JP2010015720A - Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it - Google Patents
Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it Download PDFInfo
- Publication number
- JP2010015720A JP2010015720A JP2008172518A JP2008172518A JP2010015720A JP 2010015720 A JP2010015720 A JP 2010015720A JP 2008172518 A JP2008172518 A JP 2008172518A JP 2008172518 A JP2008172518 A JP 2008172518A JP 2010015720 A JP2010015720 A JP 2010015720A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- aqueous electrolyte
- group
- volume
- nonaqueous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、電池用非水電解液及びそれを備えた非水電解液二次電池に関し、特には、不燃性を有する電池用非水電解液、及び高温環境下でも優れた電池特性と高い安全性を有する非水電解液二次電池に関するものである。 The present invention relates to a battery non-aqueous electrolyte and a non-aqueous electrolyte secondary battery including the same, and in particular, a non-flammable battery non-aqueous electrolyte and excellent battery characteristics and high safety even in a high temperature environment. The present invention relates to a non-aqueous electrolyte secondary battery having properties.
非水電解液は、リチウム電池やリチウムイオン二次電池、電気二重層キャパシタ等の電解質として使用されており、これらデバイスは、高電圧、高エネルギー密度を有することから、パソコン及び携帯電話等の駆動電源として広く用いられている。そして、これら非水電解液としては、一般にエステル化合物及びエーテル化合物等の非プロトン性有機溶媒に、LiPF6等の支持塩を溶解させたものが用いられている。しかしながら、非プロトン性有機溶媒は、可燃性であるため、上記デバイスから漏液した際に引火・燃焼する可能性があり、安全面での問題を有している。 Non-aqueous electrolytes are used as electrolytes for lithium batteries, lithium-ion secondary batteries, electric double layer capacitors, etc., and these devices have high voltage and high energy density, so they drive personal computers and mobile phones. Widely used as a power source. As these nonaqueous electrolytic solutions, generally used are solutions in which a supporting salt such as LiPF 6 is dissolved in an aprotic organic solvent such as an ester compound and an ether compound. However, since the aprotic organic solvent is flammable, it may ignite and burn when it leaks from the device, and has a safety problem.
この問題に対して、非水電解液を難燃化する方法が検討されており、例えば、非水電解液にリン酸トリメチル等のリン酸エステル類を用いたり、非プロトン性有機溶媒にリン酸エステル類を添加したりする方法が提案されている(特許文献1〜3参照)。しかしながら、これらリン酸エステル類は、充放電を繰り返すことで、徐々に負極で還元分解され、充放電効率及びサイクル特性等の電池特性が大きく劣化するという問題がある。そして、このような電池特性の劣化は、特に高温条件下で顕著である。 To solve this problem, methods for making non-aqueous electrolytes flame-retardant have been studied. For example, phosphoric acid esters such as trimethyl phosphate are used for non-aqueous electrolytes, or phosphoric acid is used for aprotic organic solvents. Methods for adding esters have been proposed (see Patent Documents 1 to 3). However, these phosphate esters have a problem in that they are gradually reduced and decomposed at the negative electrode by repeating charge and discharge, and battery characteristics such as charge and discharge efficiency and cycle characteristics are greatly deteriorated. Such deterioration of battery characteristics is particularly noticeable under high temperature conditions.
この問題に対して、非水電解液にリン酸エステルの分解を抑制する化合物を更に添加したり、リン酸エステルそのものの分子構造を工夫する等の方法も試みられている(特許文献4〜6参照)。しかしながら、この場合も、添加量に制限があり、また、リン酸エステル自体の難燃性の低下等の理由から、電解液が自己消火性になる程度で、電解液の安全性を十分に確保することができない。 In order to solve this problem, methods such as further adding a compound that suppresses the decomposition of the phosphate ester to the nonaqueous electrolytic solution or devising the molecular structure of the phosphate ester itself have been tried (Patent Documents 4 to 6). reference). However, in this case as well, there is a limit to the amount of addition, and the safety of the electrolyte is sufficiently ensured to the extent that the electrolyte is self-extinguishing due to a decrease in the flame retardancy of the phosphate ester itself. Can not do it.
また、特開平6−13108号公報(特許文献7)には、非水電解液に難燃性を付与するために、非水電解液にホスファゼン化合物を添加する方法が開示されている。該ホスファゼン化合物は、その種類によっては高い不燃性を示し、非水電解液への添加量を増量するに従い、非水電解液の難燃性が向上する傾向がある。しかしながら、高い不燃性を示すホスファゼン化合物は、概して支持塩の溶解性や誘電率が低いため、添加量を多くすると、支持塩の析出や導電性の低下を招き、電池の放電容量が低下したり、充放電特性に支障をきたすことがある。 Japanese Patent Application Laid-Open No. 6-13108 (Patent Document 7) discloses a method of adding a phosphazene compound to a nonaqueous electrolytic solution in order to impart flame retardancy to the nonaqueous electrolytic solution. The phosphazene compound exhibits high nonflammability depending on the type, and the flame retardancy of the nonaqueous electrolyte tends to improve as the amount added to the nonaqueous electrolyte increases. However, phosphazene compounds exhibiting high incombustibility generally have low support salt solubility and dielectric constant, so increasing the amount added causes precipitation of the support salt and a decrease in conductivity, resulting in a decrease in battery discharge capacity. The charging / discharging characteristics may be hindered.
リチウム電池、リチウムイオン二次電池、電気二重層キャパシタ等のデバイスは、近年HEVを初めとする車載用電源としても積極的に開発が進められている。そして、該用途に対しては、安全性が高いことはもとより、より広範囲の温度領域で安定した性能を確保できることが求められる。特に、使用環境温度が高くなる程、電池極材や電解液成分の劣化が進行しやすくなることから、高い温度でも充放電の繰り返しによる容量低下のできるだけ少ないリチウム二次電池用電解液が望まれている。この点において従来技術は、必ずしも十分に満足できるレベルとはいえない。 In recent years, devices such as lithium batteries, lithium ion secondary batteries, and electric double layer capacitors have been actively developed as in-vehicle power supplies such as HEVs. And for this application, it is required that stable performance can be secured in a wider temperature range as well as high safety. In particular, the higher the operating environment temperature, the easier the battery electrode material and electrolyte components deteriorate, so an electrolyte solution for lithium secondary batteries with as little capacity reduction as possible due to repeated charge and discharge is desired even at high temperatures. ing. In this respect, the prior art is not necessarily satisfactory.
そこで、本発明の目的は、上記従来技術の問題を解決し、不燃性を有する電池用非水電解液と、該電池用非水電解液を備え、高温環境下でも優れた充放電性能と高い安全性を有する非水電解液二次電池を提供することにある。 Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a non-flammable battery non-aqueous electrolyte, and the battery non-aqueous electrolyte, which has excellent charge / discharge performance even in a high-temperature environment. The object is to provide a non-aqueous electrolyte secondary battery having safety.
本発明者は、上記目的を達成するために鋭意検討した結果、特定の環状ホスファゼン化合物と非水溶媒に、さらに環状構造を有する無水ジカルボン酸化合物を組み合わせて非水電解液を構成することにより、電解液に高い難燃性を付与することができ、また、該電解液を用いた非水電解液二次電池が高温環境下でも優れた充放電性能を維持できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventor combined a specific cyclic phosphazene compound and a non-aqueous solvent with a dicarboxylic anhydride compound having a cyclic structure to constitute a non-aqueous electrolyte. It is found that high flame retardancy can be imparted to the electrolyte, and that the non-aqueous electrolyte secondary battery using the electrolyte can maintain excellent charge / discharge performance even in a high temperature environment, and the present invention is completed. It came to.
即ち、本発明の電池用非水電解液は、
・下記一般式(I):
(NPR2)n ・・・ (I)
[式中、Rは、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、
・非水溶媒と、
・無水5-ノルボルネン-2,3-ジカルボン酸、無水1,2,3,6-テトラヒドロフタル酸及び無水ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸からなる群から選択される少なくとも1種の無水ジカルボン酸化合物と
を含むことを特徴とする。
That is, the non-aqueous electrolyte for a battery of the present invention is
-The following general formula (I):
(NPR 2 ) n ... (I)
[Wherein, R independently represents a fluorine, an alkoxy group or an aryloxy group; n represents 3 to 4], and a cyclic phosphazene compound represented by:
A non-aqueous solvent,
-The group consisting of 5-norbornene-2,3-dicarboxylic anhydride, 1,2,3,6-tetrahydrophthalic anhydride and bicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic anhydride And at least one dicarboxylic anhydride compound selected from the group consisting of:
本発明の電池用非水電解液において、前記環状ホスファゼン化合物としては、前記一般式(I)において、Rのうち少なくとも4つがフッ素である化合物が好ましい。 In the battery non-aqueous electrolyte of the present invention, the cyclic phosphazene compound is preferably a compound in which at least four of R in the general formula (I) are fluorine.
本発明の電池用非水電解液の好適例においては、前記一般式(I)で表される環状ホスファゼン化合物の含有量が電池用非水電解液全体の10〜60体積%であり、20〜50体積%であることが更に好ましい。 In a preferred example of the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound represented by the general formula (I) is 10 to 60% by volume of the whole battery non-aqueous electrolyte, More preferably, it is 50% by volume.
本発明の電池用非水電解液の他の好適例においては、前記無水ジカルボン酸化合物の含有量が電池用非水電解液全体の0.5〜2質量%である。 In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the content of the dicarboxylic anhydride compound is 0.5 to 2% by mass of the whole battery non-aqueous electrolyte.
本発明の電池用非水電解液の他の好適例においては、前記非水溶媒が、非プロトン性有機溶媒であり、該非プロトン性有機溶媒としてエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピオン酸メチルからなる群から選択される少なくとも1種を含むことが更に好ましい。 In another preferred embodiment of the battery non-aqueous electrolyte of the present invention, the non-aqueous solvent is an aprotic organic solvent, and the aprotic organic solvent includes ethylene carbonate (EC), ethyl methyl carbonate (EMC), and More preferably, it contains at least one selected from the group consisting of methyl propionate.
本発明の電池用非水電解液は、更に、支持塩を含むことが好ましい。なお、式(I)で表される環状ホスファゼン化合物、非水溶媒、上記無水ジカルボン酸化合物及び支持塩のみからなる電池用非水電解液は、本発明の電池用非水電解液の好適一態様である。 It is preferable that the nonaqueous electrolytic solution for a battery of the present invention further contains a supporting salt. The battery non-aqueous electrolyte consisting only of the cyclic phosphazene compound represented by formula (I), the non-aqueous solvent, the dicarboxylic anhydride compound and the supporting salt is a preferred embodiment of the battery non-aqueous electrolyte of the present invention. It is.
また、本発明の非水電解液二次電池は、上記電池用非水電解液と、正極と、負極とを備えることを特徴とする。 Moreover, the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode.
本発明によれば、非水溶媒に特定の環状ホスファゼン化合物を加え、好ましくは10体積%以上加えることにより高い難燃性を有し、さらに特定の無水ジカルボン酸化合物を組み合わせて用いることにより、非水電解液二次電池に使用した際に高温環境下でも電池特性を十分に維持することが可能な非水電解液を提供することができる。また、該非水電解液を備え、高い安全性と優れた電池特性を有する非水電解液二次電池を提供することができる。 According to the present invention, a specific cyclic phosphazene compound is added to a non-aqueous solvent, and preferably has a high flame retardancy by adding 10% by volume or more, and further by using a specific dicarboxylic anhydride compound in combination. When used in a water electrolyte secondary battery, it is possible to provide a non-aqueous electrolyte capable of sufficiently maintaining battery characteristics even in a high temperature environment. In addition, a non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte and having high safety and excellent battery characteristics can be provided.
本発明の電池用非水電解液においては、環状ホスファゼン化合物の反応、熱分解により生じる高不燃性ガス成分が、高い難燃性を発現するものと考えられる。また、理由は必ずしも明らかではないが、上記環状ホスファゼン化合物と環状構造を有する無水ジカルボン酸化合物との2つの化合物の相乗効果により生じる電極表面の皮膜が、該電解液の分解を効果的に抑制するため、安定した充放電特性が実現でき、また、この皮膜は高温でも分解することなく機能するため、高温環境下でも充放電性能を維持できるものと考えられる。 In the non-aqueous electrolyte for batteries of the present invention, it is considered that a highly incombustible gas component produced by reaction and thermal decomposition of a cyclic phosphazene compound exhibits high flame retardancy. Moreover, although the reason is not necessarily clear, the film on the electrode surface generated by the synergistic effect of the two compounds of the cyclic phosphazene compound and the dicarboxylic anhydride compound having a cyclic structure effectively suppresses the decomposition of the electrolytic solution. Therefore, stable charge / discharge characteristics can be realized, and since this film functions without being decomposed even at high temperatures, it is considered that charge / discharge performance can be maintained even in a high temperature environment.
<電池用非水電解液>
以下に、本発明の電池用非水電解液を詳細に説明する。本発明に係る電池用非水電解液は、上記一般式(I)で表される環状ホスファゼン化合物と、非水溶媒と、特定の無水ジカルボン酸化合物とを含むことを特徴とし、更に、非水溶媒として、非プロトン性有機溶媒を含有することが好ましい。
<Non-aqueous electrolyte for batteries>
Below, the non-aqueous electrolyte for batteries of the present invention will be described in detail. A non-aqueous electrolyte for a battery according to the present invention includes a cyclic phosphazene compound represented by the above general formula (I), a non-aqueous solvent, and a specific dicarboxylic anhydride compound. It is preferable to contain an aprotic organic solvent as a solvent.
本発明の電池用非水電解液に含まれる環状ホスファゼン化合物は、上記一般式(I)で表される。式(I)中のRは、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し、nは3〜4を表す。 The cyclic phosphazene compound contained in the nonaqueous electrolytic solution for batteries of the present invention is represented by the above general formula (I). R in the formula (I) independently represents fluorine, an alkoxy group or an aryloxy group, and n represents 3 to 4.
式(I)のRにおけるアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等や、二重結合を含むアリルオキシ基等、またはメトキシエトキシ基、メトキシエトキシエトキシ基等のアルコキシ置換アルコキシ基等が挙げられる。更に、Rにおけるアリールオキシ基としては、フェノキシ基、メチルフェノキシ基、キシレノキシ基(即ち、キシリルオキシ基)、メトキシフェノキシ基等が挙げられる。上記アルコキシ基及びアリールオキシ基中の水素元素は、ハロゲン元素で置換されていてもよく、フッ素で置換されていることが好ましい。また、式(I)中のRは他のRと連結していてもよく、この場合、2つのRは、互いに結合して、アルキレンジオキシ基、アリーレンジオキシ基又はオキシアルキレンアリーレンオキシ基を形成し、かかる二価の基としては、エチレンジオキシ基、プロピレンジオキシ基、フェニレンジオキシ基等が挙げられる。 Examples of the alkoxy group in R of the formula (I) include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, an allyloxy group containing a double bond, or an alkoxy-substituted alkoxy group such as a methoxyethoxy group or a methoxyethoxyethoxy group. Etc. Furthermore, examples of the aryloxy group in R include a phenoxy group, a methylphenoxy group, a xylenoxy group (that is, a xylyloxy group), a methoxyphenoxy group, and the like. The hydrogen element in the alkoxy group and aryloxy group may be substituted with a halogen element, and is preferably substituted with fluorine. In addition, R in the formula (I) may be linked to other R. In this case, two Rs are bonded to each other to form an alkylenedioxy group, an aryleneoxy group, or an oxyalkylenearyleneoxy group. Examples of such divalent groups formed include ethylenedioxy, propylenedioxy, and phenylenedioxy groups.
上記一般式(I)中のRは、同一でも異なってもよい。また、式(I)のRは、不燃性及び低粘性の両立の点で、Rのうち4つ以上がフッ素であることが好ましい。 R in the general formula (I) may be the same or different. In addition, R in the formula (I) is preferably such that four or more of R are fluorine in terms of both incombustibility and low viscosity.
また、式(I)のnは、3〜4であり、上記環状ホスファゼン化合物は、1種単独で使用してもよいし、2種以上を混合して用いてもよい。 Moreover, n of Formula (I) is 3-4, The said cyclic phosphazene compound may be used individually by 1 type, and may mix and use 2 or more types.
本発明の電池用非水電解液において、上記環状ホスファゼン化合物の含有量は、電池用非水電解液全体の5〜70体積%であることが好ましく、安全性と電池特性のバランスの観点から、10〜60体積%の範囲が更に好ましく、20〜50体積%の範囲が特に好ましい。環状ホスファゼン化合物の含有量が70体積%を超えると、電池の負荷特性が低下してしまうため好ましくなく、一方、5体積%未満では、引火点の低い有機溶媒を電解液に使用した場合に、不燃性を発現できないことがある。 In the battery non-aqueous electrolyte of the present invention, the content of the cyclic phosphazene compound is preferably 5 to 70% by volume of the whole battery non-aqueous electrolyte, from the viewpoint of the balance between safety and battery characteristics, A range of 10 to 60% by volume is more preferable, and a range of 20 to 50% by volume is particularly preferable. When the content of the cyclic phosphazene compound exceeds 70% by volume, the load characteristics of the battery are deteriorated, which is not preferable. On the other hand, when the content is less than 5% by volume, when an organic solvent having a low flash point is used for the electrolyte, Incombustibility may not be manifested.
本発明の電池用非水電解液は、更に特定の無水ジカルボン酸化合物を含むことを特徴とする。該無水ジカルボン酸化合物としては、無水5-ノルボルネン-2,3-ジカルボン酸、無水1,2,3,6-テトラヒドロフタル酸、及び無水ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸が挙げられる。これら環状構造を有する無水ジカルボン酸化合物は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 The nonaqueous electrolytic solution for a battery according to the present invention further includes a specific dicarboxylic anhydride compound. Examples of the dicarboxylic anhydride compound include anhydrous 5-norbornene-2,3-dicarboxylic acid, anhydrous 1,2,3,6-tetrahydrophthalic acid, and anhydrous bicyclo [2.2.2] oct-5-ene-2. 1,3-dicarboxylic acid. These dicarboxylic anhydride compounds having a cyclic structure may be used alone or in combination of two or more.
上記無水ジカルボン酸化合物の含有量は、電池用非水電解液全体の0.1〜3質量%の範囲が好ましく、電池性能のバランスの観点から、0.5〜2質量%の範囲が更に好ましい。 The content of the dicarboxylic anhydride compound is preferably in the range of 0.1 to 3% by mass of the whole battery non-aqueous electrolyte, and more preferably in the range of 0.5 to 2% by mass from the viewpoint of balance of battery performance.
本発明の電池用非水電解液において、非水溶媒としては、本発明の目的を損なわない範囲で従来より二次電池用非水電解液に使用されている種々の非プロトン性有機溶媒を使用することができる。なお、非水溶媒の含有量は、電池用非水電解液全体の30〜95体積%であることが好ましく、安全性と電池特性のバランスの観点から、40〜90体積%の範囲が更に好ましく、50〜80体積%の範囲が特に好ましい。 In the non-aqueous electrolyte for batteries of the present invention, various non-protonic organic solvents conventionally used in non-aqueous electrolytes for secondary batteries are used as the non-aqueous solvent as long as the object of the present invention is not impaired. can do. The content of the non-aqueous solvent is preferably 30 to 95% by volume of the entire non-aqueous electrolyte for batteries, and more preferably in the range of 40 to 90% by volume from the viewpoint of the balance between safety and battery characteristics. A range of 50 to 80% by volume is particularly preferable.
上記非プロトン性有機溶媒として具体的には、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、ジフェニルカーボネート、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等のカーボネート類、酢酸メチル、プロピオン酸メチル、酪酸メチル等のカルボン酸エステル類、1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)、ジエチルエーテル(DEE)等のエーテル類、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のラクトン類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、ジメチルスルホキシド等のスルホン類、エチレンスルフィド等のスルフィド類等が挙げられる。これらの中でも、環状ホスファゼン化合物との相溶性、および電池性能のバランスの点で、カーボネート類、カルボン酸エステル類を用いることが好ましく、中でもエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、プロピオン酸メチルを用いることがより好ましい。これら非プロトン性有機溶媒は、1種単独で使用してもよく、2種以上を混合して用いてもよい。 Specific examples of the aprotic organic solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), diphenyl carbonate, ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC). ), Carbonates such as methyl acetate, methyl propionate and methyl butyrate, ethers such as 1,2-dimethoxyethane (DME), tetrahydrofuran (THF) and diethyl ether (DEE), and γ-butyrolactone (GBL), lactones such as γ-valerolactone, nitriles such as acetonitrile, amides such as dimethylformamide, sulfones such as dimethyl sulfoxide, sulfides such as ethylene sulfide, and the like. Among these, it is preferable to use carbonates and carboxylic acid esters from the viewpoint of compatibility with the cyclic phosphazene compound and the balance of battery performance, and among them, ethylene carbonate (EC), ethyl methyl carbonate (EMC), propionic acid. More preferably, methyl is used. These aprotic organic solvents may be used individually by 1 type, and 2 or more types may be mixed and used for them.
本発明の電池用非水電解液は、支持塩を含むことが好ましく、該支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiBC4O8、LiPF6、LiCF3SO3、LiAsF6、LiC4F9SO3、Li(FSO2)2N、Li(CF3SO2)2N及びLi(C2F5SO2)2N等のリチウム塩が好適に挙げられる。これらの中でも、不燃性および電池性能に優れる点で、LiPF6、Li(FSO2)2N、Li(CF3SO2)2Nがより好ましい。これら支持塩は、1種単独で使用してもよく、2種以上を組み合わせて用いてもよい。 The nonaqueous electrolytic solution for a battery of the present invention preferably contains a supporting salt, and the supporting salt is preferably a supporting salt that serves as an ion source of lithium ions. The supporting salt is not particularly limited. For example, LiClO 4 , LiBF 4 , LiBC 4 O 8 , LiPF 6 , LiCF 3 SO 3 , LiAsF 6 , LiC 4 F 9 SO 3 , Li (FSO 2 ) 2 N Suitable examples include lithium salts such as Li (CF 3 SO 2 ) 2 N and Li (C 2 F 5 SO 2 ) 2 N. Among these, LiPF 6 , Li (FSO 2 ) 2 N, and Li (CF 3 SO 2 ) 2 N are more preferable in terms of excellent nonflammability and battery performance. These supporting salts may be used alone or in combination of two or more.
上記非水電解液中の支持塩の総濃度としては、0.3〜2.5 mol/L(M)が好ましく、0.8〜2.0 mol/L(M)が更に好ましい。支持塩の総濃度が0.3 mol/L未満では、電解液の導電性を充分に確保することができず、電池の放電特性及び充電特性に支障をきたすことがあり、2.5 mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の放電特性及び充電特性に支障をきたすことがある。 The total concentration of the supporting salt in the non-aqueous electrolyte is preferably 0.3 to 2.5 mol / L (M), more preferably 0.8 to 2.0 mol / L (M). If the total concentration of the supporting salt is less than 0.3 mol / L, the conductivity of the electrolyte cannot be sufficiently secured, which may hinder battery discharge characteristics and charge characteristics. As the viscosity of the electrolyte increases and the mobility of lithium ions cannot be sufficiently secured, the conductivity of the electrolyte cannot be sufficiently secured in the same manner as described above, which may hinder battery discharge characteristics and charge characteristics. is there.
また、非水電解液二次電池の形成に際して、本発明の電池用非水電解液は、そのまま用いることも可能であるが、例えば、適当なポリマーや多孔性支持体、或いはゲル状物質に含浸させる等して保持させる方法等で用いることもできる。 Further, when forming a non-aqueous electrolyte secondary battery, the non-aqueous electrolyte for a battery of the present invention can be used as it is. For example, an appropriate polymer, a porous support, or a gel material is impregnated. It can also be used by a method of holding it.
<非水電解液二次電池>
次に、本発明の非水電解液二次電池を詳細に説明する。本発明の非水電解液二次電池は、上述の電池用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の非水電解液二次電池の技術分野で通常使用されている他の部材を備える。なお、本発明の非水電解液二次電池には、非水電解液二次電池の他に、正極に分極性炭素電極、負極に予めリチウムイオンを吸蔵し、リチウムイオンを可逆的に吸蔵・脱離し得る非分極性炭素電極を用いた電気二重層キャパシタ(リチウムイオンキャパシタ又はハイブリッドキャパシタ)も含まれる。
<Nonaqueous electrolyte secondary battery>
Next, the nonaqueous electrolyte secondary battery of the present invention will be described in detail. The non-aqueous electrolyte secondary battery of the present invention includes the above-described non-aqueous electrolyte for a battery, a positive electrode, and a negative electrode, and is usually used in the technical field of a non-aqueous electrolyte secondary battery such as a separator as necessary. It includes other members that are used. In addition to the non-aqueous electrolyte secondary battery, the non-aqueous electrolyte secondary battery of the present invention includes a polarizable carbon electrode in the positive electrode and lithium ions in the negative electrode in advance and reversibly occludes lithium ions. An electric double layer capacitor (lithium ion capacitor or hybrid capacitor) using a nonpolarizable carbon electrode that can be detached is also included.
本発明の非水電解液二次電池の正極活物質としては、V2O5、V6O13、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn2O4、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー、活性炭等の炭素材料等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co、Al及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiMnxCoyNi(1-x-y)O2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiMnxNi(1-x)O2[式中、0≦x<1]、LiMnxCo(1-x)O2[式中、0≦x<1]、LiCoxNi(1-x)O2[式中、0≦x<1]、LiCoxNiyAl(1-x-y)O2[式中、0≦x<1、0≦y<1、0<x+y≦1]、LiFexCoyNi(1-x-y)O2[式中、0≦x<1、0≦y<1、0<x+y≦1]、或いはLiMnxFeyO2-x-y等で表される。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the positive electrode active material of the non-aqueous electrolyte secondary battery of the present invention, metal oxides such as V 2 O 5 , V 6 O 13 , MnO 2 , MnO 3 , LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO Preferred examples include lithium-containing composite oxides such as 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , conductive polymers such as polyaniline, and carbon materials such as activated carbon. The lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, Al, and Ni. In this case, the composite oxide LiMn x Co y Ni (1-xy) O 2 [where 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], LiMn x Ni (1-x) O 2 [wherein , 0 ≦ x <1], LiMn x Co (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni (1-x) O 2 [where 0 ≦ x <1], LiCo x Ni y Al [wherein, 0 ≦ x <1,0 ≦ y <1,0 <x + y ≦ 1] (1-xy) O 2, LiFe x Co y Ni (1-xy) O 2 [ wherein , 0 ≦ x <1, 0 ≦ y <1, 0 <x + y ≦ 1], or LiMn x Fe y O 2 -xy . These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
本発明の非水電解液二次電池の負極活物質としては、リチウム金属自体、リチウムとAl、In、Sn、Si、Pb又はZn等との合金、リチウムイオンをドープしたTiO2等の金属酸化物、TiO2−P2O4等の金属酸化物複合材料、黒鉛等の炭素材料等が好適に挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。 As the negative electrode active material of the non-aqueous electrolyte secondary battery of the present invention, lithium metal itself, an alloy of lithium and Al, In, Sn, Si, Pb, Zn or the like, metal oxide such as TiO 2 doped with lithium ions And metal oxide composite materials such as TiO 2 —P 2 O 4 , carbon materials such as graphite, and the like. These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。 The positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary. Examples of the conductive agent include acetylene black, and the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro. Examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.
本発明の非水電解液二次電池に使用できる他の部材としては、非水電解液二次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらは、単体でも、混合物でも、共重合体でもよい。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常二次電池に使用されている公知の各部材が好適に使用できる。 Other members that can be used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed in the non-aqueous electrolyte secondary battery between positive and negative electrodes to prevent current short-circuit due to contact between both electrodes. It is done. As the material of the separator, it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc. Preferred examples include resin non-woven fabrics and thin layer films. These may be a single substance, a mixture or a copolymer. Of these, polypropylene or polyethylene microporous films having a thickness of about 20 to 50 μm, cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable. In the present invention, in addition to the separators described above, known members that are normally used in secondary batteries can be suitably used.
以上に説明した本発明の非水電解液二次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液二次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これにシート状の負極を重ね合わせて巻き上げる等して、非水電解液二次電池を作製することができる。 The form of the non-aqueous electrolyte secondary battery of the present invention described above is not particularly limited, and various known forms such as a coin type, a button type, a paper type, a square type or a spiral type cylindrical battery are available. Preferably mentioned. In the case of the button type, a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode. In the case of a spiral structure, for example, a non-aqueous electrolyte secondary battery is manufactured by, for example, preparing a sheet-like positive electrode, sandwiching a current collector, and superimposing and winding up the sheet-like negative electrode on the current collector. Can do.
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
上記一般式(I)においてnが3であって、全Rのうち2つがメトキシ基で、4つがフッ素である環状ホスファゼン化合物 10体積%と、エチレンカーボネート 13体積%と、ジエチルカーボネート 37体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに無水1,2,3,6-テトラヒドロフタル酸 0.5質量%を添加して非水電解液を調製した。次に、得られた非水電解液の難燃性を下記の方法で評価し、表1に示す結果を得た。
Example 1
10% by volume of cyclic phosphazene compound in which n is 3 in the above general formula (I), 2 out of all R are methoxy groups and 4 are fluorine, 13% by volume of ethylene carbonate, 37% by volume of diethyl carbonate, LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in a mixed solvent consisting of 40% by volume of methyl propionate to 1.0 mol / L, and anhydrous 1,2,3,6- A non-aqueous electrolyte was prepared by adding 0.5% by mass of tetrahydrophthalic acid. Next, the flame retardancy of the obtained non-aqueous electrolyte was evaluated by the following method, and the results shown in Table 1 were obtained.
(1)難燃性の評価
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼長及び燃焼時間を測定・評価した。具体的には、UL試験基準に基づき、127 mm×12.7 mmのSiO2シートに上記電解液 1.0 mLを染み込ませて試験片を作製して評価を行った。以下に不燃性・難燃性・自己消火性・燃焼性の評価基準を示す。
<不燃性の評価>試験炎を点火しても全く着火しなかった場合(燃焼長:0 mm)を不燃性ありと評価した。
<難燃性の評価>着火した炎が、装置の25 mmラインまで到達せず且つ網からの落下物にも着火が認められなかった場合を難燃性ありと評価した。
<自己消火性の評価>着火した炎が25〜100 mmラインで消火し且つ網からの落下物にも着火が認められなかった場合を自己消火性ありと評価した。
<燃焼性の評価>着火した炎が、100 mmラインを超えた場合を燃焼性と評価した。
(1) Flame Retardancy Evaluation The combustion length and combustion time of a flame ignited in an atmospheric environment were measured and evaluated by a method in which the UL94HB method of UL (Underwriting Laboratory) standard was arranged. Specifically, based on the UL test standard, a 127 mm × 12.7 mm SiO 2 sheet was impregnated with 1.0 mL of the electrolytic solution, and a test piece was prepared and evaluated. The evaluation criteria for nonflammability, flame retardancy, self-extinguishing properties, and flammability are shown below.
<Evaluation of nonflammability> When the test flame was ignited, it was not ignited at all (burning length: 0 mm).
<Evaluation of Flame Retardancy> The case where the ignited flame did not reach the 25 mm line of the apparatus and the fallen object from the net was not ignited was evaluated as flame retardant.
<Evaluation of self-extinguishing property> When the ignited flame was extinguished on the 25 to 100 mm line and no ignition was observed on the falling object from the net, it was evaluated as having self-extinguishing property.
<Evaluation of flammability> The case where the ignited flame exceeded the 100 mm line was evaluated as flammability.
(2)電池の作製
正極活物質としてLiMn1/3Co1/3Ni1/3O2を用い、該酸化物と、導電剤であるアセチレンブラックと、結着剤であるポリフッ化ビニリデンとを、質量比94:3:3で混合し、これをN-メチルピロリドンに分散させてスラリーとしたものを、正極集電体としてのアルミニウム箔に塗布した後、乾燥・プレスを施すことで、厚さ70μmの正極シートを得た。これを矩形(4 cm×50 cm)に切り取り、アルミニウム箔の集電タブを溶接して正極を作製した。また、負極活物質として人造グラファイトを用い、該人造グラファイトと、結着剤であるポリフッ化ビニリデンとを質量比90:10で混合し、これを有機溶媒(酢酸エチルとエタノールとの50/50質量%混合溶媒)に分散させてスラリーとしたものを、負極集電体としての銅箔に塗布した後、乾燥・プレスを施すことで、厚さ50μmの負極シートを得た。これを矩形(4 cm×50 cm)に切り取り、ニッケル箔の集電タブを溶接して負極を作製した。次いで、セパレーター(微孔性フィルム:ポリエチレン製)を矩形(4 cm×50 cm)に切り取り、これを正極と負極とを介して挟み込み、4 cm×3 cmのスペーサーをベースに平巻きにした後、熱融着アルミラミネートフィルム(ポリエチレンテレフタレート/アルミニウム/ポリプロピレン)からなる外装材の中に挿入し、電解液を注入後、真空にしてすばやくヒートシールすることにより平板状ラミネート電池(非水電解液二次電池)を作製した。
(2) Production of Battery Using LiMn 1/3 Co 1/3 Ni 1/3 O 2 as a positive electrode active material, the oxide, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder The mixture was mixed at a mass ratio of 94: 3: 3 and dispersed in N-methylpyrrolidone to form a slurry, which was applied to an aluminum foil as a positive electrode current collector, and then dried and pressed. A positive electrode sheet having a thickness of 70 μm was obtained. This was cut into a rectangle (4 cm × 50 cm), and an aluminum foil current collecting tab was welded to produce a positive electrode. Further, artificial graphite is used as the negative electrode active material, and the artificial graphite and polyvinylidene fluoride as a binder are mixed at a mass ratio of 90:10, and this is mixed with an organic solvent (50/50 mass of ethyl acetate and ethanol). % Mixed solvent) was applied to a copper foil as a negative electrode current collector, followed by drying and pressing to obtain a negative electrode sheet having a thickness of 50 μm. This was cut into a rectangle (4 cm × 50 cm), and a nickel foil current collecting tab was welded to produce a negative electrode. Next, the separator (microporous film: made of polyethylene) is cut into a rectangle (4 cm x 50 cm), sandwiched between the positive electrode and the negative electrode, and flattened using a 4 cm x 3 cm spacer as a base Inserted into a heat-sealed aluminum laminate film (polyethylene terephthalate / aluminum / polypropylene) exterior material, injected the electrolyte, vacuumed and quickly heat-sealed to obtain a flat laminate battery (non-aqueous electrolyte 2 Secondary battery).
(3)高温サイクル特性評価
上記のようにして作製したラミネート電池を用い、50℃の環境下で、上限電圧4.2V、下限電圧3.0V、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、この時の放電容量を既知の正極重量で除することにより初期放電容量(mAh/g)を求めた。さらに同様の充放電条件で50サイクルまで充放電を繰り返し、50サイクル後の放電容量を求め、下記の式:
容量残存率=50サイクル後の放電容量/初期放電容量×100(%)
に従って容量残存率を算出し、高温条件による電池のサイクル特性の指標とした。
(3) Evaluation of high-temperature cycle characteristics Using the laminated battery produced as described above, two charge / discharge cycles with an upper limit voltage of 4.2 V, a lower limit voltage of 3.0 V, and a current density of 0.25 mA / cm 2 are performed in an environment of 50 ° C. The initial discharge capacity (mAh / g) was determined by repeating this operation and dividing the discharge capacity at this time by the known positive electrode weight. Furthermore, charging / discharging was repeated up to 50 cycles under the same charging / discharging conditions, and the discharge capacity after 50 cycles was determined.
Capacity remaining rate = discharge capacity after 50 cycles / initial discharge capacity × 100 (%)
The capacity remaining rate was calculated according to the above, and used as an index of battery cycle characteristics under high temperature conditions.
(4)過充電安全性試験
上記と同じラミネート電池を作製し、過充電条件による電池安全性試験を行った。過充電試験の方法は、20℃の環境下で、4.2〜3.0Vの電圧範囲で、0.25 mA/cm2の電流密度による充放電サイクルを2回繰り返し、さらに4.2Vまで充電を行った後、該電池を温度調節機能つき電池ホルダー(ステンレス製)上に置き、20℃の電池温度条件で5.0 mA/cm2の電流密度により12.0Vまで充電を行い、さらに12.0Vで0.25 mA/cm2の電流密度になるまで充電を継続し、破裂、発火の有無を調べた。結果を表1に示す。
(4) Overcharge safety test The same laminated battery as the above was produced, and the battery safety test by overcharge conditions was conducted. In the overcharge test method, a charge / discharge cycle with a current density of 0.25 mA / cm 2 was repeated twice in a voltage range of 4.2 to 3.0 V in an environment of 20 ° C., and further charged to 4.2 V. The battery is placed on a battery holder (made of stainless steel) with temperature control function, charged to 12.0V with a current density of 5.0 mA / cm 2 at a battery temperature of 20 ° C, and further 0.25 mA / cm 2 at 12.0V. Charging was continued until the current density reached, and the presence or absence of rupture or ignition was examined. The results are shown in Table 1.
(実施例2)
上記一般式(I)においてnが3であって、全Rのうち1つがメトキシエトキシ基で、5つがフッ素である環状ホスファゼン化合物 5体積%と、上記一般式(I)においてnが3であって、全Rのうち1つがトリフルオロエトキシ基で、5つがフッ素である環状ホスファゼン化合物 25体積%と、エチレンカーボネート 14体積%と、エチルメチルカーボネート 56体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これに無水1,2,3,6-テトラヒドロフタル酸 0.5質量%と無水5-ノルボルネン-2,3-ジカルボン酸 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Example 2)
In the general formula (I), n is 3, and 5% by volume of a cyclic phosphazene compound in which one of all R is a methoxyethoxy group and five is fluorine, and in the general formula (I), n is 3. Then, LiPF 6 is added to a mixed solvent consisting of 25% by volume of a cyclic phosphazene compound, one of which is trifluoroethoxy group and five of which is fluorine, 14% by volume of ethylene carbonate, and 56% by volume of ethyl methyl carbonate. Dissolve to 1.0 mol / L and add 0.5% by weight of anhydrous 1,2,3,6-tetrahydrophthalic acid and 0.5% by weight of anhydrous 5-norbornene-2,3-dicarboxylic acid to the mixture. An electrolyte solution was prepared, and the flame retardancy of the obtained nonaqueous electrolyte solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(実施例3)
上記一般式(I)においてnが4であって、全Rがフッ素である環状ホスファゼン化合物 40体積%と、エチレンカーボネート 10体積%と、エチルメチルカーボネート 50体積%とからなる混合溶媒に、LiPF6を1.0 mol/Lになるように溶解させて、これに無水5-ノルボルネン-2,3-ジカルボン酸 1質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Example 3)
In a mixed solvent composed of 40% by volume of a cyclic phosphazene compound in which n is 4 in the general formula (I) and all R is fluorine, 10% by volume of ethylene carbonate, and 50% by volume of ethyl methyl carbonate, LiPF 6 Is dissolved to 1.0 mol / L, and 1% by mass of anhydrous 5-norbornene-2,3-dicarboxylic acid is added to the solution to prepare a non-aqueous electrolyte solution. Flammability was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(実施例4)
上記一般式(I)においてnが3であって、全Rのうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに無水ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
Example 4
In the above general formula (I), n is 3 and one of all R is a propoxy group and 5 is fluorine 60% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 35% by volume of methyl propionate LiPF 6 is dissolved at 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved at 1.0 mol / L in a mixed solvent consisting of the following: anhydrous bicyclo [2.2.2]. ] 2% by mass of oct-5-ene-2,3-dicarboxylic acid was added to prepare a non-aqueous electrolyte, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(比較例1)
エチレンカーボネート 20体積%と、ジエチルカーボネート 40体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに無水1,2,3,6-テトラヒドロフタル酸 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Comparative Example 1)
LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved at 1.0 mol / L in a mixed solvent consisting of 20% by volume of ethylene carbonate, 40% by volume of diethyl carbonate and 40% by volume of methyl propionate. Then, 0.5% by mass of 1,2,3,6-tetrahydrophthalic anhydride was added thereto to prepare a nonaqueous electrolytic solution, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(比較例2)
上記一般式(I)においてnが3であって、全Rのうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Comparative Example 2)
In the above general formula (I), n is 3 and one of all R is a propoxy group and 5 is fluorine 60% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 35% by volume of methyl propionate A non-aqueous electrolyte was prepared by dissolving LiPF 6 at 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] at 1.0 mol / L in a mixed solvent consisting of The flame retardancy of the non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(実施例5)
上記一般式(I)においてnが3であって、全Rのうち2つがメトキシ基で、4つがフッ素である環状ホスファゼン化合物 4体積%と、エチレンカーボネート 20体積%と、ジエチルカーボネート 36体積%と、プロピオン酸メチル 40体積%とからなる混合溶媒に、LiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに無水1,2,3,6-テトラヒドロフタル酸 0.5質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Example 5)
4% by volume of cyclic phosphazene compound in which n is 3 in the general formula (I), 2 out of all R are methoxy groups and 4 are fluorine, 20% by volume of ethylene carbonate, 36% by volume of diethyl carbonate, LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved in a mixed solvent consisting of 40% by volume of methyl propionate to 1.0 mol / L, and anhydrous 1,2,3,6- A nonaqueous electrolytic solution was prepared by adding 0.5% by mass of tetrahydrophthalic acid, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(実施例6)
上記一般式(I)においてnが3であって、全Rのうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 73体積%と、エチレンカーボネート 2体積%と、エチルメチルカーボネート 25体積%とからなる混合溶媒に、LiPF6を0.8 mol/Lになるように溶解させて、これに無水5-ノルボルネン-2,3-ジカルボン酸 2質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Example 6)
In the above general formula (I), n is 3 and one of all R is a propoxy group and 5 is fluorine. 73% by volume of cyclic phosphazene compound 2% by volume of ethylene carbonate 25% by volume of ethyl methyl carbonate LiPF 6 was dissolved in a mixed solvent consisting of: 0.8 mol / L, and 2% by mass of anhydrous 5-norbornene-2,3-dicarboxylic acid was added thereto to prepare a non-aqueous electrolyte. The flame retardancy of the obtained non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(実施例7)
上記一般式(I)においてnが3であって、全Rのうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに無水ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸 0.05質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Example 7)
In the above general formula (I), n is 3 and one of all R is a propoxy group and 5 is fluorine 60% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 35% by volume of methyl propionate LiPF 6 is dissolved at 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved at 1.0 mol / L in a mixed solvent consisting of the following: anhydrous bicyclo [2.2.2]. ] 0.05% by mass of oct-5-ene-2,3-dicarboxylic acid was added to prepare a nonaqueous electrolytic solution, and the flame retardancy of the obtained nonaqueous electrolytic solution was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
(実施例8)
上記一般式(I)においてnが3であって、全Rのうち1つがプロポキシ基で、5つがフッ素である環状ホスファゼン化合物 60体積%と、エチレンカーボネート 5体積%と、プロピオン酸メチル 35体積%とからなる混合溶媒に、LiPF6を1.0 mol/L及びLiTFSI[Li(CF3SO2)2N]を1.0 mol/Lになるように溶解させて、これに無水ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸 4質量%を添加して非水電解液を調製し、得られた非水電解液の難燃性を評価した。また、実施例1と同様にして非水電解液二次電池を作製し、高温サイクル特性評価および過充電安全性試験をそれぞれ行った。結果を表1に示す。
(Example 8)
In the above general formula (I), n is 3 and one of all R is a propoxy group and 5 is fluorine 60% by volume of cyclic phosphazene compound, 5% by volume of ethylene carbonate, 35% by volume of methyl propionate LiPF 6 is dissolved at 1.0 mol / L and LiTFSI [Li (CF 3 SO 2 ) 2 N] is dissolved at 1.0 mol / L in a mixed solvent consisting of the following: anhydrous bicyclo [2.2.2]. ] Non-aqueous electrolyte was prepared by adding 4% by mass of oct-5-ene-2,3-dicarboxylic acid, and the flame retardancy of the obtained non-aqueous electrolyte was evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and a high-temperature cycle characteristic evaluation and an overcharge safety test were performed, respectively. The results are shown in Table 1.
表1の実施例1〜4に示すように、式(I)の化合物と特定の無水ジカルボン酸化合物を含む非水電解液が不燃性を示すと共に、該非水電解液を用いた電池が高温条件下でも優れた充放電性能を維持していることが分かる。このように、本発明の非水電解液により、不燃性を発現しつつ、高温サイクル特性及び安全性に優れた非水電解液二次電池が得られることが確認された。 As shown in Examples 1 to 4 of Table 1, a non-aqueous electrolyte containing a compound of formula (I) and a specific dicarboxylic anhydride compound exhibits nonflammability, and a battery using the non-aqueous electrolyte is subjected to high temperature conditions. It can be seen that the excellent charge / discharge performance is maintained even under. As described above, it was confirmed that the nonaqueous electrolyte solution of the present invention can provide a nonaqueous electrolyte secondary battery exhibiting nonflammability and excellent in high-temperature cycle characteristics and safety.
なお、比較例2に示すように、無水ジカルボン酸化合物を添加しない場合においては、実施例4と比較して、高温サイクル特性が劣っていることが分かる。 In addition, as shown in the comparative example 2, when not adding a dicarboxylic anhydride compound, compared with Example 4, it turns out that a high temperature cycling characteristic is inferior.
更に、実施例5に示すように、式(I)で表される化合物の含有量が5体積%未満では、不燃性が発現されず、過充電安全性試験においても破裂を抑制できなかった。 Furthermore, as shown in Example 5, when the content of the compound represented by the formula (I) is less than 5% by volume, nonflammability was not exhibited, and bursting could not be suppressed even in the overcharge safety test.
一方、実施例6に示すように、式(I)で表される化合物の含有量が70体積%を超える場合には、不燃性や電池安全性に問題はないものの、初期容量が小さくなる傾向が認められた。従って、式(I)の環状ホスファゼン化合物の含有量は、10〜60体積%程度が好ましいことが分かる。 On the other hand, as shown in Example 6, when the content of the compound represented by the formula (I) exceeds 70% by volume, there is no problem in nonflammability and battery safety, but the initial capacity tends to be small. Was recognized. Therefore, it can be seen that the content of the cyclic phosphazene compound of the formula (I) is preferably about 10 to 60% by volume.
また、実施例7に示すように、無水ジカルボン酸化合物の添加量が0.1質量%未満の場合には、高温条件での充放電性能の改善が小さく、実施例8に示すように、3質量%を超える場合には、初期容量が低下する傾向が認められた。従って、無水ジカルボン酸化合物の添加量は、0.5〜2質量%程度が好ましいことが分かる。 Further, as shown in Example 7, when the addition amount of the dicarboxylic anhydride compound is less than 0.1% by mass, the improvement in charge / discharge performance under a high temperature condition is small, and as shown in Example 8, 3% by mass. In the case of exceeding the value, the initial capacity tended to decrease. Therefore, it can be seen that the addition amount of the dicarboxylic anhydride compound is preferably about 0.5 to 2% by mass.
以上の結果から、式(I)で表される環状ホスファゼン化合物と非水溶媒と特定の無水ジカルボン酸化合物を含有することを特徴とする非水電解液を用いることにより、高い安全性と優れた電池性能を両立させた非水電解液二次電池を提供できることが分かる。 From the above results, by using a non-aqueous electrolyte characterized by containing a cyclic phosphazene compound represented by the formula (I), a non-aqueous solvent and a specific dicarboxylic anhydride compound, high safety and excellent It can be seen that a non-aqueous electrolyte secondary battery having both battery performances can be provided.
Claims (8)
(NPR2)n ・・・ (I)
[式中、Rは、それぞれ独立してフッ素、アルコキシ基又はアリールオキシ基を表し;nは3〜4を表す]で表される環状ホスファゼン化合物と、非水溶媒と、無水5-ノルボルネン-2,3-ジカルボン酸、無水1,2,3,6-テトラヒドロフタル酸及び無水ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸からなる群から選択される少なくとも1種の無水ジカルボン酸化合物とを含むことを特徴とする電池用非水電解液。 The following general formula (I):
(NPR 2 ) n ... (I)
[Wherein R independently represents a fluorine, alkoxy group or aryloxy group; n represents 3 to 4], a non-aqueous solvent, and anhydrous 5-norbornene-2 , 3-dicarboxylic acid, 1,2,3,6-tetrahydrophthalic anhydride and at least one selected from the group consisting of bicyclo [2.2.2] oct-5-ene-2,3-dicarboxylic acid A non-aqueous electrolyte for a battery comprising the dicarboxylic anhydride compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008172518A JP2010015720A (en) | 2008-07-01 | 2008-07-01 | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008172518A JP2010015720A (en) | 2008-07-01 | 2008-07-01 | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010015720A true JP2010015720A (en) | 2010-01-21 |
Family
ID=41701671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008172518A Withdrawn JP2010015720A (en) | 2008-07-01 | 2008-07-01 | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010015720A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011254031A (en) * | 2010-06-04 | 2011-12-15 | Sumitomo Electric Ind Ltd | Capacitor prepared using metal porous body |
JP2014187384A (en) * | 2014-06-03 | 2014-10-02 | Sumitomo Electric Ind Ltd | Capacitor arranged by use of metal porous body |
US8902566B2 (en) | 2010-05-31 | 2014-12-02 | Sumitomo Electric Industries, Ltd. | Capacitor, and method for producing the same |
CN115986210A (en) * | 2023-02-21 | 2023-04-18 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
-
2008
- 2008-07-01 JP JP2008172518A patent/JP2010015720A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8902566B2 (en) | 2010-05-31 | 2014-12-02 | Sumitomo Electric Industries, Ltd. | Capacitor, and method for producing the same |
JP2011254031A (en) * | 2010-06-04 | 2011-12-15 | Sumitomo Electric Ind Ltd | Capacitor prepared using metal porous body |
JP2014187384A (en) * | 2014-06-03 | 2014-10-02 | Sumitomo Electric Ind Ltd | Capacitor arranged by use of metal porous body |
CN115986210A (en) * | 2023-02-21 | 2023-04-18 | 宁德新能源科技有限公司 | Electrochemical device and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5314885B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte secondary power source including the same | |
JP2008053212A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP5738011B2 (en) | Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP2008053211A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP2008300126A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same | |
JP4911888B2 (en) | Nonaqueous electrolyte and nonaqueous electrolyte secondary battery including the same | |
JP2007200605A (en) | Nonaqueous electrolyte solution and nonaqueous electrolyte solution battery equipped with it | |
JP2008041296A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with same | |
EP2157656B1 (en) | Nonaqueous electrolyte solution for battery and nonaqueous electrolyte battery comprising the same | |
JP2010015719A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
WO2006038614A1 (en) | Nonaqueous electrolyte solution, and nonaqueous electrolyte battery having same | |
JP2008041413A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery having the same | |
JP2010050021A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same | |
JP5738010B2 (en) | Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery | |
JP4458841B2 (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same | |
JP2010015717A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
JP2008300125A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same | |
JP2010015720A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with it | |
JP2008047480A (en) | Nonaqueous electrolyte for cell, and nonaqueous electrolyte cell equipped with the same | |
JP5093992B2 (en) | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery provided with the same | |
JP2010050026A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same | |
JP2008052988A (en) | Nonaqueous electrolytic solution for battery, and nonaqueous electrolytic solution battery equipped with it | |
JP4785735B2 (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte battery provided with the same | |
JP2010050023A (en) | Nonaqueous electrolyte for battery and nonaqueous electrolyte secondary battery having the same | |
JP2009021040A (en) | Nonaqueous electrolyte for battery, and nonaqueous electrolyte battery equipped with it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110906 |