[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010011711A - Microgrid using electric railroad system - Google Patents

Microgrid using electric railroad system Download PDF

Info

Publication number
JP2010011711A
JP2010011711A JP2008171515A JP2008171515A JP2010011711A JP 2010011711 A JP2010011711 A JP 2010011711A JP 2008171515 A JP2008171515 A JP 2008171515A JP 2008171515 A JP2008171515 A JP 2008171515A JP 2010011711 A JP2010011711 A JP 2010011711A
Authority
JP
Japan
Prior art keywords
power
microgrid
electric railway
electric
feeder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008171515A
Other languages
Japanese (ja)
Other versions
JP5187624B2 (en
Inventor
Kazuo Tsutsumi
香津雄 堤
Atsushi Tsutsumi
敦司 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
University of Tokyo NUC
Original Assignee
Kawasaki Heavy Industries Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, University of Tokyo NUC filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2008171515A priority Critical patent/JP5187624B2/en
Publication of JP2010011711A publication Critical patent/JP2010011711A/en
Application granted granted Critical
Publication of JP5187624B2 publication Critical patent/JP5187624B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economically viable microgrid using an electric railroad system effectively, on the basis of the priority of applying to the microgrid essentially possessed by the electric railroad system. <P>SOLUTION: The electric railroad system D includes a power supply equipment of the electric railroad containing a substation for the electric railway and a feeder wire 5. The feeder wire 5 is used as a transmission line (self-management line and distributed line) of the microgrid 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電気鉄道システムにおける給電設備を有効に利用して構築されるマイクログリッドに関する。   The present invention relates to a microgrid constructed by effectively using power supply equipment in an electric railway system.

近年、比較的小規模の需要地域内において分散して配置される複数の各種分散型電源や電力貯蔵システムを組み合わせ、分散型電源が発生する電力を必要とする需要家に供給して、電力の地域需給を可能とする小規模の電力供給網であるマイクログリッドが注目されている。   In recent years, a plurality of distributed power sources and power storage systems distributed in a relatively small demand area are combined to supply consumers who need the power generated by the distributed power sources. Micro grids, which are small-scale power supply networks that enable local supply and demand, are drawing attention.

しかし、マイクログリッドの分散型電源のうち、たとえば自然エネルギーを利用する太陽光発電機(太陽電池)や風力発電機は発電量や発電時期の調整が難しく、需要の変動に追随させることが困難である。また、ガスタービン、蒸気タービン、ディーゼルエンジンなどの原動機を用いた燃焼式発電機は発電時期の調整が可能であるが、需要に合わせて運転すれば、効率の高い状態で運転することができない。さらに、太陽光や風力といった自然エネルギーは、自然環境や昼夜、季節によって影響を受けるので、発電量の変動が生じ、電力の需要と供給とのバランスを取るのが困難で、電圧や周波数などが変動し易く、電力品質が劣っており、電気機器に悪影響を及ぼすおそれがある。さらにまた、これらマイクログリッドにおいては、需要地域内における需要者間や分散電源と需要者間を接続する送電線を新たに敷設する必要がある。   However, among the distributed power sources of microgrids, for example, solar power generators (solar cells) and wind power generators that use natural energy are difficult to adjust the power generation amount and power generation timing, and it is difficult to keep up with fluctuations in demand. is there. In addition, a combustion generator using a prime mover such as a gas turbine, a steam turbine, or a diesel engine can adjust the power generation timing, but if operated according to demand, it cannot be operated in a highly efficient state. In addition, natural energy such as sunlight and wind power is affected by the natural environment, day and night, and season, resulting in fluctuations in the amount of power generation, making it difficult to balance power supply and demand. Fluctuating easily, power quality is inferior, and may adversely affect electrical equipment. Furthermore, in these microgrids, it is necessary to newly lay transmission lines that connect between consumers in a demand area or between a distributed power source and consumers.

上記のような分散型電源における、たとえば原動機を用いた燃焼式発電機による発電効率は、高いとは言えず、また、太陽電池や風力発電機のように自然エネルギーを利用する発電設備は、発電電力の質が良いとは言えない。さらには、マイクログリッドにこれらの発電設備を組み込んでも、特に新たに送電線を敷設する必要がある場合には、商用電力系統に比べて有利になるとは限らない。   For example, the power generation efficiency of a combustion generator using a prime mover in a distributed power source as described above cannot be said to be high, and a power generation facility that uses natural energy, such as a solar cell or a wind power generator, generates power. The quality of electricity is not good. Furthermore, even if these power generation facilities are incorporated in the microgrid, it is not always advantageous compared to the commercial power system when a new transmission line needs to be installed.

そこで、発明者等は電気鉄道システムに注目した。つまり、電気鉄道システムは、多数の電気鉄道車両(以下は単に電車という)が線路上を走行し、そのうちの一部の電車が加速(力行)中であったり、他の一部の電車は減速(制動)中であったり、また他の一部の電車が定速で走行(惰行)中であったり、さらに一部の電車は駅等に停車中であったりする。したがって、電車の加速時には電気エネルギーを運動エネルギーに変換して蓄え、減速時には回生ブレーキにより運動エネルギーを電気エネルギーに変換して回収することができ、電気鉄道システムを電力的立場から見ると、輸送システムであると同時に、電車という電力貯蔵機能を備えた給電システムである、と言える。一編成車両の電車の加速時間は通常、30秒前後と極めて短時間で、線路を走行する関係上、鉄道はゴムタイヤで走行する自動車に比べて摩擦抵抗が小さいので 惰性で走行可能な距離が非常に長い。一方、駅に停車する前やカーブ走行手前などでの減速走行の機会も多く、図3に示すように、負荷(電力消費)と発電(電力回収)とが短時間(たとえば数秒〜数十秒)の間でパルス状に行われる。また、同図の電圧の変位を示すグラフから確認されるように、電圧の変化が±20%と、商用電力系統の電圧許容範囲±10%に比べて大きい。このように、電気鉄道システムにおける給電状況は負荷と発電がともにパルス状に繰り返して行われており、負荷と発電の変動が商用電力系統に比べて大きいにも拘わらず、電気鉄道システムとして成立しており、また電圧変化の許容範囲が±20%と非常に広いという特性を有している。   Therefore, the inventors paid attention to the electric railway system. In other words, in the electric railway system, many electric railway vehicles (hereinafter simply referred to as trains) run on the track, and some of those trains are accelerating (powering), while others are decelerating. (Braking), some other trains are traveling (coasting) at a constant speed, and some trains are stopped at a station or the like. Therefore, electrical energy can be converted into kinetic energy and stored when the train accelerates, and kinetic energy can be recovered and recovered by regenerative braking when the train decelerates. At the same time, it can be said that it is a power supply system with a power storage function called a train. The train acceleration time of a single train is usually very short, around 30 seconds, and because of the fact that the train travels on the track, the railway has a lower frictional resistance than a car that runs on rubber tires, so the distance that can be traveled by inertia is extremely high. Long. On the other hand, there are many opportunities for decelerating before stopping at a station or before driving on a curve, and as shown in FIG. 3, the load (power consumption) and power generation (power recovery) take a short time (eg, several seconds to several tens of seconds). ) In the form of pulses. Further, as confirmed from the graph showing the voltage displacement in the figure, the voltage change is ± 20%, which is larger than the voltage allowable range ± 10% of the commercial power system. In this way, the power supply situation in the electric railway system is such that the load and power generation are repeatedly performed in a pulsed manner, and the electric railway system is established despite the fact that the fluctuations in the load and power generation are larger than those in the commercial power system. In addition, it has a characteristic that the allowable range of voltage change is as wide as ± 20%.

さらに、電気鉄道システムでは、商用電力系統から供給を受けている電力を、電気鉄道用変電所から受電し、き電線を介して架線や第三軌条などを通じて電車に供給している。また、き電線は、電気鉄道システムにあっては既に電車の軌道(線路)に沿って敷設されていることが多く、マイクログリッドの電力網を構築する際にあらためて送電線(配電線・自営線)を敷設する必要がない。   Furthermore, in the electric railway system, the electric power supplied from the commercial power system is received from the electric railway substation and supplied to the train through the feeder line, the third rail, etc. via the feeder. In addition, feeders are often already laid along train tracks (tracks) in electric railway systems, and transmission lines (distribution lines / self-operated lines) are re-established when constructing a microgrid power grid. There is no need to lay.

一方、商用電力系統Bでは、図4に示すように、電力需要のピークが午後の2時前後であるのに対し、電気鉄道システムDでは電力需要のピークが、早朝(午前7〜9時頃)と夕方(午後5〜8時頃)との2回になっており、両者で電力需要のピークが時間的に大きくずれており、両者の電力需要関係は補完的であると言える。   On the other hand, in the commercial power system B, as shown in FIG. 4, the peak of power demand is around 2 o'clock in the afternoon, whereas in the electric railway system D, the peak of power demand is early in the morning (around 7 to 9 am ) And evening (around 5-8 pm), the peak of power demand is largely shifted in time, and it can be said that the power demand relationship between the two is complementary.

ところで、マイクログリッドに関する先行技術として、電力供給線に充放電装置を介して大容量大出力の二次電池を接続し、負荷の状態もしくは電力供給線の状態と二次電池の状態を検知する検知装置と、検知装置で検知した電力供給状況と二次電池の状態に基づいて充放電装置と電源装置を制御する制御装置を備え、電力供給線に電力余剰が推定されるときに二次電池に充電し、電力不足が推定されるときに二次電池から放電するものが提案されている(たとえば、特許文献1参照)。
特開2007−159225号公報
By the way, as a prior art related to a microgrid, a detection is performed by connecting a secondary battery having a large capacity and a high output to a power supply line via a charging / discharging device, and detecting the state of the load or the state of the power supply line and the state of the secondary battery. And a control device for controlling the charging / discharging device and the power supply device based on the power supply status detected by the detection device and the state of the secondary battery, and when the power surplus is estimated in the power supply line, the secondary battery There has been proposed a battery that is charged and discharged from a secondary battery when power shortage is estimated (see, for example, Patent Document 1).
JP 2007-159225 A

上記の特許文献1に係るマイクログリッドは、大容量の二次電池を使用して電源装置の電力需要能力を高め、経済的にも成立するようにしたマイクログリッドを提供しようとするものである。   The microgrid according to the above-mentioned Patent Document 1 intends to provide a microgrid that uses a large-capacity secondary battery to increase the power demand capacity of the power supply device and is also economically established.

経済的に成立可能なマイクログリッドを提供しようとする点では、特許文献1に記載のものと解決しようとする課題が共通するが、本発明は上記した電気鉄道システムが本来備えているき電線を、マイクログリッドとして利用することの優位性に着目し、経済的に成立可能な、電気鉄道システムを有効に利用したマイクログリッドを提供しようとするものである。いいかえれば、本発明は特許文献1に記載のマイクログリッドとは、一部手段において共通するところはあるものの、具体的な解決手段や課題が異なるものである。   In terms of providing an economically viable microgrid, the problem to be solved is the same as that described in Patent Document 1, but the present invention provides a feeder that is originally provided in the electric railway system described above. Focusing on the advantage of using as a microgrid, we intend to provide a microgrid that is economically feasible and that effectively uses an electric railway system. In other words, the present invention differs from the microgrid described in Patent Document 1 in some means, but with specific solution means and problems.

上記の目的を達成するために本発明に係るマイクログリッドは、電気鉄道用変電所およびき電線を含む電気鉄道の給電設備を備えた電気鉄道システムにおいて、前記き電線を送電線(自営線・配電線)として使用することを特徴としている。   In order to achieve the above object, a microgrid according to the present invention is an electric railway system including an electric railway power supply facility including an electric railway substation and an electric railway. It is characterized by being used as an electric wire.

上記の構成を有する本発明の電気鉄道システムを利用したマイクログリッドによれば、電気鉄道システムが本来、架線や第三軌条などを経由して電車の走行に必要な電力を供給するために既に設置されているき電線を、マイクログリッドの送電線(自営線・配電線)として使用するから、送電線の設置がほとんど不要になる。マイクログリッドを含む電力系統において、発電設備などと比べても送電線の敷設に要する費用は、設備費として占める割合が高く、既設のき電線を利用することで多大な費用が節減される。   According to the microgrid using the electric railway system of the present invention having the above-described configuration, the electric railway system is already installed to supply electric power necessary for running the train via an overhead line or a third rail. Since the used electric wire is used as a microgrid power transmission line (private line / distribution line), it is almost unnecessary to install a power transmission line. In an electric power system including a microgrid, the cost required for laying a transmission line is higher than the power generation equipment and the like, and the ratio of equipment costs is high, and the use of existing feeders saves a great deal of cost.

なお、本発明に係るマイクログリッドは、き電線を必須の構成要素とし、これに軌道上を運行する電車のほか、駅舎などを含むのはもとより、電気鉄道システムにおいて電力の供給・消費に関連する全ての機器や設備が対象になる。たとえば、電車に装備された駆動用電動機、電気ブレーキ、空調器、照明器具だけでなく、駅舎に配備された照明設備やエレベータ、空調機器などの諸設備も対象になる。   In addition, the microgrid according to the present invention has a feeder as an essential component, and in addition to a train that operates on a track, it includes a station building and the like, and is related to supply and consumption of electric power in an electric railway system. All equipment and facilities are targeted. For example, not only drive motors, electric brakes, air conditioners, and lighting equipment equipped on trains, but also facilities such as lighting equipment, elevators, and air conditioners installed in station buildings are targeted.

請求項2に記載のように、請求項1に記載の電気鉄道システムを利用したマイクログリッドにおいて、二次電池を前記き電線に接続することが好ましい。   As described in claim 2, in the microgrid using the electric railway system according to claim 1, it is preferable to connect a secondary battery to the feeder.

このようにすれば、電力の需要と供給のバランスを図ることができる。つまり、マイクログリッド内において電力の需要と供給との間に過不足が生じたときは、不足する電力を二次電池から供給する一方、発電された余剰な電力を二次電池に蓄積するなどして、電力の供給と需要との時間的なずれ(アンバランス)を二次電池によって平準化し両者のバランスを図ることができる。また、電気鉄道システムにおける消費電力のピーク時に商用電力系統から供給される電力を抑制して、電気料金のコストダウンを図ることができる。商用電力系統の契約電気料は、使用した総電力量とは別に、契約電力量によって左右されるので、ピーク電力量を二次電池から供給する電力で抑制することで電気料金を大幅に低減できるからである。さらに、太陽光発電、小水力発電など自然の環境状況で発電時の出力が左右される自然エネルギーを利用した発電設備をマイクログリッドに接続すれば、発電される電力が負荷の消費電力を超える場合などに発生する余剰な電力を二次電池に充電できる。たとえば、風力発電では、風速によって発電量や周波数の制御を行わず、風速に対して常時最大出力になるように制御して発電した電力を二次電池に充電することができ、自然エネルギーを最大限に利用できる。また、負荷に起因する余剰電力、たとえば、エレベータ、ロボット、クレーンなどの駆動装置において、発電機を用いたブレーキを使用して制動するときなどに回生電力として電気エネルギーに変換し、二次電池に充電することで運動エネルギーや位置エネルギーを常時回収して蓄電できる。さらに、電車の減速時に、従来は電磁制動において発生する電力を抵抗器で熱に変えて廃棄していたが、これらの電力をき電線を経由し、二次電池に蓄電し電気エネルギーとして回収することもできる。   In this way, it is possible to achieve a balance between power demand and supply. In other words, when an excess or deficiency occurs between the demand and supply of power in the microgrid, the insufficient power is supplied from the secondary battery, while the generated surplus power is stored in the secondary battery. Thus, the time lag (unbalance) between power supply and demand can be leveled by the secondary battery to balance the two. In addition, it is possible to reduce the cost of electricity bills by suppressing the power supplied from the commercial power system at the peak of power consumption in the electric railway system. The contracted electricity charge of the commercial power system depends on the amount of contracted electricity separately from the total amount of power used, so the electricity charge can be significantly reduced by suppressing the peak power amount with the power supplied from the secondary battery. Because. In addition, if power generation equipment that uses natural energy, such as solar power generation and small hydropower generation, that affects the output during power generation, is connected to the microgrid, the generated power may exceed the load power consumption. The secondary battery can be charged with surplus power generated in the For example, in wind power generation, the amount of generated power and frequency are not controlled by the wind speed, and the generated power can be charged to the secondary battery by controlling the wind speed to always be the maximum output, so that the natural energy is maximized. Available to the limit. In addition, surplus power resulting from the load, for example, in a driving device such as an elevator, robot, crane, etc., when braking using a brake using a generator, etc., it is converted into electric energy as regenerative power, and converted into a secondary battery. By charging, kinetic energy and potential energy can always be collected and stored. Furthermore, when the train is decelerating, the power generated in electromagnetic braking is conventionally changed to heat with a resistor and discarded, but this power is stored in the secondary battery via the feeder and collected as electrical energy. You can also.

ところで、本発明に係るマイクログリッドが交流電力系統である場合は、交直変換機を介して二次電池に接続されてなることは言うまでもない。また、本発明に係るマイクログリッドが直流電力系統である場合は、自然エネルギーを利用した発電設備や自家発電設備で交流電力を発生する設備は、逆変換機(いわゆるインバータ)をマイクログリッドに接続する必要がある。つまり、き電系統には、交流系のき電と直流系のき電とが存在するからである。   Incidentally, when the microgrid according to the present invention is an AC power system, it goes without saying that the microgrid is connected to a secondary battery via an AC / DC converter. In addition, when the microgrid according to the present invention is a DC power system, a power generation facility using natural energy or a facility that generates AC power in a private power generation facility connects an inverse converter (so-called inverter) to the microgrid. There is a need. In other words, there are AC feeding and DC feeding in the feeding system.

請求項3に記載のように、請求項2に記載の電気鉄道システムを利用したマイクログリッドにおいて、前記二次電池にニッケル水素電池を使用することができる。   As described in claim 3, in the microgrid using the electric railway system according to claim 2, a nickel metal hydride battery can be used as the secondary battery.

このようにすれば、ニッケル水素電池は内部抵抗が小さく、しかも、SOC(State Of Charge)の変化に対する電圧変動が小さい(図5参照)ことから、電池のもつ電気容量を有効に利用できるので、鉛蓄電池、ニッケル・カドミウム蓄電池、NAS(ナトリウム・硫黄)電池などの他の二次電池に比べて小さい寸法の電池を用いることができ、さらにニッケル水素電池は体積エネルギー密度が高いから、設置場所が狭くて済む。また、高価な充放電制御装置を介在させる必要がないので、充放電制御装置の設置場所も不要であり、設備コストを低減できる。また、ニッケル水素電池は、昇降圧チョッパのような動作遅れがなく、急速充放電特性に優れている。加えて、ニッケル水素電池は、上記したように内部抵抗が小さいので、特に電車が加速する際に瞬間的に大電流を供給する必要があってニッケル水素電池から放電して対応した場合でも少ないロスで電圧の低下を抑制できる。また、逆に電車が減速する際に発電機を用いた回生ブレーキを使用して制動するときなどに回生電力として電気エネルギーを回収した場合に瞬間的に大電流が発生してときには、充電して対応することでき電線電圧の上昇を抑制できる。したがって、二次電池にニッケル水素電池を使用すれば、き電線電圧の安定化が図れ、電車などの電気鉄道車両の運行を効率化することができる。   In this way, the nickel-metal hydride battery has a small internal resistance and a small voltage fluctuation with respect to the change in SOC (State Of Charge) (see FIG. 5), so that the electric capacity of the battery can be used effectively. Batteries with smaller dimensions can be used compared to other secondary batteries such as lead-acid batteries, nickel-cadmium batteries, NAS (sodium-sulfur) batteries, and nickel-metal hydride batteries have a high volumetric energy density. It's narrow. Moreover, since it is not necessary to interpose an expensive charge / discharge control device, the installation location of the charge / discharge control device is not necessary, and the equipment cost can be reduced. Moreover, the nickel metal hydride battery has no rapid operation like a step-up / down chopper and is excellent in rapid charge / discharge characteristics. In addition, since the nickel-metal hydride battery has a low internal resistance as described above, it is necessary to supply a large current instantaneously, particularly when the train accelerates, and even when the nickel-metal hydride battery discharges and responds, the loss is small. The voltage drop can be suppressed. Conversely, when the train decelerates, using a regenerative brake that uses a generator to brake the electrical energy as regenerative power, etc. It is possible to cope with it, and the rise of the wire voltage can be suppressed. Therefore, if a nickel metal hydride battery is used as the secondary battery, the feeder voltage can be stabilized and the operation of electric railway vehicles such as trains can be made more efficient.

請求項4に記載のように、請求項1〜3のいずれかに記載のマイクログリッドにおいて、自然エネルギーを利用した発電設備を前記き電線に接続することができる。ここで、自然エネルギーを利用した発電設備には、たとえば太陽光発電装置(太陽電池)、風力発電装置、小水力発電装置があるが、これらに限定されるものではなく、他の分散型電源であってもよい。また、この種の発電設備は自然の環境状況で発電量や周波数が左右され、電力の品質が一般的に劣っているので、この電力を商用電力系統へ供給して活用するには、別途対策を必要とし、諸設備が全体として嵩むことになる。しかし、電気鉄道システムにおける給電設備は、電圧変動の許容範囲が±20%程度と商用電力系統の許容範囲(10%程度)に比べて大きく、また電気鉄道システム自体が本来電気エネルギーを蓄えることが可能なシステムあり、さらに電車の力行(加速)と回生(減速)との繰り返しにより急峻な電流の変動があって、電力的に常に大きな外乱を抱えているにも拘わらず、全く問題なく運用されている。さらに商用電力系統ではガイドラインで高調波について厳しく規定されているが、電気鉄道システムではそのような高調波に関するガイドラインがない。したがって、請求項4に係る電気鉄道システムを利用したマイクログリッドによれば、商用電力系統に比べて品質の悪い電力を受け入れできる範囲(許容範囲)が広いから、自然エネルギーを利用した発電設備で発電される電力についても、十分にかつ有効に活用することができる。   As described in claim 4, in the microgrid according to any one of claims 1 to 3, a power generation facility using natural energy can be connected to the feeder. Here, examples of the power generation facility using natural energy include a solar power generation device (solar cell), a wind power generation device, and a small hydropower generation device, but are not limited to these, and other distributed power sources are used. There may be. In addition, this type of power generation equipment is affected by the amount and frequency of power generation in the natural environment, and the quality of the power is generally inferior. As a result, the facilities are bulky as a whole. However, the power supply equipment in the electric railway system has an allowable range of voltage fluctuation of about ± 20%, which is larger than that of the commercial power system (about 10%), and the electric railway system itself can store electric energy. There is a possible system, and even though there is a steep current fluctuation due to repeated powering (acceleration) and regeneration (deceleration) of the train, it is operated without any problems even though it always has a large disturbance in terms of power. ing. Furthermore, in the commercial power system, harmonics are strictly defined in the guidelines, but there are no guidelines on such harmonics in the electric railway system. Therefore, according to the microgrid using the electric railway system according to claim 4, since the range (allowable range) in which poor quality power can be accepted compared to the commercial power system is wide, the power generation facility using natural energy generates power. The generated power can also be fully and effectively utilized.

請求項5に記載のように、請求項1〜4のいずれかに記載のマイクログリッドにおいて、自家発電設備を前記き電線に接続することができる。ここで、自家発電設備は駅舎に設けられる自家発電設備もしくは非常用自家発電設備であってもよい。また、マイクログリッドにおける需要地域域内で、き電線の近傍に立地した工場の自家発電設備もしくは非常用自家発電設備であってもよく、あるいは同需要地域内でき電線近傍に立地した病院や建設現場に備えられた自家発電設備もしくは非常用自家発電設備であってもよい。さらに、自家発電設備に用いられる原動機には、ディーゼルエンジン、ガスエンジン、ガスタービン、蒸気タービンなどが挙げられるが、これらに限定されるものではなく、たとえば燃料電池であってもよい。   As described in claim 5, in the microgrid according to any one of claims 1 to 4, a private power generation facility can be connected to the feeder. Here, the private power generation facility may be a private power generation facility provided in a station building or an emergency private power generation facility. In addition, in the demand area of the microgrid, it may be a private power generation facility or an emergency private power generation facility of a factory located near the feeder line, or in a hospital or construction site located in the demand area and near the power line. It may be a private power generation facility or an emergency private power generation facility. Furthermore, examples of the prime mover used in the private power generation facility include a diesel engine, a gas engine, a gas turbine, and a steam turbine, but are not limited thereto, and may be a fuel cell, for example.

請求項5に記載のようにすれば、上記の各種原動機を、最も効率のよい条件で運転を行わせることができる。一般的な自家発電では必要な電力を発電するために、原動機を最大効率の状態で運転することができないが、本請求項に係るマイクログリッドでは、余剰な電力は電気鉄道システム内において電気エネルギー、運動エネルギー、位置エネルギー、磁気エネルギーなどの状態で蓄えることができるから、原動機を常に最大効率の状態で運転し全体として省エネルギー化できる。また、需要地域内のたとえば工場で電力が不足した場合には、電力網であるき電線を通じて余剰な電力を工場へ供給することができるので、電力需要の融通性が高い。   According to the fifth aspect of the present invention, the above various prime movers can be operated under the most efficient conditions. In general private power generation, the prime mover cannot be operated at maximum efficiency in order to generate necessary power, but in the microgrid according to this claim, surplus power is electric energy in the electric railway system, Since energy can be stored in the state of kinetic energy, potential energy, magnetic energy, etc., the prime mover can always be operated at the maximum efficiency to save energy as a whole. In addition, when power is insufficient at a factory in the demand area, for example, surplus power can be supplied to the factory through a feeder that is a power network, so that power demand is highly flexible.

請求項6に記載のように、電力取引用計器を介して前記き電線を商用電力系統に接続することができる。   As described in claim 6, the feeder can be connected to a commercial power system via a power trading instrument.

このようにすれば、マイクログリッドから商用電力系統へ電力を供給する際に、逆送した電力量を計量することができ、余剰な電力を電力料金として回収できる。   If it does in this way, when supplying electric power from a microgrid to a commercial power system, the amount of electric power reversely sent can be measured, and surplus electric power can be collected as an electric power charge.

請求項7に記載のように、電気鉄道車両の減速時に作動させる回生ブレーキを、前記電気鉄道車両に設けることが望ましい。   As described in claim 7, it is desirable to provide the electric railway vehicle with a regenerative brake that is operated when the electric railway vehicle is decelerated.

このようにすれば、電気鉄道車両が減速する際に同車両が保有する運動エネルギーを熱エネルギー等に変えて廃棄することなく、電気エネルギーとして電力の形態で回収できるので、近くに力行中の電気鉄道車両が走行していれば、その回生電力をき電線や架線などを経由して他の電気鉄道車両に供給でき、また近くに給電の必要な電気鉄道車両が走行していなければ、き電線や架線などを経由して二次電池に充電できるなど、き電線側に回生電力を供給することにより、省エネルギー化が図れる。   In this way, when the electric railway vehicle decelerates, the kinetic energy held by the vehicle can be recovered in the form of electric power as electric energy without being discarded by converting it into thermal energy, etc. If the railway vehicle is running, the regenerative power can be supplied to other electric railway vehicles via feeders or overhead lines, and if there are no nearby electric railway vehicles that need to be fed, feeders Energy can be saved by supplying regenerative power to the feeder, such as charging the secondary battery via a cable or overhead wire.

請求項8に記載のように、エレベータ、クレーンおよびその他の位置エネルギーが発生する機器に、位置エネルギーを回生電力に変換する手段を設けることができる。   According to the eighth aspect, an elevator, a crane, and other devices that generate potential energy can be provided with means for converting the potential energy into regenerative power.

このようにすれば、駅舎などに設置されているエレベータが下降する際の位置エネルギーを回生電力に変換して回収することができる。   If it does in this way, the potential energy at the time of the elevator currently installed in a station building descend | falls can be converted into regenerative electric power, and can be collect | recovered.

請求項9に記載のように、電動機、電磁石、変圧器およびその他の磁気エネルギーを発生する機器に、磁気エネルギーを回生電力に変換する手段を設けることができる。   According to the ninth aspect of the present invention, means for converting magnetic energy into regenerative power can be provided in an electric motor, an electromagnet, a transformer, and other devices that generate magnetic energy.

このようにすれば、電動機や変圧器が有する磁気エネルギーを回生電力に変換して回収できる。   If it does in this way, the magnetic energy which an electric motor and a transformer have can be converted into regenerative electric power, and can be collected.

本発明に係るマイクログリッドは、電気鉄道システムを利用したことにより、つぎのような優れた効果を有する。   The microgrid according to the present invention has the following excellent effects by using the electric railway system.

1) 電車が走っている地域が主に主要都市やその近郊に多く、マイクログリッドの需要地域と一致している。 つまり、本発明によれば、使用しない余剰な電力を、電力を必要とする需要家に供給する手段としてのマイクログリッドが、自ずと需要家の近傍に設置されることになるので、電力の融通性に富み、また電力の発電源と需要家との距離が非常に近いことから、送電ロスも最小限に抑えられる。このようにして電力の融通を図ることにより、全体として省エネルギーとなり、二酸化炭素の発生量が削減され、環境対策にも繋がる。   1) There are many areas where trains run, mainly in major cities and their suburbs, which is consistent with microgrid demand areas. That is, according to the present invention, the microgrid as a means for supplying surplus power that is not used to consumers who need the power is naturally installed in the vicinity of the consumers, so that power is flexible. In addition, since the distance between the power generation source and the customers is very close, transmission loss can be minimized. In this way, by making power interchangeable, energy is saved as a whole, the amount of generated carbon dioxide is reduced, and this leads to environmental measures.

2) マイクログリッドには、太陽電池や風力発電機などの分散型電力源と需要家との間を接続する送電線の敷設が必要になる。この敷設には多大な費用を要するうえ、敷設後は送電線の保全が必要になる。しかし、本発明によれば、送電線の敷設および敷設後の保全など、多大な費用を削減できる。しかも、本発明のマイクログリッドにおいて送電線として使用するき電線は、通常、電車の運行に適した特性を備え、電気抵抗の少ない硬鋼の撚り線や硬アルミの撚り線が使用されており、しかも周辺とは十分に絶縁されているために、送電線としての品質が極めて高い。また、き電線は、電気鉄道システムの軌道に沿って需要地域内に張り巡らされていることから、マイクログリッドの電力網として申し分ない。さらに、軌道から離れた工場などに分散型電源装置などの設備を設ける場合にも、その設備とき電線との間を接続する送電線を敷設するだけで済み、この点でも有利である。   2) In the microgrid, it is necessary to install a transmission line that connects the distributed power source such as solar cells and wind power generators to consumers. This installation requires a large amount of money, and it is necessary to maintain the transmission lines after installation. However, according to the present invention, it is possible to reduce enormous costs such as laying transmission lines and maintenance after laying. In addition, the feeder used as a power transmission line in the microgrid of the present invention usually has characteristics suitable for train operation, and a hard steel stranded wire or a hard aluminum stranded wire with low electrical resistance is used. And since it is fully insulated from the periphery, the quality as a power transmission line is extremely high. Also, feeders are perfect as a microgrid power network because they are stretched around the demand area along the track of the electric railway system. Furthermore, when installing a facility such as a distributed power supply device in a factory or the like away from the track, it is only necessary to install a power transmission line connecting between the facility and the electric wire, which is also advantageous in this respect.

3) 一般に商用電力系統は、電力の需要地域から離れた場所に設置された発電所からの電力を長距離にわたって送電している場合が多い。   3) In general, commercial power grids often transmit power from power stations installed at locations away from power demand areas over long distances.

これに対し、地上を走行する私鉄各社の電車や公営の地下鉄をはじめ、LRV(低床式路面車両)を含む路面電車などは、都会やその近郊の、いわゆる電力需要の多い地域を通っており、電気鉄道システムのき電線は、その軌道に沿って設けられることが多いから、マイクログリッドの送電線として最適であり、商用電力系統の送電線を利用するのに比べて、送電ロスが少ない。   In contrast, private trains that run on the ground, public subways, and streetcars that include LRVs (low-floor road vehicles) pass through areas in the city and its suburbs, where so-called electricity demand is high. In many cases, feeders of an electric railway system are provided along the trajectory, so that they are optimal as transmission lines for microgrids and have less transmission loss than using transmission lines of a commercial power system.

4) 電気鉄道システムでは、商用電力系統から主たる電力の供給を受け輸送サービスを行ってきており、電気鉄道システム自体が経済的に成立したシステムであって、軌道上を走行する電車が電力を蓄える機能(たとえば走行中の電車は運動エネルギーとして)を有しており、また、これまでは、たとえば電車の減速時にブレーキをかけた際に発生する運動エネルギー(または位置エネルギー)は電力として回収されず、抵抗器で熱エネルギーに変換して廃棄するなど、電気鉄道システムには電力として回収できる要素が数多く存在していることから、電気鉄道システムは、電気エネルギーを運動エネルギーに変えたり、運動エネルギーを電気エネルギーに変えたりすることにより、結果的に電気エネルギーを蓄えることができる一種の電力貯蔵装置である。したがって、そのような電気鉄道システムをマイクログリッドに組み込んだことにより、電気鉄道システム自体を電力貯蔵装置として利用できる。   4) In electric railway systems, the main electric power supply from the commercial power system has been provided to provide transportation services. The electric railway system itself is an economically established system in which trains traveling on the track store electric power. It has a function (for example, a running train is used as kinetic energy), and so far, kinetic energy (or potential energy) generated when braking is applied, for example, when the train is decelerating has not been recovered as electric power. The electric railway system has many elements that can be recovered as electric power, such as converting it into heat energy with a resistor and discarding it. Therefore, the electric railway system converts electric energy into kinetic energy, A type of power storage that can store electrical energy as a result of changing to electrical energy. It is a device. Therefore, by incorporating such an electric railway system in the microgrid, the electric railway system itself can be used as a power storage device.

5) 本発明のマイクログリッドでは、電気鉄道システムにおける特に給電設備が、たとえば短時間(たとえば数十秒間)に大電流の電力を供給して電車を加速させる一方、減速中の電車が発電機を用いた、いわゆる回生ブレーキにて大電流の発電を行って回生電力を回収するなど、消費電力や回生電力がそれぞれパルス状で、消費と回生との平準化を図ることが難しく、たとえば電車の車両台数を多くして平準化したり、電車が電気エネルギーを運動エネルギーとして蓄えたりすることによって、現に両者の整合性が維持されている。一方、従来は蓄電池や発電装置などに頼ってマイクログリッドを構築してきたから、経済的に成立させるのに無理があったが、上記のような特長を備えた電気鉄道システムの、特に給電設備を利用することによって、マイクログリッドが経済的に成立できるようになる。   5) In the microgrid of the present invention, in particular, the power supply facility in the electric railway system supplies a large amount of electric power for a short time (for example, several tens of seconds) to accelerate the train, while the decelerating train uses the generator. The so-called regenerative brake is used to generate a large amount of current to collect regenerative power, and the power consumption and regenerative power are each pulsed, making it difficult to level consumption and regeneration. The consistency between the two is actually maintained by increasing the number of units and leveling the train, or by storing electric energy as kinetic energy. On the other hand, since the microgrid has been built by relying on storage batteries and power generation devices, it has been impossible to make it economically feasible. By doing so, a microgrid can be established economically.

6) たとえば請求項2に記載のように、き電線に二次電池を接続する場合に、二次電池を変電所に設置すれば、その二次電池を利用して電力の平準化を図れる。そして、変電所に設置される二次電池は、電車の力行と回生との間での電力の融通性だけでなく、自然エネルギーを利用した発電設備を設ける場合に、電力の需給のバランスを取るための電池としても役立つ。本来、電池を必要とする自然エネルギー利用の発電設備において、発電所に設置した電池で代用できることから、設備費が節減される。   6) For example, as described in claim 2, when a secondary battery is connected to a feeder, if the secondary battery is installed in a substation, the secondary battery can be used to level the power. Rechargeable batteries installed at substations balance power supply and demand when installing power generation facilities that use natural energy, as well as power flexibility between train powering and regeneration. Also useful as a battery for. Originally, in a power generation facility using natural energy that requires a battery, the battery installed in the power plant can be substituted, and thus the facility cost is reduced.

以下に、本発明に係る電気鉄道システムを利用したマイクログリッドについて、実施の形態を図面に基づいて説明する。   Below, an embodiment is described based on a drawing about a microgrid using an electric railway system concerning the present invention.

図1は本発明のマイクログリッドの実施例を概念的に示す構成図である。図2は本実施例のマイクログリッド1で利用した電気鉄道システムDにおける直流電化方式の給電系統の一例を示す説明図で、同時に直流変電所から電車への電気の流れの一例を示している。図3は本発明の実施例のマイクログリッド1で利用した電気鉄道システムDにおける負荷(電力消費)と発電(電力回収)とが短時間(たとえば数秒〜数十秒)の間でパルス状に変化する状態を表す、午前8時から8時5分までの間の電力変化と電圧変化のグラフである。   FIG. 1 is a block diagram conceptually showing an embodiment of a microgrid according to the present invention. FIG. 2 is an explanatory view showing an example of a DC electrification type power feeding system in the electric railway system D used in the microgrid 1 of this embodiment, and at the same time, shows an example of the flow of electricity from the DC substation to the train. FIG. 3 shows that the load (power consumption) and power generation (power recovery) in the electric railway system D used in the microgrid 1 of the embodiment of the present invention change in a pulse shape within a short time (for example, several seconds to several tens of seconds). It is a graph of the electric power change and voltage change between 8 am and 8: 5 showing the state to carry out.

本例のマイクログリッド1は、図1に示すように電気鉄道システムDを利用してマイクログリッドに組み込んだもので、軌道2に沿って駅舎3が設けられており、駅舎3間の軌道2上に複数両の電車4が複数組位置している。軌道2は、本例ではループ状に連続した主軌道2aと、この主軌道2aに直交する直線状の副軌道2bとからなるが、実際には、少なくとも複線の軌道が敷設された一定の地域をマイクログリッドの需要地域とすることができる。また、本発明のマイクログリッド1における電気鉄道システムDには、地上を走行する電車のほか、地下鉄、路面電車などが対象になる。   The microgrid 1 of this example is incorporated in the microgrid using an electric railway system D as shown in FIG. 1, and a station building 3 is provided along the track 2. In addition, a plurality of sets of multiple trains 4 are located. In this example, the track 2 is composed of a main track 2a that is continuous in a loop shape and a linear sub track 2b that is orthogonal to the main track 2a. In practice, however, the track 2 is at least a certain area where double track tracks are laid. Can be the demand area for microgrids. In addition, the electric railway system D in the microgrid 1 of the present invention is intended for a subway, a tram, etc. in addition to a train traveling on the ground.

また、本例で利用する電気鉄道システム(以下、電鉄システムという)Dは、直流電化方式の給電系統を備えており、図2に示すように商用電力系統Bの交流電源14から高圧送電線15で送られる交流電力を、電気鉄道変電所(以下、電鉄変電所という)Cを経由して変圧器C1で所定の電圧に降下させ、整流器C2で直流電力に変換したのち、電車4や駅舎3に供給している。すなわち、整流器C2は正側端子が電鉄変電所Cから軌道2と並行して敷設されているき電線5に、負側端子が帰線としての軌道(レール)2にそれぞれ配電線14で接続されている。各電車4には、き電線5を通して架線6より集電装置としてのパンタグラフ7を介して直流電力を供給している。そして、電車4に直流式走行用モータが搭載されている場合は直流電力をそのまま使用し、交流式走行用モータが搭載されている場合には車上の電力制御装置で交流に変換して使用する。駅舎3には、電鉄変電所Cからき電線5または高圧配電線(図示せず)で変圧器C1で降圧した交流電力を供給している。また、本例の場合は、電鉄変電所C内に二次電池9として後述するニッケル水素電池9aが設置されている。   In addition, the electric railway system (hereinafter referred to as electric railway system) D used in this example includes a DC electrification type power feeding system, and from the AC power source 14 of the commercial power system B to the high voltage transmission line 15 as shown in FIG. The AC power sent by the car is lowered to a predetermined voltage by the transformer C1 via the electric railway substation (hereinafter referred to as the electric railway substation) C, converted to DC power by the rectifier C2, and then the train 4 or the station building 3 To supply. That is, the rectifier C2 has a positive terminal connected to a feeder 5 laid in parallel with the track 2 from the railway substation C, and a negative terminal connected to a track 2 as a return line by a distribution line 14 respectively. ing. Each train 4 is supplied with DC power from the overhead line 6 through a feeder line 5 via a pantograph 7 as a current collector. If the train 4 is equipped with a direct current traveling motor, the direct current power is used as it is. If the alternating current traveling motor is mounted, the train 4 is used after being converted into alternating current by a power control device on the vehicle. To do. The station building 3 is supplied with AC power that has been stepped down by a transformer C1 from an electric railway substation C via a feeder line 5 or a high-voltage distribution line (not shown). In the case of this example, a nickel metal hydride battery 9a, which will be described later, is installed as a secondary battery 9 in the electric railway substation C.

これらの給電系統のうち、本例のマイクログリッド1では、き電線5をその送電線(自営線もしくは配電線)として使用している。このき電線5は、通常、電車4の運行に適した特性を備え、電気抵抗の少ない硬鋼の撚り線や硬アルミの撚り線が使用されており、しかも周辺とは十分に絶縁されているので、送電線としての品質が極めて高い。また、軌道2に沿って需要地域内に張り巡らされていることから、マイクログリッドの電力網として申し分ない。このため、たとえば軌道2から離れた工場などに後述する分散型電源装置8などの設備を設ける場合には、その設備とき電線5との間を接続する送電線12を敷設するだけで済む。また、本例のマイクログリッド1は、き電線5に接続される分散型電源装置8と二次電池9とを備えている。   Among these power supply systems, in the microgrid 1 of this example, the feeder 5 is used as its transmission line (self-operated line or distribution line). The feeder 5 is usually provided with characteristics suitable for the operation of the train 4, and uses a hard steel strand or a hard aluminum strand with low electrical resistance, and is sufficiently insulated from the surroundings. Therefore, the quality as a transmission line is extremely high. Moreover, since it is stretched around the demand area along the track 2, it is perfect as a power grid for a microgrid. Therefore, for example, when a facility such as a distributed power supply device 8 to be described later is provided in a factory or the like away from the track 2, it is only necessary to lay a power transmission line 12 that connects between the facility and the electric wire 5. Further, the microgrid 1 of this example includes a distributed power supply device 8 and a secondary battery 9 connected to the feeder 5.

分散型電源装置8には、ディーゼルエンジンやガスタービン、ガスエンジンなどの原動機を使う燃焼式発電機、風力発電機、太陽電池(太陽光発電機)、バイオマス発電装置、小水力発電機、燃料電池などがあるが、本例では、風力発電機8aと太陽電池8bとを例示している。太陽電池8bは駅舎3の屋根に設置し、き電線5に接続している。風力発電機8aは副軌道2bの駅舎3から少し離れた場所(図示せず)に設置しており、新たに敷設した送電線12を介してき電線5に接続している。太陽電池8bのように直流電力を発生する発電機においては、直流き電の場合はDC/AC変換器を介してき電線5に接続し、風力発電機のように通常、交流電力を発生する発電機の場合は交直変換機を介してき電線5に接続しなければならないことは、言うまでもない。   The distributed power unit 8 includes a combustion generator using a prime mover such as a diesel engine, a gas turbine, and a gas engine, a wind power generator, a solar cell (solar power generator), a biomass power generator, a small hydroelectric generator, and a fuel cell. In this example, the wind power generator 8a and the solar cell 8b are illustrated. The solar cell 8 b is installed on the roof of the station building 3 and connected to the feeder 5. The wind power generator 8a is installed at a location (not shown) slightly away from the station building 3 of the sub track 2b, and is connected to the feeder 5 via the newly laid transmission line 12. In a generator that generates DC power, such as the solar battery 8b, in the case of DC feeding, it is connected to the feeder 5 via a DC / AC converter, and normally generates AC power, such as a wind generator. In the case of a machine, it goes without saying that it must be connected to the electric wire 5 via an AC / DC converter.

二次電池9には、鉛蓄電池、ニッケル・カドミウム蓄電池、NAS(ナトリウム・硫黄)電池、大容量で急速充放電が可能な三次元構造のニッケル水素電池、リチウムイオン電池などがあるが、本例ではニッケル水素電池9aとリチウムイオン電池9bとを使用している。ニッケル水素電池9aはき電線5に直接に接続し、またリチウムイオン電池9bは充放電制御装置13としてのチョッパを介してき電線5に接続している。電鉄変電所C内に設置したニッケル水素電池9aは、き電線5に直接に接続している。すなわち、ニッケル水素電池9aの正極側端子は上記した一方の配電線14でき電線5に接続され、その負極側端子は他方の配電線14で帰線としての軌道2に接続されている。   Examples of the secondary battery 9 include a lead storage battery, a nickel / cadmium storage battery, a NAS (sodium / sulfur) battery, a three-dimensional nickel hydride battery capable of rapid charge / discharge with a large capacity, and a lithium ion battery. Uses a nickel metal hydride battery 9a and a lithium ion battery 9b. The nickel metal hydride battery 9 a is directly connected to the feeder 5, and the lithium ion battery 9 b is connected to the feeder 5 via a chopper as the charge / discharge control device 13. The nickel metal hydride battery 9 a installed in the electric railway substation C is directly connected to the feeder 5. That is, the positive electrode side terminal of the nickel metal hydride battery 9 a is connected to the electric wire 5 by the one distribution line 14 described above, and the negative electrode side terminal is connected to the track 2 as a return line by the other distribution line 14.

このように、上記の各二次電池9は、直接または充放電制御装置13を介してき電線5に接続しており、電力が不足して(架線6の電圧が降下し、引き続いてき電線5の電圧が降下した)ときに蓄電した電力をき電線5を経由して電車4などの負荷に供給する。一方、き電線5における電力が負荷に対して余剰になった(き電線5の電圧が上昇した)ときは、余剰な電力を二次電池9に充電して蓄電する。   In this way, each of the secondary batteries 9 is connected to the electric wire 5 directly or via the charge / discharge control device 13, and the power is insufficient (the voltage of the overhead wire 6 drops and the electric wire 5 continues to be connected). When the voltage drops), the stored electric power is supplied to the load such as the train 4 via the feeder 5. On the other hand, when the power in the feeder 5 becomes surplus with respect to the load (the voltage of the feeder 5 increases), the surplus power is charged in the secondary battery 9 and stored.

また、本例の電鉄システムDでは、各電車4には回生ブレーキが装備されており、電車4の減速時に回生ブレーキを使って制動することで回生電力が発生する。この回生電力は、たとえば近くに力行中の電車4があれば、き電線5もしくは架線6を経由して力行中の電車4に電力を供給することで、力行中の電車4の消費電力、き電線5や架線6の電圧の降下を防止することができる。また、近くに力行中の電車4がなければ、制動時に発生する回生電力が余剰な電力となるので、き電線5を経由して二次電池9に充電される。   In the electric railway system D of this example, each train 4 is equipped with a regenerative brake, and regenerative power is generated by braking using the regenerative brake when the train 4 decelerates. For example, if there is a power train 4 nearby, the regenerative power is supplied to the power train 4 via the feeder 5 or the overhead line 6 so that the power consumption of the train 4 during power The voltage drop of the electric wire 5 and the overhead wire 6 can be prevented. Further, if there is no power running train 4 nearby, the regenerative power generated during braking becomes surplus power, and the secondary battery 9 is charged via the feeder 5.

さらに、駅舎3にはエレベータ10が装備されており、このエレベータ10が降下するときの位置エネルギーを回生電力として回収し、き電線5を経由させて二次電池9に充電することができる。回生電力の回収は、たとえばエレベータ10が回生可能なインバータを備えていれば可能となる。   Further, the station building 3 is equipped with an elevator 10, and the potential energy when the elevator 10 descends can be recovered as regenerative power and charged to the secondary battery 9 via the feeder 5. Recovery of regenerative power is possible, for example, if the elevator 10 includes an inverter that can regenerate.

ところで、き電線5で供給される電力に適合するように、たとえば直流系で所定の電圧(たとえば、750Vまたは1500V)となるように、充放電制御装置13にて変換したのち、き電線5を通じて二次電池9に充電したり、加速中の電車4に供給したりする。太陽電池8bのように直流系の電気を発電する機器では、DC/DC変換機を用いて所定の電圧に調整した後にき電線5に接続する。また、回生電力を発生させる発電機や風力発電の発電機8aに直流発電機を用いれば、AC/DCコンバータなどの電力変換装置13が不要になる。   By the way, after being converted by the charge / discharge control device 13 so as to be a predetermined voltage (for example, 750 V or 1500 V) in the DC system so as to be adapted to the power supplied by the feeder 5, The secondary battery 9 is charged or supplied to the accelerating train 4. In a device that generates direct current electricity, such as the solar battery 8b, it is connected to the feeder 5 after being adjusted to a predetermined voltage using a DC / DC converter. In addition, if a DC generator is used for the generator for generating regenerative power or the generator 8a for wind power generation, the power conversion device 13 such as an AC / DC converter becomes unnecessary.

本例のマイクログリッド1は、図4に示すように電力のピーク出力時の時間帯が、電力の供給を受ける商用電力系統Bにおけるピーク出力の時間帯とずれている。このように、本例のマイクログリッド1と商用電力系統とは補完的な関係にあるので、商用電力系統と協調を図ることにより、地域における電力需要のバランスをとることができ、地域経済に有効に働く。   In the microgrid 1 of this example, as shown in FIG. 4, the time zone at the time of peak output of power is shifted from the time zone of peak output in the commercial power system B that receives power supply. Thus, since the microgrid 1 of this example and the commercial power system are in a complementary relationship, by coordinating with the commercial power system, the power demand in the region can be balanced and effective for the local economy. To work.

なお、マイクログリッド1から系統Bへ供給(売却)した電力量を計測するための電力取引用計器、たとえば計器用変圧変流器(MOF)16を電鉄変電所Cの受電点に設置する。この計器用変圧変流器16は、マイクログリッド1から商用電力系統Bへ電力を供給した際の電力量を計量する。   In addition, a power trading meter for measuring the amount of power supplied (sold) from the microgrid 1 to the system B, for example, a transformer for current transformer (MOF) 16 is installed at the receiving point of the electric railway substation C. The instrumental transformer current transformer 16 measures the amount of power when power is supplied from the microgrid 1 to the commercial power system B.

また、マイクログリッド1の電鉄システムDにおける電力のピーク出力時に、二次電池9から電力を補充することによって、商用電力系統Bから供給を受ける使用可能なピーク電力値を抑制して、コストダウンを図るようにしている。つまり、ピーク出力時(通常、ラッシュアワー時)にマイクログリッド1内に発生する電力需要のピーク電力値を二次電池9から放電させて補充することにより、商用電力系統Bから供給を受ける電力のピーク値を抑制し、契約電力料金を低減することができる。   In addition, by replenishing power from the secondary battery 9 at the time of peak power output in the electric grid system D of the microgrid 1, the usable peak power value received from the commercial power system B can be suppressed to reduce costs. I try to figure it out. In other words, the peak power value generated in the microgrid 1 during peak output (usually during rush hour) is discharged from the secondary battery 9 and supplemented to replenish the power supplied from the commercial power system B. The peak value can be suppressed, and the contract power charge can be reduced.

以上に本発明のマイクログリッドの実施例について説明したが、本発明のマイクログリッドは、つぎのように実施することができる。   Although the embodiment of the microgrid of the present invention has been described above, the microgrid of the present invention can be implemented as follows.

・上記実施例は直流電化方式の電鉄システムDと組み合わせたマイクログリッドについて説明したが、交流電化方式の電鉄システムと組み合わせてマイクログリッドを構成しても同様に実施できる。   -Although the said Example demonstrated the microgrid combined with the electric railway system D of a direct current electrification system, even if it comprises a microgrid in combination with the electric railway system of an alternating current electrification system, it can implement similarly.

・二次電池9に換えて、キャパシタや二重電気層キャパシタを使用できる。   A capacitor or a double electric layer capacitor can be used in place of the secondary battery 9.

本発明のマイクログリッドの実施例を概念的に示す構成図である。It is a block diagram which shows the Example of the microgrid of this invention notionally. 本実施例のマイクログリッド1で利用した電気鉄道システムDにおける直流電化方式の給電系統Eの一例を示す説明図で、同時に直流変電所から電車への電気の流れの一例を示している。It is explanatory drawing which shows an example of the electric power feeding system E of the direct current electrification system in the electric railway system D utilized with the microgrid 1 of a present Example, and shows simultaneously an example of the flow of electricity from a direct current substation to a train. 本実施例のマイクログリッド1で利用した電気鉄道システムDにおける負荷(電力消費)と発電(電力回収)とが短時間(たとえば数秒〜数十秒)の間でパルス状に変化する状態を表す、午前8時から8時5分までの間の電力変化と電圧変化のグラフである。The load (electric power consumption) and power generation (electric power recovery) in the electric railway system D used in the microgrid 1 of the present embodiment represents a state in which the pulse changes in a short time (for example, several seconds to several tens of seconds). It is a graph of the electric power change and voltage change between 8 am and 8:05. 商用電力系統Bにおける電力需要のピークが午後の2時前後の1回であるのに対し、電気鉄道システムDにおける電力需要のピークが早朝(午前7〜9時頃)と夕方(午後5〜8時頃)との2回であることを示す、1日の電力変化を表すグラフである。The peak of power demand in the commercial power system B is once around 2:00 in the afternoon, whereas the peak of power demand in the electric railway system D is early morning (around 7-9 am) and evening (5-8 pm). It is a graph showing the electric power change of the day which shows that it is 2 times. 種類の異なる二次電池のSOCに対する電圧変化を示すSOC特性図である。It is a SOC characteristic figure which shows the voltage change with respect to SOC of a secondary battery from which a kind differs.

符号の説明Explanation of symbols

1 マイクログリッド
2 軌道
2a主軌道
2b副軌道
3 駅舎
4 電車
5 き電線
6 架線
7 パンタグラフ
8 分散型電源装置
8a風力発電機
8b太陽電池(太陽光発電機)
9 二次電池
9aニッケル水素電池
9bリチウムイオン電池
12 送電線
13 電力変換装置(チョッパ、インバータ、コンバータなど)
15 高圧送電線
C 電気鉄道変電所(以下、電鉄変電所)
C1 変圧器
C2 整流器
D 電気鉄道システム(以下、電鉄システム)
DESCRIPTION OF SYMBOLS 1 Microgrid 2 Track 2a Main track 2b Sub track 3 Station building 4 Train 5 Feed wire 6 Overhead wire 7 Pantograph 8 Distributed power supply device 8a Wind power generator 8b Solar battery (solar power generator)
9 Secondary battery 9a Nickel metal hydride battery 9b Lithium ion battery 12 Transmission line 13 Power converter (chopper, inverter, converter, etc.)
15 High-voltage transmission line C Electric railway substation (hereinafter referred to as electric railway substation)
C1 transformer
C2 Rectifier D Electric railway system (hereinafter referred to as electric railway system)

Claims (9)

電気鉄道用変電所およびき電線を含む電気鉄道の給電設備を備えた電気鉄道システムにおいて、
前記き電線を送電線として使用することを特徴とする電気鉄道システムを利用したマイクログリッド。
In an electric railway system equipped with electric railway power supply facilities including electric railway substations and feeders,
A microgrid using an electric railway system, wherein the feeder is used as a transmission line.
二次電池を前記き電線に接続した請求項1に記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to claim 1, wherein a secondary battery is connected to the feeder. 前記二次電池がニッケル水素電池である請求項2に記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to claim 2, wherein the secondary battery is a nickel metal hydride battery. 自然エネルギーを利用した発電設備を前記き電線に接続した請求項1〜3のいずれかに記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to any one of claims 1 to 3, wherein a power generation facility using natural energy is connected to the feeder. 自家発電設備を前記き電線に接続した請求項1〜4のいずれかに記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to any one of claims 1 to 4, wherein a private power generation facility is connected to the feeder. 電力取引用計器を介して商用電力系統に前記き電線を接続した請求項1〜5のいずれかに記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to any one of claims 1 to 5, wherein the feeder is connected to a commercial power system via a power trading instrument. 電気鉄道車両の減速時に作動させる回生ブレーキを、前記電気鉄道車両に設けた請求項1〜5のいずれかに記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to any one of claims 1 to 5, wherein a regenerative brake that is operated when the electric railway vehicle is decelerated is provided in the electric railway vehicle. エレベータ、クレーンおよびその他の位置エネルギーが発生する機器に、位置エネルギーを回生電力に変換する手段を設けた請求項1〜5のいずれかに記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to any one of claims 1 to 5, wherein means for converting potential energy into regenerative power is provided in an elevator, a crane, and other devices that generate potential energy. 電動機、電磁石、変圧器およびその他の磁気エネルギーを発生する機器に、磁気エネルギーを回生電力に変換する手段を設けた請求項1〜5のいずれかに記載の電気鉄道システムを利用したマイクログリッド。   The microgrid using the electric railway system according to any one of claims 1 to 5, wherein means for converting magnetic energy into regenerative power is provided in an electric motor, an electromagnet, a transformer, and other devices that generate magnetic energy.
JP2008171515A 2008-06-30 2008-06-30 Microgrid using electric railway system Active JP5187624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008171515A JP5187624B2 (en) 2008-06-30 2008-06-30 Microgrid using electric railway system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008171515A JP5187624B2 (en) 2008-06-30 2008-06-30 Microgrid using electric railway system

Publications (2)

Publication Number Publication Date
JP2010011711A true JP2010011711A (en) 2010-01-14
JP5187624B2 JP5187624B2 (en) 2013-04-24

Family

ID=41591501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008171515A Active JP5187624B2 (en) 2008-06-30 2008-06-30 Microgrid using electric railway system

Country Status (1)

Country Link
JP (1) JP5187624B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102074952A (en) * 2010-12-03 2011-05-25 中国科学院广州能源研究所 Independent micro-grid system
JP2012017189A (en) * 2010-07-08 2012-01-26 Murata Machinery Ltd Traveling vehicle system
WO2013099171A1 (en) 2011-12-26 2013-07-04 株式会社 東芝 Transportation management device, transportation management system, and control program
JP2013141374A (en) * 2012-01-06 2013-07-18 Toshiba Corp Electric power supply system for electric railroad
CN103530822A (en) * 2013-10-23 2014-01-22 国家电网公司 Method for analyzing loss reduction potential of grids of Gansu Province
JP2014040127A (en) * 2012-08-21 2014-03-06 Mitsubishi Electric Corp Station building power supply device
CN103683323A (en) * 2013-11-21 2014-03-26 西安交通大学 Integrated grid connection device for household microgrids
WO2014049893A1 (en) * 2012-09-28 2014-04-03 株式会社 東芝 Railway power management device, railway power management method, and railway power management program
KR101391124B1 (en) * 2012-11-08 2014-05-02 한국철도기술연구원 Integration energy management system for railway power grid
JP2015036280A (en) * 2013-08-12 2015-02-23 株式会社東芝 Railway feeding system, feeding controller, and electrical storage device
KR20150115144A (en) * 2014-04-02 2015-10-14 한국철도기술연구원 Train station power management apparatus
CN106611963A (en) * 2016-07-14 2017-05-03 中国能源建设集团甘肃省电力设计院有限公司 Power supply system and power supply method for railways in desert areas based on wind-photovoltaic complementary power generation
US10020653B2 (en) 2013-11-28 2018-07-10 Mitsubishi Electric Corporation Station-building power supply device
CN108336727A (en) * 2018-01-23 2018-07-27 西南交通大学 A kind of new energy supply system and control method for through traction power supply

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129334A (en) * 1978-03-29 1979-10-06 Sumitomo Electric Ind Ltd Alternating current direct current duplicating application
JPS54129333A (en) * 1978-03-29 1979-10-06 Sumitomo Electric Ind Ltd Alternating current direct current duplicating application
JPS6331837A (en) * 1986-07-24 1988-02-10 Toshiba Corp Protection of feeder for a.c. electric railroad
JP2000004507A (en) * 1998-06-15 2000-01-07 Okamura Kenkyusho:Kk Electric railway feeding system and electric car thereof
JP2000092716A (en) * 1998-09-07 2000-03-31 Nissin Electric Co Ltd Electric railroad power feeding device
JP2001354053A (en) * 2000-06-14 2001-12-25 Toshiba Corp Feed system
JP2002058164A (en) * 2000-08-04 2002-02-22 Matsushita Electric Ind Co Ltd Power supply
JP2003220859A (en) * 2002-01-30 2003-08-05 Hitachi Ltd Power accumulation unit for dc electrical equipment and railway electrical system
JP2005162076A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter
JP2006062427A (en) * 2004-08-25 2006-03-09 Hitachi Ltd Power converter, power conversion system, and its controlling method
JP2006156310A (en) * 2004-12-01 2006-06-15 Sumitomo Electric Ind Ltd Power cable line
JP2006168390A (en) * 2004-12-13 2006-06-29 Toyo Electric Mfg Co Ltd Control device of feeder system power storage system
JP2007210513A (en) * 2006-02-10 2007-08-23 Meidensha Corp Dc power storage device
JP2008032229A (en) * 2003-01-20 2008-02-14 Hitachi Ltd Regeneration control service providing method

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54129334A (en) * 1978-03-29 1979-10-06 Sumitomo Electric Ind Ltd Alternating current direct current duplicating application
JPS54129333A (en) * 1978-03-29 1979-10-06 Sumitomo Electric Ind Ltd Alternating current direct current duplicating application
JPS6331837A (en) * 1986-07-24 1988-02-10 Toshiba Corp Protection of feeder for a.c. electric railroad
JP2000004507A (en) * 1998-06-15 2000-01-07 Okamura Kenkyusho:Kk Electric railway feeding system and electric car thereof
JP2000092716A (en) * 1998-09-07 2000-03-31 Nissin Electric Co Ltd Electric railroad power feeding device
JP2001354053A (en) * 2000-06-14 2001-12-25 Toshiba Corp Feed system
JP2002058164A (en) * 2000-08-04 2002-02-22 Matsushita Electric Ind Co Ltd Power supply
JP2003220859A (en) * 2002-01-30 2003-08-05 Hitachi Ltd Power accumulation unit for dc electrical equipment and railway electrical system
JP2008032229A (en) * 2003-01-20 2008-02-14 Hitachi Ltd Regeneration control service providing method
JP2005162076A (en) * 2003-12-04 2005-06-23 Hitachi Ltd Method and device for controlling regenerative power absorption for electric railroad, and control device for power converter
JP2006062427A (en) * 2004-08-25 2006-03-09 Hitachi Ltd Power converter, power conversion system, and its controlling method
JP2006156310A (en) * 2004-12-01 2006-06-15 Sumitomo Electric Ind Ltd Power cable line
JP2006168390A (en) * 2004-12-13 2006-06-29 Toyo Electric Mfg Co Ltd Control device of feeder system power storage system
JP2007210513A (en) * 2006-02-10 2007-08-23 Meidensha Corp Dc power storage device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017189A (en) * 2010-07-08 2012-01-26 Murata Machinery Ltd Traveling vehicle system
US8612110B2 (en) 2010-07-08 2013-12-17 Murata Machinery, Ltd. Traveling vehicle system and traveling control method
CN102074952A (en) * 2010-12-03 2011-05-25 中国科学院广州能源研究所 Independent micro-grid system
WO2013099171A1 (en) 2011-12-26 2013-07-04 株式会社 東芝 Transportation management device, transportation management system, and control program
JP2013141374A (en) * 2012-01-06 2013-07-18 Toshiba Corp Electric power supply system for electric railroad
JP2014040127A (en) * 2012-08-21 2014-03-06 Mitsubishi Electric Corp Station building power supply device
WO2014049893A1 (en) * 2012-09-28 2014-04-03 株式会社 東芝 Railway power management device, railway power management method, and railway power management program
JP2014073014A (en) * 2012-09-28 2014-04-21 Toshiba Corp Railway power management device
KR101391124B1 (en) * 2012-11-08 2014-05-02 한국철도기술연구원 Integration energy management system for railway power grid
EP2837525A3 (en) * 2013-08-12 2015-12-02 Kabushiki Kaisha Toshiba Electric railcar power feeding system, power feeding device, and power storage device
US9873335B2 (en) 2013-08-12 2018-01-23 Kabushiki Kaisha Toshiba Electric railcar power feeding system, power feeding device, and power storage device
JP2015036280A (en) * 2013-08-12 2015-02-23 株式会社東芝 Railway feeding system, feeding controller, and electrical storage device
CN104369677A (en) * 2013-08-12 2015-02-25 株式会社东芝 Electric railcar power feeding system, power feeding device, and power storage device
CN103530822A (en) * 2013-10-23 2014-01-22 国家电网公司 Method for analyzing loss reduction potential of grids of Gansu Province
CN103683323B (en) * 2013-11-21 2015-12-09 西安交通大学 The integrated grid-connecting apparatus of a kind of family expenses microgrid
CN103683323A (en) * 2013-11-21 2014-03-26 西安交通大学 Integrated grid connection device for household microgrids
US10020653B2 (en) 2013-11-28 2018-07-10 Mitsubishi Electric Corporation Station-building power supply device
KR20150115144A (en) * 2014-04-02 2015-10-14 한국철도기술연구원 Train station power management apparatus
KR101636898B1 (en) * 2014-04-02 2016-07-07 한국철도기술연구원 Train station power management apparatus
CN106611963A (en) * 2016-07-14 2017-05-03 中国能源建设集团甘肃省电力设计院有限公司 Power supply system and power supply method for railways in desert areas based on wind-photovoltaic complementary power generation
CN108336727A (en) * 2018-01-23 2018-07-27 西南交通大学 A kind of new energy supply system and control method for through traction power supply
CN108336727B (en) * 2018-01-23 2023-11-24 西南交通大学 New energy supply system for through traction power supply and control method

Also Published As

Publication number Publication date
JP5187624B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5187624B2 (en) Microgrid using electric railway system
Khodaparastan et al. Recuperation of regenerative braking energy in electric rail transit systems
US8684150B2 (en) Control assembly and control method for supplying power to electrified rail vehicles
EP0755088B1 (en) Regenerative power system
Mwambeleko et al. Battery electric multiple units to replace diesel commuter trains serving short and idle routes
Ogasa Application of energy storage technologies for electric railway vehicles—examples with hybrid electric railway vehicles
Nasr et al. Smart micro-grid integration in DC railway systems
KR101194302B1 (en) Electric energy saving system, electric energy saving method, electric power providing system, billing system and method for recharging electric car
Konishi et al. Fixed energy storage technology applied for DC electrified railway
JP2017158356A (en) Power supply system
JP2010115009A (en) Port microgrid
TW201351834A (en) Electric power supply network linked to a transport system
Hillmansen Sustainable traction drives
Raustad The role of V2G in the smart grid of the future
WO2019040488A1 (en) Hybrid wayside energy recovery systems
KR101440984B1 (en) Electric energy saving system, electric energy saving method, electric power providing system, billing system and method for recharging electric car
Gabbar et al. Resilient interconnected microgrids for subway networks
Xing et al. Review of Regenerative Braking Energy Storage and Utilization Technology in Urban Rail Transit
Ratniyomchai Optimal design and control of stationary electrochemical double-layer capacitors for light railways
Mlindelwa et al. Overview of the challenges, developments, and solutions for electric vehicle charging infrastructure
Ashkezari et al. Integration of E-bus Opportunity Chargers to the Voltage-Stabilized DC Railway Grid
Nimje et al. Capacity Estimation of Electric Vehicle Aggregator for Ancillary Services to the Grid
Golnargesi Hybrid energy storage system for recovering regenerative braking energy of railway systems taking advantage of EVs battery
Ahmad Re-Envisioning Electric Railway Power Systems in Dense Urban Regions
KR20150120604A (en) Apparatus for compensating voltage drop

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5187624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250