[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010008133A - Portable charger, and deterioration diagnosis method of secondary battery used therefor - Google Patents

Portable charger, and deterioration diagnosis method of secondary battery used therefor Download PDF

Info

Publication number
JP2010008133A
JP2010008133A JP2008165569A JP2008165569A JP2010008133A JP 2010008133 A JP2010008133 A JP 2010008133A JP 2008165569 A JP2008165569 A JP 2008165569A JP 2008165569 A JP2008165569 A JP 2008165569A JP 2010008133 A JP2010008133 A JP 2010008133A
Authority
JP
Japan
Prior art keywords
secondary battery
control unit
voltage
charging
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008165569A
Other languages
Japanese (ja)
Inventor
Takashi Matsuda
考史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008165569A priority Critical patent/JP2010008133A/en
Publication of JP2010008133A publication Critical patent/JP2010008133A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】個々の二次電池の劣化の程度や組込み時の充電電気量差に影響されることなく、迅速に劣化度合いを予測し、かつ劣化の程度や充電電気量が異なる二次電池を安全に充電することが可能な携帯型充電器およびその劣化診断方法を安価に提供する。
【解決手段】二次電池を2セル以上交換可能に収納可能な携帯型充電器において、0.1〜0.3Cの電流で所定時間充電を行う予備充電により、予備充電直前と予備充電中の電池電圧の差に基づき劣化度合いを診断し、劣化の疑いがある二次電池が存在した場合、満充電状態にまで充電した後、パルス放電をし、パルス放電直前とパルス放電中の電池電圧の差およびパルス放電時の電流量を用いて二次電池内部抵抗値を算出し、算出した内部抵抗値に基づいて二次電池の劣化の程度を診断するとともに、充電制御においては、二次電池を個別充電することで劣化の程度や組込み時の充電電気量が異なる二次電池を安全に充電する。
【選択図】図1
[PROBLEMS] To quickly predict the degree of deterioration without being affected by the degree of deterioration of individual secondary batteries and the difference in charge amount when assembled, and to safely use secondary batteries with different degrees of deterioration and charge amounts. A portable charger and a method for diagnosing its deterioration can be provided at low cost.
In a portable charger capable of storing two or more rechargeable batteries in a replaceable manner, preliminary charging is performed for a predetermined time at a current of 0.1 to 0.3 C. Diagnose the degree of deterioration based on the difference in battery voltage, and if there is a secondary battery that is suspected of being deteriorated, charge it to a fully charged state, then perform pulse discharge, and check the battery voltage immediately before and during pulse discharge. The secondary battery internal resistance value is calculated using the difference and the amount of current during pulse discharge, and the degree of deterioration of the secondary battery is diagnosed based on the calculated internal resistance value. By charging individually, secondary batteries with different degrees of deterioration and the amount of charge when assembled are safely charged.
[Selection] Figure 1

Description

本発明は、二次電池を2セル以上交換可能に収納可能な携帯型充電器に関するものであり、より詳しくはその二次電池の劣化診断方法並びに充電方法に関するものである。   The present invention relates to a portable charger that can store two or more rechargeable batteries in a replaceable manner, and more particularly to a deterioration diagnosis method and a charging method for the rechargeable battery.

二次電池を用いた機器は、二次電池の電圧、充放電電流、温度等を監視し、その充放電の制御、残量推定、劣化診断等を行う電池管理装置を備える。一般にこのような電池管理装置は、二次電池と一体化して電池パックを構成している。電池管理装置に用いる電池の劣化診断方法としては、電池の内部抵抗に基づいて電池の劣化を判定する方法が一般的であり、二次電池の複数のセル電池が直列接続された組電池の正負両端子間に定電流による短時間パルスの放電回路を接続し、組電池を短時間放電せしめ、この短時間放電中の所定の時間帯の電池電圧の変化の程度から放電容量、出力特性の低下などの劣化を判定することを行っている(例えば、特許文献1参照)。   A device using a secondary battery includes a battery management device that monitors the voltage, charge / discharge current, temperature, and the like of the secondary battery and performs charge / discharge control, remaining amount estimation, deterioration diagnosis, and the like. In general, such a battery management device is integrated with a secondary battery to form a battery pack. As a method for diagnosing the deterioration of a battery used in a battery management device, a method for determining the deterioration of a battery based on the internal resistance of the battery is generally used. The positive / negative of a battery pack in which a plurality of secondary battery cells are connected in series. A short-circuit pulse discharge circuit with a constant current is connected between both terminals to discharge the assembled battery for a short time, and the discharge capacity and output characteristics decrease from the degree of change in the battery voltage during the predetermined time zone during this short-time discharge. Etc. are determined (for example, refer to Patent Document 1).

また、トリクル充電中の組電池の両端の電圧と基準電圧とを比較回路で比較し、組電池の両端の電圧が基準電圧以上になった段階で劣化と判断する方法も提案されている。劣化した電池は、内部抵抗が大きくなるため、1/20C程度のトリクル充電においても、その電圧は正常な電池のそれよりも高くなる。そこで、トリクル充電中の電圧が規定値よりも大きくなった場合に、劣化したと判定するものである(例えば、特許文献2参照)。
特開2001−296341号公報 特開平08−293329号公報
In addition, a method has also been proposed in which the voltage at both ends of the assembled battery during trickle charging is compared with a reference voltage by a comparison circuit, and the deterioration is determined when the voltage at both ends of the assembled battery becomes equal to or higher than the reference voltage. Since the internal resistance of the deteriorated battery increases, the voltage becomes higher than that of a normal battery even in trickle charging of about 1 / 20C. Therefore, when the voltage during trickle charging becomes larger than a specified value, it is determined that the battery has deteriorated (for example, see Patent Document 2).
JP 2001-296341 A Japanese Patent Laid-Open No. 08-293329

特許文献1に開示されているように、二次電池を定電流でパルス放電させる方法によると、ある程度正確に電池の劣化を推定することができる。しかしながら、二次電池は、化学反応によって電気を発生しているため、同じ活性物質や定格のものであっても、個々の放置状態、使用状態、温度環境等によって現在の内部抵抗が異なる。その結果、劣化状態を正確に推定するためには、予め長期間に亘って実測データを収集しデータテーブルを設定する必要がある。その他、特許文献2に開示されているように、トリクル充電中の電池電圧を検出する方法も提案されているが、この方法によると、劣化診断の精度が悪く大まかな判定しかできない。   As disclosed in Patent Document 1, according to the method in which the secondary battery is pulse-discharged with a constant current, the deterioration of the battery can be estimated with a certain degree of accuracy. However, since the secondary battery generates electricity by a chemical reaction, even if it is the same active substance or rated one, the current internal resistance differs depending on the individual neglected state, use state, temperature environment, and the like. As a result, in order to accurately estimate the deterioration state, it is necessary to collect actually measured data over a long period of time and set a data table. In addition, as disclosed in Patent Document 2, a method for detecting the battery voltage during trickle charging has been proposed. However, according to this method, the accuracy of deterioration diagnosis is poor and only rough determination can be made.

さらに、このような劣化診断方法を適用できる電池は限定される。すなわち、ニッケル・カドミウム二次電池等、連続トリクル充電が可能な二次電池にのみ適用可能であって、その他の二次電池、例えばニッケル・水素二次電池、鉛酸蓄電池やリチウムイオン二次電池等に適用することは困難である。ニッケル・水素二次電池は、過充電を防止するために間欠充電を必要とする。また、鉛酸蓄電池やリチウムイオン二次電池においては、定電圧充電を行う必要がある。   Furthermore, the batteries to which such a deterioration diagnosis method can be applied are limited. That is, it can be applied only to secondary batteries capable of continuous trickle charge, such as nickel / cadmium secondary batteries, and other secondary batteries such as nickel / hydrogen secondary batteries, lead acid storage batteries and lithium ion secondary batteries. Etc. are difficult to apply. Nickel-hydrogen secondary batteries require intermittent charging to prevent overcharging. Moreover, in a lead acid storage battery and a lithium ion secondary battery, it is necessary to perform constant voltage charge.

本発明は、複数の二次電池の劣化診断方法に関し、制御部が発する指令信号に基づいて前記各二次電池を個別に充電する充電路を形成するステップと、前記制御部が発する指令信号に基づいて前記各二次電池の電圧を検出するステップと、前記制御部が発する指令信号に基づいて前記各二次電池を0.1〜0.3Cの電流で所定時間充電する予備充電において、前記制御部が発する指令信号に基づいて予備充電中の前記各二次電池の電圧を検出するステップと、前記両電圧の差を算出し、両電圧の差に基づいて前記各二次電池の劣化
度合いを診断するステップと、前記制御部が発する指令信号に基づいて前記二次電池を個別に満充電となるまで充電するステップと、劣化の疑いがある二次電池が存在した場合、前記制御部が発する指令信号に基づいて前記二次電池を直列に接続して放電する放電路を形成するステップと、前記制御部が発する指令信号に基づいて前記二次電池を定電流でパルス放電させながら、パルス放電中の前記二次電池の電圧を検出するステップと、前記両電圧の差およびパルス放電時の電流量を用いて前記二次電池の内部抵抗値を算出するステップと、前記内部抵抗値に基づいて前記二次電池の劣化の程度を診断するステップとを具備する。
The present invention relates to a plurality of secondary battery deterioration diagnosis methods, the step of forming a charging path for individually charging each secondary battery based on a command signal issued by a control unit, and the command signal issued by the control unit. A step of detecting the voltage of each secondary battery based on the above, and a preliminary charging for charging each secondary battery with a current of 0.1 to 0.3 C for a predetermined time based on a command signal issued by the control unit, Detecting a voltage of each secondary battery during pre-charging based on a command signal issued by the control unit; calculating a difference between the two voltages; and a degree of deterioration of each secondary battery based on the difference between the two voltages If there is a secondary battery that is suspected of being deteriorated, a step of charging the secondary battery individually until it is fully charged based on a command signal issued by the control unit, the control unit To the command signal Therefore, the secondary battery is connected in series to form a discharge path for discharging, and the secondary battery is pulse-discharged with a constant current based on a command signal issued by the control unit, A step of detecting a voltage of the secondary battery; a step of calculating an internal resistance value of the secondary battery using a difference between the two voltages and a current amount during pulse discharge; and the secondary battery based on the internal resistance value. Diagnosing the degree of deterioration of the battery.

本発明の携帯型充電器は、(a)二次電池を2セル以上交換可能に収納可能な携帯型充電器であって、制御部が発する指令信号に基づいて前記二次電池を個別に充電する充電路を複数のスイッチング素子によって形成する手段と、(b)前記制御部が発する指令信号に基づいて前記各二次電池の電圧を検出する手段と、(c)前記制御部が発する指令信号に基づいて前記各二次電池を0.1〜0.3Cの電流で所定時間充電する予備充電において、前記制御部が発する指令信号に基づいて予備充電中の前記各二次電池の電圧を検出する手段と、(d)前記両電圧の差を算出し、両電圧の差に基づいて予め設定されたデータテーブルと比較し、前記各二次電池のおおよその劣化度合いを診断する手段と、(e)前記制御部が発する指令信号に基づいて2セル以上交換可能に収容された前記二次電池を個別に電圧監視しながら定電流充電し、前記二次電池の電圧が最大値から充電時の電圧降下である−ΔVの値が設定値を超えた時点で充電電流を減少させた後、更に定められた時間だけ充電して充電停止する手段と、(f)前記二次電池において、ひとつでも劣化の疑いがある二次電池が存在した場合、前記制御部が発する指令信号に基づいて前記二次電池を直列に接続して放電する放電路を前記複数のスイッチング素子によって形成する手段と、(g)前記制御部が発する指令信号に基づいて前記二次電池の電圧を検出する手段と、(h)前記制御部が発する指令信号に基づいて前記二次電池を定電流でパルス放電させながら、パルス放電中の前記二次電池の電圧を検出する手段と、(i)前記両電圧の差およびパルス放電時の電流量を用いて前記二次電池の内部抵抗値を算出する手段と、(j)得られた前記内部抵抗値を予め設定されたデータテーブルと比較し、前記二次電池の劣化の程度を診断する手段を具備する。   The portable charger of the present invention is (a) a portable charger capable of storing two or more secondary batteries in a replaceable manner, and individually charging the secondary batteries based on a command signal issued by a control unit. Means for forming a charging path by a plurality of switching elements, (b) means for detecting the voltage of each secondary battery based on a command signal issued by the control unit, and (c) a command signal issued by the control unit In the preliminary charging in which each secondary battery is charged with a current of 0.1 to 0.3 C for a predetermined time based on the voltage, the voltage of each secondary battery during the preliminary charging is detected based on a command signal issued by the control unit (D) calculating a difference between the two voltages, comparing with a preset data table based on the difference between the two voltages, and diagnosing an approximate deterioration degree of each secondary battery; e) based on a command signal issued by the control unit. The secondary batteries accommodated in an exchangeable manner in two or more cells are charged with a constant current while individually monitoring the voltage, and the voltage of the secondary battery is a voltage drop at the time of charging from the maximum value -ΔV is a set value (F) In the secondary battery, there is a secondary battery that is suspected of being deteriorated. A means for connecting the secondary batteries in series on the basis of a command signal issued by the control unit to form a discharge path for discharging by the plurality of switching elements; and (g) based on the command signal issued by the control unit. Means for detecting the voltage of the secondary battery, and (h) based on a command signal issued by the control unit, the secondary battery is pulse-discharged at a constant current, and the voltage of the secondary battery during pulse discharge is determined. Means for detecting, ( i) means for calculating the internal resistance value of the secondary battery using the difference between the two voltages and the current amount during pulse discharge; and (j) comparing the obtained internal resistance value with a preset data table. And means for diagnosing the degree of deterioration of the secondary battery.

また、前記二次電池の出力を電源とし、前記制御部が発する指令信号に基づいて出力電圧および出力電流を設定かつ維持可能な出力制御手段と、携帯電子機器を接続することにより、前記出力制御手段の出力を前記携帯電子機器に供給可能または前記携帯電子機器を充電可能とする出力端子とを具備することもできる。
本発明の携帯型充電器は、さらに、上記手段(d)または(j)で得られた情報を、機器使用者に通知する手段を具備することが好ましい。
Further, the output control is performed by connecting the portable electronic device with output control means that uses the output of the secondary battery as a power source and can set and maintain an output voltage and an output current based on a command signal issued by the control unit. An output terminal capable of supplying the output of the means to the portable electronic device or charging the portable electronic device can be provided.
The portable charger of the present invention preferably further comprises means for notifying the user of the information obtained by the means (d) or (j).

本発明によると、電池の種類に関わらず精度よく電池の劣化を診断することができる携帯型充電器用の二次電池の劣化診断方法を安価に提供することができる。また、劣化の程度や充電電気量が異なる二次電池を安全に充電することが可能な携帯型充電器を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the deterioration diagnostic method of the secondary battery for portable chargers which can diagnose the deterioration of a battery accurately irrespective of the kind of battery can be provided at low cost. In addition, it is possible to provide a portable charger that can safely charge secondary batteries having different degrees of deterioration and different amounts of charged electricity.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
本実施の形態1では、二次電池の劣化を検出する手段について説明する。図1に、本発明の実施の形態1の二次電池2セルの場合の携帯型充電器の構成を示す概略のブロック図、図2に同携帯型充電器内の電池管理装置に用いるパルス放電手段の構成を示す概略のブ
ロック図、図3に同携帯型充電器内の電池管理装置に用いる直並列切替手段の構成を示す概略のブロック図を示す。電池管理装置1aは、交換可能に収納された二次電池2セルからなる組電池2と一体化され、携帯型充電器3を構成する。入力端子部Tiに外部機器4を接続することにより、組電池2を充電可能となる。
(Embodiment 1)
In the first embodiment, a means for detecting deterioration of the secondary battery will be described. FIG. 1 is a schematic block diagram showing the configuration of a portable charger in the case of two secondary batteries according to Embodiment 1 of the present invention, and FIG. 2 shows pulse discharge used for a battery management device in the portable charger. FIG. 3 is a schematic block diagram showing the configuration of the means, and FIG. 3 is a schematic block diagram showing the configuration of the series-parallel switching means used in the battery management device in the portable charger. The battery management device 1a is integrated with an assembled battery 2 composed of two secondary batteries housed in a replaceable manner, and constitutes a portable charger 3. The battery pack 2 can be charged by connecting the external device 4 to the input terminal portion Ti.

直並列切替手段11は、図3に示す構成を有し、充電スイッチ素子SW1およびSW2と放電スイッチ素子SW3により構成される。充電スイッチ素子SW1は、接地と二次電池B1の負極の間に、充電スイッチ素子SW2は、充電制御手段9と二次電池B2の正極の間に、放電スイッチ素子SW3は、二次電池B1の負極と二次電池B2の正極の間に設けられる。   The series-parallel switching unit 11 has the configuration shown in FIG. 3 and is composed of charge switch elements SW1 and SW2 and a discharge switch element SW3. The charge switch element SW1 is between the ground and the negative electrode of the secondary battery B1, the charge switch element SW2 is between the charge control means 9 and the positive electrode of the secondary battery B2, and the discharge switch element SW3 is between the secondary battery B1. It is provided between the negative electrode and the positive electrode of the secondary battery B2.

制御部8は、電池電圧検出手段5によって、組電池2およびそれを構成する二次電池B1およびB2の出力電圧をそれぞれ検出する。また、制御部8は、電池温度検出手段6およびサーミスタ7によって、組電池2およびそれを構成する二次電池B1およびB2の温度を検出する。 制御部8は、電池電圧検出手段5および電池温度検出手段6によって検出された情報に基づいて充電制御手段9を作動させる。制御部8は、充電制御手段9に指令信号を発して、組電池2を予備充電電流(例えば0.1〜0.3Cの電流)で所定時間充電するとともに、電池電圧検出手段5に予備充電前および予備充電中の電池電圧を検出させ、両電圧の差に基づきおおよその劣化度合いを診断する。制御部8は、組電池2を満充電状態にまで充電した後、劣化の疑いがある二次電池が存在した場合、パルス放電手段12に指令信号を発して、組電池2を定電流でパルス放電させる。   The control unit 8 detects the output voltages of the assembled battery 2 and the secondary batteries B1 and B2 constituting the battery pack 2 by the battery voltage detection means 5, respectively. Moreover, the control part 8 detects the temperature of the assembled battery 2 and the secondary batteries B1 and B2 which comprise it with the battery temperature detection means 6 and the thermistor 7. FIG. The control unit 8 operates the charge control unit 9 based on the information detected by the battery voltage detection unit 5 and the battery temperature detection unit 6. The control unit 8 issues a command signal to the charge control means 9 to charge the assembled battery 2 with a precharge current (for example, a current of 0.1 to 0.3 C) for a predetermined time and to precharge the battery voltage detection means 5. The battery voltage during pre-charging and pre-charging is detected, and the approximate degree of deterioration is diagnosed based on the difference between the two voltages. After charging the assembled battery 2 to a fully charged state, when the secondary battery suspected of deterioration exists, the control unit 8 issues a command signal to the pulse discharging means 12 to pulse the assembled battery 2 with a constant current. Discharge.

パルス放電手段12の定電流放電回路は、例えば 図2に示す構成を有する。マイクロコンピュータ13にはCMOSが内蔵されていて、CMOS入力ポート13aには外部より定電圧Vddが 印加されている。一方、CMOS出力ポート13bはトランジスタ14のベースと接続されている。複数個直列接続された単電池からなる組電池2の正極はトランジスタ14のコレクタに接続されていて、負極は接地されている。トランジスタ14のエミッタは、抵抗15を介して接地されている。トランジスタ14のベース電圧をVfとし、抵抗15の抵抗値をRとすると、CMOSのプッシュプルポートをHighにしたときに図中矢印方向に流れる電流Icは、次の数式1で求まる。   The constant current discharge circuit of the pulse discharge means 12 has a configuration shown in FIG. 2, for example. The microcomputer 13 has a built-in CMOS, and a constant voltage Vdd is applied to the CMOS input port 13a from the outside. On the other hand, the CMOS output port 13 b is connected to the base of the transistor 14. The positive electrode of the assembled battery 2 composed of a plurality of cells connected in series is connected to the collector of the transistor 14 and the negative electrode is grounded. The emitter of the transistor 14 is grounded via a resistor 15. Assuming that the base voltage of the transistor 14 is Vf and the resistance value of the resistor 15 is R, the current Ic flowing in the direction of the arrow in the figure when the CMOS push-pull port is set to High is obtained by the following Equation 1.

Figure 2010008133
Figure 2010008133

上記の数式において例えば、Vdd=5.0V、Vf=0.7V、およびR=4.3Ωとすると、放電電流Icを1Aとすることができる。   For example, when Vdd = 5.0V, Vf = 0.7V, and R = 4.3Ω in the above formula, the discharge current Ic can be 1A.

制御部8は、パルス放電手段12に指令信号を発して、前述のようにして組電池2を定電流でパルス放電させ、放電前および放電中の電池電圧(それぞれVoおよびVpdとする)を検出させる。制御部8は、得られた電池電圧VoおよびVpdとそのときの放電電流量(それぞれIoおよびIpdとする)を以下の数式2に代入し、電池の内部抵抗Rbを算出する。   The control unit 8 issues a command signal to the pulse discharging means 12 to pulse discharge the assembled battery 2 with a constant current as described above, and detect the battery voltages before discharge and during discharge (referred to as Vo and Vpd, respectively). Let The control unit 8 substitutes the obtained battery voltages Vo and Vpd and the discharge current amounts at that time (respectively, Io and Ipd) into the following Equation 2, and calculates the internal resistance Rb of the battery.

Figure 2010008133
Figure 2010008133

なお、Ipdは、内部抵抗Rbの測定精度およびパルス放電手段12の定電流放電回路
の許容値を参酌して決定される。制御部8は、Rbを算出すると、この値と内蔵されたROM等の記憶手段に記録されたしきい値Rtとを比較し、RbがRtよりも大きければ、単電池が劣化したと判定する。なお、しきい値Rtには、二次電池B1およびB2の温度を参酌し補正を加える。制御部8は、得られた情報を必要に応じて通知手段10によって機器使用者に通知する。通知手段10には、例えば、情報を表示する液晶ディスプレイやLED、警告音を発するスピーカ、振動を発するバイブレータ等を用いる。
Ipd is determined in consideration of the measurement accuracy of the internal resistance Rb and the allowable value of the constant current discharge circuit of the pulse discharge means 12. After calculating Rb, the control unit 8 compares this value with a threshold value Rt recorded in a storage means such as a built-in ROM. If Rb is larger than Rt, the control unit 8 determines that the unit cell has deteriorated. . The threshold value Rt is corrected by taking into account the temperatures of the secondary batteries B1 and B2. The control unit 8 notifies the device user of the obtained information by the notification means 10 as necessary. For the notification means 10, for example, a liquid crystal display or LED that displays information, a speaker that emits a warning sound, a vibrator that emits vibration, or the like is used.

図4は図1に示す携帯型充電器の動作を説明するフローチャートである。図4のフローチャートを用いて、本実施例の手順をさらに詳しく説明する。まず、ステップ101において、制御部8により外部機器4の接続の有無をチェックし、充電動作を開始するか否かを判断する。外部機器4の接続を確認できた場合は、ステップ102へ進み、制御部8は、電池温度検出手段6およびサーミスタ7によって、組電池2を構成する二次電池B1およびB2の温度をそれぞれ検出した後、ステップ103へ進み、制御部8は、電池電圧検出手段5により組電池2を構成する二次電池B1およびB2の出力電圧(それぞれVob1、Vob2とする)を検出する。制御部8は、電池電圧検出手段5および電池温度検出手段6によって検出された情報に基づいてステップ104へ進み、直並列切替手段11を制御し順次接点を切り替え、二次電池B1およびB2を充電する。   FIG. 4 is a flowchart for explaining the operation of the portable charger shown in FIG. The procedure of this embodiment will be described in more detail using the flowchart of FIG. First, in step 101, the control unit 8 checks whether or not the external device 4 is connected, and determines whether or not to start the charging operation. If the connection of the external device 4 can be confirmed, the process proceeds to step 102, and the control unit 8 detects the temperatures of the secondary batteries B1 and B2 constituting the assembled battery 2 by the battery temperature detecting means 6 and the thermistor 7, respectively. Thereafter, the process proceeds to step 103, where the control unit 8 detects the output voltages (respectively Vob1 and Vob2) of the secondary batteries B1 and B2 constituting the assembled battery 2 by the battery voltage detection means 5. The control unit 8 proceeds to step 104 based on the information detected by the battery voltage detecting means 5 and the battery temperature detecting means 6, and controls the series / parallel switching means 11 to sequentially switch the contacts to charge the secondary batteries B1 and B2. To do.

より詳しくは、始めに充電スイッチ素子SW1をオン、充電スイッチ素子SW2をオフ、放電スイッチ素子SW3をオフとし(スイッチの状態は図示せず)、二次電池B1に充電制御手段9より予備充電電流(例えば0.1〜0.3Cの電流)を供給し、当該二次電池B1を所定時間(例えば0.5秒)充電する。次に、充電スイッチ素子SW1をオフ、充電スイッチ素子SW2をオンに切り替え(スイッチの状態は図示せず)、続く二次電池B2に充電制御手段9より予備充電電流(例えば0.1〜0.3Cの電流)を供給し、当該二次電池B2を所定時間(例えば0.5秒)充電し、ステップ105に進み、制御部8は、電池電圧検出手段5により、予備充電中の二次電池B1およびB2の電圧(それぞれVpcb1、Vpcb2とする)を検出させる。ステップ106では、制御部8は、得られた電池電圧Vob1、Vob2およびVpcb1、Vpcb2を下記の数式3及び数式4に代入し、二次電池B1における電圧の差Vb1、及び二次電池B2における電圧の差Vb2を算出する。   More specifically, first, the charge switch element SW1 is turned on, the charge switch element SW2 is turned off, and the discharge switch element SW3 is turned off (the state of the switch is not shown). (For example, a current of 0.1 to 0.3 C) is supplied, and the secondary battery B1 is charged for a predetermined time (for example, 0.5 seconds). Next, the charging switch element SW1 is turned off and the charging switch element SW2 is turned on (the state of the switch is not shown), and the secondary battery B2 is supplied with a preliminary charging current (for example, 0.1 to 0. 3C), the secondary battery B2 is charged for a predetermined time (for example, 0.5 seconds), the process proceeds to step 105, and the control unit 8 uses the battery voltage detecting means 5 to perform the secondary battery being precharged. The voltages of B1 and B2 (referred to as Vpcb1 and Vpcb2 respectively) are detected. In step 106, the control unit 8 substitutes the obtained battery voltages Vob1, Vob2, Vpcb1, and Vpcb2 into the following formulas 3 and 4, and the voltage difference Vb1 in the secondary battery B1 and the voltage in the secondary battery B2 The difference Vb2 is calculated.

Figure 2010008133
Figure 2010008133

Figure 2010008133
Figure 2010008133

制御部8は、Vb1およびVb2を算出すると、この値と内蔵されたROM等の記憶手段に記録されたしきい値Vtとを比較し、Vb1がVtよりも大きければ二次電池B1が、Vb2がVtよりも大きければ二次電池B2が劣化したと判定する。なお、しきい値Vtには、二次電池B1およびB2の温度を参酌し補正を加える。   After calculating Vb1 and Vb2, the control unit 8 compares this value with a threshold value Vt recorded in a storage means such as a built-in ROM. If Vb1 is greater than Vt, the secondary battery B1 Is larger than Vt, it is determined that the secondary battery B2 has deteriorated. The threshold value Vt is corrected by taking into account the temperatures of the secondary batteries B1 and B2.

電池管理装置に用いる電池の劣化診断方法としては、電池の内部抵抗に基づいて電池の劣化を判定する方法が一般的である。劣化した電池は、内部抵抗が大きくなる。そこで、この方法では、電池に直流電圧を印加してその内部抵抗を測定し、得られた値の大きさにより電池の劣化を判定する。しかし、電池管理装置に劣化診断用として電圧印加手段を設けると、機器が大型化するため、電池管理装置と電池を電池パックとして一体化すること
は困難である。そこで、電池パックに用いるのに適した電池の劣化診断方法として、トリクル充電中の電池電圧を検出する方法も提案されている。劣化した電池は、上記のように内部抵抗が大きくなるため、1/20C程度のトリクル充電においても、その電圧は正常な電池のそれよりも高くなる。本発明の携帯型充電器は、組電池を予備充電電流(例えば0.1〜0.3Cの電流)で所定時間充電し、充電中の電圧が規定値よりも大きくなった場合に劣化したと判定するものである。なお、通常は、規定値として、電池の容量が公称容量の50%に低下したときの電圧値を用いている。
As a method for diagnosing deterioration of a battery used in a battery management apparatus, a method for determining deterioration of a battery based on the internal resistance of the battery is common. A deteriorated battery has high internal resistance. Therefore, in this method, a DC voltage is applied to the battery, its internal resistance is measured, and the deterioration of the battery is determined based on the magnitude of the obtained value. However, if voltage application means is provided in the battery management device for deterioration diagnosis, the equipment becomes large, and it is difficult to integrate the battery management device and the battery as a battery pack. Therefore, as a battery deterioration diagnosis method suitable for use in a battery pack, a method for detecting a battery voltage during trickle charging has been proposed. Since the deteriorated battery has an increased internal resistance as described above, the voltage becomes higher than that of a normal battery even in trickle charging of about 1 / 20C. The portable charger of the present invention is deteriorated when the assembled battery is charged with a preliminary charging current (for example, a current of 0.1 to 0.3 C) for a predetermined time and the voltage during charging becomes higher than a specified value. Judgment. Normally, the voltage value when the battery capacity is reduced to 50% of the nominal capacity is used as the specified value.

この方法によると、劣化診断用の電圧印加手段を設ける必要はない。従って、上記のように別途用意された電圧印加手段により電池に電圧を印加して内部抵抗を測定する方法と比べて、システムを大幅に小型化することができる。   According to this method, it is not necessary to provide a voltage application means for deterioration diagnosis. Therefore, the system can be greatly reduced in size as compared with the method of measuring the internal resistance by applying a voltage to the battery by the separately provided voltage applying means as described above.

この方法は劣化診断の精度が悪く、大まかな判定しかできないが、安価かつ迅速に判定可能であり、また、劣化状態未確定の二次電池に充電、放電を問わず大電流を流すことを避けることができる。   This method has poor accuracy in deterioration diagnosis and can only make rough judgments, but it can be made inexpensively and quickly, and avoids passing a large current to a secondary battery whose deterioration state has not been determined regardless of whether it is charged or discharged. be able to.

二次電池B1もしくはB2ともに劣化の疑いが認められなかった場合は、ステップ107および108において、充電スイッチ素子SW1と充電スイッチ素子SW2を所定間隔(例えば0.5秒)で交互に切り替え(スイッチの状態は図示せず)、制御部8は、二次電池B1およびB2を電池電圧検出手段5により電圧監視しながら定電流充電を行い、二次電池B1もしくはB2どちらか、例えば二次電池B1の電圧が最大値から充電時の電圧降下である−ΔVの値が設定値を超えた場合、二次電池B1のみ充電電流を減少させた後、更に定められた時間だけ充電して充電スイッチ素子SW1をオフ、充電スイッチ素子SW2をオンに固定する(スイッチの状態は図示せず)。制御部8は、充電途中の二次電池B2を電池電圧検出手段5により電圧監視しながら、定電流充電を行い、二次電池B2の電圧が最大値から充電時の電圧降下である−ΔVの値が設定値を超えた時点で充電電流を減少させ、更に定められた時間だけ充電して充電停止する。このことにより、二次電池の劣化の程度や残容量の差など、特性の異なる二次電池を満充電することができる。劣化の疑いがある二次電池が存在した場合は、ステップ109において、制御部8は、得られた劣化情報を必要に応じて通知手段10によって機器使用者に通知する。通知手段10には、例えば、情報を表示する液晶ディスプレイやLED、警告音を発するスピーカ、振動を発するバイブレータ等を用いる。   If there is no suspicion of deterioration of either the secondary battery B1 or B2, in steps 107 and 108, the charge switch element SW1 and the charge switch element SW2 are alternately switched at predetermined intervals (for example, 0.5 seconds) (The state is not shown), and the control unit 8 performs constant current charging while monitoring the voltages of the secondary batteries B1 and B2 by the battery voltage detecting means 5, and either the secondary battery B1 or B2, for example, the secondary battery B1 When the value of -ΔV, which is a voltage drop from the maximum value during charging, exceeds a set value, the charging current is reduced only for the secondary battery B1, and then charging is performed for a predetermined time, and the charging switch element SW1. Is turned off and the charge switch element SW2 is fixed to be turned on (the state of the switch is not shown). The control unit 8 performs constant current charging while monitoring the voltage of the secondary battery B2 being charged by the battery voltage detection means 5, and the voltage of the secondary battery B2 is a voltage drop at the time of charging from the maximum value of −ΔV. When the value exceeds the set value, the charging current is decreased, and charging is further stopped for a predetermined time. This makes it possible to fully charge a secondary battery having different characteristics such as a degree of deterioration of the secondary battery and a difference in remaining capacity. If there is a secondary battery suspected of being deteriorated, in step 109, the control unit 8 notifies the device user of the obtained deterioration information by the notification means 10 as necessary. For the notification means 10, for example, a liquid crystal display or LED that displays information, a speaker that emits a warning sound, a vibrator that emits vibration, or the like is used.

次に、ステップ110および111において、充電スイッチ素子SW1と充電スイッチ素子SW2を所定間隔(例えば0.5秒)で交互に切り替え(スイッチの状態は図示せず)、制御部8は、二次電池B1およびB2を電池電圧検出手段5により電圧監視しながら定電流充電を行い、二次電池B1もしくはB2どちらか、例えば二次電池B1の電圧が最大値から充電時の電圧降下である−ΔVの値が設定値を超えた場合、二次電池B1のみ充電電流を減少させた後、更に定められた時間だけ充電して充電スイッチ素子SW1をオフ、充電スイッチ素子SW2をオンに固定する(スイッチの状態は図示せず)。制御部8は、充電途中の二次電池B2を電池電圧検出手段5により電圧監視しながら、定電流充電を行い、二次電池B2の電圧が最大値から充電時の電圧降下である−ΔVの値が設定値を超えた時点で充電電流を減少させ、更に定められた時間だけ充電して充電停止する。このことにより、二次電池の劣化の程度や残容量の差など、特性の異なる二次電池を満充電することができる。   Next, in steps 110 and 111, the charge switch element SW1 and the charge switch element SW2 are alternately switched at a predetermined interval (for example, 0.5 seconds) (the state of the switch is not shown), and the control unit 8 The constant voltage charging is performed while monitoring the voltage of B1 and B2 by the battery voltage detecting means 5, and the voltage of either the secondary battery B1 or B2, for example, the secondary battery B1 is a voltage drop at the time of charging from the maximum value -ΔV When the value exceeds the set value, only the secondary battery B1 is reduced in charging current, and then charged for a predetermined time to turn off the charge switch element SW1 and fix the charge switch element SW2 on (switch of the switch). (The state is not shown). The control unit 8 performs constant current charging while monitoring the voltage of the secondary battery B2 being charged by the battery voltage detection means 5, and the voltage of the secondary battery B2 is a voltage drop at the time of charging from the maximum value of −ΔV. When the value exceeds the set value, the charging current is decreased, and charging is further stopped for a predetermined time. This makes it possible to fully charge a secondary battery having different characteristics such as a degree of deterioration of the secondary battery and a difference in remaining capacity.

次に、ステップ112において、充電スイッチ素子SW1およびSW2を常にオフとし、放電スイッチ素子SW3をオンとし、二次電池B1とB2を直列に接続する。(スイッチの状態は図示せず)さらに、ステップ113へ進み、制御部8は、電池温度検出手段6およびサーミスタ7によって、組電池2を構成する二次電池B1およびB2の温度をそれ
ぞれ検出した後、ステップ114へ進み、制御部8は、電池電圧検出手段5により、組電池2を構成する二次電池B1およびB2の出力電圧(それぞれVopd1、Vopd2とする)を検出するとともに、そのときの放電電気量Ioを検出する。また、制御部8は、電圧検出手段5および電池温度検出手段6によって検出された情報に基づいて、ステップ115へ進み、制御部8は、パルス放電手段12に指令信号を発して二次電池B1とB2を定電流でパルス放電させ、ステップ116へ進み、電池電圧検出手段5により、パルス放電中の電池電圧(それぞれVpdb1、Vpdb2とする)を検出させる。ステップ117では、制御部8は、得られた電池電圧Vopd1、Vopd2およびVpdb1、Vpdb2と、パルス放電電流量Ipdを以下の数式5、数式6に代入し、二次電池B1内部抵抗Rb1および二次電池B2内部抵抗Rb2を算出する。
Next, in step 112, the charge switch elements SW1 and SW2 are always turned off, the discharge switch element SW3 is turned on, and the secondary batteries B1 and B2 are connected in series. (The state of the switch is not shown) Further, the process proceeds to step 113, where the control unit 8 detects the temperatures of the secondary batteries B1 and B2 constituting the assembled battery 2 by the battery temperature detecting means 6 and the thermistor 7, respectively. In step 114, the control unit 8 detects the output voltages (respectively Vopd1 and Vopd2) of the secondary batteries B1 and B2 constituting the assembled battery 2 by the battery voltage detecting means 5, and discharges at that time. The amount of electricity Io is detected. Further, the control unit 8 proceeds to step 115 based on the information detected by the voltage detection unit 5 and the battery temperature detection unit 6, and the control unit 8 issues a command signal to the pulse discharge unit 12 to generate the secondary battery B1. And B2 are pulse-discharged at a constant current, the process proceeds to step 116, and the battery voltage detection means 5 detects the battery voltages during pulse discharge (referred to as Vpdb1 and Vpdb2, respectively). In step 117, the control unit 8 substitutes the obtained battery voltages Vopd 1, Vopd 2 and Vpdb 1, Vpdb 2, and the pulse discharge current amount Ipd into the following formulas 5 and 6, and the secondary battery B 1 internal resistance Rb 1 and the secondary battery B 1 Battery B2 internal resistance Rb2 is calculated.

Figure 2010008133
Figure 2010008133

Figure 2010008133
Figure 2010008133

なお、Ipdは、内部抵抗Rb1およびRb2の測定精度およびパルス放電手段12の定電流放電回路の許容値を参酌して決定される。例えば、ニッケル水素二次電池では、内部抵抗がセル当たり数十mΩ程度と小さいため、1C程度の大電流で放電する必要がある。放電開始直後に発生するサージを避けて安定した電池電圧を検出するためには、パルス放電開始より200マイクロ秒経過後に上記の電圧を測定することが好ましい。また、長時間放電させるとイオンの拡散等の要素が測定値に複雑に混入するため、放電時間は10ミリ秒以内が好ましい。   Ipd is determined in consideration of the measurement accuracy of the internal resistances Rb1 and Rb2 and the allowable value of the constant current discharge circuit of the pulse discharge means 12. For example, in a nickel metal hydride secondary battery, since the internal resistance is as small as several tens of mΩ per cell, it is necessary to discharge with a large current of about 1 C. In order to detect a stable battery voltage by avoiding a surge that occurs immediately after the start of discharge, it is preferable to measure the voltage after 200 microseconds have elapsed from the start of pulse discharge. In addition, when discharging for a long time, elements such as ion diffusion are mixed in the measurement value in a complicated manner. Therefore, the discharge time is preferably within 10 milliseconds.

ここで、放電時間が10ミリ秒と短時間であるため、パルス放電手段12を構成するトランジスタ14として、許容損失が小さいものを用いることができる。従って、安価な小型の電池劣化診断手段を実現することができる。なお、上記のような定電流放電時の内部抵抗は、電池の使用状況すなわち、充電時、放電時、待機時(間欠充電の休止時間を含む)に関わらず、測定が可能であることから、必要時にその都度、劣化診断を行うことができる。   Here, since the discharge time is as short as 10 milliseconds, a transistor 14 having a small allowable loss can be used as the transistor 14 constituting the pulse discharge means 12. Therefore, an inexpensive small battery deterioration diagnosis means can be realized. The internal resistance at the time of constant current discharge as described above can be measured regardless of the battery usage status, that is, at the time of charging, discharging, and standby (including intermittent charging pause time). Degradation diagnosis can be performed whenever necessary.

制御部8は、Rb1およびRb2を算出すると、この値と内蔵されたROM等の記憶手段に記録されたしきい値Rtとを比較し、Rb1がRtよりも大きければ二次電池B1が、Rb2がRtよりも大きければ二次電池B2が劣化したと判定する。なお、しきい値Rtには、二次電池B1およびB2の温度を参酌し補正を加える。ステップ118において、制御部8は、得られた劣化情報を必要に応じて通知手段10によって機器使用者に通知する。通知手段10には、例えば、情報を表示する液晶ディスプレイやLED、警告音を発するスピーカ、振動を発するバイブレータ等を用いる。   After calculating Rb1 and Rb2, the control unit 8 compares this value with a threshold value Rt recorded in a storage means such as a built-in ROM. If Rb1 is larger than Rt, the secondary battery B1 Is larger than Rt, it is determined that the secondary battery B2 has deteriorated. The threshold value Rt is corrected by taking into account the temperatures of the secondary batteries B1 and B2. In step 118, the control unit 8 notifies the device user of the obtained deterioration information by the notification means 10 as necessary. For the notification means 10, for example, a liquid crystal display or LED that displays information, a speaker that emits a warning sound, a vibrator that emits vibration, or the like is used.

上記のように、本発明によると、単純な構成で定電流放電回路が得られることから、携帯型充電器に適した小型の電池劣化診断手段を実現することができる。特に、本発明によると、本質的に二次電池の内部抵抗に基づいて劣化を判定することから、電池の種類を問わず精度の高い劣化診断が可能になる。従って、電池の開放電圧を検出する方法では精度よく劣化を診断することができなかったニッケル・カドミウム二次電池、ニッケル・水素二次電池、リチウムイオン二次電池等の電池についても、精度よく電池の劣化を診断する
ことができる。なお、検出する電圧変化を大きくして測定の精度を向上させるために大電流で放電させても、短時間の放電であることから電池の残容量はほとんど低下しない。
As described above, according to the present invention, since a constant current discharge circuit can be obtained with a simple configuration, a small battery deterioration diagnosis unit suitable for a portable charger can be realized. In particular, according to the present invention, since deterioration is determined essentially based on the internal resistance of the secondary battery, a highly accurate deterioration diagnosis can be performed regardless of the type of battery. Therefore, batteries such as nickel / cadmium secondary batteries, nickel / hydrogen secondary batteries, lithium ion secondary batteries, etc., whose deterioration could not be accurately diagnosed by the method of detecting the open circuit voltage of the batteries, are also accurate. Can be diagnosed. In addition, even if it discharges with a large current in order to increase the voltage change to detect and to improve the measurement accuracy, the remaining capacity of the battery is hardly reduced because it is a short-time discharge.

(実施の形態2)
本実施の形態2では、携帯電子機器に対して給電を行う手段について説明する。なお、実施の形態1と同一のものは同一の符号を用いて説明を省略する。図5は、本実施の形態2における二次電池2セルの場合の携帯電子機器用の出力端子付き携帯型充電器の構成を示す概略のブロック図を示す。本実施の形態2による携帯型充電器は、実施の形態1による携帯型充電器3に対して、組電池2の出力を携帯電子機器に給電する出力制御手段17と一体化され、出力端子付き携帯型充電器を構成することを特徴とする。図5において、組電池2は単1、単2、単3または単4の決まったサイズの電池を2セル直列接続でき、出力制御手段17は、組電池2の電圧を携帯電子機器16内の二次電池(図示せず)を充電するのに必要な電圧以上に制御する(例えば5.0V)。出力制御手段17は出力正極端子To+と直列に接続され、制御部8が発する指令信号に基づいて出力正極端子To+への電流が定電流(例えば0.5A)になるように制御する。
(Embodiment 2)
In the second embodiment, a means for supplying power to the portable electronic device will be described. In addition, the same thing as Embodiment 1 uses the same code | symbol, and abbreviate | omits description. FIG. 5 is a schematic block diagram showing a configuration of a portable charger with an output terminal for portable electronic equipment in the case of two secondary batteries in the second embodiment. The portable charger according to the second embodiment is integrated with the output control means 17 that feeds the output of the assembled battery 2 to the portable electronic device with respect to the portable charger 3 according to the first embodiment, and has an output terminal. It is characterized by constituting a portable charger. In FIG. 5, the assembled battery 2 can connect two cells of a fixed size of single 1, single 2, single 3 or single 4 in series, and the output control means 17 can set the voltage of the assembled battery 2 in the portable electronic device 16. The voltage is controlled to be higher than a voltage necessary for charging a secondary battery (not shown) (for example, 5.0 V). The output control means 17 is connected in series with the output positive terminal To +, and controls the current to the output positive terminal To + to be a constant current (for example, 0.5 A) based on a command signal generated by the control unit 8.

本実施の形態1および形態2の参考例として、二次電池の充電制御方法について説明する。本実施の形態1および形態2の参考例の電池管理装置による充電制御機能においては、二次電池の開放電圧を検出し、得られた開放電圧を予め設定されたデータテーブルと比較して二次電池の残容量を推定する。このとき、二次電池の残容量がその満容量の95%以下になると二次電池の充電を開始させる。   As a reference example of Embodiments 1 and 2, a secondary battery charge control method will be described. In the charge control function by the battery management device of the reference examples of the first and second embodiments, the open voltage of the secondary battery is detected, and the obtained open voltage is compared with a preset data table to obtain a secondary Estimate the remaining battery capacity. At this time, when the remaining capacity of the secondary battery becomes 95% or less of the full capacity, charging of the secondary battery is started.

一般的に、開放電圧に基づく電池の残容量の推定には、あまり高い精度が期待できない。例えば、リチウムイオン二次電池においては、通常、電池の開放電圧を検出し、その残容量が80%程度になったと推定されると、電池の充電を再開させるように設定されるが、その時点の実際の残容量 は60〜90%とばらつく。その原因としては、検出した開放電圧と比較するためのデータテーブルの精度および電池の個体差が挙げられる。   In general, a very high accuracy cannot be expected for estimating the remaining capacity of the battery based on the open circuit voltage. For example, in a lithium ion secondary battery, normally, when the open circuit voltage of the battery is detected and the remaining capacity is estimated to be about 80%, the battery is set to resume charging. The actual remaining capacity varies from 60 to 90%. The causes include the accuracy of the data table for comparison with the detected open circuit voltage and the individual difference of the batteries.

データテーブルは、実際に電池を放電させてそのときのデータに基づいて作成される。そのため、長期間にわたって実測データを収集する必要がある。従って、従来のように残容量が80%程度になると充電を再開させるように制御するためには、容量80〜100%における電池電圧のデータを収集する必要がある。しかしながら、開発期間短縮の要請に応じるために、充分なデータ収集が行われず、適正なデータテーブルが設定されない場合が多い。そこで、本参考例では、二次電池の開放電圧に基づいてその残容量を推定する充電制御において、二次電池の残容量がその満容量の95%以下になると二次電池の充電を開始させる。これにより、一度のデータ収集に必要とされる時間が大幅に短縮される。すなわち、容量95〜100%におけるデータの収集は、容量80〜100%でデータを収集するのに比べて大幅に短期間ですむ。   The data table is created based on data at the time when the battery is actually discharged. Therefore, it is necessary to collect measured data over a long period. Therefore, in order to control to resume charging when the remaining capacity reaches about 80% as in the prior art, it is necessary to collect battery voltage data at a capacity of 80 to 100%. However, in order to respond to a request for shortening the development period, sufficient data collection is not performed and an appropriate data table is often not set. Therefore, in this reference example, in the charging control for estimating the remaining capacity based on the open voltage of the secondary battery, charging of the secondary battery is started when the remaining capacity of the secondary battery becomes 95% or less of the full capacity. . This greatly reduces the time required for a single data collection. That is, data collection with a capacity of 95-100% requires a much shorter period of time than data collection with a capacity of 80-100%.

従って、全データの収集に従来と同程度の時間を費やすとすれば、より多くのデータを収集でき、残容量推定の精度を高くすることができる。これにより、電池の過充電や充電不足を防ぐことができる。   Therefore, if the same amount of time as in the past is spent collecting all data, more data can be collected and the accuracy of remaining capacity estimation can be increased. Thereby, overcharge of a battery and insufficient charge can be prevented.

また、データ数を多くすると、電池間の性能のばらつきや使用環境の影響を把握することができ、実際の使用において、精度の高い残容量推定が可能になる。さらに、この方法によると、常に95%以上の残容量が確保されることから、その出力時間が長くなるといった効果もある。   In addition, when the number of data is increased, it is possible to grasp the performance variation between the batteries and the influence of the usage environment, and it is possible to estimate the remaining capacity with high accuracy in actual use. Furthermore, according to this method, since the remaining capacity of 95% or more is always secured, there is an effect that the output time becomes long.

本発明の携帯型充電器用の電池管理装置は、交換可能に収納された二次電池の劣化の程
度を、個々の二次電池の劣化の程度や組込み時の充電電気量差に影響されることなく、迅速におおよその劣化度合いを予測可能であるとともに、劣化の疑いがある電池が存在した場合は、さらに精度よく二次電池の劣化の程度を診断し、かつ、劣化の程度が異なる二次電池を安全に充電することが可能な携帯型充電器の電池管理装置として有用である。
The battery management device for a portable charger according to the present invention is affected by the degree of deterioration of secondary batteries stored in a replaceable manner, by the degree of deterioration of individual secondary batteries, or by the difference in the amount of charged electricity when assembled. If there is a battery that is suspected of being deteriorated, the degree of deterioration of the secondary battery can be diagnosed more accurately and the degree of deterioration is different. It is useful as a battery management device for a portable charger that can safely charge a battery.

本発明の実施の形態1の携帯型充電器の構成を示す概略のブロック図Schematic block diagram showing the configuration of the portable charger according to the first embodiment of the present invention. 同実施の形態1の携帯型充電器内の電池管理装置に用いるパルス放電手段の構成を示す概略のブロック図Schematic block diagram showing the configuration of pulse discharge means used in the battery management device in the portable charger of the first embodiment 同実施の形態1の携帯型充電器内の電池管理装置に用いる直並列切替手段の構成を示す概略のブロック図Schematic block diagram showing the configuration of series-parallel switching means used in the battery management device in the portable charger of the first embodiment 同実施の形態1の携帯型充電器の動作を説明するフローチャートFlowchart for explaining the operation of the portable charger of the first embodiment 本発明の実施の形態2の携帯型充電器の構成を示す概略のブロック図Schematic block diagram showing the configuration of the portable charger according to the second embodiment of the present invention.

符号の説明Explanation of symbols

1a、1b 電池管理装置
2 組電池
3 携帯型充電器
4 外部機器
5 電池電圧検出手段
6 電池温度検出手段
7 サーミスタ
8 制御部
9 充電制御手段
10 通知手段
11 直並列切替手段
12 パルス放電手段
13 マイクロコンピュータ
13a CMOS入力ポート
13b CMOS出力ポート
14 トランジスタ
15 抵抗
16 携帯電子機器
17 出力制御手段
B1,B2 単電池
SW1,SW2 充電スイッチ素子
SW3 放電スイッチ素子
Ti 入力端子
Ti+ 入力正極端子
Ti− 入力負極端子
To 出力端子
To+ 出力正極端子
To− 出力負極端子
DESCRIPTION OF SYMBOLS 1a, 1b Battery management apparatus 2 Assembly battery 3 Portable charger 4 External apparatus 5 Battery voltage detection means 6 Battery temperature detection means 7 Thermistor 8 Control part 9 Charge control means 10 Notification means 11 Serial / parallel switching means 12 Pulse discharge means 13 Micro Computer 13a CMOS input port 13b CMOS output port 14 Transistor 15 Resistor 16 Portable electronic device 17 Output control means B1, B2 Cell SW1, SW2 Charge switch element SW3 Discharge switch element Ti Input terminal Ti + Input positive terminal Ti- Input negative terminal To Output Terminal To + Output positive terminal To- Output negative terminal

Claims (4)

複数の二次電池の劣化の程度を診断する方法であって、
制御部が発する指令信号に基づいて前記各二次電池を個別に充電する充電路を形成するステップと、
前記制御部が発する指令信号に基づいて前記各二次電池の電圧を検出するステップと、
前記制御部が発する指令信号に基づいて前記各二次電池を0.1〜0.3Cの電流で所定時間充電する予備充電において、前記制御部が発する指令信号に基づいて予備充電中の
前記各二次電池の電圧を検出するステップと、
前記2つのステップで検出された電圧の差を算出し、電圧の差に基づいて前記各二次電池の劣化度合いを診断するステップと、
前記制御部が発する指令信号に基づいて前記二次電池を個別に満充電となるまで充電するステップと、
劣化の疑いがある二次電池が存在した場合、前記制御部が発する指令信号に基づいて前記二次電池を直列に接続して放電する放電路を形成するステップと、
前記制御部が発する指令信号に基づいて前記二次電池を定電流でパルス放電させながら、パルス放電中の前記二次電池の電圧を検出するステップと、
前記2つのステップで検出された電圧の差およびパルス放電時の電流量を用いて前記二次電池の内部抵抗値を算出するステップと、
前記内部抵抗値に基づいて前記二次電池の劣化の程度を診断するステップとを具備することを特徴とする二次電池の劣化診断方法。
A method for diagnosing the degree of deterioration of a plurality of secondary batteries,
Forming a charging path for charging each of the secondary batteries individually based on a command signal issued by the control unit;
Detecting a voltage of each secondary battery based on a command signal issued by the control unit;
In preliminary charging in which each secondary battery is charged with a current of 0.1 to 0.3 C for a predetermined time based on a command signal issued by the control unit, each of the secondary batteries being pre-charged based on the command signal issued by the control unit Detecting a voltage of the secondary battery;
Calculating a difference between the voltages detected in the two steps, and diagnosing the degree of deterioration of each secondary battery based on the difference between the voltages;
Charging the secondary batteries individually until full charge based on a command signal issued by the control unit;
When there is a secondary battery that is suspected of being deteriorated, a step of connecting the secondary batteries in series based on a command signal issued by the control unit to form a discharge path for discharging, and
Detecting the voltage of the secondary battery during pulse discharge while causing the secondary battery to pulse discharge with a constant current based on a command signal issued by the control unit;
Calculating the internal resistance value of the secondary battery using the voltage difference detected in the two steps and the amount of current during pulse discharge;
And a step of diagnosing the degree of deterioration of the secondary battery based on the internal resistance value.
二次電池を2セル以上交換可能に収納可能な携帯型充電器であって、
制御部が発する指令信号に基づいて前記二次電池を個別に充電する充電路を複数のスイッチング素子によって形成する手段と、
前記制御部が発する指令信号に基づいて前記各二次電池の電圧を検出する手段と、
前記制御部が発する指令信号に基づいて前記各二次電池を0.1〜0.3Cの電流で所定時間充電する予備充電において、前記制御部が発する指令信号に基づいて予備充電中の前記各二次電池の電圧を検出する手段と、
前記2つの手段で検出された電圧の差を算出し、電圧の差に基づいて予め設定されたデータテーブルと比較し、前記各二次電池のおおよその劣化度合いを診断する手段と、
前記制御部が発する指令信号に基づいて2セル以上交換可能に収容された前記二次電池を個別に電圧監視しながら定電流充電し、前記二次電池の電圧が最大値から充電時の電圧降下である−ΔVの値が設定値を超えた時点で充電電流を減少させた後、更に定められた時間だけ充電して充電停止する手段と、
前記二次電池において、ひとつでも劣化の疑いがある二次電池が存在した場合、前記制御部が発する指令信号に基づいて前記二次電池を直列に接続して放電する放電路を前記複数のスイッチング素子によって形成する手段と、
前記制御部が発する指令信号に基づいて前記二次電池の電圧を検出する手段と、
前記制御部が発する指令信号に基づいて前記二次電池を定電流でパルス放電させながら、パルス放電中の前記二次電池の電圧を検出する手段と、
前記2つの手段で検出された電圧の差およびパルス放電時の電流量を用いて前記二次電池の内部抵抗値を算出する手段と、
得られた前記内部抵抗値を予め設定されたデータテーブルと比較し、前記二次電池の劣化の程度を診断する手段とを具備する携帯型充電器。
A portable charger capable of storing two or more secondary batteries in a replaceable manner,
Means for forming a charging path for individually charging the secondary battery based on a command signal issued by the control unit by a plurality of switching elements;
Means for detecting the voltage of each secondary battery based on a command signal issued by the control unit;
In preliminary charging in which each secondary battery is charged with a current of 0.1 to 0.3 C for a predetermined time based on a command signal issued by the control unit, each of the secondary batteries being pre-charged based on a command signal issued by the control unit Means for detecting the voltage of the secondary battery;
A means for calculating a difference between the voltages detected by the two means, comparing with a preset data table based on the voltage difference, and diagnosing an approximate deterioration degree of each secondary battery;
Based on a command signal issued by the control unit, the secondary batteries housed in an exchangeable manner in two or more cells are charged with constant current while individually monitoring the voltage, and the voltage of the secondary battery drops from the maximum value when charging. Means for reducing the charging current when the value of -ΔV exceeds a set value and then charging for a predetermined time to stop charging;
In the secondary battery, when at least one secondary battery is suspected of being deteriorated, the plurality of switching paths for discharging the secondary battery connected in series based on a command signal issued by the control unit are switched. Means for forming by an element;
Means for detecting the voltage of the secondary battery based on a command signal issued by the control unit;
Means for detecting the voltage of the secondary battery during pulse discharge while pulse discharging the secondary battery with a constant current based on a command signal issued by the control unit;
Means for calculating an internal resistance value of the secondary battery using a voltage difference detected by the two means and a current amount at the time of pulse discharge;
A portable charger comprising means for comparing the obtained internal resistance value with a preset data table and diagnosing the degree of deterioration of the secondary battery.
二次電池の出力を電源とし、制御部が発する指令信号に基づいて出力電圧および出力電流を設定かつ維持可能な出力制御手段と、
携帯電子機器を接続することにより、出力制御手段の出力を携帯電子機器に供給可能または携帯電子機器を充電可能とする出力端子とを具備することを特徴とする請求項2に記
載の携帯型充電器。
An output control means capable of setting and maintaining an output voltage and an output current based on a command signal issued by the control unit using the output of the secondary battery as a power source;
The portable charging device according to claim 2, further comprising an output terminal capable of supplying the output of the output control means to the portable electronic device or charging the portable electronic device by connecting the portable electronic device. vessel.
二次電池の劣化の程度を機器使用者に通知する手段を具備することを特徴とする請求項2または請求項3に記載の携帯型充電器。
4. The portable charger according to claim 2, further comprising means for notifying a device user of the degree of deterioration of the secondary battery.
JP2008165569A 2008-06-25 2008-06-25 Portable charger, and deterioration diagnosis method of secondary battery used therefor Pending JP2010008133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165569A JP2010008133A (en) 2008-06-25 2008-06-25 Portable charger, and deterioration diagnosis method of secondary battery used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165569A JP2010008133A (en) 2008-06-25 2008-06-25 Portable charger, and deterioration diagnosis method of secondary battery used therefor

Publications (1)

Publication Number Publication Date
JP2010008133A true JP2010008133A (en) 2010-01-14

Family

ID=41588832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165569A Pending JP2010008133A (en) 2008-06-25 2008-06-25 Portable charger, and deterioration diagnosis method of secondary battery used therefor

Country Status (1)

Country Link
JP (1) JP2010008133A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522491A (en) * 2011-06-02 2014-09-04 エスケー イノベーション カンパニー リミテッド ESS degradation state prediction method
CN104142446A (en) * 2014-07-24 2014-11-12 国家电网公司 System and method for testing charging control response time of electric vehicle charger
JP2020078179A (en) * 2018-11-07 2020-05-21 古河電気工業株式会社 Rechargeable battery state detection device and rechargeable battery state detection method
JP2020198183A (en) * 2019-05-31 2020-12-10 株式会社デンソーテン Connection controller and connection control method
US11119157B2 (en) 2017-11-02 2021-09-14 Lg Chem, Ltd. Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522491A (en) * 2011-06-02 2014-09-04 エスケー イノベーション カンパニー リミテッド ESS degradation state prediction method
CN104142446A (en) * 2014-07-24 2014-11-12 国家电网公司 System and method for testing charging control response time of electric vehicle charger
US11119157B2 (en) 2017-11-02 2021-09-14 Lg Chem, Ltd. Method, apparatus and recording medium for estimating parameters of battery equivalent circuit model
JP2020078179A (en) * 2018-11-07 2020-05-21 古河電気工業株式会社 Rechargeable battery state detection device and rechargeable battery state detection method
JP7254482B2 (en) 2018-11-07 2023-04-10 古河電気工業株式会社 Rechargeable battery status detection device and rechargeable battery status detection method
JP2020198183A (en) * 2019-05-31 2020-12-10 株式会社デンソーテン Connection controller and connection control method

Similar Documents

Publication Publication Date Title
US11688891B2 (en) Battery charger with battery state detection
EP3958006B1 (en) Battery diagnosis apparatus and method
US9869724B2 (en) Power management system
US6504344B1 (en) Monitoring battery packs
US6930485B2 (en) Electronic battery tester with battery failure temperature determination
US6563318B2 (en) Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said detecting device
US7675291B2 (en) Method and device for monitoring deterioration of battery
US8319479B2 (en) Method of estimating battery recharge time and related device
TWI249870B (en) Battery apparatus and discharge controlling method of battery apparatus
JP2002050410A (en) Inner state detecting method for secondary cell, detecting device, apparatus equipped with detecting device, inner state detecting program, medium equipped with inner state detecting program
JP2000121710A (en) Battery control device for backup power supply and method for diagnosing deterioration of secondary battery
JP3192794B2 (en) Lead storage battery deterioration judgment method and deterioration judgment device
EP3455641A1 (en) Battery state detection system and method
JP2015025685A (en) Secondary battery pack management method, power source management system, and electronic device
JP2009064682A (en) Battery deterioration judging device, and lithium ion battery pack equipped with the same
JP2010008133A (en) Portable charger, and deterioration diagnosis method of secondary battery used therefor
KR102717091B1 (en) Battery management apparatus, battery pack, energy storage system, and battery management method
JP2001332310A (en) Capacity estimating method and deterioration judging apparatus for lithium ion cell and lithium ion cell pack
JP3649643B2 (en) Lithium-ion battery capacity estimation method
EP4016101A1 (en) Battery diagnosis system, power system, and battery diagnosis method
JP2015025686A (en) Secondary battery pack management method, power source management system, and electronic device
JPH1116607A (en) Method for detecting residual capacity of secondary battery
JPH097642A (en) Battery charger with diagnostic function
JP7515956B2 (en) Battery diagnostic device and method
JP2004364419A (en) Charging apparatus