[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010012572A - Non-magnetic pipe internal surface polishing device - Google Patents

Non-magnetic pipe internal surface polishing device Download PDF

Info

Publication number
JP2010012572A
JP2010012572A JP2008176228A JP2008176228A JP2010012572A JP 2010012572 A JP2010012572 A JP 2010012572A JP 2008176228 A JP2008176228 A JP 2008176228A JP 2008176228 A JP2008176228 A JP 2008176228A JP 2010012572 A JP2010012572 A JP 2010012572A
Authority
JP
Japan
Prior art keywords
polishing
magnetic field
tube
magnetic
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008176228A
Other languages
Japanese (ja)
Inventor
Hiromasa Ito
裕將 伊藤
Shinichi Murayama
慎一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Plant Service Co Ltd
Original Assignee
Chubu Plant Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Plant Service Co Ltd filed Critical Chubu Plant Service Co Ltd
Priority to JP2008176228A priority Critical patent/JP2010012572A/en
Publication of JP2010012572A publication Critical patent/JP2010012572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-magnetic pipe internal surface polishing device suitably usable even when the internal surface of a non-magnetic pipe is severely fouled, preventing the efficiency of polishing operation from being lowered even when the polishing operation is performed continuously over a long period, and easily adjusting the intensity of a magnetic field according to the type of the non-magnetic pipe. <P>SOLUTION: In this polishing device 1, a fixing means 3 for fixing the non-magnetic pipe P and a rotating magnetic field generation means 4 for generating a magnetic field rotated from the outside of the non-magnetic pipe P in the outer peripheral direction are installed on the upper surface of a horizontally long rectangular support base 2. A sucking means 8 for sucking the inside of the non-magnetic pipe P for removing polishing waste produced by polishing is installed in the rear of the rotating magnetic field generation means 4. A cooling means 9 for cooling the rotating magnetic field generation means 4 is installed on the side of the rotating magnetic field generation means 4. Polishing means 10, 10, ..., comprising long cylindrical magnet substances are contained inside the fixed non-magnetic pipe P. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非磁性管の内面を研磨するための研磨装置に関するものである。   The present invention relates to a polishing apparatus for polishing the inner surface of a nonmagnetic tube.

非磁性管(すなわち、ステンレス、アルミニウム、黄銅等の非磁性体からなる円筒管)の内面に付着した残留物、汚れ等を落とすための研磨方法としては、磁性体からなる研磨手段(研磨工具)を非磁性管内に収容し、当該非磁性管に外部から磁場を印加することにより収容された磁性体を回転させ、回転した磁性体との衝突によって非磁性管の内面の付着物を掻き落とす方法が知られている。そして、そのように外部から磁場を印可して非磁性管の内面を研磨するための研磨装置として、特許文献1の如く、マグネットを非磁性管の外周方向に回転させることによって回転磁界を発生させる回転磁界発生手段と、非磁性管を回転させる回転駆動手段とを有するものが知られている。このような研磨装置によれば、溶剤等を用いることなく容易に非磁性管の内面を研磨することができる。   A polishing method (polishing tool) made of a magnetic material is used as a polishing method for removing residue, dirt, etc. adhering to the inner surface of a non-magnetic tube (that is, a cylindrical tube made of a non-magnetic material such as stainless steel, aluminum or brass). In a non-magnetic tube, rotating the magnetic material accommodated by applying a magnetic field from the outside to the non-magnetic tube, and scraping off deposits on the inner surface of the non-magnetic tube by collision with the rotated magnetic material It has been known. As a polishing apparatus for polishing the inner surface of a nonmagnetic tube by applying a magnetic field from the outside as described above, a rotating magnetic field is generated by rotating a magnet in the outer peripheral direction of the nonmagnetic tube as in Patent Document 1. One having a rotating magnetic field generating means and a rotation driving means for rotating a nonmagnetic tube is known. According to such a polishing apparatus, the inner surface of the nonmagnetic tube can be easily polished without using a solvent or the like.

特開平5−337813号公報JP-A-5-337813

しかしながら、上記従来の研磨装置は、研磨作業にかかる時間に応じて研磨屑が堆積して研磨作業の効率が低下するため、非磁性管の内面の汚れがひどい場合には、研磨作業を途中で中断して非磁性管の内部の研磨屑を除去しなければならない、という不具合があった。また、回転磁界発生手段がマグネットにより回転磁界を発生させるものであるため、磁束密度の高い磁界を非磁性管の内部に発生させることができないので、汚れ度合いの大きな非磁性管を十分に研磨することができない、という不具合もあった。また、発生させる磁界の強さを調整することができないため、剛性の小さな非磁性管に使用した場合には、高い磁束密度に起因して高研磨手段が非磁性管の内面を傷付けてしまうこともあった。   However, the above conventional polishing apparatus accumulates polishing scraps according to the time required for the polishing operation, and the efficiency of the polishing operation is reduced. Therefore, when the dirt on the inner surface of the non-magnetic tube is severe, the polishing operation is interrupted. There was a problem that it was necessary to interrupt and remove the polishing debris inside the non-magnetic tube. In addition, since the rotating magnetic field generating means generates a rotating magnetic field with a magnet, a magnetic field having a high magnetic flux density cannot be generated inside the nonmagnetic tube, so that the nonmagnetic tube having a high degree of contamination is sufficiently polished. There was also a problem that it was not possible. In addition, since the strength of the magnetic field to be generated cannot be adjusted, when used in a non-magnetic tube with low rigidity, the high polishing means may damage the inner surface of the non-magnetic tube due to the high magnetic flux density. There was also.

本発明の目的は、上記従来の研磨装置の問題点を解消し、非磁性管の内面の汚れがひどい場合でも好適に用いることができ、長時間に亘って研磨作業を継続する場合でも、研磨作業の効率が低下しない上、非磁性管の種類に応じて磁界の強度を容易に調整することが可能で実用的な非磁性管内面研磨装置を提供することにある。   The object of the present invention is to solve the problems of the conventional polishing apparatus described above, and can be suitably used even when the inner surface of the non-magnetic tube is very dirty. Even when the polishing operation is continued for a long time, the polishing is continued. An object of the present invention is to provide a practical non-magnetic tube inner surface polishing apparatus in which work efficiency is not lowered and the strength of a magnetic field can be easily adjusted according to the type of non-magnetic tube.

本発明の内、請求項1に記載された発明は、非磁性管の外部から外周方向に回転する磁界を発生させる回転磁界発生手段と、磁性を有する研磨手段とを備えており、非磁性管内に配置された研磨手段を、前記回転磁界発生手段により非磁性管内で内面に沿って周方向に回転させることによって、非磁性管の内面を研磨する研磨装置であって、研磨によって生ずる研磨屑を除去するために非磁性管内を吸引する吸引手段が設けられていることを特徴とするものである。   Among the present inventions, the invention described in claim 1 is provided with a rotating magnetic field generating means for generating a magnetic field rotating in the outer peripheral direction from the outside of the nonmagnetic tube, and a polishing means having magnetism. A polishing device for polishing the inner surface of the non-magnetic tube by rotating the polishing unit disposed in the circumferential direction along the inner surface in the non-magnetic tube by the rotating magnetic field generating unit. A suction means for sucking the inside of the non-magnetic tube for removal is provided.

請求項2に記載された発明は、請求項1に記載された発明において、前記回転磁界発生手段が、電磁誘導により磁界を生じさせるコイルに三相電源を接続し、前記コイルに冷却手段を設けたものであることを特徴とするものである。   The invention described in claim 2 is the invention described in claim 1, wherein the rotating magnetic field generating means connects a three-phase power source to a coil that generates a magnetic field by electromagnetic induction, and a cooling means is provided in the coil. It is characterized by being.

請求項3に記載された発明は、請求項1、または請求項2に記載された発明において、前記回転磁界発生手段が、前記非磁性管内で磁束密度50mT以上250mT以下の磁界を生じさせるものであるとともに、前記研磨手段が、長さが5mm以上30mm以下で直径0.5mm以上3.0mm以下の円柱状の磁性体であることを特徴とするものである。   The invention described in claim 3 is the invention described in claim 1 or 2, wherein the rotating magnetic field generating means generates a magnetic field having a magnetic flux density of 50 mT or more and 250 mT or less in the nonmagnetic tube. In addition, the polishing means is a cylindrical magnetic body having a length of 5 mm to 30 mm and a diameter of 0.5 mm to 3.0 mm.

請求項1に記載された非磁性管内面研磨装置は、研磨屑を除去するための吸引手段が設けられているため、研磨屑が研磨手段の回転を阻害しないので、非磁性管の内面の汚れがひどい場合でも、長時間に亘って研磨の効率を低下させることなく容易に研磨作業を継続することができる。   The nonmagnetic tube inner surface polishing apparatus according to claim 1 is provided with suction means for removing polishing debris, and therefore, the polishing debris does not hinder the rotation of the polishing means. Even if it is severe, the polishing operation can be easily continued for a long time without lowering the polishing efficiency.

請求項2に記載された非磁性管内面研磨装置は、回転磁界発生手段が、電磁誘導により磁界を生じさせるコイルに三相電源を接続したものであるため、非磁性管の内面の汚れがひどい場合でも好適に用いることができる上、非磁性管の種類に応じて発生させる磁界の強度を容易に調整することができる。また、コイルに冷却手段が設けられているため、長期間に亘って使用し続けた場合でも、コイルの発熱に起因して回転磁界発生手段内で絶縁破壊が発生して回転磁界を発生し続けることができなくなる、という不具合が生じない。   In the nonmagnetic tube inner surface polishing apparatus according to claim 2, since the rotating magnetic field generating means is a three-phase power source connected to a coil that generates a magnetic field by electromagnetic induction, the inner surface of the nonmagnetic tube is very dirty. Even in this case, it can be used suitably, and the strength of the magnetic field generated can be easily adjusted according to the type of the non-magnetic tube. Further, since the coil is provided with a cooling means, even when the coil is used for a long period of time, dielectric breakdown occurs in the rotating magnetic field generating means due to the heat generation of the coil, and the rotating magnetic field continues to be generated. The problem of being unable to do so does not occur.

請求項3に記載された非磁性管内面研磨装置は、回転磁界発生手段が非磁性管の内部において適度な強さで研磨手段を引き寄せるため、非磁性管の内面を非常に効率的に研磨することができる。   The non-magnetic tube inner surface polishing apparatus according to claim 3 polishes the inner surface of the non-magnetic tube very efficiently because the rotating magnetic field generating unit attracts the polishing unit with an appropriate strength inside the non-magnetic tube. be able to.

以下、本発明に係る非磁性管内面研磨装置(以下、単に研磨装置という)の一実施形態について、図面に基いて詳細に説明する。   Hereinafter, an embodiment of a nonmagnetic tube inner surface polishing apparatus (hereinafter simply referred to as a polishing apparatus) according to the present invention will be described in detail with reference to the drawings.

[非磁性管内面研磨装置の構成]
図1は、本発明に係る研磨装置の概略を示したものであり、研磨装置1は、横長な長方形状の支持台2を有しており、当該支持台2の上面に、非磁性管Pを所定の高さで支持台2と平行に保持するための固定手段3、非磁性管Pの外部から外周方向に回転する磁界を発生させる回転磁界発生手段4、非磁性管Pの長手方向に沿って回転磁界発生手段4を移動させるための移動手段5等が設けられている。また、回転磁界発生手段4の後方には、研磨によって生ずる研磨屑を除去するために非磁性管P内を吸引する吸引手段8が設けられており、回転磁界発生手段4の側方には、回転磁界発生手段4を冷却するための冷却手段9が設けられている。一方、支持台2に固定された非磁性管Pの内部には、非磁性管Pの内面に沿って周方向に回転することにより非磁性管Pの内面に付着した残留物、汚れ等を掻き取るための研磨手段10,10・・が収容されている(図5参照)。
[Configuration of non-magnetic tube inner surface polishing equipment]
FIG. 1 shows an outline of a polishing apparatus according to the present invention. The polishing apparatus 1 has a horizontally long support base 2, and a nonmagnetic tube P is formed on the upper surface of the support base 2. In the longitudinal direction of the non-magnetic tube P, a fixing unit 3 for holding the tube at a predetermined height in parallel with the support base 2, a rotating magnetic field generating unit 4 for generating a magnetic field rotating in the outer peripheral direction from the outside of the non-magnetic tube P A moving means 5 and the like for moving the rotating magnetic field generating means 4 are provided. Further, at the rear of the rotating magnetic field generating means 4, there is provided a sucking means 8 for sucking the inside of the non-magnetic tube P in order to remove polishing debris generated by polishing. Cooling means 9 for cooling the rotating magnetic field generating means 4 is provided. On the other hand, the inside of the nonmagnetic tube P fixed to the support base 2 is scraped off the residue, dirt, etc. adhering to the inner surface of the nonmagnetic tube P by rotating in the circumferential direction along the inner surface of the nonmagnetic tube P. Polishing means 10, 10,... For taking are accommodated (see FIG. 5).

図2、図3は、回転磁界発生手段4の設置部分の鉛直断面図(支持体の長手方向に沿って切断した鉛直断面図)であり、回転磁界発生手段4は、コア11とコイル12とからなる磁界発生体13を、当接板14a,14bを平行に立設させた支持体15によって固着させたものである。図4は、コア11を示したものであり、コア11は扁平な四角柱状に形成されており、非磁性管Pを挿通させるための円形の挿通孔16が中央に穿設されている。さらに、当該挿通孔16の周囲には、長尺な扇状を有する36個のスロット17,17・・が、挿通孔16を中心として放射状に設けられている。そして、所定の径(直径=約0.45mm)の導線が、2本束ねられて、各スロット17,17・・間に、相を重ねるように巻き付けられることによって、コイル12が形成された状態になっている(図2、図3参照)。かかる磁界発生体13は、支持体15の当接板14a,14bにコア11を挟み込んだ状態で固定されている。そして、当該支持体15が、移動手段5のガイドレール18,18にスライド可能に係合された状態になっている。また、当該磁界発生体13は、図5の如く、可変電圧・可変周波数電源部を構成する三相インバータ、開閉器、および三相電圧調整器を介して、三相3線式の電源と接続された状態になっている。なお、三相インバータ、開閉器、および三相電圧調整器は、三相電源31として機能するものである。   2 and 3 are vertical cross-sectional views (vertical cross-sectional views cut along the longitudinal direction of the support) of the installed portion of the rotating magnetic field generating means 4. The rotating magnetic field generating means 4 includes the core 11, the coil 12, and the like. The magnetic field generator 13 is fixed by a support body 15 in which contact plates 14a and 14b are erected in parallel. FIG. 4 shows the core 11. The core 11 is formed in a flat rectangular column shape, and a circular insertion hole 16 for inserting the nonmagnetic tube P is formed in the center. Further, around the insertion hole 16, 36 slots 17, 17... Having a long fan shape are provided radially about the insertion hole 16. Then, two conductive wires having a predetermined diameter (diameter = about 0.45 mm) are bundled and wound so as to overlap phases between the slots 17, 17,. (See FIGS. 2 and 3). The magnetic field generator 13 is fixed in a state where the core 11 is sandwiched between the contact plates 14 a and 14 b of the support 15. The support 15 is slidably engaged with the guide rails 18 and 18 of the moving means 5. Further, as shown in FIG. 5, the magnetic field generator 13 is connected to a three-phase three-wire power source via a three-phase inverter, a switch, and a three-phase voltage regulator that constitute a variable voltage / variable frequency power source unit. It is in the state that was done. The three-phase inverter, switch, and three-phase voltage regulator function as the three-phase power supply 31.

また、図3の如く、磁界発生体13の前側には、合成樹脂によって扁平な円柱状に形成された前カバー19が設置されており、所定の間隔を隔ててコイル12の前側を覆った状態になっている。当該前カバー19の前面の中央には、非磁性管Pを挿通させるための挿通孔20が設けられており、当該挿通孔20には、扁平な円柱状のガイドパイプ21が設置されている。さらに、前カバー19の側方には、前カバー19内へ冷却風を送り込むための送風口22が穿設されている。一方、磁界発生体13の後側には、合成樹脂によって扁平な直方体状に形成された後カバー23が設置されており、所定の間隔を隔ててコイル12の後側を覆った状態になっている。当該後カバー23の後面の中央には、円形の排風口24が穿設されている   Further, as shown in FIG. 3, a front cover 19 formed in a flat cylindrical shape with a synthetic resin is installed on the front side of the magnetic field generator 13, and covers the front side of the coil 12 with a predetermined interval. It has become. An insertion hole 20 through which the nonmagnetic tube P is inserted is provided in the center of the front surface of the front cover 19, and a flat cylindrical guide pipe 21 is installed in the insertion hole 20. Further, on the side of the front cover 19, an air outlet 22 for feeding cooling air into the front cover 19 is formed. On the other hand, a rear cover 23 formed in the shape of a flat rectangular parallelepiped with synthetic resin is installed on the rear side of the magnetic field generator 13 so as to cover the rear side of the coil 12 with a predetermined interval. Yes. A circular air outlet 24 is formed in the center of the rear surface of the rear cover 23.

また、図1の如く、吸引手段8は、所定形状に折り曲げられた長尺な円筒状の吸引ダクト25と集塵機26とによって構成されている。吸引ダクト25の先端は、支持台2に固着された固定部材7によって、磁界発生体13の後側に固定されており、同様に固定部材7に固定される非磁性管Pの基端と容易に接続することができるようになっている。また、集塵機26には、吸引ダクト25を介して吸引を行うための駆動装置(図示せず)と、吸引した研磨屑を収容するための屑収容部(図示せず)とが内蔵されている。   As shown in FIG. 1, the suction unit 8 includes a long cylindrical suction duct 25 bent into a predetermined shape and a dust collector 26. The suction duct 25 has a distal end fixed to the rear side of the magnetic field generator 13 by a fixing member 7 fixed to the support base 2, and similarly to the base end of the nonmagnetic tube P fixed to the fixing member 7. Can be connected to. Further, the dust collector 26 incorporates a driving device (not shown) for performing suction through the suction duct 25 and a waste container (not shown) for storing the suctioned polishing waste. .

さらに、冷却手段9は、所定形状に折り曲げられた断面矩形の筒状の送風ダクト27と送風機28とによって構成されている。なお、図1においては記載が省略されているが、送風ダクト27の中間部分は、柔軟性を有する材料によって形成されており、自在に屈曲させることができるようになっている。また、送風ダクト27の先端は、一部が前カバー19の送風口22と連通しており、一部が回転磁界発生手段4の当接板14a,14bの側面に当接した状態になっている(図3参照)。   Furthermore, the cooling means 9 is comprised by the cylindrical air duct 27 and the air blower 28 of the cross-sectional rectangle bent by the predetermined shape. In addition, although description is abbreviate | omitted in FIG. 1, the intermediate part of the ventilation duct 27 is formed with the material which has a softness | flexibility, and can be bent freely now. Further, a part of the tip of the air duct 27 is in communication with the air outlet 22 of the front cover 19, and part of the air duct 27 is in contact with the side surfaces of the contact plates 14 a and 14 b of the rotating magnetic field generating means 4. (See FIG. 3).

また、固定手段は、非磁性管Pを支持台と平行に配置させるための所定の高さを有する台座6および固定部材7と、台座6の内端縁際のクランプ部30によって係止された非磁性管Pの先端を固定するための電動アクチュエータ32とによって構成されている。   Further, the fixing means is locked by the base 6 and the fixing member 7 having a predetermined height for disposing the nonmagnetic tube P in parallel with the support base, and the clamp portion 30 at the inner edge of the base 6. An electric actuator 32 for fixing the tip of the non-magnetic tube P is configured.

一方、移動手段5は、支持台2の長手方向と平行になるように配置された左右一対のガイドレール18,18と、回転磁界発生手段4の支持体15を当該ガイドレール18,18に沿って移動させるための駆動装置29(たとえば、ボールネジ機構を利用した駆動装置)とを有している。そして、当該駆動装置29が、固定手段3の台座6の下側の空洞部内に配置された状態になっている。   On the other hand, the moving means 5 includes a pair of left and right guide rails 18 and 18 arranged so as to be parallel to the longitudinal direction of the support base 2 and a support 15 of the rotating magnetic field generating means 4 along the guide rails 18 and 18. And a driving device 29 (for example, a driving device using a ball screw mechanism). Then, the driving device 29 is in a state of being disposed in the lower cavity of the base 6 of the fixing means 3.

そして、上記の如く構成された研磨装置1においては、非磁性管P(たとえば、ステンレスによって形成された円筒管)を、回転磁界発生手段4のコイル12の挿通孔16に挿通させた状態で、当該非磁性管Pの先端および基端を、それぞれ、台座6のクランプ部30と固定部材7とで係止することによって、当該非磁性管Pが所定の高さで水平に保持された状態になっている。また、そのように水平に保持された非磁性管Pの内部(コア11およびコイル12の内側に相当する部分)において、図6の如く、研磨手段10,10・・が収容された状態になっている。   In the polishing apparatus 1 configured as described above, the non-magnetic tube P (for example, a cylindrical tube formed of stainless steel) is inserted into the insertion hole 16 of the coil 12 of the rotating magnetic field generating means 4. The nonmagnetic tube P is held horizontally at a predetermined height by locking the distal end and the proximal end of the nonmagnetic tube P with the clamp portion 30 of the base 6 and the fixing member 7, respectively. It has become. Further, as shown in FIG. 6, the polishing means 10, 10... Are accommodated inside the nonmagnetic tube P held horizontally as described above (the portion corresponding to the inside of the core 11 and the coil 12). ing.

研磨手段10,10・・は、弁バネ用のシリコンクロム鋼によって形成された円柱状のオイルテンパー線であり、直径が約1.2mmであり、約20mmの長さを有している。当該研磨手段10,10・・は、回転磁界発生手段4により生じた磁界において、磁性を帯びた磁性体として機能する。   The polishing means 10, 10,... Are cylindrical oil temper wires formed of silicon chrome steel for valve springs, have a diameter of about 1.2 mm and a length of about 20 mm. The polishing means 10, 10... Function as a magnetic material having magnetism in the magnetic field generated by the rotating magnetic field generating means 4.

かかる研磨装置1は、回転磁界発生手段4に電源を投入すると、コイル12に60Hzの三相電流が印可され、管挿通孔P内において誘導電流による磁界が発生する。当該磁界は、1/60秒毎に管挿通孔Pの軸心を中心として鉛直断面内を一回りするように方向が変化し、その磁界の方向の変化に伴って磁束の位置が変化する。そのように磁束が所定の周期で変位すると、その磁束の変位に伴って、磁性を帯びた研磨手段10,10・・が、非磁性管Pの内部で変位する(すなわち、磁束の変位に追従するように高速で回転する)。そして、そのように高速回転する研磨手段10,10・・が、非磁性管P内の付着物と衝突し、当該付着物を掻き落とすことによって、非磁性管Pの内面を研磨する。   In the polishing apparatus 1, when the rotating magnetic field generation means 4 is turned on, a three-phase current of 60 Hz is applied to the coil 12, and a magnetic field due to an induced current is generated in the tube insertion hole P. The direction of the magnetic field changes so as to go around the vertical section around the axis of the tube insertion hole P every 1/60 seconds, and the position of the magnetic flux changes with the change of the direction of the magnetic field. When the magnetic flux is displaced in a predetermined cycle as described above, the magnetic polishing means 10, 10,... Is displaced inside the nonmagnetic tube P along with the displacement of the magnetic flux (that is, following the displacement of the magnetic flux). To rotate at high speed). Then, the polishing means 10, 10,... Rotating at such a high speed collide with the deposit in the nonmagnetic tube P and scrape off the deposit to polish the inner surface of the nonmagnetic tube P.

なお、回転磁界発生手段4により発生する磁界は、磁束の変位する方向がN極となり、その反対側の方向がS極となるため、高速回転する各研磨手段10,10・・は、軸の両端をN極およびS極の方向へ向けた状態を保とうとする。しかしながら、付着物と衝突によって研磨手段10の向きが変わると、そのように向きの変わった研磨手段10と軸の両端をN極およびS極の方向へ向けた研磨手段10とは、帯びた磁性によって互いに反発し合うので、それらの研磨手段10,10は、ランダムに自転しながら、非磁性管Pの内面に沿って高速回転することとなる。そのような研磨手段10,10・・の回転挙動によって、非磁性管Pの内面を均一に研磨することが可能となる。   The magnetic field generated by the rotating magnetic field generating means 4 is N-pole in the direction of displacement of the magnetic flux and S-pole in the opposite direction, so that each of the polishing means 10, 10. An attempt is made to maintain a state in which both ends are directed toward the N pole and the S pole. However, when the direction of the polishing means 10 is changed due to the collision with the deposit, the polishing means 10 that has changed its direction and the polishing means 10 with both ends of the shaft directed in the direction of the N pole and the S pole have a magnetic property. Therefore, the polishing means 10 and 10 rotate at high speed along the inner surface of the non-magnetic tube P while rotating randomly. It is possible to uniformly polish the inner surface of the nonmagnetic tube P by such rotational behavior of the polishing means 10, 10.

また、上記の如く、研磨手段10,10・・が研磨を実行する際には、吸引手段8によって、非磁性管Pの内部を吸引することにより、掻き落とされた研磨屑を瞬時に回収する。それゆえ、掻き落とされた研磨屑によって研磨手段10,10・・が動きにくくなる等の障害が生じない。なお、吸引手段8の吸引力は所定の範囲内に調整されるため、研磨手段10,10・・が吸引されてしまう、という事態は生じない。   Further, as described above, when the polishing means 10, 10... Performs polishing, the suction means 8 sucks the inside of the non-magnetic tube P to instantaneously collect the scraped polishing scraps. . Therefore, troubles such as the polishing means 10, 10,. Since the suction force of the suction means 8 is adjusted within a predetermined range, the situation that the polishing means 10, 10,... Are sucked does not occur.

加えて、上記の如く、回転磁界発生手段4が作動する際には、回転磁界発生手段4が高温になるが、回転磁界発生手段4の側方に設けられた冷却手段9の送風機28が、回転磁界発生手段4のコア11およびコイル12を効率的に冷却するため、不必要な箇所で絶縁破壊が生じない。   In addition, as described above, when the rotating magnetic field generating means 4 operates, the rotating magnetic field generating means 4 becomes hot, but the blower 28 of the cooling means 9 provided on the side of the rotating magnetic field generating means 4 Since the core 11 and the coil 12 of the rotating magnetic field generating means 4 are efficiently cooled, dielectric breakdown does not occur in unnecessary portions.

さらに、コア11の内部に位置した非磁性管Pの内面を研磨した後には、回転磁界発生手段4を載置した支持体15を、移動手段5によってガイドレール18,18に沿って移動させることにより、研磨作業部位を変更する。かかる回転磁界発生手段4の移動によって、非磁性管Pを全長に亘って研磨することができる。   Further, after the inner surface of the non-magnetic tube P located inside the core 11 is polished, the support 15 on which the rotating magnetic field generating means 4 is placed is moved along the guide rails 18 and 18 by the moving means 5. By changing the polishing work site. By such movement of the rotating magnetic field generating means 4, the nonmagnetic tube P can be polished over its entire length.

[研磨実験1]
上記の如く構成された研磨装置1を用いて、ステンレス(SUS304)によって形成された非磁性管P(直径=約60.5mmで厚さ=約2.8mmの円筒管)の内面の研磨を行った。なお、上記研磨においては、非磁性管Pの内面に、アクリル塗料を刷毛塗りして乾燥させ(肉厚=約1.0mm)、当該塗膜を付着物の代替とした。また、非磁性管Pの内部には、上記した研磨手段10,10・・を200本収容した。そして、回転磁界発生手段4に200V,60Hzの三相電源を印可することにより、非磁性管Pの内面(表面)の磁束密度が約85mTとなるように調整し、吸引手段8を作動させながら(吸引速度=4.0m/s)、非磁性管Pの内部で研磨手段10,10・・を回転させて、約3分間に亘って、非磁性管Pの内面の研磨を行い、研磨後の非磁性管Pの内面の状態を調べた(なお、上記研磨においては、移動手段5は作動させなかった)。図7は、研磨後の非磁性管Pの内面を示す写真であり、研磨後の非磁性管Pの内面は、塗膜が綺麗に掻き落とされており、金属光沢を放っていることが分かる。
[Polishing experiment 1]
Using the polishing apparatus 1 configured as described above, the inner surface of a non-magnetic tube P (diameter = about 60.5 mm and thickness = about 2.8 mm) formed of stainless steel (SUS304) is polished. It was. In the polishing, the inner surface of the non-magnetic tube P was brushed with an acrylic paint and dried (wall thickness = about 1.0 mm), and the coating film was used as a substitute for the deposit. In addition, 200 of the above-described polishing means 10, 10,. Then, by applying a 200 V, 60 Hz three-phase power source to the rotating magnetic field generating means 4, the magnetic flux density on the inner surface (surface) of the nonmagnetic tube P is adjusted to about 85 mT, and the suction means 8 is operated. (Suction speed = 4.0 m / s), the polishing means 10, 10... Rotate inside the non-magnetic tube P, and the inner surface of the non-magnetic tube P is polished for about 3 minutes. The state of the inner surface of the nonmagnetic tube P was examined (in the above polishing, the moving means 5 was not operated). FIG. 7 is a photograph showing the inner surface of the non-magnetic tube P after polishing, and it can be seen that the inner surface of the non-magnetic tube P after polishing has a beautifully scraped coating film, giving off a metallic luster. .

[研磨実験2]
上記した非磁性管Pと同じ非磁性管Pを用い、アクリル塗料を塗装しなかった以外は同様な条件で非磁性管Pの内面の研磨を行い、研磨中において吸引手段8によって吸引回収した研磨屑(すなわち、ステンレス粉)の重量を測定した。さらに、吸引手段8による研磨効率の変化を確認するために、吸引手段8を作動させることなく同様の研磨を行い、非磁性管Pの内面に堆積した研磨屑の重量を測定した。それらの研磨屑の重量の測定結果を表1に示す。表1より、吸引手段8を作動させた場合の研磨屑の重量が、吸引手段8を作動させなかった場合の研磨屑の重量よりも大きく、吸引手段8を作動させた方が効率良く研磨できることが分かる。
[Polishing experiment 2]
Polishing the inner surface of the nonmagnetic tube P under the same conditions except that the same nonmagnetic tube P as the above-mentioned nonmagnetic tube P is used and no acrylic paint is applied, and the suction means 8 sucks and collects during the polishing. The weight of the scrap (ie, stainless steel powder) was measured. Furthermore, in order to confirm the change in the polishing efficiency by the suction means 8, the same polishing was performed without operating the suction means 8, and the weight of the polishing dust deposited on the inner surface of the nonmagnetic tube P was measured. Table 1 shows the measurement results of the weight of the polishing scraps. From Table 1, the weight of the polishing scrap when the suction means 8 is operated is larger than the weight of the polishing scrap when the suction means 8 is not operated, and the suction means 8 can be polished more efficiently. I understand.

Figure 2010012572
Figure 2010012572

[研磨装置の効果]
研磨装置1は、上記の如く、研磨屑を除去するために非磁性管P内を吸引する吸引手段8が設けられているため、非磁性管Pの内面の汚れがひどい場合でも、研磨屑が研磨手段の回転を阻害しないので、長時間に亘って研磨の効率を低下させることなく容易に研磨作業を継続することができる。
[Effect of polishing equipment]
Since the polishing apparatus 1 is provided with the suction means 8 for sucking the inside of the nonmagnetic tube P in order to remove the polishing debris as described above, even if the dirt on the inner surface of the nonmagnetic tube P is severe, the debris is not removed. Since the rotation of the polishing means is not hindered, the polishing operation can be easily continued for a long time without lowering the polishing efficiency.

また、研磨装置1は、回転磁界発生手段4が、電磁誘導により磁界を生じさせるコイル12に三相電源31を接続したものであるため、非磁性管Pの内面の汚れがひどい場合でも好適に用いることができる上、非磁性管Pの種類に応じて発生させる磁界の強度を容易に調整することができる。さらに、コイル12に冷却手段9が設けられているため、長期間に亘って使用し続けた場合でも、コイル12の発熱に起因して回転磁界発生手段4内で絶縁破壊が発生して回転磁界を発生し続けることができなくなる、という事態が生じない。   In the polishing apparatus 1, the rotating magnetic field generating means 4 is the one in which the three-phase power source 31 is connected to the coil 12 that generates a magnetic field by electromagnetic induction. Therefore, the polishing apparatus 1 is suitable even when the inner surface of the nonmagnetic tube P is very dirty. In addition, it is possible to easily adjust the strength of the magnetic field generated according to the type of the non-magnetic tube P. Further, since the cooling means 9 is provided in the coil 12, even when the coil 12 is used for a long period of time, dielectric breakdown occurs in the rotating magnetic field generating means 4 due to heat generation of the coil 12, and the rotating magnetic field is generated. The situation that it is impossible to continue to generate does not occur.

さらに、研磨装置1は、回転磁界発生手段4が非磁性管P内で所定の磁束密度の磁界を発生するように調整されているとともに、当該回転磁界発生手段4によって引きつけられる研磨手段10,10・・が所定の大きさおよび形状に調整されているので、回転磁界発生手段4が非磁性管Pの内部において適度な強さで研磨手段10,10・・を引き寄せるため、非磁性管Pの内面を非常に効率的に研磨することができる。   Further, the polishing apparatus 1 is adjusted so that the rotating magnetic field generating means 4 generates a magnetic field having a predetermined magnetic flux density in the nonmagnetic tube P, and the polishing means 10, 10 attracted by the rotating magnetic field generating means 4. .. is adjusted to a predetermined size and shape, so that the rotating magnetic field generating means 4 attracts the polishing means 10, 10,... With an appropriate strength inside the nonmagnetic pipe P. The inner surface can be polished very efficiently.

なお、本発明の研磨装置の構成は、上記実施形態の態様に何ら限定されるものではなく、回転磁界発生手段、研磨手段、移動手段、吸引手段、冷却手段等の形状、構造等の構成を、本発明の趣旨を逸脱しない範囲で適宜変更することができる。たとえば、冷却手段は、上記実施形態の如く、空気を送風するものに限定されず、空気以外の冷却媒体を用いたもの等に変更することも可能である。また、研磨手段は、上記実施形態の如き円柱状のものに限定されず、先端を尖らせたピン状のもの等に変更することも可能である。さらに、研磨手段として円柱状の磁性体を用いる場合であっても、その大きさ、重量等は、上記実施形態の態様に何ら限定されず、非磁性管内に生じる磁界の磁束密度に応じて適宜変更することが可能である。   The configuration of the polishing apparatus of the present invention is not limited to the aspect of the above embodiment, and the configuration of the shape, structure, etc. of the rotating magnetic field generating means, polishing means, moving means, suction means, cooling means, etc. Any change can be made without departing from the spirit of the present invention. For example, the cooling means is not limited to one that blows air as in the above embodiment, but can be changed to one that uses a cooling medium other than air. Further, the polishing means is not limited to the cylindrical shape as in the above embodiment, but can be changed to a pin shape with a sharpened tip. Further, even when a columnar magnetic body is used as the polishing means, the size, weight, etc. are not limited to those of the above embodiment, and are appropriately determined according to the magnetic flux density of the magnetic field generated in the nonmagnetic tube. It is possible to change.

研磨装置の概略を示す説明図である。It is explanatory drawing which shows the outline of a grinding | polishing apparatus. 回転磁界発生手段の鉛直断面(支持台の長手方向に沿った鉛直断面)を示す説明図である。It is explanatory drawing which shows the vertical cross section (vertical cross section along the longitudinal direction of a support stand) of a rotating magnetic field generation means. 回転磁界発生手段の鉛直断面(支持台の長手方向に沿った鉛直断面)を示す説明図(斜視説明図)である。It is explanatory drawing (perspective explanatory drawing) which shows the vertical cross section (vertical cross section along the longitudinal direction of a support stand) of a rotating magnetic field generation means. コアの正面を示す説明図である。It is explanatory drawing which shows the front of a core. 三相電源を示す説明図である。It is explanatory drawing which shows a three-phase power supply. 回転磁界発生手段の内側で非磁性管内に研磨手段が配置されている状態を示す説明図である。It is explanatory drawing which shows the state by which the grinding | polishing means is arrange | positioned in the nonmagnetic tube inside the rotating magnetic field generating means. 研磨装置により研磨した後の非磁性管の内面を示す写真である。It is a photograph which shows the inner surface of the nonmagnetic tube after grind | polishing with a grinder.

符号の説明Explanation of symbols

1・・研磨装置(非磁性管内面研磨装置)
4・・回転磁界発生手段
8・・吸引手段
9・・冷却手段
10・・研磨手段
12・・コイル
31・・三相電源
1. ・ Polishing device (Non-magnetic tube inner surface polishing device)
4 .. Rotating magnetic field generating means 8 .... Attracting means 9 .... Cooling means 10 .... Polishing means 12 .... Coil 31 ... Three-phase power supply

Claims (3)

非磁性管の外部から外周方向に回転する磁界を発生させる回転磁界発生手段と、磁性を有する研磨手段とを備えており、非磁性管内に配置された研磨手段を、前記回転磁界発生手段により非磁性管内で内面に沿って周方向に回転させることによって、非磁性管の内面を研磨する研磨装置であって、
研磨によって生ずる研磨屑を除去するために非磁性管内を吸引する吸引手段が設けられていることを特徴とする非磁性管内面研磨装置。
A rotating magnetic field generating means for generating a magnetic field rotating in the outer circumferential direction from the outside of the nonmagnetic tube and a polishing means having magnetism are provided, and the polishing means disposed in the nonmagnetic tube is non-moved by the rotating magnetic field generating means. A polishing apparatus for polishing an inner surface of a non-magnetic tube by rotating in a circumferential direction along the inner surface in a magnetic tube,
An apparatus for polishing an inner surface of a nonmagnetic tube, wherein suction means for sucking the inside of the nonmagnetic tube is provided in order to remove polishing debris generated by polishing.
前記回転磁界発生手段が、電磁誘導により磁界を生じさせるコイルに三相電源を接続し、前記コイルに冷却手段を設けたものであることを特徴とする請求項1に記載の非磁性管内面研磨装置。   2. The nonmagnetic tube inner surface polishing according to claim 1, wherein the rotating magnetic field generating means is one in which a three-phase power source is connected to a coil that generates a magnetic field by electromagnetic induction, and a cooling means is provided in the coil. apparatus. 前記回転磁界発生手段が、前記非磁性管内で磁束密度50mT以上250mT以下の磁界を生じさせるものであるとともに、
前記研磨手段が、長さが5mm以上30mm以下で直径0.5mm以上3.0mm以下の円柱状の磁性体であることを特徴とする請求項1、または請求項2に記載の非磁性管内面研磨装置。
The rotating magnetic field generating means generates a magnetic field having a magnetic flux density of 50 mT to 250 mT in the non-magnetic tube;
The non-magnetic tube inner surface according to claim 1 or 2, wherein the polishing means is a cylindrical magnetic body having a length of 5 mm to 30 mm and a diameter of 0.5 mm to 3.0 mm. Polishing equipment.
JP2008176228A 2008-07-04 2008-07-04 Non-magnetic pipe internal surface polishing device Pending JP2010012572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008176228A JP2010012572A (en) 2008-07-04 2008-07-04 Non-magnetic pipe internal surface polishing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008176228A JP2010012572A (en) 2008-07-04 2008-07-04 Non-magnetic pipe internal surface polishing device

Publications (1)

Publication Number Publication Date
JP2010012572A true JP2010012572A (en) 2010-01-21

Family

ID=41699185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008176228A Pending JP2010012572A (en) 2008-07-04 2008-07-04 Non-magnetic pipe internal surface polishing device

Country Status (1)

Country Link
JP (1) JP2010012572A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105058215A (en) * 2015-08-06 2015-11-18 李千林 Polishing machine for machining hydraulic drive thin steel pipe and use method of polishing machine
CN108326639A (en) * 2018-05-15 2018-07-27 辽宁科技大学 A kind of elongated tubular surfaces externally and internally precise grinding device and technique
CN111216030A (en) * 2020-03-08 2020-06-02 昆山正安流体设备有限公司 Self-cleaning type pipe fitting inner hole polishing machine
CN111390657A (en) * 2020-04-18 2020-07-10 无锡易通精密机械股份有限公司 Polishing equipment and polishing process for inner ring and outer ring of bearing ring
CN113478378A (en) * 2021-09-07 2021-10-08 南通瓯海电气设备有限公司 Metal tube inner wall polishing equipment
CN113500470A (en) * 2021-06-25 2021-10-15 河北新兴铸管有限公司 Multifunctional pipe inner wall processing equipment
CN113681387A (en) * 2021-07-30 2021-11-23 泰州市盛翔机械制造有限公司 Energy-efficient bearing burring device
CN115488723A (en) * 2022-11-08 2022-12-20 江苏新晖测控科技有限公司 Prevent metal level gauge shell processingequipment of deformation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102969A (en) * 1985-10-30 1987-05-13 Toyo Kenmazai Kogyo Kk Magnetic polishing method
JPH07136925A (en) * 1993-11-22 1995-05-30 Mitsubishi Corp Grinding method and grinding device
JPH10180611A (en) * 1996-12-24 1998-07-07 Takahiro Imahashi Magnetic grinding method and device based on generation of plurality of alternating fields
JPH1110519A (en) * 1997-06-26 1999-01-19 Santo Kogyo:Kk Magnetic grinding device and magnetic grinding method
JP2000107996A (en) * 1998-07-30 2000-04-18 Japan Science & Technology Corp Surface processing method using magnetic anisotropic tool and its device
JP2007083315A (en) * 2005-09-16 2007-04-05 Ricoh Co Ltd Wire material, and surface treatment device
JP2008068386A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Surface treatment medium and surface treatment device having the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62102969A (en) * 1985-10-30 1987-05-13 Toyo Kenmazai Kogyo Kk Magnetic polishing method
JPH07136925A (en) * 1993-11-22 1995-05-30 Mitsubishi Corp Grinding method and grinding device
JPH10180611A (en) * 1996-12-24 1998-07-07 Takahiro Imahashi Magnetic grinding method and device based on generation of plurality of alternating fields
JPH1110519A (en) * 1997-06-26 1999-01-19 Santo Kogyo:Kk Magnetic grinding device and magnetic grinding method
JP2000107996A (en) * 1998-07-30 2000-04-18 Japan Science & Technology Corp Surface processing method using magnetic anisotropic tool and its device
JP2007083315A (en) * 2005-09-16 2007-04-05 Ricoh Co Ltd Wire material, and surface treatment device
JP2008068386A (en) * 2006-09-15 2008-03-27 Ricoh Co Ltd Surface treatment medium and surface treatment device having the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105058215A (en) * 2015-08-06 2015-11-18 李千林 Polishing machine for machining hydraulic drive thin steel pipe and use method of polishing machine
CN108326639A (en) * 2018-05-15 2018-07-27 辽宁科技大学 A kind of elongated tubular surfaces externally and internally precise grinding device and technique
CN111216030A (en) * 2020-03-08 2020-06-02 昆山正安流体设备有限公司 Self-cleaning type pipe fitting inner hole polishing machine
CN111390657A (en) * 2020-04-18 2020-07-10 无锡易通精密机械股份有限公司 Polishing equipment and polishing process for inner ring and outer ring of bearing ring
CN113500470A (en) * 2021-06-25 2021-10-15 河北新兴铸管有限公司 Multifunctional pipe inner wall processing equipment
CN113681387A (en) * 2021-07-30 2021-11-23 泰州市盛翔机械制造有限公司 Energy-efficient bearing burring device
CN113478378A (en) * 2021-09-07 2021-10-08 南通瓯海电气设备有限公司 Metal tube inner wall polishing equipment
CN115488723A (en) * 2022-11-08 2022-12-20 江苏新晖测控科技有限公司 Prevent metal level gauge shell processingequipment of deformation
CN115488723B (en) * 2022-11-08 2023-11-03 江苏新晖测控科技有限公司 Anti-deformation metal liquid level meter shell machining device

Similar Documents

Publication Publication Date Title
JP2010012572A (en) Non-magnetic pipe internal surface polishing device
Zhang et al. A novel magnetically driven polishing technique for internal surface finishing
JP5676791B2 (en) Decontamination equipment for contact parts of magnetic contactors
JP2007268689A (en) Magnetic abrasive finishing device, method therefor, and machining tool used therefor
EP1868275A3 (en) Inductive charging of tools on surgical tray
CN111595106B (en) Sediment drying device
DE59908348D1 (en) DEVICE FOR OUTDOOR COOLING THE ELECTRIC DRIVE MOTOR OF A CENTRIFUGAL PUMP UNIT
JP2018020102A (en) Medical or dental treatment device and medical or dental treatment tool for such a treatment device
WO2017140178A1 (en) Electric grinder
US20040089322A1 (en) Cleaning system and a method of cleaning
JP2005009756A (en) Air conditioner
JP2001138207A (en) Surface treatment device
US20110197349A1 (en) Magnetic Force Enhanced Drain Plug
JP4733794B2 (en) Method and apparatus for surface treatment of inner surface of member
WO2008018611A1 (en) Power tool
JP3493174B2 (en) Adsorption equipment for iron powder, sludge removal equipment and iron dust cleaner using the same
EP3159106A2 (en) Grinding liquid trough arrangement
JP2012067649A (en) Axial fan and cleaning method
JP2008180500A (en) Dust removal device
JP2016078222A (en) Inductive heating removal device of painting coated film and inductive heating removal method of painting coated film
JP7235605B2 (en) Sludge drying equipment
JP2007222719A (en) Internal surface washing method and its device of tubular instrument
GB2410184A (en) Device for removing false nails or polish
JP2004216525A (en) Pipe inner face polishing device
JP2512364B2 (en) Method and apparatus for polishing inner surface of cylindrical work piece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604