株式会社神戸製鋼所 Flux-filled wire for gas shielded arc welding

Also Published As

Publication number Publication date
KR20100006124A (en) 2010-01-18
CN101623802B (en) 2012-11-07
KR101134841B1 (en) 2012-04-13
CN101623802A (en) 2010-01-13
JP5314339B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5416605B2 (en) Flux cored wire
JP4970802B2 (en) Ni-based alloy flux cored wire
JP5968855B2 (en) Ni-based alloy flux cored wire
JP5400461B2 (en) Flux cored wire
JP5359561B2 (en) Flux-cored wire for high-tensile steel
JP5400472B2 (en) Flux cored wire
JP5314339B2 (en) Flux cored wire
JP5242665B2 (en) Flux-cored wire for gas shielded arc welding
JP5438663B2 (en) Flux cored wire
JP2014113615A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5438664B2 (en) Flux cored wire
JP2015217393A (en) Flux-cored wire for carbon dioxide gas shielded arc welding
JP5314414B2 (en) Flux cored wire
JP5558406B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
JP6599807B2 (en) Flux-cored wire for carbon dioxide shielded arc welding
WO2020217963A1 (en) Ni-BASED ALLOY FLUX-CORED WIRE
JP6726008B2 (en) Flux-cored wire for gas shield arc welding
JP5351641B2 (en) Flux cored wire
JP5457301B2 (en) Flux-cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees