[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010016063A - Polishing liquid composition - Google Patents

Polishing liquid composition Download PDF

Info

Publication number
JP2010016063A
JP2010016063A JP2008172697A JP2008172697A JP2010016063A JP 2010016063 A JP2010016063 A JP 2010016063A JP 2008172697 A JP2008172697 A JP 2008172697A JP 2008172697 A JP2008172697 A JP 2008172697A JP 2010016063 A JP2010016063 A JP 2010016063A
Authority
JP
Japan
Prior art keywords
polishing
peak
acid
substrate
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008172697A
Other languages
Japanese (ja)
Other versions
JP5403956B2 (en
Inventor
Yasuhiro Yoneda
康洋 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008172697A priority Critical patent/JP5403956B2/en
Publication of JP2010016063A publication Critical patent/JP2010016063A/en
Application granted granted Critical
Publication of JP5403956B2 publication Critical patent/JP5403956B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing liquid composition capable of polishing a substrate to be polished at higher speed and a polishing method using the polishing liquid composition, and to provide a method of manufacturing a substrate for a precision component, such as a glass substrate and a substrate for semiconductor devices. <P>SOLUTION: The polishing liquid composition contains a first abrasive particle, a dispersing agent, a second abrasive particle, and an aqueous medium. The first abrasive particle is a composite oxide particle containing cerium and zirconium. In a powder X-ray diffraction spectrum of the composite oxide particle obtained by emitting CuKα1 rays (λ=0.154050 nm), there are a peak (first peak) having the top in a region having a diffraction angle of 2θ ranging from 28.61 to 29.67°, a peak (second peak) having the top in a region having a diffraction angle of 2θ ranging from 33.14 to 34.53°, a peak (third peak) having the top in a region having a diffraction angle of 2θ ranging from 47.57 to 49.63°, and a peak (fourth peak) having the top in a region having a diffraction angle of 2θ ranging from 56.45 to 58.91°, and the half-width of the first peak is ≤0.8°. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置の製造過程等で行なわれる化学的機械的研磨(CMP)、又は精密ガラス製品若しくはディスプレイ関連製品等の製造過程等で行なわれる研磨処理等において用いられる、研磨液組成物に関する。また、上記研磨液組成物を用いた研磨方法、ガラス基板、半導体装置用基板等の精密部品用基板の製造方法に関する。   The present invention relates to a polishing liquid composition used in chemical mechanical polishing (CMP) performed in a manufacturing process of a semiconductor device or the like, or a polishing process performed in a manufacturing process of a precision glass product or a display related product. . The present invention also relates to a polishing method using the above polishing composition, a method for producing a substrate for precision parts such as a glass substrate and a semiconductor device substrate.

半導体装置を構成する酸化膜(例えば、酸化ケイ素膜)、以下に例示するようなガラス基板(即ち、アルミノシリケートガラス基板等の化学強化ガラス基板、ガラスセラミック基板等の結晶化ガラス基板、フォトマスク用基板として用いられる合成石英ガラス基板)、又は液晶ディスプレイパネル等の製造過程で用いられる研磨剤組成物として、従来から、酸化セリウムを主成分とする研磨剤が知られている(例えば、特許文献1参照)。   For oxide films (for example, silicon oxide films) constituting semiconductor devices, glass substrates as exemplified below (ie, chemically tempered glass substrates such as aluminosilicate glass substrates, crystallized glass substrates such as glass ceramic substrates, photomasks) As an abrasive composition used in the production process of a synthetic quartz glass substrate used as a substrate or a liquid crystal display panel, an abrasive mainly composed of cerium oxide has been known (for example, Patent Document 1). reference).

また、酸化セリウムを含む研磨剤組成物の研磨速度をさらに向上させる技術として、SiO2、Al23およびコロイダルシリカからなる群から選ばれる少なくとも1種以上の砥粒と、CeO2砥粒とを含む研磨液組成物が提案されている(例えば、特許文献2参照)。
特開平06−216093号公報 特開平08−148455号公報
Further, as a technique for further improving the polishing rate of the abrasive composition containing cerium oxide, at least one abrasive selected from the group consisting of SiO 2 , Al 2 O 3 and colloidal silica, and CeO 2 abrasive Has been proposed (for example, see Patent Document 2).
Japanese Patent Laid-Open No. 06-216093 Japanese Patent Laid-Open No. 08-148455

しかし、これらの研磨液組成物を用いた研磨では、研磨速度が十分に確保できない。   However, polishing using these polishing liquid compositions cannot ensure a sufficient polishing rate.

本発明では、より高速で研磨対象基板を研磨可能とする研磨液組成物、これを用いた研磨方法、ガラス基板または半導体装置用基板等の精密部品用基板の製造方法を提供する。   The present invention provides a polishing composition capable of polishing a substrate to be polished at a higher speed, a polishing method using the same, and a method for producing a substrate for precision parts such as a glass substrate or a semiconductor device substrate.

本発明の研磨液組成物は、
第1の研磨材粒子と、分散剤と、第2の研磨材粒子と、水系媒体とを含む研磨液組成物であって、
前記第1の研磨材粒子がセリウムとジルコニウムとを含む複合酸化物粒子であり、
CuKα1線(λ=0.154050nm)を照射することにより得られる前記複合酸化物粒子の粉末X線回折スペクトル中に、
回折角2θ(θはブラック角)領域28.61〜29.67°内に頂点があるピーク(第1ピーク)、
回折角2θ領域33.14〜34.53°内に頂点があるピーク(第2ピーク)、
回折角2θ領域47.57〜49.63°内に頂点があるピーク(第3ピーク)、
回折角2θ領域56.45〜58.91°内に頂点があるピーク(第4ピーク)、が存在し、
前記第1ピークの半値幅が0.8°以下である。
The polishing composition of the present invention comprises:
A polishing liquid composition comprising first abrasive particles, a dispersant, second abrasive particles, and an aqueous medium,
The first abrasive particles are composite oxide particles containing cerium and zirconium;
In the powder X-ray diffraction spectrum of the composite oxide particles obtained by irradiating with CuKα1 rays (λ = 0.154050 nm),
A peak (first peak) having a peak within a diffraction angle 2θ (θ is a black angle) region 28.61 to 29.67 °,
A peak having a peak in the diffraction angle 2θ region 33.14 to 34.53 ° (second peak),
A peak (third peak) having an apex within a diffraction angle 2θ region of 47.57 to 49.63 °,
There is a peak (fourth peak) having an apex within the diffraction angle 2θ region of 56.45 to 58.91 °,
The half width of the first peak is 0.8 ° or less.

また、本発明の研磨液組成物は、
第1の研磨材粒子と、分散剤と、第2の研磨材粒子と、水系媒体とを含む研磨液組成物であって、
前記第1の研磨材粒子がセリウムとジルコニウムとを含む複合酸化物粒子であり、
前記複合酸化物粒子は、酸化数が4のセリウム化合物と酸化数が4のジルコニウム化合物とを含む溶液と、沈殿剤とを混合することにより、前記セリウム化合物と前記ジルコニウム化合物とを加水分解させ、生じた沈殿物を分離し、次いで、焼成し、得られた焼成物を粉砕して得られる複合酸化物粒子である。
Moreover, the polishing composition of the present invention comprises:
A polishing liquid composition comprising first abrasive particles, a dispersant, second abrasive particles, and an aqueous medium,
The first abrasive particles are composite oxide particles containing cerium and zirconium;
The composite oxide particles hydrolyze the cerium compound and the zirconium compound by mixing a solution containing a cerium compound having an oxidation number of 4 and a zirconium compound having an oxidation number of 4 and a precipitant, This is composite oxide particles obtained by separating the resulting precipitate, then firing, and pulverizing the obtained fired product.

本発明の研磨方法は、研磨対象基板と研磨パッドとの間に、本発明の研磨液組成物を供給し、前記研磨対象基板と前記研磨パッドとが接した状態で、前記研磨パッドを前記研磨対象基板に対して相対運動させることにより、前記研磨対象基板を研磨する工程を含む。   In the polishing method of the present invention, the polishing composition of the present invention is supplied between a polishing target substrate and a polishing pad, and the polishing pad is polished with the polishing target substrate in contact with the polishing pad. A step of polishing the substrate to be polished by moving the substrate relative to the target substrate;

本発明の精密部品用基板の製造方法は、研磨対象基板の両主面のうちの少なくとも一方の主面を本発明の研磨液組成物を用いて研磨する研磨工程を含む。   The manufacturing method of the substrate for precision parts of the present invention includes a polishing step of polishing at least one main surface of both main surfaces of the substrate to be polished using the polishing composition of the present invention.

本発明によれば、より高速で研磨対象基板を研磨可能とする研磨液組成物、これを用いた研磨方法、並びに精密部品用基板の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the polishing liquid composition which can grind | polish a grinding | polishing target board | substrate at higher speed, the grinding | polishing method using this, and the manufacturing method of the board | substrate for precision components can be provided.

[複合酸化物粒子]
第1の研磨材粒子である複合酸化物粒子は、例えば、下記組成式によって表される。
CeXZr1-X2
ただし、xは、条件式0<x<1、好ましくは0.50<x<0.97、より好ましくは0.55<x<0.95、さらに好ましくは0.60<x<0.90、さらにより好ましくは0.65<x<0.90、よりいっそう好ましくは0.70<x<0.90を満たす数である。
[Composite oxide particles]
The composite oxide particles that are the first abrasive particles are represented, for example, by the following composition formula.
Ce X Zr 1-X O 2
However, x is a conditional expression 0 <x <1, preferably 0.50 <x <0.97, more preferably 0.55 <x <0.95, and still more preferably 0.60 <x <0.90. Even more preferably, the number satisfies 0.65 <x <0.90, and even more preferably 0.70 <x <0.90.

この複合酸化物粒子をX線(Cu−Kα1線、λ=0.154050nm)回折法にて分析することにより得られるスペクトルに、下記ピークが観察される。   The following peaks are observed in the spectrum obtained by analyzing the composite oxide particles by the X-ray (Cu-Kα1 ray, λ = 0.154050 nm) diffraction method.

すなわち、該スペクトル中、少なくとも、回折角2θ領域28.61〜29.67°内に頂点があるピーク(第1ピーク)、回折角2θ領域33.14〜34.53°内に頂点があるピーク(第2ピーク)、回折角2θ領域47.57〜49.63°内に頂点がある
ピーク(第3ピーク)、および、回折角2θ領域56.45〜58.91°内に頂点があるピーク(第4ピーク)が観察される。
That is, in the spectrum, at least a peak having a peak within a diffraction angle 2θ region of 28.61 to 29.67 ° (first peak) and a peak having a peak within a diffraction angle 2θ region of 33.14 to 34.53 °. (Second peak), peak having a peak in the diffraction angle 2θ region 47.57 to 49.63 ° (third peak), and peak having a peak in the diffraction angle 2θ region 56.45 to 58.91 ° (4th peak) is observed.

研磨速度を向上させる観点から、複合酸化物粒子は、スペクトル中、少なくとも、回折角2θ領域28.61〜29.39°内に頂点があるピーク(第1ピーク)、回折角2θ領域33.14〜34.16°内に頂点があるピーク(第2ピーク)、回折角2θ領域47.57〜49.08°内に頂点があるピーク(第3ピーク)、および、回折角2θ領域56.45〜58.25°内に頂点があるピーク(第4ピーク)が観察されるものであると好ましく、さらには、回折角2θ領域28.61〜29.25°内に頂点があるピーク(第1ピーク)、回折角2θ領域33.14〜34.04°内に頂点があるピーク(第2ピーク)、回折角2θ領域47.57〜48.90°内に頂点があるピーク(第3ピーク)、および、回折角2θ領域56.45〜58.02°内に頂点があるピーク(第4ピーク)が観察されるものであるとより好ましく、またさらには、回折角2θ領域28.68〜29.11°内に頂点があるピーク(第1ピーク)、回折角2θ領域33.23〜33.79内に頂点があるピーク(第2ピーク)、回折角2θ領域47.71〜48.53°内に頂点があるピーク(第3ピーク)、および、回折角2θ領域56.61〜57.60°内に頂点があるピーク(第4ピーク)が観察されるものであるとよりいっそう好ましい。   From the viewpoint of improving the polishing rate, the composite oxide particles have a peak (first peak) having a peak within at least a diffraction angle 2θ region of 28.61 to 29.39 ° in the spectrum, and a diffraction angle 2θ region of 33.14. Peak having a vertex within ˜34.16 ° (second peak), peak having a vertex within diffraction angle 2θ region 47.57 to 49.08 ° (third peak), and diffraction angle 2θ region 56.45 It is preferable that a peak (fourth peak) having a vertex within ˜58.25 ° is observed, and further, a peak having a vertex within the diffraction angle 2θ region of 28.61 to 29.25 ° (first peak). Peak), peak with a peak in the diffraction angle 2θ region 33.14 to 34.04 ° (second peak), peak with a peak in the diffraction angle 2θ region 47.57 to 48.90 ° (third peak) , And diffraction angle 2θ region 56.45- More preferably, a peak having a vertex within the 8.02 ° (fourth peak) is observed, and further, a peak having a vertex within the diffraction angle 2θ region of 28.68 to 29.11 ° (the fourth peak). 1 peak), a peak with a peak in the diffraction angle 2θ region 33.23 to 33.79 (second peak), a peak with a peak in the diffraction angle 2θ region 47.71 to 48.53 ° (third peak) It is even more preferable that a peak (fourth peak) having an apex within the diffraction angle 2θ region of 56.61 to 57.60 ° is observed.

第2ピークの面積は、第1ピークの面積の10〜50%、第3ピークの面積は、第1ピークの面積の35〜75%、第4ピークの面積は、第1ピークの面積の20〜65%であると好ましい。研磨速度を向上させる観点から、第2ピークの面積は、第1ピークの面積の15〜45%、第3ピークの面積は、第1ピークの面積の40〜70%、第4ピークの面積は、第1ピークの面積の25〜60%であるとさらに好ましく、第2ピークの面積は、第1ピークの面積の20〜40%、第3ピークの面積は、第1ピークの面積の45〜65%、第4ピークの面積は、第1ピークの面積の30〜55%であるとより好ましい。   The area of the second peak is 10 to 50% of the area of the first peak, the area of the third peak is 35 to 75% of the area of the first peak, and the area of the fourth peak is 20 of the area of the first peak. It is preferable that it is -65%. From the viewpoint of improving the polishing rate, the area of the second peak is 15 to 45% of the area of the first peak, the area of the third peak is 40 to 70% of the area of the first peak, and the area of the fourth peak is More preferably, it is 25-60% of the area of the first peak, the area of the second peak is 20-40% of the area of the first peak, and the area of the third peak is 45-45 of the area of the first peak. The area of 65% and the fourth peak is more preferably 30 to 55% of the area of the first peak.

スペクトル中に、酸化セリウムに由来するピークa1、酸化ジルコニウムに由来するピークa2のうちの少なくとも1つのピークが存在する場合もある。この場合、ピークa1、a2の頂点の高さは、スクラッチ低減の観点から、ともに第1ピークの頂点の高さの6.0%以下が好ましく、より好ましくは3.0%以下、さらに好ましくは1.0%以下、さらにより好ましくは0%である。 There may be a case where at least one of the peak a 1 derived from cerium oxide and the peak a 2 derived from zirconium oxide exists in the spectrum. In this case, the heights of the peaks a 1 and a 2 are preferably 6.0% or less, more preferably 3.0% or less of the height of the peak of the first peak, from the viewpoint of reducing scratches. Preferably it is 1.0% or less, More preferably, it is 0%.

ピークa1の頂点が存在する回折角2θ領域は28.40°〜28.59°であり、ピークa2の頂点が存在する回折角2θ領域は29.69°〜31.60°である。これらの2θ領域に関する値は、国際回折データICDD(International Center for Diffraction Data)における、酸化セリウムおよび酸化ジルコニウムについての値に基づいている。具体的には、ピークa1の頂点が存在する回折角2θ領域28.40〜28.59°は、立方晶系の酸化セリウムについての値である。ピークa2の頂点が存在する2θ領域29.69〜31.60°は、正方晶系の酸化ジルコニウムの2θ(29.69°)と、単斜晶系の酸化ジルコニウムの2θ(31.60°)に基づいている。 The diffraction angle 2θ region where the apex of the peak a 1 exists is 28.40 ° to 28.59 °, and the diffraction angle 2θ region where the apex of the peak a 2 exists is 29.69 ° to 31.60 °. These values for the 2θ region are based on values for cerium oxide and zirconium oxide in the international diffraction data ICDD (International Center for Diffraction Data). Specifically, the diffraction angle 2θ region 28.40 to 28.59 ° where the peak of peak a 1 exists is a value for cubic cerium oxide. The 2θ region 29.69 to 31.60 ° where the peak of peak a 2 is present is 2θ (29.69 °) of tetragonal zirconium oxide and 2θ (31.60 °) of monoclinic zirconium oxide. ).

第1ピークの半値幅は0.8°以下であるが、研磨速度を向上させる観点から及びスクラッチ低減の観点から、0.1〜0.7°が好ましく、0.2〜0.6°がより好ましく、0.3〜0.5°がさらに好ましく、0.3〜0.45°がよりいっそう好ましい。この半値幅は、シェラー(Scherrer)式に示されるように、結晶子サイズと相関がある。結晶成長により結晶子サイズが大きくなると半値幅は小さくなる。   The half width of the first peak is 0.8 ° or less, but from the viewpoint of improving the polishing rate and from the viewpoint of reducing scratches, 0.1 to 0.7 ° is preferable, and 0.2 to 0.6 ° is preferable. More preferably, 0.3 to 0.5 ° is more preferable, and 0.3 to 0.45 ° is even more preferable. This half-value width correlates with the crystallite size as shown in the Scherrer equation. The full width at half maximum decreases as the crystallite size increases due to crystal growth.

本実施形態の研磨液組成物に含まれる複合酸化物粒子は、スクラッチ低減の観点から、酸化セリウムが、酸化数が4のセリウムの化合物に由来し、かつ、酸化ジルコニウムが、酸化数が4のジルコニウムの化合物に由来することが好ましい。この場合、酸化セリウムと酸化ジルコニウムとが均一に溶け合った1つの固相を形成すると考えられる。複合酸化物粒子中の酸化セリウムが、酸化数が3のセリウムの化合物に由来する場合、複合酸化物粒子の形成過程において、酸化セリウムと酸化ジルコニウムとが均一に溶け合った1つの固相の形成が十分に行なわれず、酸化セリウムに由来するピークa1、酸化ジルコニウムに由来するピークa2のうちの少なくとも1つのピークが観察され、そのピークの頂点の高さは、第1ピークの頂点の高さの6.0%を超える。 From the viewpoint of reducing scratches, the composite oxide particles contained in the polishing liquid composition of the present embodiment are derived from a cerium compound having an oxidation number of 4 and zirconium oxide having an oxidation number of 4 from the viewpoint of reducing scratches. It is preferably derived from a compound of zirconium. In this case, it is considered that one solid phase in which cerium oxide and zirconium oxide are uniformly dissolved is formed. When the cerium oxide in the composite oxide particles is derived from a cerium compound having an oxidation number of 3, formation of one solid phase in which cerium oxide and zirconium oxide are uniformly dissolved in the formation process of the composite oxide particles. At least one of peak a 1 derived from cerium oxide and peak a 2 derived from zirconium oxide is observed, and the height of the peak apex is the height of the first peak apex. Of over 6.0%.

また、本実施形態の研磨液組成物に含まれる複合酸化物粒子のX線回折スペクトルでは、第1ピークの半値幅は小さい。これは、後述のとおり、その製造過程で十分な焼成が行なわれることにより、上記固相の結晶子サイズが増大するため、即ち、結晶性が向上するためであると考えられる。   Moreover, in the X-ray diffraction spectrum of the composite oxide particles contained in the polishing liquid composition of the present embodiment, the half width of the first peak is small. As will be described later, this is considered to be because the crystallite size of the solid phase is increased, that is, the crystallinity is improved by performing sufficient firing in the manufacturing process.

このように、本実施形態の研磨液組成物は、その結晶性が高い複合酸化物粒子と、第2の研磨材粒子を併用することで、従来の研磨液組成物よりも、顕著に高速で研磨対象物を研磨可能としている。酸化セリウム系の研磨粒子は、機械的な研磨作用に加えて化学的な研磨作用を発揮する。ここで、化学的な研磨作用とは、研磨対象基板を変質させ軟化する作用と考えられている。本実施形態の研磨液組成物は、酸化セリウムよりも化学的な研磨作用の大きいセリア−ジルコニア複合酸化物粒子を使用しているため、研磨中に研磨対象基板において生成される軟化層が多くなる。セリア−ジルコニア複合酸化物粒子と、高い機械的研磨作用を発揮しうる第2の研磨材粒子とを併用することで、上記軟化層をより効果的に除去できるため、高い研磨速度が発現すると推定される。   Thus, the polishing liquid composition of the present embodiment is significantly faster than the conventional polishing liquid composition by using the composite oxide particles having high crystallinity and the second abrasive particles in combination. The object to be polished can be polished. Cerium oxide-based abrasive particles exhibit a chemical polishing action in addition to a mechanical polishing action. Here, the chemical polishing action is considered to be an action of modifying and softening the substrate to be polished. Since the polishing liquid composition of this embodiment uses ceria-zirconia composite oxide particles having a chemical polishing action larger than that of cerium oxide, the number of softening layers generated in the polishing target substrate during polishing increases. . It is estimated that the use of the ceria-zirconia composite oxide particles and the second abrasive particles capable of exhibiting a high mechanical polishing action makes it possible to more effectively remove the softened layer, and thus a high polishing rate is expressed. Is done.

また、本実施形態の研磨液組成物において、その結晶性が高く、かつ、酸化セリウムと酸化ジルコニウムとが均一に溶け合った1つの固相を有する複合酸化物粒子と、第2の研磨材粒子とを併用する場合は、後述する実施例において示されるように、従来の研磨液組成物よりも、顕著に高速で研磨対象物を研磨可能とすると共に、研磨されることにより得られた面におけるスクラッチ数を低減できる。   Further, in the polishing liquid composition of the present embodiment, the composite oxide particles having one solid phase in which the crystallinity is high and cerium oxide and zirconium oxide are uniformly dissolved, the second abrasive particles, When used together, as shown in the examples described later, it is possible to polish the object to be polished at a significantly higher speed than conventional polishing liquid compositions, and scratches on the surface obtained by polishing The number can be reduced.

複合酸化物粒子中における、原子のモル比(Ce/Zr)は、研磨速度を向上させる観点から、(99/1)〜(5/95)であると好ましく、(97/3)〜(16/84)であるとより好ましく、(95/5)〜(40/60)であるとさらに好ましく、(94/6)〜(50/50)であるとさらにより好ましく、(93/7)〜(60/40)である
とよりいっそう好ましい。
From the viewpoint of improving the polishing rate, the molar ratio of atoms (Ce / Zr) in the composite oxide particles is preferably (99/1) to (5/95), and (97/3) to (16 / 84), more preferably (95/5) to (40/60), still more preferably (94/6) to (50/50), and (93/7) to (60/40) is even more preferable.

複合酸化物(CeXZr1-X2)粒子中における、Zrに対するCeの原子比率xは、スクラッチ低減の観点から、好ましくは0.60〜0.93、より好ましくは0.65〜0.90、さらに好ましくは0.70〜0.90である。 The atomic ratio x of Ce to Zr in the composite oxide (Ce X Zr 1 -X O 2 ) particles is preferably 0.60 to 0.93, more preferably 0.65 to 0, from the viewpoint of reducing scratches. .90, more preferably 0.70 to 0.90.

複合酸化物粒子の体積中位径(D50)は、研磨速度を向上させる観点から、30nm以上が好ましく、より好ましくは40nm以上、さらに好ましくは50nm以上である。また、D50は、研磨液組成物中において複合酸化物粒子の分散安定性を向上させる観点から、1000nm以下が好ましく、より好ましくは500nm以下、さらに好ましくは250nm以下である。したがって、複合酸化物粒子の体積中位径(D50)は、30〜1000nmが好ましく、より好ましくは40〜500nm、さらに好ましくは50〜250nmである。   From the viewpoint of improving the polishing rate, the volume median diameter (D50) of the composite oxide particles is preferably 30 nm or more, more preferably 40 nm or more, and still more preferably 50 nm or more. Further, D50 is preferably 1000 nm or less, more preferably 500 nm or less, and still more preferably 250 nm or less, from the viewpoint of improving the dispersion stability of the composite oxide particles in the polishing composition. Therefore, the volume median diameter (D50) of the composite oxide particles is preferably 30 to 1000 nm, more preferably 40 to 500 nm, and still more preferably 50 to 250 nm.

ここで、体積中位径(D50)とは、体積分率で計算した累積体積頻度が粒径の小さい方から計算して50%になる粒径を意味する。体積中位径(D50)は、レーザー回折/散乱式粒度分布計(商品名LA−920、堀場製作所製)で測定した体積基準のメジアン径として得られる。   Here, the volume median diameter (D50) means a particle diameter at which the cumulative volume frequency calculated by the volume fraction is 50% when calculated from the smaller particle diameter. The volume median diameter (D50) is obtained as a volume-based median diameter measured with a laser diffraction / scattering particle size distribution meter (trade name LA-920, manufactured by Horiba, Ltd.).

複合酸化物粒子の平均一次粒子径は、研磨速度を向上させる観点から、10nm以上が好ましく、より好ましくは20nm以上、さらに好ましくは25nm以上、より一層好ましくは30nm以上である。また、複合酸化物粒子の平均一次粒子径は、スクラッチを低減する観点から、100nm以下が好ましく、より好ましくは90nm以下、さらに好ましくは80nm以下、より一層好ましくは70nm以下である。したがって、複合酸化物粒子の平均一次粒子径は、10〜100nmが好ましく、より好ましくは20〜90nm、さらに好ましくは25〜80nm、より一層好ましくは30〜70である。   From the viewpoint of improving the polishing rate, the average primary particle diameter of the composite oxide particles is preferably 10 nm or more, more preferably 20 nm or more, still more preferably 25 nm or more, and even more preferably 30 nm or more. The average primary particle diameter of the composite oxide particles is preferably 100 nm or less, more preferably 90 nm or less, still more preferably 80 nm or less, and even more preferably 70 nm or less, from the viewpoint of reducing scratches. Therefore, the average primary particle diameter of the composite oxide particles is preferably 10 to 100 nm, more preferably 20 to 90 nm, still more preferably 25 to 80 nm, and still more preferably 30 to 70.

ここで、平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出される粒径(真球換算)を意味する。
平均一次粒子径(nm)=820/S
Here, the average primary particle size (nm) means the particle size (true sphere conversion) calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method. .
Average primary particle diameter (nm) = 820 / S

研磨液組成物中の複合酸化物粒子の含有量は、研磨速度を向上させる観点から、0.1重量%以上が好ましく、より好ましくは0.2重量%以上、さらに好ましくは0.4重量%以上であり、よりさらに好ましくは0.5重量%以上である。また、複合酸化物粒子の含有量は、分散安定性を向上させる観点、およびコストを低減させる観点から、8重量%以下が好ましく、より好ましくは5重量%以下、さらに好ましくは4重量%以下であり、よりさらに好ましくは3重量%以下である。したがって、複合酸化物粒子の含有量は、0.1〜8重量%が好ましく、より好ましくは0.2〜5重量%、さらに好ましくは0.4〜4重量%、よりさらに好ましくは0.5〜3重量%である。   From the viewpoint of improving the polishing rate, the content of the composite oxide particles in the polishing composition is preferably 0.1% by weight or more, more preferably 0.2% by weight or more, and further preferably 0.4% by weight. Or more, and more preferably 0.5% by weight or more. Further, the content of the composite oxide particles is preferably 8% by weight or less, more preferably 5% by weight or less, and further preferably 4% by weight or less, from the viewpoint of improving dispersion stability and reducing the cost. More preferably 3% by weight or less. Accordingly, the content of the composite oxide particles is preferably 0.1 to 8% by weight, more preferably 0.2 to 5% by weight, still more preferably 0.4 to 4% by weight, and still more preferably 0.5. ~ 3 wt%.

複合酸化物粒子は、市販品であってもよいし、自家調製したものであってもよい。次に、複合酸化物粒子の製造方法の一例について説明する。   The composite oxide particles may be commercially available products or may be prepared in-house. Next, an example of a method for producing composite oxide particles will be described.

複合酸化物粒子は、酸化数が4のセリウム化合物(以下、セリウム(IV)化合物ともいう。)と酸化数が4のジルコニウム化合物(以下、ジルコニウム(IV)化合物ともいう。)とを含む溶液と、沈殿剤とを混合することにより、セリウム(IV)化合物とジルコニウム(IV)化合物とを加水分解させ、生じた沈殿物を分離し、次いで、焼成し、得られた焼成物を粉砕することにより得ることができる。   The composite oxide particles include a solution containing a cerium compound having an oxidation number of 4 (hereinafter also referred to as a cerium (IV) compound) and a zirconium compound having an oxidation number of 4 (hereinafter also referred to as a zirconium (IV) compound). By mixing the precipitant, the cerium (IV) compound and the zirconium (IV) compound are hydrolyzed, the resulting precipitate is separated, then calcined, and the resulting calcined product is pulverized Obtainable.

セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液は、例えば、硝酸セリウム等の水溶性のセリウム(IV)化合物と、硝酸ジルコニウム等の水溶性のジルコニウム(IV)化合物とを、各々水などの溶媒に溶解させてから、混合して調製すればよい。   The solution containing a cerium (IV) compound and a zirconium (IV) compound is prepared by, for example, dissolving a water-soluble cerium (IV) compound such as cerium nitrate and a water-soluble zirconium (IV) compound such as zirconium nitrate. It may be prepared by mixing in a solvent such as.

上記セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液に、沈殿剤(塩基溶液)を添加すれば、セリウム(IV)化合物とジルコニウム(IV)化合物とが加水分解されて、沈殿物が生成される。セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液を攪拌しながら沈殿剤を添加することが好ましい。沈殿剤としては、アンモニア溶液;水酸化ナトリウム溶液や水酸化カリウム溶液等の水酸化アルカリ溶液;ナトリウム、カリウム、若しくはアンモニアの炭酸塩溶液;重炭酸塩溶液等が用いられる。沈殿剤は、なかでも、アンモニア、水酸化ナトリウム、または水酸化カリウムの水溶液が好ましく、アンモニア水溶液がさらに好ましい。沈殿剤の規定度は、約1〜5Nであると好ましく、約2〜3Nであるとより好ましい。   If a precipitant (base solution) is added to the solution containing the cerium (IV) compound and the zirconium (IV) compound, the cerium (IV) compound and the zirconium (IV) compound are hydrolyzed, and the precipitate is formed. Generated. It is preferable to add a precipitant while stirring a solution containing a cerium (IV) compound and a zirconium (IV) compound. As the precipitating agent, ammonia solution; alkaline hydroxide solution such as sodium hydroxide solution or potassium hydroxide solution; carbonate solution of sodium, potassium or ammonia; bicarbonate solution or the like is used. The precipitant is preferably an aqueous solution of ammonia, sodium hydroxide or potassium hydroxide, more preferably an aqueous ammonia solution. The normality of the precipitating agent is preferably about 1 to 5N, and more preferably about 2 to 3N.

セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液に、沈殿剤を添加して得られる上澄液のpHは、酸化セリウムと酸化ジルコニウムとが高度に固溶した状態の複合酸化物粒子を得る観点から、7〜11が好ましく、より好ましくは7.5〜9.5である。   The pH of the supernatant obtained by adding a precipitant to a solution containing a cerium (IV) compound and a zirconium (IV) compound is a complex oxide particle in which cerium oxide and zirconium oxide are in a highly solid solution state. From the viewpoint of obtaining the above, 7 to 11 is preferable, and 7.5 to 9.5 is more preferable.

セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液と沈殿剤との混合時間は、特に制限はないが、15分以上であると好ましく、30分以上であるとより好ましい。セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液と沈殿剤との反応は、室温などの任意の適切な温度で行うことができる。セリウム(IV)化合物とジルコニウム(IV)化合物とを含む溶液と沈殿剤とを混合することにより生じた沈殿物は、デカンテーション、乾燥、ろ過および/または遠心分離のような通常の固体/液体分離技術によって母液から分離できる。得られた沈殿物は、次いで水等で洗浄される。   The mixing time of the solution containing the cerium (IV) compound and the zirconium (IV) compound and the precipitating agent is not particularly limited, but is preferably 15 minutes or more, and more preferably 30 minutes or more. The reaction between the solution containing the cerium (IV) compound and the zirconium (IV) compound and the precipitating agent can be performed at any suitable temperature such as room temperature. The precipitate produced by mixing a solution containing a cerium (IV) compound and a zirconium (IV) compound and a precipitating agent is subjected to normal solid / liquid separation such as decantation, drying, filtration and / or centrifugation. Separable from mother liquor by technology. The resulting precipitate is then washed with water or the like.

溶液中のセリウム(IV)化合物は、単にセリウム(IV)化合物が水系媒体中に添加された状態で含まれていると好ましいが、酸化数が3のセリウムを含むセリウム化合物を水系媒体中で電解酸化して、3価のセリウムを4価のセリウムとしてもよい。セリウム(IV)化合物は、セリウム化合物全量中、85重量%以上含まれていると好ましく、87重量%以上含まれているとより好ましく、90重量%以上含まれているとさらに好ましく、95重量%以上含まれているとさらにより好ましい。   The cerium (IV) compound in the solution is preferably simply contained in a state where the cerium (IV) compound is added to the aqueous medium, but the cerium compound containing cerium having an oxidation number of 3 is electrolyzed in the aqueous medium. By oxidation, trivalent cerium may be converted to tetravalent cerium. The cerium (IV) compound is preferably contained in an amount of 85% by weight or more, more preferably 87% by weight or more, further preferably 90% by weight or more, and 95% by weight in the total amount of the cerium compound. Even more preferably, it is contained.

セリウム(IV)化合物としては、具体的には、硫酸セリウム(IV)、硫酸四アンモニウムセリウム(IV)、硝酸二アンモニウムセリウム(IV)等の水溶性の塩が挙げられる。なお、酸化数が4のセリウムの塩を使用するのは、酸化数が3のセリウムの塩に比較して、加水分解され易く、また加水分解速度の点から、ジルコニウム(IV)化合物(例えば、酸化数4のジルコニウムの塩)との同時並行的加水分解に適しているからである。   Specific examples of the cerium (IV) compound include water-soluble salts such as cerium sulfate (IV), tetraammonium cerium sulfate (IV), and diammonium cerium nitrate (IV). The cerium salt having an oxidation number of 4 is more easily hydrolyzed than the cerium salt having an oxidation number of 3, and from the viewpoint of hydrolysis rate, a zirconium (IV) compound (for example, This is because it is suitable for simultaneous hydrolysis with a zirconium salt having an oxidation number of 4).

溶液中に含まれるジルコニウム(IV)化合物としては、オキシ塩化ジルコニウム(塩化ジルコニル)、オキシ硫酸ジルコニウム(硫酸ジルコニル)、オキシ酢酸ジルコニウム(酢酸ジルコニル)、オキシ硝酸ジルコニウム(硝酸ジルコニル)、塩化ジルコニウム、硝酸ジルコニウム、酢酸ジルコニウム、硫酸ジルコニウム等の水溶性のジルコニウム(IV)塩が挙げられる。   Zirconium (IV) compounds contained in the solution include zirconium oxychloride (zirconyl chloride), zirconium oxysulfate (zirconyl sulfate), zirconium oxyacetate (zirconyl acetate), zirconium oxynitrate (zirconyl nitrate), zirconium chloride, zirconium nitrate Water-soluble zirconium (IV) salts such as zirconium acetate and zirconium sulfate.

このように、溶液中のセリウムとジルコニウムの酸化数がともに4であり、沈殿剤である塩基溶液が溶液中に添加されることにより溶液のpHが上昇すると、セリウム(IV)化合物とジルコニウム(IV)化合物がほぼ同じpH領域で加水分解され、水酸化セリウムおよび水酸化ジルコニウムがほぼ同時に沈殿し、互いに高度に混合した状態の沈殿物が得られる。この沈殿物を熱処理することで、沈殿物中に、酸化セリウムと酸化ジルコニウムとが均一に溶け合って1つの固相となった部分が生じる。セリウムの酸化数が3であると、セリウム(III)化合物とジルコニウム(IV)化合物が加水分解され水酸化物の沈
殿が生じるpH領域が異なるため、両者の混合状態が不十分な沈殿物が得られる。この沈殿物を熱処理すると、酸化セリウムあるいは酸化ジルコニウムが分離した部分が生じる。
As described above, when the oxidation number of cerium and zirconium in the solution is 4 and the pH of the solution is increased by adding the base solution as a precipitant to the solution, the cerium (IV) compound and zirconium (IV ) The compound is hydrolyzed in approximately the same pH region, and cerium hydroxide and zirconium hydroxide precipitate almost simultaneously, resulting in a highly mixed precipitate with each other. By heat-treating this precipitate, a portion in which cerium oxide and zirconium oxide are uniformly dissolved to form one solid phase is generated in the precipitate. If the oxidation number of cerium is 3, the pH range in which the cerium (III) compound and the zirconium (IV) compound are hydrolyzed and the hydroxide precipitates is different, so that a precipitate in which the mixing state of both is insufficient is obtained. It is done. When this precipitate is heat-treated, a portion where cerium oxide or zirconium oxide is separated is generated.

セリウム化合物とジルコニウム化合物とを含む溶液中に含まれるセリウム元素の酸化物換算量およびジルコニウム元素の酸化物換算量の合計を100重量%とすると、セリウム元素の酸化物換算量は、7〜99重量%であると好ましく、より好ましくは20〜98重量%であり、さらに好ましくは50〜96重量%である。ジルコニウム元素の酸化物換算量は、1〜93重量%であると好ましく、より好ましくは2〜80重量%であり、さらに好ましくは4〜50重量%である。   When the total amount of oxide of cerium element and the amount of oxide of zirconium element contained in the solution containing the cerium compound and the zirconium compound is 100% by weight, the amount of oxide of cerium element is 7 to 99% by weight. %, Preferably 20 to 98% by weight, more preferably 50 to 96% by weight. The oxide equivalent amount of zirconium element is preferably 1 to 93% by weight, more preferably 2 to 80% by weight, and further preferably 4 to 50% by weight.

沈殿物の焼成温度は、酸化セリウムと酸化ジルコニウムとが均一に溶け合った固相の結晶性を向上させ、良好な研磨速度を確保する観点から、900〜1500℃が好ましく、より好ましくは1000〜1400℃であり、さらに好ましくは1000〜1300℃である。加熱時間は、通常、1〜10時間が好ましく、より好ましくは2〜8時間であり、さらに好ましくは3〜7時間である。焼成は例えば、連続式焼成炉等の加熱手段を用いて行える。上記焼成温度は、粒子表面の温度であり、連続式焼成炉内の雰囲気温度と等しい。   The firing temperature of the precipitate is preferably 900 to 1500 ° C., more preferably 1000 to 1400, from the viewpoint of improving the crystallinity of the solid phase in which cerium oxide and zirconium oxide are uniformly dissolved and ensuring a good polishing rate. It is 1000 degreeC, More preferably, it is 1000-1300 degreeC. The heating time is usually preferably 1 to 10 hours, more preferably 2 to 8 hours, and further preferably 3 to 7 hours. Firing can be performed using a heating means such as a continuous firing furnace. The firing temperature is the temperature of the particle surface and is equal to the ambient temperature in the continuous firing furnace.

焼成物を粉砕する手段は、特に限定はされないが、例えば、ボールミル、ビーズミル、振動ミル等の粉砕装置が挙げられる。粉砕手段の設定条件は、所望の平均粒径範囲の粒子または所望の体積粒子径範囲の粒子を形成するために適宜設定すればよい。粉砕メディアとしては、ジルコニアボール等が挙げられる。   The means for pulverizing the fired product is not particularly limited, and examples thereof include pulverizers such as a ball mill, a bead mill, and a vibration mill. The setting conditions of the pulverizing means may be appropriately set in order to form particles having a desired average particle size range or particles having a desired volume particle size range. Examples of the grinding media include zirconia balls.

[第2の研磨材粒子]
本実施形態の研磨液組成物に含まれる第2の研磨材粒子としては、例えば、アルミナ粒子、シリカ粒子、ジルコニア粒子、酸化チタン粒子、セリア粒子等が挙げられ、シリカ粒子としては、コロイダルシリカ、ヒュームドシリカ、表面修飾したシリカ等が挙げられる。これらの中でも、研磨速度を向上させる観点およびスクラッチ低減の観点から、コロイダルシリカが好ましい。なお、コロイダルシリカ粒子は、例えば、ケイ酸水溶液から生成させる製法により得ることができる。
[Second abrasive particles]
Examples of the second abrasive particles contained in the polishing composition of the present embodiment include alumina particles, silica particles, zirconia particles, titanium oxide particles, ceria particles, and the like, and the silica particles include colloidal silica, Examples thereof include fumed silica and surface-modified silica. Among these, colloidal silica is preferable from the viewpoint of improving the polishing rate and reducing scratches. The colloidal silica particles can be obtained, for example, by a production method in which the colloidal silica particles are generated from a silicic acid aqueous solution.

本発明に用いる第2の研磨材粒子の一次粒子の体積中位粒径(D50)は、研磨速度向上の観点から、20〜150nmであると好ましく、30〜130nmであるとより好ましく、40〜120nmであるとさらに好ましく、50〜120nmであるとよりいっそう好ましい。   The volume median particle size (D50) of the primary particles of the second abrasive particles used in the present invention is preferably 20 to 150 nm, more preferably 30 to 130 nm, and more preferably 40 to 40 nm from the viewpoint of improving the polishing rate. 120 nm is more preferable, and 50 to 120 nm is even more preferable.

第2の研磨材粒子の一次粒子の体積中位粒径(D50)は、以下の方法により求めることができる。第2の研磨材粒子を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込む。そして、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1000個以上の第2の研磨材粒子の1個1個の第2の研磨材粒子の円相当径を求める。それを直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)にて、第2の研磨材粒子の粒径分布データを得、全粒子中における、ある粒径の粒子の割合(体積基準%)を小粒径側からの累積体積頻度(%)として表す。得られた第2の研磨材粒子の粒径及び累積体積頻度データに基づき、粒径に対して累積体積頻度をプロットすることにより、粒径対累積体積頻度グラフが得られる。このグラフにおいて、小粒径側からの累積体積頻度が50%となる粒径を第2の研磨材粒子の体積中位粒径とする。   The volume median particle size (D50) of the primary particles of the second abrasive particles can be determined by the following method. A photograph obtained by observing the second abrasive particles with a transmission electron microscope (TEM) manufactured by JEOL (trade name “JEM-2000FX”, 80 kV, 1 to 50,000 times) is taken into a personal computer as image data with a scanner. Then, using the analysis software “WinROOF” (distributor: Mitani Corporation), the equivalent circle diameter of each second abrasive particle of 1000 or more second abrasive particles is obtained. Using this as the diameter, using the spreadsheet software “EXCEL” (manufactured by Microsoft), obtain the particle size distribution data of the second abrasive particles, and the proportion of particles with a certain particle size in all particles (volume basis%) Is expressed as the cumulative volume frequency (%) from the small particle size side. By plotting the cumulative volume frequency against the particle diameter based on the particle diameter and cumulative volume frequency data of the obtained second abrasive particles, a particle diameter versus cumulative volume frequency graph is obtained. In this graph, the particle diameter at which the cumulative volume frequency from the small particle diameter side is 50% is defined as the volume-median particle diameter of the second abrasive particles.

研磨液組成物中における第2の研磨材粒子の含有量は、研磨速度向上の観点から、好ましくは0.2重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1.0重量%以上、さらにより好ましくは1.5重量%以上である。また、第2の研磨材粒子の含有量は、研磨速度向上の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下、さらにより好ましくは5重量%以下である。即ち、研磨液組成物中における第2の研磨材粒子の含有量は好ましくは0.2〜20重量%、より好ましくは0.5〜15重量%、さらに好ましくは1.0〜10重量%、さらにより好ましくは1.5〜5重量%である。   The content of the second abrasive particles in the polishing composition is preferably 0.2% by weight or more, more preferably 0.5% by weight or more, and still more preferably 1.0% by weight from the viewpoint of improving the polishing rate. % Or more, still more preferably 1.5% by weight or more. The content of the second abrasive particles is preferably 20% by weight or less, more preferably 15% by weight or less, still more preferably 10% by weight or less, and even more preferably 5% by weight from the viewpoint of improving the polishing rate. It is as follows. That is, the content of the second abrasive particles in the polishing composition is preferably 0.2 to 20% by weight, more preferably 0.5 to 15% by weight, still more preferably 1.0 to 10% by weight, Even more preferably, it is 1.5 to 5% by weight.

研磨液組成物中における複合酸化物粒子と第2の研磨材粒子の重量比(複合酸化物粒子重量/第2の研磨材粒子重量)は、研磨速度向上の観点から、60/40〜10/90の範囲であることが好ましく、50/50〜15/85の範囲であることがより好ましく、40/60〜20/80の範囲であることがさらに好ましい。   The weight ratio of the composite oxide particles to the second abrasive particles in the polishing composition (composite oxide particle weight / second abrasive particle weight) is 60/40 to 10 / from the viewpoint of improving the polishing rate. The range is preferably 90, more preferably 50/50 to 15/85, and still more preferably 40/60 to 20/80.

[水系媒体]
本実施形態の研磨液組成物に含まれる水系媒体としては、水、または水と溶媒との混合媒体等が挙げられ、上記溶媒としては、水と混合可能な溶媒(例えば、エタノール等のアルコール)が好ましい。水系媒体としては、なかでも、水が好ましく、イオン交換水がより好ましい。
[Aqueous medium]
Examples of the aqueous medium contained in the polishing liquid composition of the present embodiment include water, a mixed medium of water and a solvent, and the solvent includes a solvent that can be mixed with water (for example, alcohol such as ethanol). Is preferred. Among these, water is preferable as the aqueous medium, and ion-exchanged water is more preferable.

[分散剤]
本実施形態の研磨液組成物に含まれる分散剤は水溶性であると好ましい。水溶性の分散剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、およびアクリル酸系重合体からなる群から選ばれる少なくとも1種が好ましい。上記分散剤は、アニオン性界面活性剤、非イオン性界面活性剤、およびアクリル酸系重合体からなる群から選ばれる少なくとも1種であるとより好ましい。上記分散剤は、アクリル酸系重合体であるとさらに好ましい。分散剤は、水系媒体と混合される前に、複合酸化物粒子の表面に物理吸着されていてもよいし、または、複合酸化物粒子の表面に化学的に結合されていてもよい。
[Dispersant]
The dispersant contained in the polishing composition of this embodiment is preferably water-soluble. The water-soluble dispersant is preferably at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an acrylic acid polymer. More preferably, the dispersant is at least one selected from the group consisting of an anionic surfactant, a nonionic surfactant, and an acrylic acid polymer. The dispersant is more preferably an acrylic acid polymer. The dispersant may be physically adsorbed on the surface of the composite oxide particle before being mixed with the aqueous medium, or may be chemically bonded to the surface of the composite oxide particle.

カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。   Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.

アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。   Examples of the anionic surfactant include fatty acid soaps, carboxylates such as alkyl ether carboxylates, sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates, higher alcohol sulfates, alkyl ether sulfates. And sulfate ester salts such as alkyl phosphate esters and the like.

非イオン性界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル等のエーテル型、グリセリンエステルのポリオキシエチレンエーテル等のエーテルエステル型、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ソルビタンエステル等のエステル型などが挙げられる。   Nonionic surfactants include, for example, ether types such as polyoxyethylene alkyl ether, ether ester types such as glycerin ester polyoxyethylene ether, ester types such as polyethylene glycol fatty acid ester, glycerin ester, and sorbitan ester. Can be mentioned.

アクリル酸系重合体は、ホモポリマー、コポリマーのいずれであってもよい。ホモポリマーとしては、好ましくは、アクリル酸、アクリル酸非金属塩、またはアクリル酸エステル等の単量体(a)に由来の構成単位(A)を含むホモポリマーが挙げられる。コポリマーとしては、好ましくは、アクリル酸、アクリル酸非金属塩、アクリル酸エステルからなる群から選ばれる少なくとも1種の単量体(a)に由来の構成単位(A)と、下記単量体(b)に由来する構成単位(B)とを含むコポリマーや、アクリル酸、アクリル酸非金属塩、アクリル酸エステルからなる群から選ばれる少なくとも2種の単量体(a)に由来の各構成単位(A)を含むコポリマーが挙げられる。   The acrylic acid polymer may be a homopolymer or a copolymer. The homopolymer preferably includes a homopolymer containing the structural unit (A) derived from the monomer (a) such as acrylic acid, a non-metallic salt of acrylic acid, or an acrylic ester. As the copolymer, preferably, the structural unit (A) derived from at least one monomer (a) selected from the group consisting of acrylic acid, a non-metallic salt of acrylic acid, and an acrylic ester, and the following monomer ( Each structural unit derived from at least two types of monomers (a) selected from the group consisting of a copolymer comprising the structural unit (B) derived from b), acrylic acid, a non-metallic salt of acrylic acid, and an acrylic ester Mention may be made of copolymers comprising (A).

アクリル酸非金属塩としては、例えば、アクリル酸アンモニウム塩、アクリル酸アミン塩等が挙げられる。アクリル酸系重合体は、これらのアクリル酸非金属塩に由来の構成単位を、1種含んでいてもよいし、2種以上含んでいてもよい。   Examples of acrylic acid nonmetal salts include ammonium acrylate salts and amine acrylate salts. The acrylic acid polymer may contain one or more kinds of structural units derived from these non-acrylic acid metal salts.

アクリル酸系重合体が共重合体である場合、構成単位(A)を全構成単位中50モル%を越えて含むが、70モル%を越えて含んでいると好ましく、80モル%を越えて含んでいるとより好ましく、90モル%を越えて含んでいるとさらに好ましい。   When the acrylic acid polymer is a copolymer, the structural unit (A) is contained in an amount exceeding 50 mol%, preferably exceeding 70 mol%, and exceeding 80 mol%. It is more preferable if it contains, and it is further more preferable if it contains exceeding 90 mol%.

単量体(b)は、カルボン酸(塩)基を有し、かつ、重合可能な二重結合を有する単量体であり、例えば、イタコン酸、無水イタコン酸、メタアクリル酸、マレイン酸、無水マレイン酸、フマル酸、無水フマル酸、シトラコン酸、無水シトラコン酸、グルタコン酸、ビニル酢酸、アリル酢酸、フォスフィノカルボン酸、α−ハロアクリル酸、β−カルボン酸、またはこれらの塩、メタアクリル酸メチル、メタアクリル酸エチル、メタアクリル酸オクチル等のメタアクリル酸アルキルエステル類等が挙げられる。   The monomer (b) is a monomer having a carboxylic acid (salt) group and having a polymerizable double bond, such as itaconic acid, itaconic anhydride, methacrylic acid, maleic acid, Maleic anhydride, fumaric acid, fumaric anhydride, citraconic acid, citraconic anhydride, glutaconic acid, vinyl acetic acid, allyl acetic acid, phosphinocarboxylic acid, α-haloacrylic acid, β-carboxylic acid, or salts thereof, methacrylic And alkyl methacrylates such as methyl acrylate, ethyl methacrylate, and octyl methacrylate.

アクリル酸系重合体が塩である場合、例えば、酸型のアクリル酸単量体を単独で重合、あるいは単量体(b)と共重合したのち、所定のアルカリで中和することによって得られる。上記塩としては、例えば、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体のアンモニウム塩等が挙げられる。   When the acrylic acid polymer is a salt, it can be obtained, for example, by polymerizing an acid acrylic monomer alone or copolymerizing with the monomer (b) and then neutralizing with a predetermined alkali. . Examples of the salt include an ammonium salt of a copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid.

アクリル酸系重合体は、分散安定性を向上させる観点から、ポリアクリル酸およびポリアクリル酸アンモニウムからなる群から選ばれる少なくとも1種が好ましく、ポリアクリル酸アンモニウムがより好ましい。   From the viewpoint of improving dispersion stability, the acrylic acid polymer is preferably at least one selected from the group consisting of polyacrylic acid and ammonium polyacrylate, and more preferably ammonium polyacrylate.

アクリル酸系重合体は、分散安定性を向上させる観点から、その重量平均分子量が500〜50000であると好ましく、500〜10000であるとより好ましく、1000〜10000であるとさらに好ましい。   The weight average molecular weight of the acrylic acid polymer is preferably 500 to 50,000, more preferably 500 to 10,000, and further preferably 1,000 to 10,000 from the viewpoint of improving dispersion stability.

上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づいて算出した値である。
カラム:G4000PWXL+G2500PWXL(東ソー株式会社)
溶離液:(0.2Mリン酸バッファー)/(CH3CN)=9/1(容量比)
流量:1.0mL/min
カラム温度:40℃
検出器:RI検出器
標準物質:ポリアクリル酸換算
The weight average molecular weight is a value calculated based on a peak in a chromatogram obtained by applying a gel permeation chromatography (GPC) method under the following conditions.
Column: G4000PWXL + G2500PWXL (Tosoh Corporation)
Eluent: (0.2 M phosphate buffer) / (CH 3 CN) = 9/1 (volume ratio)
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detector: RI detector Standard material: Polyacrylic acid equivalent

研磨液組成物中の分散剤の含有量は、分散安定性を向上させる観点から、0.0005重量%以上が好ましく、より好ましくは0.001重量%以上、さらに好ましくは0.002重量%以上である。また、研磨液組成物中の分散剤の含有量は、0.5重量%以下が好ましく、より好ましくは0.1重量%以下、さらに好ましくは0.05重量%以下である。したがって、分散剤の含有量は、0.0005〜0.5重量%が好ましく、より好ましくは0.001〜0.1重量%、さらに好ましくは0.002〜0.05重量%である。   The content of the dispersant in the polishing composition is preferably 0.0005% by weight or more, more preferably 0.001% by weight or more, and still more preferably 0.002% by weight or more, from the viewpoint of improving dispersion stability. It is. The content of the dispersant in the polishing composition is preferably 0.5% by weight or less, more preferably 0.1% by weight or less, and still more preferably 0.05% by weight or less. Therefore, the content of the dispersant is preferably 0.0005 to 0.5% by weight, more preferably 0.001 to 0.1% by weight, and still more preferably 0.002 to 0.05% by weight.

なお、上記において説明した各成分の含有量は、使用時における含有量であるが、本実施形態の研磨液組成物は、その安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造・輸送コストを低くできる点で好ましい。濃縮液は、必要に応じて前述の水系媒体で適宜希釈して使用すればよい。   The content of each component described above is the content at the time of use, but the polishing composition of the present embodiment is stored and supplied in a concentrated state as long as the stability is not impaired. May be. In this case, it is preferable in that the production / transport cost can be reduced. The concentrate may be used after appropriately diluted with the above-mentioned aqueous medium as necessary.

[水溶性有機化合物]
本実施形態の研磨液組成物は、高い表面平坦性を有する研磨表面の形成に寄与する、水溶性有機化合物を含むことが好ましい。
[Water-soluble organic compounds]
The polishing composition of this embodiment preferably contains a water-soluble organic compound that contributes to the formation of a polished surface having high surface flatness.

本実施形態の研磨液組成物では、水溶性有機化合物を添加剤として含むことにより、平坦性の高い研磨表面の形成を可能としながら、複合酸化物粒子と第2の研磨材粒子を併用することで、従来の研磨液組成物よりも、より高速で研磨対象物を研磨可能とする。   In the polishing liquid composition of this embodiment, the composite oxide particles and the second abrasive particles are used in combination while allowing formation of a highly flat polishing surface by including a water-soluble organic compound as an additive. Thus, the object to be polished can be polished at a higher speed than the conventional polishing liquid composition.

その理由は、以下のように推定される。本実施形態の研磨液組成物に含まれる複合酸化物粒子および第2の研磨材粒子は、後述するように、砥粒として作用しうる。本実施形態の研磨液組成物を研磨対象表面に供した場合、水溶性有機化合物が、砥粒表面及び/又は研磨対象表面に吸着し被膜を形成する。この被膜は、砥粒の研磨対象表面への作用を阻害する。高い研磨荷重が研磨対象表面加わってはじめて、上記被膜が破壊され、砥粒による研磨対象表面の研磨が可能となる。   The reason is estimated as follows. As described later, the composite oxide particles and the second abrasive particles contained in the polishing composition of the present embodiment can act as abrasive grains. When the polishing composition of the present embodiment is applied to the surface to be polished, the water-soluble organic compound is adsorbed on the abrasive grain surface and / or the surface to be polished to form a film. This coating inhibits the action of abrasive grains on the surface to be polished. Only when a high polishing load is applied to the surface to be polished, the coating film is destroyed, and polishing of the surface to be polished with abrasive grains becomes possible.

研磨対象表面の一例として凹凸表面を研磨する場合、研磨の進行具合を微視的観点から推測すると、初期段階においては、凸部には研磨装置に設定された設定荷重よりも高い研磨荷重がかかり、被膜が破壊されて研磨が進行する。一方、凹部には低い荷重がかかるので、凹部は被膜に保護され研磨され難くなる。すなわち、凸部が選択的に研磨され凹凸段差が小さくなり平坦化が進行する。   When polishing an uneven surface as an example of a surface to be polished, if the progress of polishing is estimated from a microscopic viewpoint, a polishing load higher than the set load set in the polishing apparatus is applied to the convex portion in the initial stage. The coating is destroyed and polishing proceeds. On the other hand, since a low load is applied to the concave portion, the concave portion is protected by the coating and is difficult to be polished. That is, the convex portion is selectively polished, the uneven step is reduced, and the flattening proceeds.

このように、本実施形態の研磨液組成物を用いれば、複合酸化物粒子と第2の研磨材粒子とを併用することにより、高速研磨が可能となることと、水溶性有機化合物により被膜が形成されることとが相俟って、平坦性の優れた研磨表面を短時間で得ることができる。ただし、これらの推測は本発明を限定するものではない。   Thus, if the polishing composition of this embodiment is used, the composite oxide particles and the second abrasive particles are used in combination, so that high-speed polishing is possible and the coating film is formed by the water-soluble organic compound. Combined with the formation, a polished surface with excellent flatness can be obtained in a short time. However, these assumptions do not limit the present invention.

研磨装置に設定される設定荷重を、平坦な表面に対しては研磨がほとんど進行しないような値に設定しておけば、凹凸段差が解消した後、研磨がほとんど進行しなくなる。この場合、必要以上の研磨を容易に防ぐことができ、好ましい。   If the set load set in the polishing apparatus is set to such a value that the polishing hardly progresses on a flat surface, the polishing hardly progresses after the uneven step is eliminated. In this case, polishing more than necessary can be easily prevented, which is preferable.

水溶性有機化合物としては、−SO3H基、−SO3Na基(NaはH原子と置換して塩を形成し得る原子もしくは原子団)、−COOH基、−COONb基(NbはH原子と置換して塩を形成し得る原子もしくは原子団)の少なくとも1つを有する水溶性有機化合物が挙げられる。水溶性有機化合物が塩である場合は、水溶性有機化合物がアルカリ金属を含まない非金属塩であると好ましい。研磨液組成物に含まれる水溶性有機化合物は1種のみならず、2種以上であってもよい。 Examples of the water-soluble organic compound include —SO 3 H group, —SO 3 Na group (Na is an atom or atomic group that can be substituted with H atom to form a salt), —COOH group, —COONb group (Nb is H atom) And a water-soluble organic compound having at least one of atoms or atomic groups that can form a salt by substitution. When the water-soluble organic compound is a salt, the water-soluble organic compound is preferably a nonmetallic salt that does not contain an alkali metal. The water-soluble organic compound contained in the polishing liquid composition may be not only one type but also two or more types.

水溶性有機化合物としては、例えば、水溶性アクリル酸系重合体、有機酸、その塩、酸性アミノ酸、その塩、中性または塩基性のアミノ酸、および両イオン性の水溶性低分子有機化合物(以下、単に低分子有機化合物ともいう。)からなる群から選ばれる少なくとも1種が挙げられる。低分子有機化合物の分子量は、研磨液組成物の安定性を確保可能とする観点から、1000以下が好ましく、500以下がより好ましく、300以下がさらに好ましい。   Examples of the water-soluble organic compound include a water-soluble acrylic polymer, an organic acid, a salt thereof, an acidic amino acid, a salt thereof, a neutral or basic amino acid, and a zwitterionic water-soluble low-molecular organic compound (hereinafter referred to as “water-soluble organic compound”). And at least one selected from the group consisting of simply low molecular organic compounds). The molecular weight of the low molecular weight organic compound is preferably 1000 or less, more preferably 500 or less, and even more preferably 300 or less, from the viewpoint of ensuring the stability of the polishing composition.

過剰な研磨によるディッシング現象を抑制し、平坦性の優れた研磨表面を得る観点から、好ましい水溶性アクリル酸系重合体としては、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸アンモニウム、ポリメタクリル酸アンモニウム、ポリアクリル酸アンモニウム塩、アクリル酸とマレイン酸との共重合体のアンモニウム塩、アクリル酸と2−アクリルアミド−2−メチルプロパンスルホン酸との共重合体のアンモニウム塩、アクリル酸とメチル(メタ)アクリレートとの共重合体のアンモニウム塩等が挙げられ、これらのなかでも、ポリアクリル酸のアンモニウム塩がさらに好ましい。なお、ディッシング現象とは、凹凸面の研磨において凹部が過剰に研磨されることにより、研磨により得られた研磨面のうちの特に凹部に対応する箇所が皿状にくぼむ現象のことである。このディッシング現象は、隣り合う凸部間距離がより大きい場合、すなわち、凹凸面を平面視した時に見える凹部の総面積の割合が大きい場合(凹部面密度が大きい場合)、顕著に発生する。   From the viewpoint of suppressing the dishing phenomenon due to excessive polishing and obtaining a polished surface with excellent flatness, preferred water-soluble acrylic acid polymers include polyacrylic acid, polymethacrylic acid, ammonium polyacrylate, and polyammonium methacrylate. , Ammonium salt of polyacrylic acid, ammonium salt of copolymer of acrylic acid and maleic acid, ammonium salt of copolymer of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid, acrylic acid and methyl (meth) Examples thereof include ammonium salts of copolymers with acrylates, and among these, ammonium salts of polyacrylic acid are more preferable. The dishing phenomenon is a phenomenon in which a portion corresponding to the concave portion of the polished surface obtained by polishing is dished in a dish shape due to excessive polishing of the concave portion in the polishing of the uneven surface. . This dishing phenomenon occurs remarkably when the distance between adjacent convex portions is larger, that is, when the ratio of the total area of the concave portions visible when the concave and convex surfaces are viewed in plan is large (when the concave surface density is large).

水溶性アクリル酸系重合体は、過剰な研磨によるディッシング現象を抑制し、平坦性の優れた研磨表面を得る観点および砥粒の分散安定性の観点から、その重量平均分子量が300〜100000であると好ましく、500〜50000であるとより好ましく、1000〜30000であるとさらに好ましく、2000〜10000であるとさらにより好ましい。水溶性アクリル酸系重合体の塩の重量平均分子量も、同様の理由により、上記範囲内にあると好ましい。水溶性アクリル酸系重合体が、ポリアクリル酸アンモニウムである場合、その重量平均分子量は、1000〜20000であると好ましく、2000〜10000であるとより好ましい。   The water-soluble acrylic acid polymer has a weight average molecular weight of 300 to 100,000 from the viewpoint of suppressing a dishing phenomenon due to excessive polishing and obtaining a polished surface with excellent flatness and dispersion stability of abrasive grains. And preferably 500 to 50000, more preferably 1000 to 30000, and even more preferably 2000 to 10000. For the same reason, the weight average molecular weight of the salt of the water-soluble acrylic acid polymer is preferably within the above range. When the water-soluble acrylic polymer is ammonium polyacrylate, the weight average molecular weight is preferably 1000 to 20000, and more preferably 2000 to 10,000.

本実施形態の研磨液組成物における、ポリアクリル酸アンモニウムと複合酸化物粒子との重量比(ポリアクリル酸アンモニウム/複合酸化物粒子)は、ディッシングの発生を効果的に抑制する観点から、1/5以上が好ましく、より好ましくは1/4以上、さらに好ましくは1/3以上である。また、重量比(ポリアクリル酸アンモニウム/複合酸化物粒子)は、研磨速度をより向上させる観点から、15/1以下が好ましく、より好ましくは12/1以下、さらに好ましくは10/1以下である。したがって、上記重量比は、1/5〜15/1が好ましく、より好ましくは1/4〜12/1、さらに好ましくは1/3〜10/1である。   In the polishing composition of the present embodiment, the weight ratio of ammonium polyacrylate to composite oxide particles (polyammonium acrylate / composite oxide particles) is 1/2 from the viewpoint of effectively suppressing the occurrence of dishing. 5 or more are preferable, More preferably, it is 1/4 or more, More preferably, it is 1/3 or more. The weight ratio (polyammonium acrylate / composite oxide particles) is preferably 15/1 or less, more preferably 12/1 or less, and even more preferably 10/1 or less, from the viewpoint of further improving the polishing rate. . Accordingly, the weight ratio is preferably 1/5 to 15/1, more preferably 1/4 to 12/1, and still more preferably 1/3 to 10/1.

水溶性有機化合物の一例として本実施形態の研磨液組成物に含まれる有機酸およびその塩の好ましい具体例としては、リンゴ酸、乳酸、酒石酸、グルコン酸、クエン酸―水和物、琥珀酸、アジピン酸、フマル酸、またはこれらのアンモニウム塩等が挙げられる。   Preferred examples of the organic acid and salts thereof included in the polishing composition of the present embodiment as an example of a water-soluble organic compound include malic acid, lactic acid, tartaric acid, gluconic acid, citric acid-hydrate, oxalic acid, Examples thereof include adipic acid, fumaric acid, and ammonium salts thereof.

水溶性有機化合物の一例として本実施形態の研磨液組成物に含まれる酸性アミノ酸およびその塩の好ましい具体例としては、アスパラギン酸、グルタミン酸、およびこれらのアンモニウム塩等が挙げられる。   Preferable specific examples of acidic amino acids and salts thereof contained in the polishing composition of the present embodiment as an example of the water-soluble organic compound include aspartic acid, glutamic acid, and ammonium salts thereof.

水溶性有機化合物の一例として本実施形態の研磨液組成物に含まれる中性または塩基性のアミノ酸の好ましい具体例としては、グリシン、4−アミノ酪酸、6−アミノヘキサン酸、12−アミノラウリン酸、アルギニン、グリシルグリシン等が挙げられる。   Preferable specific examples of neutral or basic amino acids contained in the polishing composition of this embodiment as an example of the water-soluble organic compound include glycine, 4-aminobutyric acid, 6-aminohexanoic acid, and 12-aminolauric acid. Arginine, glycylglycine and the like.

水溶性有機化合物の一例として本実施形態の研磨液組成物に含まれる低分子有機化合物の好ましい具体例としては、ジヒドロキシエチルグリシン(DHEG)、エチレンジアミン四酢酸(EDTA)、シクロヘキサンジアミン四酢酸(CyDTA)、ニトリロトリ酢酸(NTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラミン六酢酸(TTHA)、L−グルタミン酸二酢酸(GLDA)、アミノトリ(メチレンホスホン酸)、1−ヒドロキシエチリデン1,1−ジホスホン酸(HEDP)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、β−アラニン二酢酸(β−ADA)、α−アラニン二酢酸(α−ADA)、アスパラギン酸二酢酸(ASDA)、エチレンジアミンニコハク酸(EDDS)、イミノジ酢酸(IDA)、ヒドロキシエチルイミノジ酢酸(HEIDA)、1,3−プロパンジアミン四酢酸(1,3−PDTA)、アスパラギン酸、セリン、システイン、アザセリン、アスパラギン、2−アミノ酪酸、4−アミノ酪酸、アラニン、β−アラニン、アルギニン、アロイソロイシン、アロトレオニン、イソロイシン、エチオニン、エルゴチオネイン、オルニチン、カナバニン、S−(カルボキシメチル)−システイン、キヌレニン、グリシン、グルタミン、グルタミン酸、クレアチン、サルコシン、シスタチオニン、シスチン、システイン酸、シトルリン、β−(3,4−ジヒドロキシフェニル)−アラニン、3,5−ジヨードチロシン、タウリン、チロキシン、チロシン、トリプトファン、トレオニン、ノルバリン、ノルロイシン、バリン、ヒスチジン、4−ヒドロキシプロリン、δ−ヒドロキシリシン、フェニルアラニン、プロリン、ホモセリン、メチオニン、1−メチルヒスチジン、3−メチルヒスチジン、ランチオニン、リシン、ロイシン、m−アミノ安息香酸、p−アミノ安息香酸、β−アミノイソ吉草酸、3−アミノクロトン酸、o−アミノケイ皮酸、m−アミノアミノベンゼンスルホン酸、p−アミノベンゼンスルホン酸、2−アミノペンタン酸、4−アミノペンタン酸、5−アミノペンタン酸、2−アミノ−2−メチル酪酸、3−アミノ酪酸、イサチン酸、2−キノリンカルボン酸、3−キノリンカルボン酸、4−キノリンカルボン酸、5−キノリンカルボン酸、2,3−キノリンジカルボン酸、2,4−キノリンジカルボン酸、グアニジノ酢酸、2,3−ジアミノ安息香酸、2,4−ジアミノ安息香酸、2,5−ジアミノ安息香酸、3,4−ジアミノ安息香酸、3,5−ジアミノ安息香酸、2,4−ジアミノフェノール、3,4−ジアミノフェノール、2,4,6−トリアミノフェノール、2−ピリジンカルボン酸、ニコチン酸、イソニコチン酸、2,3−ピリジンジカルボン酸、2,4−ピリジンジカルボン酸、2,5−ピリジンジカルボン酸、2,6−ピリジンジカルボン酸、3,4−ピリジンジカルボン酸、3,5−ピリジンジカルボン酸、2,4,5−ピリジントリカルボン酸、2,4,5−ピリジントリカルボン酸、3,4,5−ピリジントリカルボン酸、N−フェニルグリシン、N−フェニルグリシン−o−カルボン酸、フェノール−2,4−ジスルホン酸、o−フェノールスルホン酸、m−フェノールスルホン酸、p−フェノールスルホン酸、フタルアニル酸、o−(メチルアミノ)フェノール、m−(メチルアミノ)フェノール、p−(メチルアミノ)フェノール、カルボキシベタイン、スルホベタイン、イミダゾリニウムベタイン、レシチン等が挙げられる。また、これらの化合物のプロトンの1つまたは2つ以上を、F、Cl、Br、およびI等の原子、またはOH、CN、およびNO2等の原子団で置換した誘導体等が挙げられる。これらのなかでも、過剰な研磨によるディッシング現象を抑制し、平坦性の優れた研磨表面を得る観点から、下記キレート剤がさらに好ましい。 As specific examples of the low molecular weight organic compound contained in the polishing composition of this embodiment as an example of the water-soluble organic compound, dihydroxyethylglycine (DHEG), ethylenediaminetetraacetic acid (EDTA), cyclohexanediaminetetraacetic acid (CyDTA) Nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), diethylenetriaminepentaacetic acid (DTPA), triethylenetetraminehexaacetic acid (TTHA), L-glutamic acid diacetic acid (GLDA), aminotri (methylenephosphonic acid), 1- Hydroxyethylidene 1,1-diphosphonic acid (HEDP), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), β-alanine diacetate (β-ADA), α-alanine diacetate (α ADA), aspartic acid diacetic acid (ASDA), ethylenediaminenicosuccinic acid (EDDS), iminodiacetic acid (IDA), hydroxyethyliminodiacetic acid (HEIDA), 1,3-propanediaminetetraacetic acid (1,3-PDTA), Aspartic acid, serine, cysteine, azaserine, asparagine, 2-aminobutyric acid, 4-aminobutyric acid, alanine, β-alanine, arginine, alloisoleucine, alloleucine, isoleucine, ethionine, ergothioneine, ornithine, canavanine, S- (carboxymethyl) ) -Cysteine, kynurenine, glycine, glutamine, glutamic acid, creatine, sarcosine, cystathionine, cystine, cysteic acid, citrulline, β- (3,4-dihydroxyphenyl) -alanine, 3,5-diiodothylo , Taurine, thyroxine, tyrosine, tryptophan, threonine, norvaline, norleucine, valine, histidine, 4-hydroxyproline, δ-hydroxylysine, phenylalanine, proline, homoserine, methionine, 1-methylhistidine, 3-methylhistidine, lanthionine, Lysine, leucine, m-aminobenzoic acid, p-aminobenzoic acid, β-aminoisovaleric acid, 3-aminocrotonic acid, o-aminocinnamic acid, m-aminoaminobenzenesulfonic acid, p-aminobenzenesulfonic acid, 2 -Aminopentanoic acid, 4-aminopentanoic acid, 5-aminopentanoic acid, 2-amino-2-methylbutyric acid, 3-aminobutyric acid, isatinic acid, 2-quinolinecarboxylic acid, 3-quinolinecarboxylic acid, 4-quinolinecarboxylic acid Acid, 5-quinolinecarbo Acid, 2,3-quinoline dicarboxylic acid, 2,4-quinoline dicarboxylic acid, guanidinoacetic acid, 2,3-diaminobenzoic acid, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 3,4-diamino Benzoic acid, 3,5-diaminobenzoic acid, 2,4-diaminophenol, 3,4-diaminophenol, 2,4,6-triaminophenol, 2-pyridinecarboxylic acid, nicotinic acid, isonicotinic acid, 2, 3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2,5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, 3,5-pyridinedicarboxylic acid, 2,4, 5-pyridinetricarboxylic acid, 2,4,5-pyridinetricarboxylic acid, 3,4,5-pyridinetricarboxylic acid, N-phenylglycine, N- Phenylglycine-o-carboxylic acid, phenol-2,4-disulfonic acid, o-phenolsulfonic acid, m-phenolsulfonic acid, p-phenolsulfonic acid, phthalanilic acid, o- (methylamino) phenol, m- (methyl Amino) phenol, p- (methylamino) phenol, carboxybetaine, sulfobetaine, imidazolinium betaine, lecithin and the like. Also, one or more protons of these compounds, F, Cl, Br, and atoms of I, etc. or OH, CN, and substituted derivatives thereof in NO atomic groups, such as 2,. Among these, the following chelating agents are more preferable from the viewpoint of suppressing a dishing phenomenon due to excessive polishing and obtaining a polished surface with excellent flatness.

上記キレート剤としては、DHEG、EDTA、CyDTA、NTA、HEDTA、DTPA、TTHA、GLDA、アミノトリ(メチレンホスホン酸)、HEDP、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、β−ADA、α−ADA、ASDA、EDDS、IDA、HEIDA、1,3−PDTA、アスパラギン酸、セリン、システイン等が挙げられる。これらの中で、より好ましいのは、DHEG、EDTA、NTA、β−ADA、α−ADA、ASDA、EDDS、HEIDA、アスパラギン酸、セリン、システインである。   Examples of the chelating agent include DHEG, EDTA, CyDTA, NTA, HEDTA, DTPA, TTHA, GLDA, aminotri (methylenephosphonic acid), HEDP, ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid), and β-ADA. , Α-ADA, ASDA, EDDS, IDA, HEIDA, 1,3-PDTA, aspartic acid, serine, cysteine and the like. Among these, DHEG, EDTA, NTA, β-ADA, α-ADA, ASDA, EDDS, HEIDA, aspartic acid, serine, and cysteine are more preferable.

また、キレート剤の中では、濃縮時の研磨液組成物の安定性を確保可能とする観点から、DHEGがさらに好ましい。   Among chelating agents, DHEG is more preferable from the viewpoint of ensuring the stability of the polishing composition at the time of concentration.

両イオン性の水溶性の低分子有機化合物のなかでも特にDHEGは、分子内にアニオン基、カチオン基、ノニオン基がバランスよく存在するため、複合酸化物粒子に吸着しても粒子のゼータ電位や親水性を大きく低下させることがなく、さらに、分散剤の効果に影響を与えにくいと推定される。また、DHEGは、複合酸化物粒子の凝集等を十分に抑制可能とし、複合酸化物粒子の濃度が高い場合であっても複合酸化物粒子の分散安定性を確保可能である。よって、DHEGを含む本実施形態の研磨液組成物は、品質が安定した高濃度の研磨液組成物としても提供され得る。   Among amphoteric, water-soluble, low-molecular-weight organic compounds, especially DHEG has an anion group, a cation group, and a nonion group in a balanced state in the molecule. It is presumed that the hydrophilicity is not greatly reduced and the effect of the dispersant is hardly affected. Further, DHEG can sufficiently suppress aggregation of the composite oxide particles and the like, and can ensure the dispersion stability of the composite oxide particles even when the concentration of the composite oxide particles is high. Therefore, the polishing composition of this embodiment containing DHEG can also be provided as a high concentration polishing composition with stable quality.

低分子有機化合物は、通常、遊離酸または塩の形で研磨液組成物の製造に用いられるが、水系媒体に対する溶解性が高い塩が研磨液組成物の製造に用いられると好ましい。   The low molecular weight organic compound is usually used in the production of the polishing liquid composition in the form of a free acid or a salt, but a salt having high solubility in an aqueous medium is preferably used in the production of the polishing liquid composition.

上記塩の好ましい具体例として、アンモニウム化合物塩、リチウム塩、ナトリウム塩、カリウム塩、セシウム塩等が挙げられるが、LSIの好ましい電気特性が得られる観点から、アンモニウム化合物塩がより好ましい。   Specific examples of the salt include ammonium compound salts, lithium salts, sodium salts, potassium salts, cesium salts, and the like. From the viewpoint of obtaining preferable electrical characteristics of LSI, ammonium compound salts are more preferable.

アンモニウム化合物塩を構成するアミン類の好ましい例としては、アンモニア、炭素数が1〜10の直鎖状または分岐状の飽和もしくは不飽和アルキル基を有する第1アミン、第2アミン、第3アミン、あるいは炭素数が6〜10の少なくとも1つの芳香環を有する第1アミン、第2アミン、第3アミン、また、ピペリジン、ピペラジン等の環式構造を有するアミン、テトラメチルアンモニウム等のテトラアルキルアンモニウム化合物が挙げられる。   Preferable examples of amines constituting the ammonium compound salt include ammonia, a primary amine having a linear or branched saturated or unsaturated alkyl group having 1 to 10 carbon atoms, a secondary amine, a tertiary amine, Alternatively, a primary amine having at least one aromatic ring having 6 to 10 carbon atoms, a secondary amine, a tertiary amine, an amine having a cyclic structure such as piperidine or piperazine, or a tetraalkylammonium compound such as tetramethylammonium. Is mentioned.

本実施形態の研磨液組成物に含まれる水溶性有機化合物の含有量は、平坦性の優れた研磨表面を得る観点から、0.02〜15重量%が好ましく、より好ましくは0.05〜10重量%、さらに好ましくは0.1〜8重量%、よりさらに好ましくは0.2〜6重量%である。   From the viewpoint of obtaining a polished surface with excellent flatness, the content of the water-soluble organic compound contained in the polishing composition of the present embodiment is preferably 0.02 to 15% by weight, more preferably 0.05 to 10%. % By weight, more preferably 0.1 to 8% by weight, and still more preferably 0.2 to 6% by weight.

なお、本発明の研磨液組成物では、水溶性有機化合物として添加される物質と、上述の分散剤として添加される物質とが相互に異なる場合のみならず、同一である場合もある。水溶性有機化合物として添加される物質と、上述の分散剤として添加される物質とが同一である場合、好適な分散性と、研磨表面の好適な平坦性の実現とが可能なように、水溶性有機化合物の好ましい含有量(例えば、0.02〜15重量%)と分散剤の好ましい含有量(例えば、0.0005〜0.5重量%)の合計量の範囲で、水溶性有機化合物と分散剤の合計量を選択すればよい。   In the polishing composition of the present invention, the substance added as the water-soluble organic compound and the substance added as the above-mentioned dispersant may be the same as well as different from each other. When the substance added as the water-soluble organic compound and the substance added as the above-mentioned dispersant are the same, the aqueous solution is used so that suitable dispersibility and suitable flatness of the polishing surface can be realized. Water-soluble organic compound within the range of the total amount of the preferable content of the organic organic compound (for example, 0.02 to 15% by weight) and the preferable content of the dispersant (for example, 0.0005 to 0.5% by weight) What is necessary is just to select the total amount of a dispersing agent.

本実施形態の研磨液組成物中における、水溶性有機化合物と複合酸化物粒子との重量比(水溶性有機化合物/複合酸化物粒子)は、高い表面平坦性を有する研磨表面を形成する観点から、1/30以上が好ましく、より好ましくは1/20以上、さらに好ましくは1/10以上である。上記重量比は、研磨速度をより向上させる観点から、15/1以下が好ましく、より好ましくは12/1以下、さらに好ましくは10/1以下である。したがって、上記重量比は、1/30〜15/1が好ましく、より好ましくは1/20〜12/1、さらに好ましくは1/10〜10/1である。   The weight ratio of the water-soluble organic compound to the composite oxide particles (water-soluble organic compound / composite oxide particles) in the polishing composition of the present embodiment is from the viewpoint of forming a polished surface having high surface flatness. 1/30 or more is preferable, more preferably 1/20 or more, and still more preferably 1/10 or more. The weight ratio is preferably 15/1 or less, more preferably 12/1 or less, and even more preferably 10/1 or less, from the viewpoint of further improving the polishing rate. Accordingly, the weight ratio is preferably 1/30 to 15/1, more preferably 1/20 to 12/1, and still more preferably 1/10 to 10/1.

また、水溶性有機化合物としてDHEGを含む研磨液組成物の場合、研磨液組成物に含まれるDHEGの含有量は、平坦性のより優れた研磨表面を得る観点から、0.1〜15重量%が好ましく、より好ましくは0.2〜10重量%、さらに好ましくは0.5〜8重量%、よりさらに好ましくは1.0〜6重量%である。   Further, in the case of a polishing liquid composition containing DHEG as a water-soluble organic compound, the content of DHEG contained in the polishing liquid composition is 0.1 to 15% by weight from the viewpoint of obtaining a polished surface with better flatness. Is preferable, more preferably 0.2 to 10% by weight, still more preferably 0.5 to 8% by weight, and still more preferably 1.0 to 6% by weight.

本実施形態の研磨液組成物における、DHEGと複合酸化物粒子との重量比(DHEG/複合酸化物粒子)は、ディッシングの発生を効果的に抑制する観点から、1/5以上が好ましく、より好ましくは1/4以上、さらに好ましくは1/3以上である。また、重量比(DHEG/複合酸化物粒子)は、研磨速度をより向上させる観点から、15/1以下が好ましく、より好ましくは12/1以下、さらに好ましくは10/1以下である。したがって、上記重量比は、1/5〜15/1が好ましく、より好ましくは1/4〜12/1、さらに好ましくは1/3〜10/1である。   In the polishing composition of the present embodiment, the weight ratio of DHEG and composite oxide particles (DHEG / composite oxide particles) is preferably 1/5 or more from the viewpoint of effectively suppressing the occurrence of dishing. Preferably it is 1/4 or more, more preferably 1/3 or more. The weight ratio (DHEG / composite oxide particles) is preferably 15/1 or less, more preferably 12/1 or less, and even more preferably 10/1 or less, from the viewpoint of further improving the polishing rate. Accordingly, the weight ratio is preferably 1/5 to 15/1, more preferably 1/4 to 12/1, and still more preferably 1/3 to 10/1.

本実施形態の研磨液組成物には、本発明の効果が妨げられない範囲で、さらに、pH調整剤、防腐剤、および酸化剤から選ばれる少なくとも1種の任意成分が含まれていてもよい。   The polishing composition of this embodiment may further contain at least one optional component selected from a pH adjuster, a preservative, and an oxidizing agent as long as the effects of the present invention are not hindered. .

pH調整剤としては、塩基性化合物、または酸性化合物等が挙げられる。塩基性化合物としては、アンモニア、水酸化カリウム、水溶性有機アミンおよび四級アンモニウムハイドロオキサイド等が挙げられる。酸性化合物としては、硫酸、塩酸、硝酸またはリン酸等の無機酸、酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸または安息香酸等の有機酸等が挙げられる。   Examples of the pH adjuster include basic compounds and acidic compounds. Examples of basic compounds include ammonia, potassium hydroxide, water-soluble organic amines and quaternary ammonium hydroxides. Examples of the acidic compound include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.

防腐剤としては、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2−ベンズイソチアゾリン−3−オン、(5−クロロ−)2−メチル−4−イソチアゾリン−3−オン、過酸化水素、または次亜塩素酸塩等が挙げられる。   Examples of preservatives include benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or hypochlorite Examples include acid salts.

酸化剤としては、過マンガン酸、ペルオキソ酸等の過酸化物、クロム酸、または硝酸、並びにこれらの塩等が挙げられる。   Examples of the oxidizing agent include peroxides such as permanganic acid and peroxo acid, chromic acid, nitric acid, and salts thereof.

本実施形態の研磨液組成物の25℃におけるpHは、特に制限されないが、研磨速度をさらに向上できることから2〜10が好ましく、より好ましくは3〜9、さらに好ましくは4〜8であり、さらにより好ましくは4.5〜7である。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM−30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。   The pH at 25 ° C. of the polishing composition of the present embodiment is not particularly limited, but is preferably 2 to 10, more preferably 3 to 9, more preferably 4 to 8, since the polishing rate can be further improved. More preferably, it is 4.5-7. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after immersion of the electrode in the polishing composition.

次に、本実施形態の研磨液組成物の調製方法の一例について説明する。   Next, an example of a method for preparing the polishing composition of this embodiment will be described.

本実施形態の研磨液組成物の製造方法の一例は、何ら制限されず、例えば、複合酸化物粒子と、第2の研磨材粒子と、分散剤と、水系媒体と、必要に応じて任意成分とを混合することによって調製できる。   An example of the manufacturing method of the polishing composition of the present embodiment is not limited at all. For example, composite oxide particles, second abrasive particles, a dispersant, an aqueous medium, and optional components as necessary And can be prepared by mixing.

複合酸化物粒子および第2の研磨材粒子の水系媒体への分散は、例えば、ホモミキサー、ホモジナイザー、超音波分散機、湿式ボールミル、又はビーズミル等の撹拌機等を用いて行うことができる。複合酸化物粒子および第2の研磨材粒子は、同じ水系媒体内に一緒に分散されていてもよいし、別々の水系媒体内に分散させることにより各々スラリーとされてから、相互に混合されてもよい。複合酸化物粒子および第2の研磨材粒子を水系媒体に分散した後は、複合酸化物粒子および/または第2の研磨材粒子が凝集等してできた粗大粒子が水系媒体中に含まれる場合、遠心分離やフィルターろ過等により、当該粗大粒子を除去すると好ましい。複合酸化物粒子を水系媒体に、分散剤の存在下で分散させることが好ましい。   The dispersion of the composite oxide particles and the second abrasive particles in the aqueous medium can be performed using, for example, a stirrer such as a homomixer, a homogenizer, an ultrasonic disperser, a wet ball mill, or a bead mill. The composite oxide particles and the second abrasive particles may be dispersed together in the same aqueous medium, or each of them is made into a slurry by being dispersed in separate aqueous media and then mixed with each other. Also good. After the composite oxide particles and the second abrasive particles are dispersed in the aqueous medium, coarse particles formed by aggregation of the composite oxide particles and / or the second abrasive particles are contained in the aqueous medium. The coarse particles are preferably removed by centrifugation, filter filtration, or the like. The composite oxide particles are preferably dispersed in an aqueous medium in the presence of a dispersant.

本実施形態の研磨液組成物は、精密部品用基板の製造過程における研磨、または液晶ディスプレイパネルのガラス面等の研磨に適用される。精密部品用基板としては、ハードディスク等を構成するガラス基板、酸化膜(例えば、酸化ケイ素膜)を最外層として有する半導体装置を構成する基板(半導体装置用基板)、ガラスセラミック基板等の結晶化ガラス基板、アルミノシリケートガラス基板等の化学強化ガラス基板、またはフォトマスク用基板等に用いられる合成石英ガラス基板等が挙げられる。本実施形態の研磨液組成物は、ハードディスク等を構成するガラス基板、半導体装置用基板の製造過程における研磨工程での使用に好適である。   The polishing composition of the present embodiment is applied to polishing in the production process of a precision component substrate or polishing of a glass surface of a liquid crystal display panel. As a substrate for precision parts, a glass substrate constituting a hard disk or the like, a substrate constituting a semiconductor device having an oxide film (for example, a silicon oxide film) as an outermost layer (substrate for a semiconductor device), or a crystallized glass such as a glass ceramic substrate. Examples thereof include chemically tempered glass substrates such as substrates, aluminosilicate glass substrates, and synthetic quartz glass substrates used for photomask substrates. The polishing composition of this embodiment is suitable for use in a polishing step in the process of manufacturing a glass substrate or a semiconductor device substrate that constitutes a hard disk or the like.

次に、本実施形態の研磨液組成物を用いた研磨方法について説明する。   Next, a polishing method using the polishing composition of this embodiment will be described.

本実施形態の研磨液組成物を用いて行なわれる研磨方法の一例では、研磨対象基板と研磨装置を構成する研磨パッドとの間に、研磨液組成物を供給し、研磨対象基板と研磨パッドとが接した状態で、研磨パッドを研磨対象基板に対して相対運動させることにより、研磨対象基板を研磨する。   In an example of the polishing method performed using the polishing liquid composition of the present embodiment, the polishing liquid composition is supplied between the polishing target substrate and the polishing pad constituting the polishing apparatus, and the polishing target substrate and the polishing pad The substrate to be polished is polished by moving the polishing pad relative to the substrate to be polished while being in contact with the substrate.

研磨パッドは、例えば、回転テーブル等の研磨定盤に貼付けられている。研磨対象基板は、キャリア等により保持される。研磨装置は、板状の研磨対象基板の両主面を同時に研磨可能とする両面研磨装置であってもよいし、片面のみを研磨可能とする片面研磨装置であってもよい。   The polishing pad is attached to a polishing surface plate such as a rotary table, for example. The substrate to be polished is held by a carrier or the like. The polishing apparatus may be a double-side polishing apparatus capable of simultaneously polishing both main surfaces of a plate-shaped polishing target substrate, or may be a single-side polishing apparatus capable of polishing only one side.

(ガラス基板の製造)
ガラス基板の製造過程の研磨工程で用いられる研磨パッドの材質について特に制限はなく、従来から公知のものを用いることができる。
(Manufacture of glass substrates)
There is no restriction | limiting in particular about the material of the polishing pad used at the grinding | polishing process of the manufacture process of a glass substrate, A conventionally well-known thing can be used.

研磨対象の材質としては、例えば、石英ガラス、ソーダライムガラス、アルミノシリケートガラス、ボロンシリケートガラス、アルミノボロンシリケートガラス、無アルカリガラス、結晶化ガラス、ガラス状カーボン等が挙げられる。これらの中でも、本実施形態の研磨液組成物は、強化ガラス基板の一例であるアルミノシリケートガラス基板や、ガラスセラミック基板(結晶化ガラス基板)、合成石英ガラス基板等の製造過程で行われる研磨工程で好適に使用できる。アルミノシリケートガラス基板は、化学的耐久性が良好であり、研磨後の基板上に残存するパーティクルの除去を目的として行なわれるアルカリ洗浄によるダメージ(凹部欠陥等)が発生し難く、よって、より高い表面品質のガラス基板の提供が可能である点で好ましい。また、合成石英ガラス基板は透過率等の光学特性が優れている点で好ましい。   Examples of the material to be polished include quartz glass, soda lime glass, aluminosilicate glass, boron silicate glass, aluminoboron silicate glass, alkali-free glass, crystallized glass, and glassy carbon. Among these, the polishing liquid composition of the present embodiment is a polishing process performed in the manufacturing process of an aluminosilicate glass substrate, a glass ceramic substrate (crystallized glass substrate), a synthetic quartz glass substrate, and the like, which are examples of a tempered glass substrate. Can be suitably used. The aluminosilicate glass substrate has good chemical durability and is less susceptible to damage (such as recess defects) due to alkali cleaning performed for the purpose of removing particles remaining on the polished substrate. It is preferable in that a quality glass substrate can be provided. A synthetic quartz glass substrate is preferable in that it has excellent optical characteristics such as transmittance.

ガラス基板の形状について、特に制限はなく、例えば、ディスク状、プレート状、スラブ状、プリズム状等の、平坦部を有する形状や、レンズ等の曲面部を有する形状等が挙げられる。本実施形態の研磨液組成物は、なかでも、ディスク状やプレート状のガラス基板の製造過程で行われる研磨工程で好適に使用できる。   There is no restriction | limiting in particular about the shape of a glass substrate, For example, the shape which has flat parts, such as a disk shape, plate shape, slab shape, prism shape, the shape which has curved surface parts, such as a lens, etc. are mentioned. In particular, the polishing liquid composition of the present embodiment can be suitably used in a polishing process performed in the process of manufacturing a disk-shaped or plate-shaped glass substrate.

ガラス基板の製造過程において、研磨装置により研磨対象基板に加えられる研磨荷重は、研磨速度を向上させる観点から、3kPa以上が好ましく、4kPa以上がより好ましく、5kPa以上がさらに好ましく、5.5kPa以上がよりいっそう好ましい。また、研磨表面の品質を向上させ、かつ研磨表面の残留応力を緩和する観点から、研磨荷重は、12kPa以下が好ましく、11kPa以下がより好ましく、10kPa以下がさらに好ましく、9kPa以下がよりいっそう好ましい。したがって、研磨荷重は、3〜12kPaが好ましく、より好ましくは4〜11kPa、さらに好ましくは5〜10kPa、よりいっそう好ましくは5.5〜9kPaである。   In the manufacturing process of the glass substrate, the polishing load applied to the substrate to be polished by the polishing apparatus is preferably 3 kPa or more, more preferably 4 kPa or more, further preferably 5 kPa or more, and more preferably 5.5 kPa or more from the viewpoint of improving the polishing rate. Even more preferable. Further, from the viewpoint of improving the quality of the polished surface and relaxing the residual stress on the polished surface, the polishing load is preferably 12 kPa or less, more preferably 11 kPa or less, further preferably 10 kPa or less, and even more preferably 9 kPa or less. Accordingly, the polishing load is preferably 3 to 12 kPa, more preferably 4 to 11 kPa, still more preferably 5 to 10 kPa, and even more preferably 5.5 to 9 kPa.

研磨液組成物の供給速度は、研磨パッドの研磨対象基板に面する面の面積と、研磨対象基板の研磨対象表面の面積との総和や、研磨液組成物の組成によって異なるが、研磨速度を向上させる観点から、研磨対象表面1cm2あたり0.06〜5ml/分であると好ましく、さらに好ましくは0.08〜4ml/分であり、より好ましくは0.1〜3ml/分である。 The supply rate of the polishing liquid composition varies depending on the sum of the area of the surface of the polishing pad facing the substrate to be polished and the area of the polishing target surface of the substrate to be polished and the composition of the polishing liquid composition. From the viewpoint of improvement, it is preferably 0.06 to 5 ml / min per 1 cm 2 of the surface to be polished, more preferably 0.08 to 4 ml / min, and more preferably 0.1 to 3 ml / min.

研磨パッドの回転数は、10〜200rpmが好ましく、より好ましくは20〜150rpmであり、さらに好ましくは30〜60rpmである。   As for the rotation speed of a polishing pad, 10-200 rpm is preferable, More preferably, it is 20-150 rpm, More preferably, it is 30-60 rpm.

(半導体装置の製造過程で行われる薄膜の研磨)
本実施形態の研磨液組成物は、例えば、半導体基板の一方の主面がわに配置された薄膜の研磨にも用いることができる。
(Thin film polishing performed in the manufacturing process of semiconductor devices)
The polishing liquid composition of this embodiment can also be used, for example, for polishing a thin film in which one main surface of a semiconductor substrate is arranged on the side.

半導体基板の材料としては、例えば、Si、又はGe等の元素半導体、GaAs,InP、又はCdS等の化合物半導体、InGaAs,HgCdTe等の混晶半導体等が挙げられる。   Examples of the material of the semiconductor substrate include elemental semiconductors such as Si or Ge, compound semiconductors such as GaAs, InP, or CdS, mixed crystal semiconductors such as InGaAs, HgCdTe, and the like.

薄膜の材料としては、アルミニウム、ニッケル、タングステン、銅、タンタル、又はチタン等の金属;ケイ素等の半金属;上記金属を主成分とした合金;ガラス、ガラス状カーボン、又はアモルファスカーボン等のガラス状物質;アルミナ、二酸化ケイ素、窒化ケイ素、窒化タンタル、又は窒化チタン等のセラミック材料;ポリイミド樹脂等の樹脂、等の半導体装置を構成する材料が挙げられる。なかでも、薄膜は、大きい速度で研磨され得るという観点から、ケイ素を含んでいると好ましく、より好ましくは、酸化ケイ素、窒化ケイ素及びポリシリコンからなる群から選ばれる少なくとも1種を含んでいると好ましい。酸化ケイ素としては、二酸化ケイ素、テトラエトキシシラン(TEOS)等が挙げられる。酸化ケイ素を含む薄膜には、リン、ホウ素等の元素がドープされていてもよく、そのような、薄膜の具体例としては、BPSG(Boro-Phospho-Silicate Glass)膜、PSG(Phospho-Silicate Glass)膜等が挙げられる。   Thin film materials include metals such as aluminum, nickel, tungsten, copper, tantalum, and titanium; semi-metals such as silicon; alloys based on the above metals; glassy, glassy carbon, or glassy such as amorphous carbon Substances: Ceramic materials such as alumina, silicon dioxide, silicon nitride, tantalum nitride, or titanium nitride; materials constituting semiconductor devices such as resins such as polyimide resins. Among these, the thin film preferably contains silicon from the viewpoint that it can be polished at a high speed, and more preferably contains at least one selected from the group consisting of silicon oxide, silicon nitride, and polysilicon. preferable. Examples of silicon oxide include silicon dioxide and tetraethoxysilane (TEOS). The thin film containing silicon oxide may be doped with elements such as phosphorus and boron. Specific examples of such a thin film include BPSG (Boro-Phospho-Silicate Glass) film and PSG (Phospho-Silicate Glass). ) A film etc. are mentioned.

薄膜形成法は、薄膜を構成する材料に応じて適宜選択すればよいが、例えば、CVD法、PVD法、塗布法、又はメッキ法等が挙げられる。   The thin film forming method may be appropriately selected according to the material constituting the thin film, and examples thereof include a CVD method, a PVD method, a coating method, and a plating method.

薄膜を研磨する際に、研磨装置により薄膜に加えられる研磨荷重は、研磨速度を向上させる観点から、5kPa以上が好ましく、より好ましくは10kPa以上である。また、研磨表面の品質を向上させ、かつ研磨表面の残留応力を緩和する観点から、研磨荷重は、100kPa以下が好ましく、より好ましくは70kPa以下、さらに好ましくは50kPa以下である。したがって、研磨荷重は、5〜100kPaが好ましく、より好ましくは10〜70kPa、さらに好ましくは10〜50kPaである。   In polishing the thin film, the polishing load applied to the thin film by the polishing apparatus is preferably 5 kPa or more, more preferably 10 kPa or more from the viewpoint of improving the polishing rate. Further, from the viewpoint of improving the quality of the polished surface and relaxing the residual stress on the polished surface, the polishing load is preferably 100 kPa or less, more preferably 70 kPa or less, and even more preferably 50 kPa or less. Therefore, the polishing load is preferably 5 to 100 kPa, more preferably 10 to 70 kPa, and still more preferably 10 to 50 kPa.

研磨液組成物の供給速度は、研磨パッドの研磨対象基板に面する面の面積と、薄膜の研磨対象表面の面積との総和や、研磨液組成物の組成によって異なるが、研磨速度を向上させる観点から、研磨対象表面1cm2あたり0.01ml/分以上が好ましく、より好ましくは0.1ml/分以上である。また、低コスト化及び廃液処理の容易化の観点から、研磨液組成物の供給速度は、研磨対象表面1cm2あたり10ml/分以下が好ましく、より好ましくは5ml/分以下である。したがって、研磨液組成物の供給速度は、研磨対象表面1cm2あたり0.01〜10ml/分が好ましく、より好ましくは0.1〜5mlg/分である。 The supply rate of the polishing liquid composition varies depending on the total area of the surface of the polishing pad facing the polishing target substrate and the area of the thin film polishing target surface and the composition of the polishing liquid composition, but improves the polishing rate. From the viewpoint, 0.01 ml / min or more per 1 cm 2 of the surface to be polished is preferable, and more preferably 0.1 ml / min or more. Further, from the viewpoint of cost reduction and ease of waste liquid treatment, the supply rate of the polishing liquid composition is preferably 10 ml / min or less, more preferably 5 ml / min or less per 1 cm 2 of the surface to be polished. Therefore, the supply rate of the polishing composition is preferably 0.01 to 10 ml / min, more preferably 0.1 to 5 ml / min per 1 cm 2 of the surface to be polished.

研磨工程で用いられる研磨パッドの材質等については、特に制限されるものではなく、従来公知のものが使用できる。研磨パッドの材質としては、例えば、硬質発泡ポリウレタン等の有機高分子発泡体や無機発泡体等が挙げられるが、なかでも、硬質発泡ポリウレタンが好ましい。   The material of the polishing pad used in the polishing step is not particularly limited, and conventionally known materials can be used. Examples of the material of the polishing pad include organic polymer foams such as rigid foamed polyurethane and inorganic foams. Among these, rigid foamed polyurethane is preferable.

研磨パッドの回転数は、30〜200rpmが好ましく、より好ましくは45〜150rpmであり、さらに好ましくは60〜100pmである。   The rotational speed of the polishing pad is preferably 30 to 200 rpm, more preferably 45 to 150 rpm, and still more preferably 60 to 100 pm.

薄膜は、凹凸表面を有する薄膜であってもよい。凹凸表面を有する薄膜は、例えば、半導体基板上の一方の主面がわに薄膜を形成する薄膜形成工程と、この薄膜の半導体基板がわの面の反対面に凹凸パターンを形成する凹凸面形成工程とを経て得ることができる。凹凸パターンの形成は、従来から公知のリソグラフィー法等を用いて行える。また、薄膜が有する半導体基板側の面の反対面は、下層の凸凹に対応して凹凸に形成されることもある。凹凸表面を有する薄膜の研磨においても、研磨荷重、研磨液組成物の供給速度、研磨パッドの材質、および研磨パッドの回転数等は、各々上記薄膜の研磨の際と同様であると好ましい。   The thin film may be a thin film having an uneven surface. A thin film having a concavo-convex surface is formed, for example, by a thin film formation process in which one main surface on a semiconductor substrate forms a crocodile thin film, and a concavo-convex surface formation in which the semiconductor substrate of this thin film forms a concavo-convex pattern on the opposite surface of the crocodile surface It can obtain through a process. The concave / convex pattern can be formed using a conventionally known lithography method or the like. In addition, the surface opposite to the surface on the semiconductor substrate side of the thin film may be formed to be uneven corresponding to the unevenness of the lower layer. In polishing a thin film having an uneven surface, it is preferable that the polishing load, the supply rate of the polishing composition, the material of the polishing pad, the number of rotations of the polishing pad, and the like are the same as those for polishing the thin film.

本実施形態の研磨液組成物は、半導体装置の製造過程におけるあらゆる研磨に利用できる。具体例としては、例えば、(1)埋込み素子分離膜を形成する工程で行なわれる研磨、(2)層間絶縁膜を平坦化する工程で行なわれる研磨、(3)埋込み金属配線(例えば、ダマシン配線等)を形成する工程で行なわれる研磨、(4)埋め込みキャパシタを形成する工程で行なわれる研磨等が挙げられる。   The polishing composition of this embodiment can be used for any polishing in the manufacturing process of a semiconductor device. As specific examples, for example, (1) polishing performed in a step of forming an embedded isolation film, (2) polishing performed in a step of planarizing an interlayer insulating film, and (3) embedded metal wiring (for example, damascene wiring) Etc.) and (4) polishing performed in the step of forming the embedded capacitor.

上記半導体装置としては、例えば、メモリーIC(Integrated Circuit)、ロジックIC及びシステムLSI(Large−Scale Integration)等が挙げられる。   Examples of the semiconductor device include a memory IC (Integrated Circuit), a logic IC, and a system LSI (Large-Scale Integration).

<研磨対象基板>
熱酸化膜付きシリコンウエハ
直径20.32cm(8インチ)のシリコンウエハ上に形成された、厚さ2000nmの二酸化ケイ素膜を用意した。二酸化ケイ素膜(熱酸化膜)は、シリコンウエハを、酸化炉内に入れて酸素ガスやスチームに晒し、シリコンウエハ中のシリコンと酸素を反応させることにより形成できる。
<Substrate for polishing>
Silicon wafer with thermal oxide film A silicon dioxide film having a thickness of 2000 nm formed on a silicon wafer having a diameter of 20.32 cm (8 inches) was prepared. The silicon dioxide film (thermal oxide film) can be formed by placing a silicon wafer in an oxidation furnace and exposing it to oxygen gas or steam to react silicon in the silicon wafer with oxygen.

<研磨条件>
研磨試験機:片面研磨機(品番:LP−541、ラップマスターSFT(株)製、定盤径540mm)
研磨パッド:IC1000(硬質ウレタンパッド)とsuba400(不織布タイプパッド)との積層パッド(ニッタ・ハース(株)製)
定盤回転数:100rpm
へッド回転数:110rpm(回転方向は定盤と同じ)
研磨時間:1min
研磨荷重:30kPa(設定値)
研磨液組成物供給量:200ml/min
<Polishing conditions>
Polishing tester: Single-side polishing machine (Part No .: LP-541, manufactured by Lapmaster SFT, surface plate diameter 540 mm)
Polishing pad: Laminated pad of IC1000 (hard urethane pad) and suba400 (nonwoven fabric type pad) (made by Nitta Haas Co., Ltd.)
Surface plate rotation speed: 100 rpm
Head rotation speed: 110 rpm (the rotation direction is the same as the surface plate)
Polishing time: 1 min
Polishing load: 30 kPa (set value)
Polishing liquid composition supply amount: 200 ml / min

<評価方法>
実施例1〜16、比較例1〜4の研磨液組成物(表1〜表2参照)を用いて、研磨対象基板の二酸化ケイ素膜を研磨した後、イオン交換水を用いて流水洗浄し、次いで、イオン交換水中に浸漬した状態で超音波洗浄(100kHz、3min)し、更に、イオン交換水で流水洗浄し、最後に、スピンドライ法により乾燥させた。
<Evaluation method>
After polishing the silicon dioxide film of the substrate to be polished using the polishing liquid compositions of Examples 1 to 16 and Comparative Examples 1 to 4 (see Tables 1 to 2), washed with running water using ion-exchanged water, Next, ultrasonic cleaning (100 kHz, 3 min) was performed in a state of being immersed in ion-exchanged water, and further, washing with running water with ion-exchanged water was performed, and finally, drying was performed by a spin dry method.

(スラリーの調製)
(1)スラリーA、B
分散剤(ポリアクリル酸アンモニウム、重量平均分子量6000)が添加された水中で、体積中位径が各々表1に記載の値となるよう、ビーズミルにより焼成物a(Ce0.75Zr0.252粒子)が湿式粉砕されることにより得られたCe0.75Zr0.252粒子スラリー(Ce0.75Zr0.252粒子:25重量%)をスラリーA、Bとして用意した。焼成物aは、未焼成Ce0.75Zr0.252粒子(商品名Actalys9320、ローディア社製)が1160℃で6時間、連続式焼成炉で焼成されることにより得られたものである。なお、焼成物aは、セリウム(IV)化合物とジルコニウム(IV)化合物とを原料として用いて得られたものである。
(Preparation of slurry)
(1) Slurries A and B
In water to which a dispersing agent (ammonium polyacrylate, weight average molecular weight 6000) was added, a fired product a (Ce 0.75 Zr 0.25 O 2 particles) was obtained by a bead mill so that the volume median diameter would be the value shown in Table 1, respectively. There Ce 0.75 Zr 0.25 O 2 particle slurry obtained by being wet-milled: was prepared (Ce 0.75 Zr 0.25 O 2 particles 25 wt%) slurry a, as B. The fired product a is obtained by firing unfired Ce 0.75 Zr 0.25 O 2 particles (trade name Actals 9320, manufactured by Rhodia) in a continuous firing furnace at 1160 ° C. for 6 hours. The fired product a is obtained using a cerium (IV) compound and a zirconium (IV) compound as raw materials.

(2)スラリーC
分散剤(ポリアクリル酸アンモニウム、重量平均分子量6000)が添加された水中で、体積中位径が表1に記載の値となるよう、ビーズミルにより焼成物b(Ce0.75Zr0.252粒子)が湿式粉砕されることにより得られたCe0.75Zr0.252粒子スラリー(Ce0.75Zr0.252粒子:25重量%)をスラリーCとして用意した。焼成物bは、未焼成Ce0.75Zr0.252粒子(商品名Actalys9320、ローディア社製)が1090℃で6時間、連続式焼成炉で焼成されることにより得られたものである。なお、焼成物bは、セリウム(IV)化合物とジルコニウム(IV)化合物とを原料として用いて得られたものである。
(2) Slurry C
In water to which a dispersant (ammonium polyacrylate, weight average molecular weight 6000) has been added, the calcined product b (Ce 0.75 Zr 0.25 O 2 particles) is obtained by a bead mill so that the volume median diameter becomes the value described in Table 1. A Ce 0.75 Zr 0.25 O 2 particle slurry (Ce 0.75 Zr 0.25 O 2 particles: 25 wt%) obtained by wet pulverization was prepared as slurry C. The fired product b is obtained by firing unsintered Ce 0.75 Zr 0.25 O 2 particles (trade name Actals 9320, manufactured by Rhodia) at 1090 ° C. for 6 hours in a continuous firing furnace. The fired product b is obtained using a cerium (IV) compound and a zirconium (IV) compound as raw materials.

(3)スラリーD
分散剤(ポリアクリル酸アンモニウム、重量平均分子量6000)が添加された水中で、体積中位径が表2に記載の値となるよう、ビーズミルにより焼成物c(Ce0.62Zr0.382粒子)が湿式粉砕されることにより得られたCe0.62Zr0.382粒子スラリー(Ce0.62Zr0.382粒子:25重量%)をスラリーDとして用意した。焼成物cは、未焼成Ce0.62Zr0.382粒子(商品名Actalys9330、ローディア社製)が1240℃で6時間、連続式焼成炉で焼成されることにより得られたものである。なお、焼成物cは、セリウム(IV)化合物とジルコニウム(IV)化合物とを原料として用いて得られたものである。
(3) Slurry D
In water to which a dispersant (ammonium polyacrylate, weight average molecular weight 6000) has been added, the fired product c (Ce 0.62 Zr 0.38 O 2 particles) is obtained by a bead mill so that the volume median diameter becomes the value shown in Table 2. Ce 0.62 Zr 0.38 O 2 particle slurry obtained by being wet milling (Ce 0.62 Zr 0.38 O 2 particles: 25 wt%) was prepared as a slurry D. The fired product c is obtained by firing unfired Ce 0.62 Zr 0.38 O 2 particles (trade name Actals 9330, manufactured by Rhodia) in a continuous firing furnace at 1240 ° C. for 6 hours. The fired product c is obtained using a cerium (IV) compound and a zirconium (IV) compound as raw materials.

(4)スラリーE
分散剤(ポリアクリル酸アンモニウム、重量平均分子量6000)が添加された水中で、体積中位径が表2に記載の値となるよう、ビーズミルにより焼成物d(Ce0.74Zr0.262粒子)が湿式粉砕されることにより得られたCe0.74Zr0.262粒子スラリー(Ce0.74Zr0.262粒子:25重量%)をスラリーEとして用意した。なお、焼成物dは、セリウム(III)化合物とジルコニウム(IV)化合物とを原料として用いて得られたものである。
(4) Slurry E
In water to which a dispersant (ammonium polyacrylate, weight average molecular weight 6000) has been added, the calcined product d (Ce 0.74 Zr 0.26 O 2 particles) is obtained by a bead mill so that the volume median diameter becomes the value described in Table 2. A Ce 0.74 Zr 0.26 O 2 particle slurry (Ce 0.74 Zr 0.26 O 2 particles: 25 wt%) obtained by wet pulverization was prepared as slurry E. The fired product d is obtained using a cerium (III) compound and a zirconium (IV) compound as raw materials.

なお、Ce0.74Zr0.262粒子スラリーの調製方法の詳細は下記のとおりである。 Details of Ce 0.74 Zr 0.26 O 2 process for preparing a particle slurry is as follows.

まず、30Lの反応容器内で、37.7重量%の硝酸セリウム(III)塩溶液4280gと54.8重量%の硝酸ジルコニウム(IV)塩溶液1070gとを攪拌して混合した。得られた混合液のpHは1.26であった。次に、上記混合液に10Lの脱イオン水を加えた。   First, in a 30 L reaction vessel, 4280 g of a 37.7 wt% cerium (III) nitrate salt solution and 1070 g of a 54.8 wt% zirconium nitrate (IV) salt solution were stirred and mixed. The pH of the obtained liquid mixture was 1.26. Next, 10 L of deionized water was added to the mixture.

次に、脱イオン水が加えられた上記混合液に、1.7L/hrの供給速度で連続的に3.8mol/Lのアンモニア水を加えた。このようにして得られる混合液のpHが7.2となった時点で、5.8mol/Lの過酸化水素水1148mlを加え、さらにpHが安定するようアンモニア水を連続的に添加して、水酸化セリウムと水酸化ジルコニウムとの共沈物を得た。なお、アンモニア水の添加量の合計は2420ml、過酸化水素水(5.8M)の添加量は合計1148mlである。   Next, 3.8 mol / L of ammonia water was continuously added to the above mixed solution to which deionized water was added at a supply rate of 1.7 L / hr. When the pH of the liquid mixture thus obtained is 7.2, 1148 ml of 5.8 mol / L hydrogen peroxide water is added, and ammonia water is continuously added so that the pH is stabilized, A coprecipitate of cerium hydroxide and zirconium hydroxide was obtained. The total amount of ammonia water added is 2420 ml, and the amount of hydrogen peroxide water (5.8 M) added is 1148 ml.

次に、共沈物を濾紙でろ過した後、脱イオン水で洗浄した。得られた洗浄物を1130℃で2hr焼成した後、60メッシュのフィルターを用いて焼成物から粗大粒子を除去した。次いで、ふる分けにより粗大粒子が除かれた焼成物Eを、湿式粉砕した後、濾過精度が2μmのプリーツフィルターを用いてろ過して、Ce0.74Zr0.262粒子スラリーを得た。 Next, the coprecipitate was filtered with a filter paper and washed with deionized water. The obtained washed product was fired at 1130 ° C. for 2 hours, and then coarse particles were removed from the fired product using a 60 mesh filter. Next, the fired product E from which coarse particles were removed by sieving was wet pulverized and then filtered using a pleated filter having a filtration accuracy of 2 μm to obtain a Ce 0.74 Zr 0.26 O 2 particle slurry.

(5)スラリーF
分散剤(ポリアクリル酸アンモニウム、重量平均分子量6000)が添加された水中で、体積中位径が表2に記載の値となるよう、ビーズミルにより焼成物であるCeO2粒子(バイコウスキー社製、純度99.9%)が湿式粉砕されることにより得られたCeO2粒子スラリー(CeO2粒子:40重量%)をスラリーFとして用意した。なお、CeO2粒子は、セリウム(IV)化合物を原料として用いて得られたものである。
(5) Slurry F
CeO 2 particles (produced by Baikousky Co., Ltd.) as a fired product by a bead mill so that the volume median diameter becomes the value described in Table 2 in water to which a dispersant (ammonium polyacrylate, weight average molecular weight 6000) is added. , CeO 2 particle slurry obtained by 99.9%) are wet-milled (CeO 2 particles: were prepared 40 wt%) as a slurry F. The CeO 2 particles are obtained using a cerium (IV) compound as a raw material.

(6)スラリーG〜I(第2の研磨材砥粒を含むスラリー)
下記記載のコロイダルシリカを含む市販のスラリーをスラリーG〜Iとして用意した。
スラリーG:触媒化成工業(株)製、カタロイドSI-50、固形分濃度50(重量%)
スラリーH:触媒化成工業(株)製、カタロイドSI-45P、固形分濃度40(重量%)
スラリーI:触媒化成工業(株)製、カタロイドSI-80P、固形分濃度40(重量%)
(6) Slurries GI (slurry containing second abrasive grains)
Commercially available slurries containing colloidal silica described below were prepared as slurries GI.
Slurry G: Catalytic Chemical Industry Co., Ltd., Cataloid SI-50, solid content concentration 50 (% by weight)
Slurry H: manufactured by Catalyst Kasei Kogyo Co., Ltd., Cataloid SI-45P, solid content concentration 40 (% by weight)
Slurry I: Catalytic Chemical Industry Co., Ltd., Cataloid SI-80P, solid content concentration 40 (% by weight)

(研磨液組成物の調整)
上記のようにして調整されたスラリーA〜Fの何れかと、スラリーG〜Iの何れかと、水と、pH調整剤として硝酸とを、各々の濃度が夫々表2に記載の濃度となるように混合して、研磨液組成物を得た。
(Adjustment of polishing composition)
Any one of the slurry A to F adjusted as described above, any one of the slurries G to I, water, and nitric acid as a pH adjuster so that each concentration becomes a concentration described in Table 2, respectively. By mixing, a polishing composition was obtained.

(複合酸化物粒子の平均一次粒子径)
複合酸化物粒子の平均一次粒子径(nm)は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて下記式で算出される粒径(真球換算)を意味し、下記式により算出される。
平均一次粒子径(nm)=820/S
なお、前記比表面積は、スラリー10gを110℃で減圧乾燥して水分を除去したものをメノウ乳鉢で解砕し、得られた粉末を流動式比表面積自動測定装置フローソーブ2300(島津製作所製)を用いてを測定することにより求めた。
(Average primary particle diameter of composite oxide particles)
The average primary particle size (nm) of the composite oxide particles is the particle size (converted to a true sphere) calculated by the following formula using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method. It means and is calculated by the following formula.
Average primary particle diameter (nm) = 820 / S
The specific surface area was obtained by crushing 10 g of the slurry under reduced pressure at 110 ° C. to remove moisture and crushing the powder in an agate mortar, and using the flow specific surface area automatic measuring device Flowsorb 2300 (manufactured by Shimadzu Corporation). Determined by measuring using.

(複合酸化物粒子の体積中位径(D50))
複合酸化物粒子の体積中位径(D50)は、以下の条件で測定した。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置LA920
循環強度 :4
超音波強度:4
(Volume median diameter of composite oxide particles (D50))
The volume median diameter (D50) of the composite oxide particles was measured under the following conditions.
Measuring device: Laser diffraction / scattering particle size distribution measuring apparatus LA920 manufactured by Horiba, Ltd.
Circulation strength: 4
Ultrasonic intensity: 4

(コロイダルシリカの一次粒子の体積中位粒径(D50))
コロイダルシリカの一次粒子の体積中位粒径(D50)は、以下の方法により求めた。コロイダルシリカを日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込む。そして、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1000個以上のコロイダルシリカの1個1個のコロイダルシリカの円相当径を求めた。それを直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)にて、コロイダルシリカの粒径分布データを得、全粒子中における、ある粒径の粒子の割合(体積基準%)を小粒径側からの累積体積頻度(%)として算出した。得られたコロイダルシリカの粒径及び累積体積頻度データに基づき、粒径に対して累積体積頻度をプロットすることにより、粒径対累積体積頻度グラフを得た。このグラフにおいて、小粒径側からの累積体積頻度が50%となる粒径をコロイダルシリカの体積中位粒径として求めた。
(Volume-median particle size (D50) of primary particles of colloidal silica)
The volume median particle size (D50) of primary particles of colloidal silica was determined by the following method. A photograph obtained by observing colloidal silica with a transmission electron microscope (TEM) manufactured by JEOL (trade name “JEM-2000FX”, 80 kV, 1 to 50,000 times) is captured as image data with a scanner on a personal computer. Then, the equivalent circle diameter of each colloidal silica of 1000 or more colloidal silicas was obtained using analysis software “WinROOF” (distributor: Mitani Corporation). With this as the diameter, the particle size distribution data of colloidal silica is obtained by spreadsheet software “EXCEL” (manufactured by Microsoft Corporation), and the proportion of particles with a certain particle size (volume basis%) in all particles is reduced to a small particle size. Calculated as the cumulative volume frequency (%) from the side. Based on the particle size and cumulative volume frequency data of the obtained colloidal silica, the cumulative volume frequency was plotted against the particle size to obtain a particle size versus cumulative volume frequency graph. In this graph, the particle size at which the cumulative volume frequency from the small particle size side becomes 50% was determined as the volume median particle size of colloidal silica.

スラリーA〜F20gを各々110℃の雰囲気内で12時間乾燥させた後、得られた乾燥物を乳鉢で解砕して粉末X線回折用サンプルを得た。各サンプルを粉末X線回折法にて分析した結果は表1に示している。粉末X線回折法による測定条件は下記のとおりとした。
(測定条件)
装置:(株)リガク製、粉末X線解析装置 RINT2500VC
X線発生電圧:40kV
放射線 :Cu−Kα1線(λ=0.154050nm)
電流 :120mA
Scan Speed:10度/min
測定ステップ:0.02度/min
After 20 g of each of the slurry A to F was dried in an atmosphere of 110 ° C. for 12 hours, the obtained dried product was crushed in a mortar to obtain a powder X-ray diffraction sample. The results of analyzing each sample by the powder X-ray diffraction method are shown in Table 1. The measurement conditions by the powder X-ray diffraction method were as follows.
(Measurement condition)
Apparatus: Rigaku Co., Ltd., powder X-ray analyzer RINT2500VC
X-ray generation voltage: 40 kV
Radiation: Cu-Kα1 line (λ = 0.154050 nm)
Current: 120 mA
Scan Speed: 10 degrees / min
Measurement step: 0.02 degrees / min

Figure 2010016063
Figure 2010016063

Figure 2010016063
Figure 2010016063

各ピークの頂点の高さ、第1ピークの半値幅、および各ピークの面積は、得られた粉末X線回折スペクトルから、粉末X線回折装置付属の粉末X線回折パターン総合解析ソフトJADE(MDI社)を用いて算出した。上記ソフトによる算出処理は、上記ソフトの取扱説明書(Jade(Ver.5)ソフトウェア、取扱説明書 Manual No.MJ
13133E02、理学電機株式会社)に基づいてなされている。
The height of the apex of each peak, the half width of the first peak, and the area of each peak are calculated from the obtained powder X-ray diffraction spectrum using the powder X-ray diffraction pattern comprehensive analysis software JADE (MDI) attached to the powder X-ray diffractometer. ). The calculation process by the above software is the instruction manual of the above software (Jade (Ver. 5) software, the instruction manual Manual No. MJ).
13133E02, Rigaku Denki Co., Ltd.).

<研磨速度の算出方法>
研磨前後の熱酸化膜の厚みを光干渉式膜厚計(商品名:VM−1000、大日本スクリーン製造(株)製)を用いて測定し、これらの値から下記の通り研磨速度を算出した。
研磨速度(nm/min)=(研磨前の膜の厚み)―(研磨後の膜の厚み)
<Calculation method of polishing rate>
The thickness of the thermal oxide film before and after polishing was measured using a light interference film thickness meter (trade name: VM-1000, manufactured by Dainippon Screen Mfg. Co., Ltd.), and the polishing rate was calculated from these values as follows. .
Polishing rate (nm / min) = (film thickness before polishing) − (film thickness after polishing)

<スクラッチ数の評価方法>
直径5cm(2インチ)のシリコンウエハ上に形成された、厚さ1000nmの二酸化ケイ素膜を用意した。二酸化ケイ素膜は、シリコンウエハを、酸化炉内に入れて酸素ガスやスチームに晒し、シリコンウエハ中のシリコンと酸素を反応させることにより形成できる。
<Scratch number evaluation method>
A silicon dioxide film having a thickness of 1000 nm formed on a silicon wafer having a diameter of 5 cm (2 inches) was prepared. The silicon dioxide film can be formed by placing a silicon wafer in an oxidation furnace and exposing it to oxygen gas or steam to cause the silicon in the silicon wafer to react with oxygen.

(研磨条件)
研磨試験機:ムサシノ電子社製、MA−300片面研磨機、定盤直径300mm、
研磨パッド:IC1000(硬質ウレタンパッド)とsuba400(不織布タイプパッド)との積層パッド(ニッタ・ハース(株)製)、
定盤回転数:90r/min、
キャリア回転数:90r/min、強制駆動式、
研磨液組成物供給速度:50g/min(約1.5mL/min/cm2)、
研磨時間:1min
研磨荷重:300g/cm2(錘による一定荷重)
ドレス条件:研磨前にイオン交換水を1分間供給して、ダイヤモンドリングでドレスした。
(Polishing conditions)
Polishing tester: Musashino Electronics, MA-300 single-side polishing machine, surface plate diameter of 300 mm,
Polishing pad: Laminated pad of IC1000 (hard urethane pad) and suba400 (nonwoven fabric type pad) (manufactured by Nitta Haas Co., Ltd.)
Surface plate rotation speed: 90 r / min,
Carrier rotation speed: 90 r / min, forced drive type,
Polishing liquid composition supply rate: 50 g / min (about 1.5 mL / min / cm 2 ),
Polishing time: 1 min
Polishing load: 300 g / cm 2 (constant load by weight)
Dressing conditions: Ion exchange water was supplied for 1 minute before polishing and dressed with a diamond ring.

実施例14〜16の研磨液組成物を用いて、上記研磨条件に従って研磨された上記研磨対象基板について、下記の測定方法によりスクラッチ数(本)を測定した。n数は3とした。実施例14の研磨液組成物を用いて研磨した場合のスクラッチ数(本)の平均値は5本、実施例15の研磨液組成物を用いて研磨した場合のスクラッチ数(本)の平均値は10本、実施例16の研磨液組成物を用いて研磨した場合のスクラッチ数(本)は無数(300本以上)であった。この結果から、粉末X線回折スペクトルで酸化ジルコニウムに由来するピークa2が第1ピークの頂点の高さの6%以下の場合、スクラッチ数が低減できることがわかる。   About the said grinding | polishing target board | substrate grind | polished according to the said grinding | polishing conditions using the polishing liquid composition of Examples 14-16, the number of scratches (book) was measured with the following measuring method. The n number was 3. When the polishing composition of Example 14 is used for polishing, the average number of scratches (pieces) is 5, and when the polishing composition of Example 15 is used for polishing, the average number of scratches (pieces) is used. The number of scratches when the polishing composition of Example 16 was used for polishing was 10 (300 or more). This result shows that the number of scratches can be reduced when the peak a2 derived from zirconium oxide in the powder X-ray diffraction spectrum is 6% or less of the height of the apex of the first peak.

なお、スクラッチとは、MicroMax VMX−2100にて観察可能な、幅が20nm以上、長さが50μm以上、深さが3nm以上程度の傷である。   Scratches are scratches having a width of 20 nm or more, a length of 50 μm or more, and a depth of about 3 nm or more, which can be observed with MicroMax VMX-2100.

[スクラッチ数の測定方法]
測定機器:VISION PSYTEC製、MicroMax VMX−2100
(Micromaxの測定条件)
光源:2Sλ(250W)及び3Pλ(250W)、共に光量が100%
チルド角:−9°
倍率:最大(視野範囲:研磨された面の全面積の35分の1)
観察領域:研磨された面の全面積(2インチ熱酸化膜ウエハ基板)
アイリス:notch
[Measurement method of the number of scratches]
Measuring device: VISION PSYTEC, MicroMax VMX-2100
(Micromax measurement conditions)
Light source: 2Sλ (250 W) and 3Pλ (250 W), both with 100% light
Chilled angle: -9 °
Magnification: Maximum (Field range: 1/35 of the total area of the polished surface)
Observation area: Total area of polished surface (2 inch thermal oxide film wafer substrate)
Iris: notch

表2に、実施例1〜16、比較例1〜4の研磨液組成物を用いた研磨の研磨速度を示している。表2に示されるように、実施例の研磨液組成物を用いて研磨する方が、比較例の研磨液組成物を用いて研磨するよりも、研磨速度が顕著に速いことが確認できた。   Table 2 shows the polishing rate of polishing using the polishing composition of Examples 1 to 16 and Comparative Examples 1 to 4. As shown in Table 2, it was confirmed that polishing with the polishing liquid composition of the example was significantly faster than polishing with the polishing liquid composition of the comparative example.

本実施形態の研磨液組成物を用いて研磨を行えば、より高速で研磨対象基板を研磨できるので、本実施形態の研磨液組成物は、酸化膜(例えば、酸化ケイ素膜)を有する半導体装置を構成する基板、アルミノシリケートガラス基板等の化学強化ガラス基板、ガラスセラミック基板等の結晶化ガラス基板、フォトマスク用基板又はステッパー用レンズ材等として用いられる合成石英ガラス基板の製造過程で行われる研磨工程での使用、又は液晶ディスプレイパネルのガラス面等の研磨に好適に用いられる。   If polishing is performed using the polishing liquid composition of the present embodiment, the substrate to be polished can be polished at a higher speed. Therefore, the polishing liquid composition of the present embodiment has a semiconductor device having an oxide film (for example, a silicon oxide film). Polishing performed in the manufacturing process of synthetic quartz glass substrate used as a substrate, a chemically strengthened glass substrate such as an aluminosilicate glass substrate, a crystallized glass substrate such as a glass ceramic substrate, a photomask substrate or a lens material for a stepper It is suitably used for use in a process or polishing of a glass surface of a liquid crystal display panel.

Claims (7)

第1の研磨材粒子と、分散剤と、第2の研磨材粒子と、水系媒体とを含む研磨液組成物であって、
前記第1の研磨材粒子がセリウムとジルコニウムとを含む複合酸化物粒子であり、
CuKα1線(λ=0.154050nm)を照射することにより得られる前記複合酸化物粒子の粉末X線回折スペクトル中に、
回折角2θ(θはブラック角)領域28.61〜29.67°内に頂点があるピーク(第1ピーク)、
回折角2θ領域33.14〜34.53°内に頂点があるピーク(第2ピーク)、
回折角2θ領域47.57〜49.63°内に頂点があるピーク(第3ピーク)、
回折角2θ領域56.45〜58.91°内に頂点があるピーク(第4ピーク)、が存在し、
前記第1ピークの半値幅が0.8°以下である、研磨液組成物。
A polishing liquid composition comprising first abrasive particles, a dispersant, second abrasive particles, and an aqueous medium,
The first abrasive particles are composite oxide particles containing cerium and zirconium;
In the powder X-ray diffraction spectrum of the composite oxide particles obtained by irradiating with CuKα1 rays (λ = 0.154050 nm),
A peak (first peak) having a peak within a diffraction angle 2θ (θ is a black angle) region 28.61 to 29.67 °,
A peak having a peak in the diffraction angle 2θ region 33.14 to 34.53 ° (second peak),
A peak (third peak) having an apex within a diffraction angle 2θ region of 47.57 to 49.63 °,
There is a peak (fourth peak) having an apex within the diffraction angle 2θ region of 56.45 to 58.91 °,
Polishing liquid composition whose half width of the said 1st peak is 0.8 degrees or less.
前記粉末X線回折スペクトル中に、酸化セリウムに由来するピークa1、酸化ジルコニウムに由来するピークa2のうちの少なくとも1つのピークが存在する場合、
前記ピークa1、a2の頂点の高さが第1ピークの頂点の高さの6%以下である請求項1記載の研磨液組成物。
ただし、前記ピークa1の頂点は、回折角2θ領域28.40〜28.59°に存在し
、前記ピークa2の頂点は、回折角2θ領域29.69〜31.60°に存在する。
When at least one of peak a 1 derived from cerium oxide and peak a 2 derived from zirconium oxide is present in the powder X-ray diffraction spectrum,
2. The polishing composition according to claim 1 , wherein the peak heights of the peaks a 1 and a 2 are 6% or less of the peak height of the first peak.
However, the apex of the peak a 1 exists in a diffraction angle 2θ region of 28.40 to 28.59 °, and the apex of the peak a 2 exists in a diffraction angle 2θ region of 29.69 to 31.60 °.
第1の研磨材粒子と、分散剤と、第2の研磨材粒子と、水系媒体とを含む研磨液組成物であって、
前記第1の研磨材粒子がセリウムとジルコニウムとを含む複合酸化物粒子であり、
前記複合酸化物粒子は、酸化数が4のセリウム化合物と酸化数が4のジルコニウム化合物とを含む溶液と、沈殿剤とを混合することにより、前記セリウム化合物と前記ジルコニウム化合物とを加水分解させ、生じた沈殿物を分離し、次いで、焼成し、得られた焼成物を粉砕して得られる複合酸化物粒子である、研磨液組成物。
A polishing liquid composition comprising first abrasive particles, a dispersant, second abrasive particles, and an aqueous medium,
The first abrasive particles are composite oxide particles containing cerium and zirconium;
The composite oxide particles hydrolyze the cerium compound and the zirconium compound by mixing a solution containing a cerium compound having an oxidation number of 4 and a zirconium compound having an oxidation number of 4 and a precipitant, A polishing composition, which is composite oxide particles obtained by separating the resulting precipitate, then firing, and pulverizing the obtained fired product.
前記第2の研磨材粒子がコロイダルシリカである請求項1〜3のいずれかの項に記載の研磨液組成物。   The polishing composition according to any one of claims 1 to 3, wherein the second abrasive particles are colloidal silica. 前記複合酸化物粒子の体積中位径は、30〜1000nmである請求項1〜4のいずれかの項に記載の研磨液組成物。   The polishing liquid composition according to claim 1, wherein a volume median diameter of the composite oxide particles is 30 to 1000 nm. 研磨対象基板と研磨パッドとの間に、請求項1〜5のいずれかの項に記載の研磨液組成物を供給し、前記研磨対象基板と前記研磨パッドとが接した状態で、前記研磨パッドを前記研磨対象基板に対して相対運動させることにより、前記研磨対象基板を研磨する工程を含む研磨方法。   The polishing liquid composition according to claim 1 is supplied between a polishing target substrate and a polishing pad, and the polishing pad is in contact with the polishing target substrate and the polishing pad. A polishing method including a step of polishing the substrate to be polished by moving the substrate relative to the substrate to be polished. 研磨対象基板の両主面のうちの少なくとも一方の主面を請求項1〜5のいずれかの項に記載の研磨液組成物を用いて研磨する研磨工程を含む精密部品用基板の製造方法。   The manufacturing method of the board | substrate for precision components including the grinding | polishing process of grind | polishing the at least one main surface of both the main surfaces of a grinding | polishing target board | substrate using the polishing liquid composition in any one of Claims 1-5.
JP2008172697A 2008-07-01 2008-07-01 Polishing liquid composition Expired - Fee Related JP5403956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172697A JP5403956B2 (en) 2008-07-01 2008-07-01 Polishing liquid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172697A JP5403956B2 (en) 2008-07-01 2008-07-01 Polishing liquid composition

Publications (2)

Publication Number Publication Date
JP2010016063A true JP2010016063A (en) 2010-01-21
JP5403956B2 JP5403956B2 (en) 2014-01-29

Family

ID=41701929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172697A Expired - Fee Related JP5403956B2 (en) 2008-07-01 2008-07-01 Polishing liquid composition

Country Status (1)

Country Link
JP (1) JP5403956B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527985A (en) * 2010-04-16 2013-07-04 キャボット マイクロエレクトロニクス コーポレイション Polishing composition and polishing method for bulk silicon
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
JPWO2013157442A1 (en) * 2012-04-18 2015-12-21 株式会社フジミインコーポレーテッド Polishing composition
WO2016129476A1 (en) * 2015-02-10 2016-08-18 堺化学工業株式会社 Composite particles for polishing, method for producing composite particles for polishing, and slurry for polishing
WO2018124013A1 (en) * 2016-12-28 2018-07-05 花王株式会社 Cerium oxide abrasive grain
JP6680423B1 (en) * 2019-09-17 2020-04-15 Agc株式会社 Abrasive, glass polishing method, and glass manufacturing method
WO2024135544A1 (en) * 2022-12-19 2024-06-27 Agc株式会社 Polishing material, glass sheet, method for polishing glass, and method for producing glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351882A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Abrasive
JP2003055648A (en) * 2002-06-04 2003-02-26 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
JP2005158867A (en) * 2003-11-21 2005-06-16 Jsr Corp Set for adjusting water-based dispersing element for chemical-mechanical polishing
JP2006156825A (en) * 2004-11-30 2006-06-15 Kao Corp Polishing solution composite for semiconductor substrate
JP2006173411A (en) * 2004-12-16 2006-06-29 Kao Corp Polishing solution composition for semiconductor substrate
JP2006191134A (en) * 2006-02-13 2006-07-20 Hitachi Chem Co Ltd Abrasive powder and polishing method of substrate
JP2007531300A (en) * 2004-03-29 2007-11-01 ハンファ ケミカル コーポレーション Chemical and mechanical polishing slurry for shallow trench isolation process in semiconductors
WO2008081943A1 (en) * 2006-12-28 2008-07-10 Kao Corporation Polishing liquid composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351882A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Abrasive
JP2003055648A (en) * 2002-06-04 2003-02-26 Hitachi Chem Co Ltd Polishing agent and method for polishing substrate
JP2005158867A (en) * 2003-11-21 2005-06-16 Jsr Corp Set for adjusting water-based dispersing element for chemical-mechanical polishing
JP2007531300A (en) * 2004-03-29 2007-11-01 ハンファ ケミカル コーポレーション Chemical and mechanical polishing slurry for shallow trench isolation process in semiconductors
JP2006156825A (en) * 2004-11-30 2006-06-15 Kao Corp Polishing solution composite for semiconductor substrate
JP2006173411A (en) * 2004-12-16 2006-06-29 Kao Corp Polishing solution composition for semiconductor substrate
JP2006191134A (en) * 2006-02-13 2006-07-20 Hitachi Chem Co Ltd Abrasive powder and polishing method of substrate
WO2008081943A1 (en) * 2006-12-28 2008-07-10 Kao Corporation Polishing liquid composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527985A (en) * 2010-04-16 2013-07-04 キャボット マイクロエレクトロニクス コーポレイション Polishing composition and polishing method for bulk silicon
KR101780844B1 (en) * 2010-04-16 2017-09-21 캐보트 마이크로일렉트로닉스 코포레이션 Composition and method for polishing bulk silicon
JPWO2013157442A1 (en) * 2012-04-18 2015-12-21 株式会社フジミインコーポレーテッド Polishing composition
JP2015523716A (en) * 2012-05-23 2015-08-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Method for manufacturing semiconductor device and method for using chemical mechanical polishing composition
WO2016129476A1 (en) * 2015-02-10 2016-08-18 堺化学工業株式会社 Composite particles for polishing, method for producing composite particles for polishing, and slurry for polishing
JP5979340B1 (en) * 2015-02-10 2016-08-24 堺化学工業株式会社 Composite particle for polishing, method for producing composite particle for polishing, and slurry for polishing
WO2018124013A1 (en) * 2016-12-28 2018-07-05 花王株式会社 Cerium oxide abrasive grain
CN110168040A (en) * 2016-12-28 2019-08-23 花王株式会社 Cerium oxide abrasive grain
JP6680423B1 (en) * 2019-09-17 2020-04-15 Agc株式会社 Abrasive, glass polishing method, and glass manufacturing method
CN112823195A (en) * 2019-09-17 2021-05-18 Agc株式会社 Polishing agent, method for polishing glass, and method for producing glass
US11370939B2 (en) 2019-09-17 2022-06-28 AGC Inc. Polishing slurry, method for polishing glass, and method for manufacturing glass
US11518912B2 (en) 2019-09-17 2022-12-06 AGC Inc. Polishing slurry, method for polishing glass, and method for manufacturing glass
WO2024135544A1 (en) * 2022-12-19 2024-06-27 Agc株式会社 Polishing material, glass sheet, method for polishing glass, and method for producing glass

Also Published As

Publication number Publication date
JP5403956B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5403957B2 (en) Polishing liquid composition
US8357311B2 (en) Polishing liquid composition
JP5403956B2 (en) Polishing liquid composition
JP5287174B2 (en) Abrasive and polishing method
CN106795422B (en) The grinding method of CMP abrasive and its manufacturing method and substrate
JP2013540849A (en) Aqueous polishing composition and method for chemical mechanical polishing of a substrate comprising a silicon oxide dielectric film and a polysilicon film
JP2010028086A (en) Cmp abrasive, and polishing method using the same
JP2009272601A (en) Abrasive, substrate polishing method using same, and solution and slurry for use in this method
JP6560155B2 (en) Polishing agent for synthetic quartz glass substrate and method for polishing synthetic quartz glass substrate
JP5403909B2 (en) Polishing liquid composition
WO2018190077A1 (en) Synthetic quartz glass substrate polishing agent, production method therefor, and synthetic quartz glass substrate polishing method
JP2018109089A (en) Cerium oxide abrasive grain
US9534147B2 (en) Polishing composition and method for nickel-phosphorous coated memory disks
JP2009260236A (en) Abrasive powder, polishing method of substrate employing the same as well as solution and slurry employed for the polishing method
JP5248096B2 (en) Polishing liquid composition
JP5403910B2 (en) Polishing liquid composition
JP2001351882A (en) Abrasive
KR101406757B1 (en) Slurry composition and substrate or wafer polishing method using the same
TWI785235B (en) Abrasive for synthetic quartz glass substrate, manufacturing method thereof, and polishing method for synthetic quartz glass substrate
JP2001007059A (en) Cmp-polishing agent and method for polishing substrate
JP2006173411A (en) Polishing solution composition for semiconductor substrate
TW201533184A (en) Polishing agent, polishing method, and manufacturing method of semiconductor integrated circuit device
JP2002097459A (en) Abrasive agent
JP2001351883A (en) Abrasive for semiconductor insulation film
JP2002212545A (en) Cmp abrasive and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R151 Written notification of patent or utility model registration

Ref document number: 5403956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees