[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010008193A - Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape - Google Patents

Fixture for measuring shape of object to be measured and method for measuring three-dimensional shape Download PDF

Info

Publication number
JP2010008193A
JP2010008193A JP2008167087A JP2008167087A JP2010008193A JP 2010008193 A JP2010008193 A JP 2010008193A JP 2008167087 A JP2008167087 A JP 2008167087A JP 2008167087 A JP2008167087 A JP 2008167087A JP 2010008193 A JP2010008193 A JP 2010008193A
Authority
JP
Japan
Prior art keywords
measured
measurement
measuring
lens
reference sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008167087A
Other languages
Japanese (ja)
Other versions
JP5059700B2 (en
Inventor
Kotaro Hirano
宏太郎 平野
Hirofumi Kakiuchi
博文 垣内
Yoshiyuki Omori
義幸 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2008167087A priority Critical patent/JP5059700B2/en
Priority to US12/457,032 priority patent/US7869060B2/en
Priority to DE602009000525T priority patent/DE602009000525D1/en
Priority to AT09163212T priority patent/ATE494525T1/en
Priority to EP09163212A priority patent/EP2138803B1/en
Publication of JP2010008193A publication Critical patent/JP2010008193A/en
Application granted granted Critical
Publication of JP5059700B2 publication Critical patent/JP5059700B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To speedily and three-dimensionally measure the front and back surfaces of an object to be measured with high accuracy. <P>SOLUTION: A fixture 10 for measuring the shape of an object to be measured for measuring the three-dimensional shapes of both front and back surfaces of: a lens 20; a reference spheres 20A; and a reference cylinder 30 from either the front surface side or the back surface side is used to obtain coordinates of the center point of the reference sphere 20A; coordinates of the center points of circles constituted of cross sections of the reference cylinder 30 at two points separated from each other by a prescribed distance H; coordinates Pr1 and Pr2 of the vertices of an R1 surface and an R2 surface of the lens 20; and the directions of their optical axes L1 and L2. Measurement data on the R2 surface side are rotated on a Y-axis by 180&deg;, and measurement data on the R1 surface side and the R2 surface side are moved in parallel in such a way that coordinates Os of the center point of the reference sphere 20A may be matched to determine the eccentricity d and tilt &theta; of the R2 surface to the R1 surface. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、三次元形状測定機等の測定機にてレンズ等の被測定物の表裏面の相対的な位置関係に基づいて、表裏面の偏心及び傾きを求めるための被測定物形状測定治具及び三次元形状測定方法に関する。   The present invention provides a measuring object shape measuring tool for determining the eccentricity and inclination of the front and back surfaces based on the relative positional relationship between the front and back surfaces of a measuring object such as a lens with a measuring machine such as a three-dimensional shape measuring machine. The present invention relates to a tool and a three-dimensional shape measuring method.

従来より、レンズの表裏面の偏心や傾きを求める方法として、例えば次のようなものが知られている。下記特許文献1に開示されている測定方法は、表面側及び裏面側から測定可能な被測定物保持治具を用いてレンズの三次元形状データと3つの基準球の中心点座標を測定し、基準球の中心点座標を基準にレンズの表裏面の三次元形状データを合成し、レンズ表裏面合成データからレンズの表面と裏面との間の偏心及び傾きを算出するとされている。   Conventionally, for example, the following methods are known as methods for obtaining the eccentricity and inclination of the front and back surfaces of a lens. The measurement method disclosed in the following Patent Document 1 measures the three-dimensional shape data of the lens and the center point coordinates of three reference spheres using a measurement object holding jig that can be measured from the front side and the back side, The three-dimensional shape data of the front and back surfaces of the lens is synthesized with reference to the center point coordinates of the reference sphere, and the eccentricity and inclination between the front and back surfaces of the lens are calculated from the lens front and back surface synthesis data.

特開2006−78398号公報JP 2006-78398 A

しかしながら、上記特許文献1に開示されている測定方法では、3つの基準球を三次元測定して各中心点座標を得た後に、これらの中心点座標を基準にしてレンズ表裏面の三次元測定データを位置合わせし、レンズ表裏面の頂点の偏心及び傾きを測定するため、特に基準の三次元測定に時間がかかり、全体として三次元測定に時間がかかってしまうという問題がある。   However, in the measurement method disclosed in Patent Document 1, three reference spheres are three-dimensionally measured to obtain respective center point coordinates, and then the three-dimensional measurement of the lens front and back surfaces is performed using these center point coordinates as a reference. In order to align the data and measure the eccentricity and inclination of the vertices on the front and back surfaces of the lens, there is a problem that, particularly, the reference three-dimensional measurement takes time, and the whole three-dimensional measurement takes time.

本発明は、このような問題点に鑑みてなされたもので、被測定物の表裏面の三次元測定を高精度かつ高速に行うことができる被測定物形状測定治具及び三次元形状測定方法を提供することを目的とする。   The present invention has been made in view of such problems, and a measurement object shape measuring jig and a three-dimensional shape measurement method capable of performing high-precision and high-speed three-dimensional measurement of the front and back surfaces of the measurement object. The purpose is to provide.

上述した課題を解決し、目的を達成するため、本発明に係る被測定物形状測定治具は、第1面及びこれに対向する第2面を有する板状体と、前記第1面及び前記第2面のそれぞれにおいてその表面が外部に露出するように前記板状体に固定された基準球と、前記第1面及び前記第2面のそれぞれにおいてその外周表面が外部に露出するように前記板状体の側方に固定された基準円筒と、前記板状体を貫通するように形成された孔部を有し被測定物の表面及び裏面がそれぞれ前記第1面及び第2面において露出するように前記孔部において前記被測定物を保持する被測定物保持部とを備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a workpiece shape measurement jig according to the present invention includes a plate-like body having a first surface and a second surface facing the first surface, the first surface, and the first surface. A reference sphere fixed to the plate-like body so that the surface of each second surface is exposed to the outside, and the outer peripheral surface of each of the first surface and the second surface is exposed to the outside. A reference cylinder fixed to the side of the plate-like body and a hole formed so as to penetrate the plate-like body, and the front and back surfaces of the object to be measured are exposed on the first and second surfaces, respectively. As described above, the device includes a measured object holding unit that holds the measured object in the hole.

本発明に係る被測定物形状測定治具は、上記のように構成することにより、基準球と基準円筒の三次元形状測定及び二次元形状測定により被測定物の基準面(参照面)を得ることができるので、被測定物の表裏面の三次元測定を高精度かつ高速に行うことが可能となる。   The object shape measuring jig according to the present invention is configured as described above to obtain the reference surface (reference surface) of the object to be measured by the three-dimensional shape measurement and the two-dimensional shape measurement of the reference sphere and the reference cylinder. Therefore, three-dimensional measurement of the front and back surfaces of the object to be measured can be performed with high accuracy and high speed.

なお、前記被測定物形状測定治具は、前記板状体を前記第1面と前記第2面が反転可能なように回動自在に支持する支持軸部を更に備えることができる。   In addition, the said to-be-measured object shape measurement jig | tool can further be provided with the support shaft part which supports the said plate-shaped object so that rotation is possible so that the said 1st surface and the said 2nd surface can be reversed.

また、本発明に係る三次元形状測定方法は、第1面及びこれに対向する第2面を有すると共に、基準球、及び基準円筒を固定的に保持する板状体からなる被測定物形状測定治具において、前記基準球、前記基準円筒及び少なくとも一つの被測定物を、前記第1面及び前記第2面のそれぞれにおいてそれらの表面が露出する状態で保持する工程と、前記基準球の三次元形状を測定してこの基準球の中心点座標を算出する工程と、前記基準円筒における軸方向に所定距離離れた2点の断面を二次元形状測定して、各断面により構成される円のそれぞれの中心点座標を算出する工程と、前記被測定物の一方の面の三次元形状を測定して測定データを得る工程と、前記基準球、前記基準円筒及び前記被測定物の測定結果に基づいて、前記円の各中心点座標を結ぶ線分がY軸と一致するよう、前記中心点座標及び前記測定データに関し、X軸の回り及びZ軸の回りに座標変換を行う工程と、前記基準球、前記基準円筒及び前記被測定物の測定結果に基づいて、前記基準球及び前記円の各中心点座標を結んで構成される面がX−Y平面と平行となるよう、前記中心点座標及び前記測定データに関し、Y軸の回りに座標変換を行う工程とを、前記被測定物の表面、及び裏面のそれぞれについて実行すると共に、前記被測定物の表面に関し得られた測定データと前記被測定物の裏面に関し得られた測定データとに基づき、前記表面と前記裏面との間の相対位置データを算出する工程とを備えることを特徴とする。   In addition, the three-dimensional shape measuring method according to the present invention has a first surface and a second surface opposite to the first surface, and measures the shape of the object to be measured, which includes a reference sphere and a plate-like body that holds the reference cylinder fixedly. A jig for holding the reference sphere, the reference cylinder, and at least one object to be measured on the first surface and the second surface with their surfaces exposed; and a tertiary of the reference sphere. Measuring the original shape and calculating the center point coordinate of the reference sphere; and measuring two-dimensional shapes of two cross-sections separated by a predetermined distance in the axial direction in the reference cylinder; Calculating the respective center point coordinates, measuring the three-dimensional shape of one surface of the object to be measured to obtain measurement data, and measuring results of the reference sphere, the reference cylinder and the object to be measured. Based on each center point of the circle A step of performing coordinate transformation about the X-axis and the Z-axis with respect to the center point coordinates and the measurement data so that the line segment connecting the marks coincides with the Y-axis, the reference sphere, the reference cylinder, and the object to be measured Based on the measurement result of the measurement object, the Y axis is related to the center point coordinates and the measurement data so that the surface formed by connecting the center point coordinates of the reference sphere and the circle is parallel to the XY plane. And the step of performing coordinate transformation around the surface of the object to be measured and the back surface of the object to be measured, and the measurement data obtained on the surface of the object to be measured and the back surface of the object to be measured. And a step of calculating relative position data between the front surface and the back surface based on measurement data.

本発明によれば、基準球と基準円筒とを備える被測定物形状測定治具の基準球及び基準円筒の測定結果を用いて被測定物の表裏面の三次元測定を高精度かつ高速に行うことができる。
また、異なる工程で取得した三次元形状測定データを基準球及び基準円筒の測定結果を用いて座標変換により位置合わせし、一つの工程で測定した三次元形状データとして解析することができる。
さらに、基準球と基準円筒により得られた面を利用することで、基準球のみによる被測定物の表裏面の位置合わせに比べて精度を高め、表裏面の偏心及び傾きの測定を高速に行うことができる。
According to the present invention, three-dimensional measurement of the front and back surfaces of the object to be measured is performed with high accuracy and at high speed using the measurement results of the reference sphere and the reference cylinder of the object shape measuring jig having the reference sphere and the reference cylinder. be able to.
In addition, the three-dimensional shape measurement data acquired in different steps can be aligned by coordinate conversion using the measurement results of the reference sphere and the reference cylinder, and analyzed as three-dimensional shape data measured in one step.
Furthermore, by using the surface obtained by the reference sphere and the reference cylinder, the accuracy is improved compared to the alignment of the front and back surfaces of the object to be measured using only the reference sphere, and the eccentricity and inclination of the front and back surfaces are measured at high speed. be able to.

以下、添付の図面を参照して、本発明に係る被測定物形状測定治具及び三次元形状測定方法の好適な実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of an object shape measuring jig and a three-dimensional shape measuring method according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施形態に係る被測定物形状測定治具の全体構成を示す斜視図、なお、以下に示す実施形態においては、被測定物としては、例えば樹脂成形によって製造されるレンズを例に挙げて説明し、このレンズの表裏面の偏心及び傾きを求めるために、本発明に係る三次元形状測定方法を適用したものを例にして説明する。   FIG. 1 is a perspective view showing the overall configuration of a workpiece shape measuring jig according to an embodiment of the present invention. In the embodiment described below, the workpiece is manufactured by resin molding, for example. A lens will be described as an example, and in order to determine the eccentricity and inclination of the front and back surfaces of this lens, an example in which the three-dimensional shape measuring method according to the present invention is applied will be described.

図1に示すように、被測定物形状測定治具(以下、「測定治具」と呼ぶ。)10は、表裏両面にX−Y平面が形成された鋼、ステンレス、アルミニウム、真鍮などの材料を矩形状に成形した板状体11からなり、少なくとも一つの被測定物としてのレンズ20をこの板状体11の表裏両面からレンズ20の表裏面が露出する状態で保持するものである。そして、この測定治具10は、レンズ20の表裏面のいずれ側からでもレンズ20の三次元形状測定などによる偏心や傾きを測定可能に構成されている。   As shown in FIG. 1, an object shape measuring jig (hereinafter referred to as “measuring jig”) 10 is made of a material such as steel, stainless steel, aluminum, or brass having XY planes formed on both front and back surfaces. Is formed in a rectangular shape, and the lens 20 as at least one object to be measured is held in a state where the front and back surfaces of the lens 20 are exposed from both the front and back surfaces of the plate body 11. The measuring jig 10 is configured so as to be able to measure the eccentricity and inclination by measuring the three-dimensional shape of the lens 20 from either the front or back side of the lens 20.

また、測定治具10は、セラミックスや超硬合金などの材料を略真球に加工してなる基準球20Aと、セラミックス、ガラス、鋼などの材料からなる基準円筒30とを、それぞれ板状体11上に固定すると共に板状体11の側面に固定して保持している。   The measuring jig 10 includes a reference sphere 20A formed by processing a material such as ceramics or cemented carbide into a substantially spherical shape, and a reference cylinder 30 formed of a material such as ceramics, glass, steel, or the like, respectively. 11 and fixed to the side surface of the plate-like body 11 and held.

この測定治具10は、具体的には、例えばレンズ20を板状体11の中心部にてその表裏面が露出する状態で保持する被測定物保持部12と、基準球20Aが板状体11の一方の端部側にて、板状体11の表裏両面からそれぞれの表面が露出する状態で接着などにより取り付けられた基準球搭載部13と、基準円筒30が板状体11の基準球搭載部13が設けられた端部と被測定物保持部12を介して反対側の他方の端部の端面側に、板状体11の表裏両面からそれぞれ外周面を露出する状態で接着などにより取り付けられた基準円筒取付部14と、板状体11をその表裏両面に図1中矢印Rで示す方向に回動自在に支持する支持軸部15とを備えて構成されている。被測定物保持部12は、被測定物を保持した際、被測定物の表面及び裏面が露出されるよう、図示しない孔部を有している。   Specifically, the measuring jig 10 includes, for example, a measured object holding portion 12 that holds the lens 20 in a state where the front and back surfaces of the lens 20 are exposed at the center portion of the plate-like body 11, and a reference sphere 20A. The reference sphere mounting portion 13 attached by adhesion or the like with the respective surfaces exposed from the front and back surfaces of the plate-like body 11 on one end side of the plate-like body 11, and the reference cylinder 30 is a reference sphere of the plate-like body 11 By bonding or the like with the outer peripheral surface exposed from both the front and back surfaces of the plate-like body 11 to the end surface side of the other end portion on the opposite side through the end portion provided with the mounting portion 13 and the measured object holding portion 12 The reference cylinder mounting portion 14 is mounted, and a support shaft portion 15 that supports the plate-like body 11 on both front and back surfaces so as to be rotatable in a direction indicated by an arrow R in FIG. The DUT holding part 12 has a hole (not shown) so that the front and back surfaces of the DUT are exposed when the DUT is held.

図2は、このように構成された測定治具10を備えた三次元形状測定装置全体の例を示す斜視図である。三次元形状測定装置は、例えば非接触型の三次元測定機1と、この三次元測定機1を駆動制御すると共に必要なデータ処理を実行するコンピュータシステム2とから構成されている。   FIG. 2 is a perspective view illustrating an example of the entire three-dimensional shape measuring apparatus including the measuring jig 10 configured as described above. The three-dimensional shape measuring apparatus includes, for example, a non-contact type three-dimensional measuring machine 1 and a computer system 2 that drives and controls the three-dimensional measuring machine 1 and executes necessary data processing.

三次元測定機1は、例えば次のように構成されている。すなわち、架台3上には、測定治具10を回動自在に保持する測定テーブル4が装着されており、この測定テーブル4は、図示しないY軸駆動機構によってY軸方向に駆動される。架台3の両側縁部中央部には上方に延びる支持アーム5,6が固定されており、この支持アーム5,6の両上端部を連結するようにX軸ガイド7が固定されている。このX軸ガイド7には、撮像ユニット8が支持されている。撮像ユニット8は、図示しないX軸駆動機構によってX軸ガイド7に沿って駆動する。   The coordinate measuring machine 1 is configured as follows, for example. That is, a measurement table 4 that rotatably holds the measurement jig 10 is mounted on the gantry 3, and the measurement table 4 is driven in the Y-axis direction by a Y-axis drive mechanism (not shown). Support arms 5 and 6 extending upward are fixed to the center of both side edges of the gantry 3, and an X-axis guide 7 is fixed so as to connect both upper ends of the support arms 5 and 6. An imaging unit 8 is supported on the X-axis guide 7. The imaging unit 8 is driven along the X-axis guide 7 by an X-axis drive mechanism (not shown).

撮像ユニット8の内部は、次のように構成されている。すなわち、X軸ガイド7にそって移動可能に図示しないスライダが設けられ、このスライダに一体にZ軸ガイド(図示せず)が固定されている。このZ軸ガイドには、図示しない支持板がZ軸方向に摺動自在に設けられ、この支持板に画像測定用の撮像手段であるCCDカメラ31と、非接触式変位計であるレーザプローブ32とが併設されている。これにより、CCDカメラ31とレーザプローブ32とは、一定の位置関係を保ってX、Y、Zの3軸方向に同時に移動できるようになっている。   The inside of the imaging unit 8 is configured as follows. That is, a slider (not shown) is provided so as to be movable along the X-axis guide 7, and a Z-axis guide (not shown) is fixed integrally with the slider. The Z-axis guide is provided with a support plate (not shown) that is slidable in the Z-axis direction. The support plate is provided with a CCD camera 31 that is an imaging means for image measurement, and a laser probe 32 that is a non-contact displacement meter. And is attached. As a result, the CCD camera 31 and the laser probe 32 can move simultaneously in the three axis directions of X, Y, and Z while maintaining a fixed positional relationship.

図3に示すように、CCDカメラ31には、撮像範囲を照明するための照明装置33が付加されている。レーザプローブ32の近傍位置には、レーザプローブ32のレーザビームによる測定位置を確認するために、測定位置の周辺を撮像するCCDカメラ34と、レーザプローブ32の測定位置を照明するための照明装置35とが設けられている。レーザプローブ32は、撮像ユニット8の移動の際にレーザプローブ32を退避するための上下動機構36と、レーザビームの方向性を最適な方向に適合させるための回転機構37とにより支持されている。   As shown in FIG. 3, an illumination device 33 for illuminating the imaging range is added to the CCD camera 31. In order to confirm the measurement position of the laser probe 32 by the laser beam, a CCD camera 34 that images the periphery of the measurement position and an illuminating device 35 for illuminating the measurement position of the laser probe 32 are located near the laser probe 32. And are provided. The laser probe 32 is supported by a vertical movement mechanism 36 for retracting the laser probe 32 when the imaging unit 8 is moved, and a rotation mechanism 37 for adapting the directivity of the laser beam to an optimum direction. .

レーザプローブ32は、半導体レーザ51と、この半導体レーザ51から放射される光の光量を制限する光量制御部51aとを備えている。半導体レーザ51から放射された光は、図示しないビームスプリッタ、1/4波長板、及び対物レンズを介して測定治具10の測定部に光スポットを形成する。測定治具10から反射された光は、1/4波長板を介しビームスプリッタで反射され、コノスコープ部(図示せず)を通過し、CCDカメラのCCD素子上において干渉縞を形成する。   The laser probe 32 includes a semiconductor laser 51 and a light amount control unit 51 a that limits the amount of light emitted from the semiconductor laser 51. The light emitted from the semiconductor laser 51 forms a light spot on the measurement portion of the measurement jig 10 via a beam splitter, a quarter wavelength plate, and an objective lens (not shown). The light reflected from the measurement jig 10 is reflected by the beam splitter through the quarter wavelength plate, passes through the conoscope section (not shown), and forms interference fringes on the CCD element of the CCD camera.

コノスコープ部は、入射側の偏光子と、出射側の検格子と、それらの間に挟まれた複屈折結晶とからなる。すなわち、入射した光は、偏光子において偏光されて、複屈折結晶において、偏光方向に直交した2つの波面に分割されると共に2つの偏光光間で位相差を生じさせ、2つの偏光成分の間に90°の位相シフトが導かれる。その後、検格子を介して再び重ね合わせることにより、同心円状の干渉縞が生じる。   The conoscope unit is composed of an incident-side polarizer, an exit-side grating, and a birefringent crystal sandwiched between them. In other words, the incident light is polarized in the polarizer and is split into two wavefronts orthogonal to the polarization direction in the birefringent crystal, and a phase difference is generated between the two polarized light components. This leads to a 90 ° phase shift. Then, concentric interference fringes are generated by superimposing again through the lattice.

このとき、生成される干渉縞の周期には、物体の高さ(散乱角)により決定されるので、この干渉縞を周波数解析することにより、被測定物の光軸方向の変位を検出することができる。このように、レーザプローブ32の出力には、高さ情報が含まれているので、走査面における断面形状、表面性状等の情報を得ることができるという利点がある。   At this time, since the period of the generated interference fringe is determined by the height (scattering angle) of the object, the frequency of the interference fringe is analyzed to detect the displacement of the object to be measured in the optical axis direction. Can do. As described above, since the output of the laser probe 32 includes height information, there is an advantage that information such as a cross-sectional shape and a surface property on the scanning surface can be obtained.

三次元測定機1において、画像測定用のCCDカメラ31及びレーザプローブ32の測定位置確認用のCCDカメラ34で測定治具10を撮像して得られた画像信号は、コンピュータ21に供給される。この2種類の画像は、後述する選択回路Scによっていずれかが選択されてCRTディスプレイ25上に表示される。CCDカメラ31,34の撮像に必要な照明光は、コンピュータ21の制御に基づき、照明制御部74,75が照明装置33,35をそれぞれ制御することにより与えられる。   In the three-dimensional measuring machine 1, an image signal obtained by imaging the measuring jig 10 with the CCD camera 31 for image measurement and the CCD camera 34 for confirming the measurement position of the laser probe 32 is supplied to the computer 21. One of these two types of images is selected by a selection circuit Sc described later and displayed on the CRT display 25. Illumination light necessary for imaging by the CCD cameras 31 and 34 is given by the illumination control units 74 and 75 controlling the illumination devices 33 and 35, respectively, based on the control of the computer 21.

レーザプローブ32から得られた変位量の信号は、A/D変換器76を介して第2メモリ83に一時的に格納され、コンピュータ21に供給される。そして、これらを含む撮像ユニット8が、コンピュータ21の制御に基づいて動作するXYZ軸駆動部77によってXYZ軸方向に駆動される。撮像ユニット8のXYZ軸方向の位置は、XYZ軸エンコーダ78によって検出され、コンピュータ21に供給される。また、レーザプローブ32中の半導体レーザ51から放射されるレーザ光の光量を制御する光量制御部51aは、CPU81からの制御信号に基づき制御を実行する。   The displacement signal obtained from the laser probe 32 is temporarily stored in the second memory 83 via the A / D converter 76 and supplied to the computer 21. Then, the imaging unit 8 including these is driven in the XYZ axis direction by an XYZ axis driving unit 77 that operates based on the control of the computer 21. The position of the imaging unit 8 in the XYZ axis direction is detected by the XYZ axis encoder 78 and supplied to the computer 21. The light amount control unit 51 a that controls the amount of laser light emitted from the semiconductor laser 51 in the laser probe 32 executes control based on a control signal from the CPU 81.

一方、コンピュータ21は、制御の中心をなすCPU81と、このCPU81に接続される第1メモリ82と、第2メモリ83と、プログラム記憶部84と、ワークメモリ85と、インタフェース86,87,89と、第1メモリ82に記憶された多値画像データ又はCCDカメラ34から供給される画像信号を選択する選択回路Scと、選択回路Scで選択された多値画像データをCRTディスプレイ25に表示するための表示制御部88とにより構成されている。   On the other hand, the computer 21 includes a CPU 81 that is the center of control, a first memory 82 connected to the CPU 81, a second memory 83, a program storage unit 84, a work memory 85, and interfaces 86, 87, and 89. In order to display the multi-value image data stored in the first memory 82 or the image signal supplied from the CCD camera 34 and the multi-value image data selected by the selection circuit Sc on the CRT display 25. Display control unit 88.

CPU81は、画像測定モードとレーザ測定モードとで選択回路Scを切り換える。第1メモリ82に格納された多値画像データによる画像、又はCCDカメラ34から供給された画像信号による画像は、表示制御部88の表示制御動作によってCRTディスプレイ25に表示される。   The CPU 81 switches the selection circuit Sc between the image measurement mode and the laser measurement mode. The image based on the multi-value image data stored in the first memory 82 or the image based on the image signal supplied from the CCD camera 34 is displayed on the CRT display 25 by the display control operation of the display control unit 88.

一方、キーボード22、ジョイスティック23及びマウス24から入力されるオペレータの指示情報は、インタフェース86を介してCPU81に入力される。また、CPU81には、レーザプローブ32で検出された変位量やXYZ軸エンコーダ78からのXYZ座標情報等が取り込まれる。   On the other hand, operator instruction information input from the keyboard 22, joystick 23 and mouse 24 is input to the CPU 81 via the interface 86. Further, the CPU 81 takes in the displacement detected by the laser probe 32, XYZ coordinate information from the XYZ axis encoder 78, and the like.

CPU81は、これらの入力情報、オペレータの指示及びプログラム記憶部84に格納されたプログラム及びテーブル84tに基づいて、XYZ軸駆動部77によるステージ移動、測定治具10のレンズ20等の画像の解析、測定値の演算処理及び半導体レーザ51の出力レーザ光量の制御処理等の各種の処理を実行する。また、CPU81は、測定テーブル4に設けられた図示しない測定治具10の回動機構を制御して、測定治具10を支持軸部15を中心に回動させる。   Based on the input information, the operator's instruction, the program stored in the program storage unit 84, and the table 84t, the CPU 81 moves the stage by the XYZ axis drive unit 77, analyzes the image of the lens 20 of the measurement jig 10, and the like. Various processes such as a measurement value calculation process and a control process of the output laser light amount of the semiconductor laser 51 are executed. Further, the CPU 81 controls a rotation mechanism of the measurement jig 10 (not shown) provided on the measurement table 4 to rotate the measurement jig 10 about the support shaft portion 15.

ワークメモリ85は、CPU81の各種処理のための作業領域を提供する。測定値は、インタフェース87を介してプリンタ26に出力される。また、インタフェース89は、外部の図示しないCADシステム等により提供されるレンズ20等のCADデータを、所定の形式に変換してコンピュータシステム2に入力するためのものである。   The work memory 85 provides a work area for various processes of the CPU 81. The measured value is output to the printer 26 via the interface 87. The interface 89 is for converting CAD data of the lens 20 or the like provided by an external CAD system or the like (not shown) into a predetermined format and inputting it to the computer system 2.

図4及び図5は、本発明の一実施形態に係る被測定物形状測定治具を用いた被測定物の三次元形状測定処理手順の例を示すフローチャートである。レンズ20をセットした上記の測定治具10を三次元測定機1に取り付け、レンズ20の三次元形状を測定する処理の例について説明する。なお、説明の便宜上、レンズ20の凹面側をR1面側とし、凸面側をR2面側として説明する。図4に示すように、まず、測定治具10の被測定物保持部12の孔部にレンズ20を取り付けて固定する(ステップS100)。   4 and 5 are flowcharts showing an example of a 3D shape measurement processing procedure of the object to be measured using the object shape measuring jig according to the embodiment of the present invention. An example of processing for measuring the three-dimensional shape of the lens 20 by attaching the measurement jig 10 with the lens 20 set thereto to the coordinate measuring machine 1 will be described. For convenience of explanation, the concave surface side of the lens 20 is described as the R1 surface side, and the convex surface side is described as the R2 surface side. As shown in FIG. 4, first, the lens 20 is attached and fixed to the hole of the measured object holding part 12 of the measuring jig 10 (step S100).

そして、測定治具10に取り付けられたレンズ20のR1面側が上になっているか否かを判断し(ステップS101)、上になっていると判断した場合(ステップS101のY)は、ステップS102に進み、レンズ20のR1面側を上に位置させたまま測定治具10を三次元測定機1の測定テーブル4上に配置する(ステップS102)。   Then, it is determined whether or not the R1 surface side of the lens 20 attached to the measurement jig 10 is up (step S101). If it is determined that the lens 20 is up (Y in step S101), step S102 is performed. Then, the measurement jig 10 is placed on the measurement table 4 of the coordinate measuring machine 1 with the R1 surface side of the lens 20 positioned upward (step S102).

一方、上になっていないと判断した場合(ステップS101のN)は、ステップS112に進み、レンズ20のR2面側を上に位置させたまま測定治具10を三次元測定機1の測定テーブル4上に配置する(ステップS112)。ここでは、このステップS112以降の処理については後述する。   On the other hand, if it is determined that it is not up (N in step S101), the process proceeds to step S112, and the measurement jig 10 is placed on the measurement table of the coordinate measuring machine 1 while the R2 surface side of the lens 20 is positioned upward. 4 (step S112). Here, the processing after step S112 will be described later.

レンズ20のR1面側を上に位置させて配置した場合、次に、測定治具10の基準球搭載部13に取り付けられた基準球20Aを三次元形状測定して、基準球20Aの三次元形状測定データである基準球測定データを取得し、この基準球測定データをコンピュータ21に備えられた第1メモリ82等に記録して保存する(ステップS103)。   When the lens 20 is disposed with the R1 surface side positioned on the upper side, next, the reference sphere 20A attached to the reference sphere mounting portion 13 of the measurement jig 10 is three-dimensionally measured, and the three-dimensional of the reference sphere 20A is measured. Reference sphere measurement data, which is shape measurement data, is acquired, and this reference sphere measurement data is recorded and stored in the first memory 82 provided in the computer 21 (step S103).

そして、得られた基準球測定データを用いて、コンピュータ21のCPU81による演算処理にて、図6に示すように、基準球20Aの中心点の座標Osを算出し(ステップS104)、基準球20Aの中心点座標算出結果を第1メモリ82等に保存する。   Then, using the obtained reference sphere measurement data, the coordinate Os of the center point of the reference sphere 20A is calculated by the calculation process by the CPU 81 of the computer 21 as shown in FIG. 6 (step S104). Are stored in the first memory 82 or the like.

次に、測定治具10の基準円筒取付部14に取り付けられた基準円筒30における所定距離H離れた2点の断面を二次元形状測定して、基準円筒30の二次元形状測定データである基準円筒測定データを取得し、この基準円筒測定データを第1メモリ82等に記録して保存する(ステップS105)。   Next, two-dimensional shape measurement is performed on two cross-sections at a predetermined distance H in the reference cylinder 30 attached to the reference cylinder attachment portion 14 of the measurement jig 10, and reference data that is two-dimensional shape measurement data of the reference cylinder 30 is obtained. Cylindrical measurement data is acquired, and this reference cylindrical measurement data is recorded and stored in the first memory 82 or the like (step S105).

そして、得られた基準円筒測定データを用いて、CPU81によって断面により構成される円のそれぞれの中心点座標O1,O2を算出し(ステップS106)、基準円筒30の各中心点座標算出結果を第1メモリ82等に保存する。   Then, using the obtained reference cylinder measurement data, the CPU 81 calculates the center point coordinates O1 and O2 of the circle constituted by the cross section (step S106), and calculates each center point coordinate calculation result of the reference cylinder 30 as the first result. 1 saved in the memory 82 or the like.

次に、測定治具10の被測定物保持部12に固定保持されたレンズ20のR1面側を三次元形状測定して、レンズ20のR1面の三次元形状測定データであるR1面側測定データを取得し、このR1面側測定データを第1メモリ82等に保存する(ステップS107)。   Next, three-dimensional shape measurement is performed on the R1 surface side of the lens 20 fixedly held by the measurement object holding unit 12 of the measuring jig 10, and R1 surface side measurement which is three-dimensional shape measurement data of the R1 surface of the lens 20 is measured. Data is acquired, and this R1 plane side measurement data is stored in the first memory 82 or the like (step S107).

そして、このR1面側測定データを用い、CPU81による演算処理で、レンズ20のR1面側の頂点座標Pr1及び光軸L1の方向を算出し(ステップS108)、レンズ20のR1面側算出結果を第1メモリ82等に保存する。   Then, the R1 surface side measurement data is used to calculate the vertex coordinate Pr1 on the R1 surface side of the lens 20 and the direction of the optical axis L1 by calculation processing by the CPU 81 (step S108), and the R1 surface side calculation result of the lens 20 is calculated. Saved in the first memory 82 or the like.

ここで、上記ステップS104、ステップS106、及びステップS108にてそれぞれ算出された基準球20Aの中心点座標Os、各円の中心点座標O1,O2、レンズ20のR1面側の頂点座標Pr1及び光軸L1の方向の測定データを、CPU81による座標変換によって、図7(a)に示すように、ステップS106にて得られた各円の中心点座標O1,O2を結ぶ線分O1O2が測定機座標系100のY軸と一致するように(すなわち、線分O1O2’となり、基準球20の中心点座標Os’となるように)、X軸回りのα方向にδγだけ回転移動させるとともに、図7(b)に示すように、Z軸回りのγ方向にδαだけ回転移動させる(ステップS109)。   Here, the center point coordinates Os of the reference sphere 20A, the center point coordinates O1 and O2 of each circle, the vertex coordinates Pr1 on the R1 surface side of the lens 20 and the light calculated in the above steps S104, S106, and S108, respectively. As shown in FIG. 7A, the measurement data in the direction of the axis L1 is converted into the measuring machine coordinates by connecting the line segment O1O2 connecting the center point coordinates O1 and O2 of each circle obtained in step S106 by coordinate conversion by the CPU 81. 7 is rotated and moved by δγ in the α direction around the X axis so as to coincide with the Y axis of the system 100 (that is, the line segment O1O2 ′ and the center point coordinate Os ′ of the reference sphere 20). As shown in (b), the rotation is performed by δα in the γ direction around the Z axis (step S109).

また、上記ステップS104、ステップS106、及びステップS108にてそれぞれ算出された基準球20Aの中心点座標Os、各円の中心点座標O1,O2、レンズ20のR1面側の頂点座標Pr1及び光軸L1の方向の測定データを、CPU81による座標変換によって、図8に示すように、ステップS104にて得られた中心点座標Os及びステップS106にて得られた中心点座標O1,O2を結んで構成される面OsO1O2がX−Y平面に平行となるように(すなわち、面OsO1’O2’となるように)、Y軸回りのβ方向にδβだけ回転移動させる(ステップS110)。   Further, the center point coordinates Os of the reference sphere 20A, the center point coordinates O1 and O2 of each circle, the vertex coordinates Pr1 on the R1 surface side of the lens 20, and the optical axis calculated in the above steps S104, S106, and S108, respectively. As shown in FIG. 8, the measurement data in the direction of L1 is formed by connecting the center point coordinates Os obtained in step S104 and the center point coordinates O1 and O2 obtained in step S106, as shown in FIG. The surface OsO1O2 to be moved is rotated by δβ in the β direction around the Y axis so that the surface OsO1O2 is parallel to the XY plane (that is, the surface OsO1′O2 ′) (step S110).

ここまでの処理が完了したら、レンズ20のR2面側について、三次元形状測定が済んでいるか否かを判断し(ステップS111)、済んでいないと判断した場合(ステップS111のN)は、上記ステップS112に移行して、図9に示すように、レンズ20のR2面側についても上記ステップS103〜ステップS110と同様に、ステップS113〜ステップS120を行って、各測定データ(基準球測定データ、基準円筒測定データ、R2面側測定データ)や各算出結果(基準球20Aの中心点座標算出結果、基準円筒30の各中心点座標算出結果、レンズ20のR2面側算出結果(R2面側の頂点座標Pr2及び光軸L2の方向))を得るとともに、測定データの回転移動処理(ステップS119、ステップS120)を行う。   When the processing so far is completed, it is determined whether or not the three-dimensional shape measurement has been completed for the R2 surface side of the lens 20 (step S111). If it is determined that the measurement has not been completed (N in step S111), Shifting to step S112, as shown in FIG. 9, the step S113 to step S120 are also performed on the R2 surface side of the lens 20 in the same manner as the above steps S103 to S110, and each measurement data (reference sphere measurement data, Reference cylinder measurement data, R2 surface side measurement data) and calculation results (center point coordinate calculation result of reference sphere 20A, center point coordinate calculation result of reference cylinder 30, R2 surface side calculation result of lens 20 (R2 surface side calculation result) The vertex coordinates Pr2 and the direction of the optical axis L2) are obtained, and the rotational movement process (steps S119 and S120) of the measurement data is performed.

こうして、レンズ20のR2面側の各処理が完了したら、同様にレンズ20のR1面側について、三次元形状測定が済んでいるか否かを判断し(ステップS121)、済んでいないと判断した場合(ステップS121のN)は、上記ステップS102に移行して、以降の処理を行う。   When each process on the R2 surface side of the lens 20 is thus completed, it is similarly determined whether or not the three-dimensional shape measurement has been completed for the R1 surface side of the lens 20 (step S121). (N of step S121) transfers to said step S102, and performs the subsequent processes.

レンズ20のR2面側及びレンズ20のR1面側のいずれについても三次元形状測定が済んでいる場合(ステップS111のY、ステップS121のY)は、図5に示すように、演算処理部によって座標変換を行い、例えば図10に示すようにレンズ20のR2面側測定データを測定機座標系100のY軸回りのβ方向に180°回転させる(ステップS122)。   When the three-dimensional shape measurement has been completed for both the R2 surface side of the lens 20 and the R1 surface side of the lens 20 (Y in step S111, Y in step S121), as shown in FIG. For example, as shown in FIG. 10, the R2 surface side measurement data of the lens 20 is rotated 180 ° in the β direction around the Y axis of the measuring machine coordinate system 100 as shown in FIG. 10 (step S122).

そして、図11に示すように、レンズ20のR1面側測定データとR2面側測定データとを、基準球20Aの中心点座標Osが一致するように平行移動させ(ステップS123)、図12に示すように、レンズ20のR1面を基準として、レンズ20のR2面の偏心d及び傾きθを求め(ステップS124)、本フローチャートによる一連の三次元形状測定処理を終了する。なお、上記ステップS124では、レンズ20のR1面とR2面の2面の偏心dを求めたが、例えばこれら2面のレンズ20の外径に対する偏心dを求めるようにしてもよい。   Then, as shown in FIG. 11, the R1 surface side measurement data and the R2 surface side measurement data of the lens 20 are translated so that the center point coordinates Os of the reference sphere 20A coincide (step S123), and FIG. As shown, the eccentricity d and the inclination θ of the R2 surface of the lens 20 are obtained with reference to the R1 surface of the lens 20 (step S124), and the series of three-dimensional shape measurement processing according to this flowchart is completed. In step S124, the eccentricity d of the two surfaces R1 and R2 of the lens 20 is obtained. However, for example, the eccentricity d of the two surfaces with respect to the outer diameter of the lens 20 may be obtained.

以上述べたように、上述した実施形態によれば、基準球20Aと基準円筒30とを備える測定治具10の基準球20A及び基準円筒30の各測定結果を用いて、レンズ20の表裏面(R1面、R2面)の三次元測定を高精度かつ高速に行うことが可能となる。   As described above, according to the above-described embodiment, the measurement results of the reference sphere 20A and the reference cylinder 30 of the measurement jig 10 including the reference sphere 20A and the reference cylinder 30 are used to measure the front and back surfaces of the lens 20 ( (R1 plane, R2 plane) can be measured with high accuracy and high speed.

また、レンズ20のR1面側とR2面側の異なる工程でそれぞれ取得した三次元形状測定データを基準球20A及び基準円筒30の測定結果を用いて座標変換により位置合わせし、結果的に一つの工程でレンズ20を測定した三次元形状データとして解析することが可能となる。   Further, the three-dimensional shape measurement data acquired in different steps on the R1 surface side and the R2 surface side of the lens 20 are aligned by coordinate conversion using the measurement results of the reference sphere 20A and the reference cylinder 30, and as a result, one lens is obtained. It is possible to analyze the lens 20 as three-dimensional shape data measured in the process.

さらに、基準球20Aと基準円筒30により得られた面OsO1O2を利用することで、基準球20Aのみによるレンズ20の表裏面の位置合わせに比べて精度を高め、表裏面の偏心d及び傾きθの測定を高速に行うことが可能となる。   Further, by using the surface OsO1O2 obtained by the reference sphere 20A and the reference cylinder 30, the accuracy is improved compared to the alignment of the front and back surfaces of the lens 20 using only the reference sphere 20A, and the eccentricity d and inclination θ of the front and back surfaces are increased. Measurement can be performed at high speed.

なお、以上説明した測定処理は、測定治具10に1個のレンズ20を保持した場合についてであるが、複数のレンズを保持した場合には、各レンズについて上記処理を行えばよく、基準球20A、基準円筒30及びレンズ20に対する測定順序は任意に決定することができると共に、レンズ20のR1面及びR2面の測定順序も任意に決定することができる。   The measurement process described above is for the case where one lens 20 is held in the measurement jig 10, but when a plurality of lenses are held, the above process may be performed for each lens, and the reference sphere The measurement order for 20A, the reference cylinder 30 and the lens 20 can be arbitrarily determined, and the measurement order for the R1 and R2 surfaces of the lens 20 can also be arbitrarily determined.

また、本実施形態で説明した三次元形状測定方法は、あらかじめ用意されたプログラムを、上述した三次元測定機1のみならず、輪郭形状測定機などを含む表面性状測定装置において実行することにより実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、CD−ROM、MO、DVD、Blu−ray Disc等のコンピュータ21で読み取り可能な記録媒体に記録され、このコンピュータによって記録媒体から読み出されることによって実行される。また、このプログラムは、インターネット等のネットワークを介して配布することが可能な伝送媒体であってもよい。   In addition, the three-dimensional shape measurement method described in the present embodiment is realized by executing a program prepared in advance on a surface property measurement device including not only the above-described three-dimensional measurement device 1 but also a contour shape measurement device. can do. This program is recorded on a recording medium readable by the computer 21 such as a hard disk, a flexible disk, a CD-ROM, an MO, a DVD, or a Blu-ray Disc, and is executed by being read from the recording medium by the computer. Further, this program may be a transmission medium that can be distributed via a network such as the Internet.

以上の説明の通り本発明によれば、三次元形状測定によりレンズ等の表裏面で光軸が一致するように製造されるべき被測定物の偏心や傾きを測定するのに有用である。   As described above, according to the present invention, it is useful for measuring the eccentricity and inclination of an object to be manufactured so that the optical axes coincide on the front and back surfaces of a lens or the like by three-dimensional shape measurement.

本発明の一実施形態に係る被測定物形状測定治具の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the to-be-measured object shape measuring jig which concerns on one Embodiment of this invention. 本発明の一実施形態に係る被測定物形状測定治具を備えた三次元形状測定装置全体の例を示す斜視図である。It is a perspective view which shows the example of the whole three-dimensional shape measuring apparatus provided with the to-be-measured object shape measuring jig which concerns on one Embodiment of this invention. コンピュータシステムの内部構成の例を示すブロック図である。It is a block diagram which shows the example of an internal structure of a computer system. 本発明の一実施形態に係る被測定物形状測定治具を用いた被測定物の三次元形状測定処理手順の例を示すフローチャートである。It is a flowchart which shows the example of the three-dimensional shape measurement process sequence of the to-be-measured object using the to-be-measured object shape measuring jig which concerns on one Embodiment of this invention. 本発明の一実施形態に係る被測定物形状測定治具を用いた被測定物の三次元形状測定処理手順の例を示すフローチャートである。It is a flowchart which shows the example of the three-dimensional shape measurement process sequence of the to-be-measured object using the to-be-measured object shape measuring jig which concerns on one Embodiment of this invention. 同被測定物のR1面側の測定状態を示す説明図である。It is explanatory drawing which shows the measurement state by the side of R1 of the same to-be-measured object. 同三次元形状測定処理手順における回転移動処理を説明するための説明図である。It is explanatory drawing for demonstrating the rotational movement process in the same three-dimensional shape measurement process procedure. 同三次元形状測定処理手順における回転移動処理を説明するための説明図である。It is explanatory drawing for demonstrating the rotational movement process in the same three-dimensional shape measurement process procedure. 同被測定物のR2面側の測定状態を示す説明図である。It is explanatory drawing which shows the measurement state by the side of R2 surface of the same to-be-measured object. 同三次元形状測定処理手順におけるR2面側測定データの回転処理を説明するための説明図である。It is explanatory drawing for demonstrating the rotation process of R2 surface side measurement data in the same three-dimensional shape measurement process procedure. 同三次元形状測定処理手順におけるR1面側及びR2面側測定データの平行移動処理を説明するための説明図である。It is explanatory drawing for demonstrating the parallel movement process of the R1 surface side and R2 surface side measurement data in the same three-dimensional shape measurement processing procedure. 同被測定物のR1面を基準にした偏心と傾きを示す説明図である。It is explanatory drawing which shows the eccentricity and inclination on the basis of R1 surface of the to-be-measured object.

符号の説明Explanation of symbols

1 三次元測定機
2 コンピュータシステム
3 架台
4 測定テーブル
5,6 支持アーム
7 X軸ガイド
8 撮像ユニット
10 被測定物形状測定治具(測定治具)
11 板状体
12 被測定物保持部
13 基準球搭載部
14 基準円筒取付部
15 支持軸部
20 レンズ
20A 基準球
21 コンピュータ
22 キーボード
23 ジョイスティック
24 マウス
26 プリンタ
30 基準円筒
100 測定機座標系
DESCRIPTION OF SYMBOLS 1 CMM 2 Computer system 3 Base 4 Measurement table 5, 6 Support arm 7 X-axis guide 8 Imaging unit 10 Measured object shape measurement jig (measurement jig)
DESCRIPTION OF SYMBOLS 11 Plate-like body 12 Measured object holding part 13 Reference sphere mounting part 14 Reference cylinder mounting part 15 Support shaft part 20 Lens 20A Reference sphere 21 Computer 22 Keyboard 23 Joystick 24 Mouse 26 Printer 30 Reference cylinder 100 Measuring machine coordinate system

Claims (3)

第1面及びこれに対向する第2面を有する板状体と、
前記第1面及び前記第2面のそれぞれにおいてその表面が外部に露出するように前記板状体に固定された基準球と、
前記第1面及び前記第2面のそれぞれにおいてその外周表面が外部に露出するように前記板状体の側方に固定された基準円筒と、
前記板状体を貫通するように形成された孔部を有し被測定物の表面及び裏面がそれぞれ前記第1面及び第2面において露出するように前記孔部において前記被測定物を保持する被測定物保持部と
を備えた
ことを特徴とする被測定物形状測定治具。
A plate-like body having a first surface and a second surface facing the first surface;
A reference sphere fixed to the plate-like body such that the surface of each of the first surface and the second surface is exposed to the outside;
A reference cylinder fixed to the side of the plate-like body so that the outer peripheral surface of each of the first surface and the second surface is exposed to the outside;
The hole is formed so as to penetrate the plate-like body, and the object to be measured is held in the hole so that the front surface and the back surface of the object to be measured are exposed on the first surface and the second surface, respectively. A measuring object shape measuring jig comprising: a measuring object holding part.
前記板状体を前記第1面と前記第2面が反転可能なように回動自在に支持する支持軸部を更に備えたことを特徴とする請求項1記載の被測定物形状測定治具。   The object shape measuring jig according to claim 1, further comprising a support shaft portion that rotatably supports the plate-like body so that the first surface and the second surface can be reversed. . 第1面及びこれに対向する第2面を有すると共に、基準球、及び基準円筒を固定的に保持する板状体からなる被測定物形状測定治具において、前記基準球、前記基準円筒及び少なくとも一つの被測定物を、前記第1面及び前記第2面のそれぞれにおいてそれらの表面が露出する状態で保持する工程と、
前記基準球の三次元形状を測定してこの基準球の中心点座標を算出する工程と、
前記基準円筒における軸方向に所定距離離れた2点の断面を二次元形状測定して、各断面により構成される円のそれぞれの中心点座標を算出する工程と、
前記被測定物の一方の面の三次元形状を測定して測定データを得る工程と、
前記基準球、前記基準円筒及び前記被測定物の測定結果に基づいて、前記円の各中心点座標を結ぶ線分がY軸と一致するよう、前記中心点座標及び前記測定データに関し、X軸の回り及びZ軸の回りに座標変換を行う工程と、
前記基準球、前記基準円筒及び前記被測定物の測定結果に基づいて、前記基準球及び前記円の各中心点座標を結んで構成される面がX−Y平面と平行となるよう、前記中心点座標及び前記測定データに関し、Y軸の回りに座標変換を行う工程と
を、前記被測定物の表面、及び裏面のそれぞれについて実行すると共に、
前記被測定物の表面に関し得られた測定データと前記被測定物の裏面に関し得られた測定データとに基づき、前記表面と前記裏面との間の相対位置データを算出する工程と
を備えることを特徴とする三次元形状測定方法。
An object shape measuring jig having a first surface and a second surface facing the first surface, and comprising a reference sphere and a plate-like body that holds the reference cylinder fixedly, wherein the reference sphere, the reference cylinder, and at least Holding one object to be measured in a state in which the surface of each of the first surface and the second surface is exposed;
Measuring a three-dimensional shape of the reference sphere and calculating a center point coordinate of the reference sphere;
Two-dimensional shape measurement of two cross-sections separated by a predetermined distance in the axial direction in the reference cylinder, and calculating respective center point coordinates of a circle constituted by each cross-section;
Measuring the three-dimensional shape of one surface of the object to be measured to obtain measurement data;
Based on the measurement results of the reference sphere, the reference cylinder, and the object to be measured, the X axis is related to the center point coordinates and the measurement data so that the line segment connecting the center point coordinates of the circle coincides with the Y axis. Performing coordinate transformation around and around the Z axis;
Based on the measurement results of the reference sphere, the reference cylinder, and the object to be measured, the center is configured such that a plane formed by connecting the center point coordinates of the reference sphere and the circle is parallel to the XY plane. For the point coordinates and the measurement data, a step of performing coordinate transformation around the Y axis is performed for each of the front surface and the back surface of the object to be measured.
Calculating relative position data between the front surface and the back surface based on measurement data obtained regarding the surface of the device under test and measurement data obtained regarding the back surface of the device under test. A characteristic three-dimensional shape measuring method.
JP2008167087A 2008-06-26 2008-06-26 DUT shape measuring jig and three-dimensional shape measuring method Active JP5059700B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008167087A JP5059700B2 (en) 2008-06-26 2008-06-26 DUT shape measuring jig and three-dimensional shape measuring method
US12/457,032 US7869060B2 (en) 2008-06-26 2009-05-29 Jig for measuring an object shape and method for measuring a three-dimensional shape
DE602009000525T DE602009000525D1 (en) 2008-06-26 2009-06-19 Clamping device for measuring an object shape and method for measuring a three-dimensional shape
AT09163212T ATE494525T1 (en) 2008-06-26 2009-06-19 CLAMPING DEVICE FOR MEASURING AN OBJECT SHAPE AND METHOD FOR MEASURING A THREE-DIMENSIONAL SHAPE
EP09163212A EP2138803B1 (en) 2008-06-26 2009-06-19 Jig for measuring an object shape and method for measuring a three-dimensional shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167087A JP5059700B2 (en) 2008-06-26 2008-06-26 DUT shape measuring jig and three-dimensional shape measuring method

Publications (2)

Publication Number Publication Date
JP2010008193A true JP2010008193A (en) 2010-01-14
JP5059700B2 JP5059700B2 (en) 2012-10-24

Family

ID=41588890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167087A Active JP5059700B2 (en) 2008-06-26 2008-06-26 DUT shape measuring jig and three-dimensional shape measuring method

Country Status (1)

Country Link
JP (1) JP5059700B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177632A1 (en) * 2013-05-02 2014-11-06 Carl Zeiss Vision International Gmbh Method and system for determining the spatial structure of an object
DE102013219838B4 (en) * 2013-09-30 2015-11-26 Carl Zeiss Ag Method and system for determining the spatial structure of an object
DE102018201481A1 (en) 2018-01-31 2019-08-01 Carl Zeiss Vision Gmbh Apparatus and method for determining the three-dimensional surface geometry of objects
JP2021015120A (en) * 2019-07-11 2021-02-12 Jfeスチール株式会社 Fracture shape evaluation method, fracture shape data storage method and fracture shape evaluation device
US11644296B1 (en) 2021-12-17 2023-05-09 Industrial Technology Research Institute 3D measuring equipment and 3D measuring method
WO2024202476A1 (en) * 2023-03-24 2024-10-03 パナソニックIpマネジメント株式会社 Lens measuring method and lens measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340503A (en) * 2001-05-16 2002-11-27 Mitsutoyo Corp Method for adjusting relative attitude of object to be measured for surface properties measuring machine
JP2004286457A (en) * 2003-03-19 2004-10-14 Mitsutoyo Corp Jig, method, and program for calibrating surface property measuring instrument and recording medium recording calibration program
JP2006078398A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Method and device for measuring eccentricity and inclination of both sides
JP2007085882A (en) * 2005-09-22 2007-04-05 Mitsutoyo Corp Relative relation measuring method, relative relation measuring jig, and relative relation measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340503A (en) * 2001-05-16 2002-11-27 Mitsutoyo Corp Method for adjusting relative attitude of object to be measured for surface properties measuring machine
JP2004286457A (en) * 2003-03-19 2004-10-14 Mitsutoyo Corp Jig, method, and program for calibrating surface property measuring instrument and recording medium recording calibration program
JP2006078398A (en) * 2004-09-10 2006-03-23 Matsushita Electric Ind Co Ltd Method and device for measuring eccentricity and inclination of both sides
JP2007085882A (en) * 2005-09-22 2007-04-05 Mitsutoyo Corp Relative relation measuring method, relative relation measuring jig, and relative relation measuring instrument

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014177632A1 (en) * 2013-05-02 2014-11-06 Carl Zeiss Vision International Gmbh Method and system for determining the spatial structure of an object
AU2014261378B2 (en) * 2013-05-02 2017-02-16 Carl Zeiss Ag Method and system for determining the spatial structure of an object
US9797804B2 (en) 2013-05-02 2017-10-24 Carl Zeiss Vision International Gmbh Method and system for determining the spatial structure of an object
DE102013219838B4 (en) * 2013-09-30 2015-11-26 Carl Zeiss Ag Method and system for determining the spatial structure of an object
DE102018201481A1 (en) 2018-01-31 2019-08-01 Carl Zeiss Vision Gmbh Apparatus and method for determining the three-dimensional surface geometry of objects
JP2021015120A (en) * 2019-07-11 2021-02-12 Jfeスチール株式会社 Fracture shape evaluation method, fracture shape data storage method and fracture shape evaluation device
US11644296B1 (en) 2021-12-17 2023-05-09 Industrial Technology Research Institute 3D measuring equipment and 3D measuring method
TWI806294B (en) * 2021-12-17 2023-06-21 財團法人工業技術研究院 3d measuring equipment and 3d measuring method
WO2024202476A1 (en) * 2023-03-24 2024-10-03 パナソニックIpマネジメント株式会社 Lens measuring method and lens measuring device

Also Published As

Publication number Publication date
JP5059700B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP2138803B1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
WO2017107777A1 (en) Method for measuring surface shape error of rotary symmetrical unknown aspheric surface, and measurement device thereof
JP5059700B2 (en) DUT shape measuring jig and three-dimensional shape measuring method
US20100231923A1 (en) Three-dimensional shape measuring method and device
JP3678915B2 (en) Non-contact 3D measuring device
WO2007018118A1 (en) Method for measuring decentralization of optical axis on the front and the rear surface of lens
JP3923945B2 (en) Non-contact surface shape measurement method
JPH1183438A (en) Position calibration method for optical measuring device
JP5059699B2 (en) DUT shape measuring jig and three-dimensional shape measuring method
JP7414643B2 (en) Shape measuring device and shape measuring method
JP2021181983A (en) Chromatic range sensor system
JP3678916B2 (en) Non-contact 3D measurement method
JP4791118B2 (en) Image measuring machine offset calculation method
JP3602965B2 (en) Non-contact three-dimensional measurement method
CN117760336B (en) Calibration method and medium of five-axis interference measurement system and electronic equipment
JP4434431B2 (en) 3D shape measuring device
JP4791568B2 (en) 3D measuring device
JP2006078398A (en) Method and device for measuring eccentricity and inclination of both sides
JP5649926B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2005172610A (en) Three-dimensional measurement apparatus
JP4833662B2 (en) Non-contact displacement measuring device, edge detection method thereof, and edge detection program
JP4922905B2 (en) Method and apparatus for measuring position variation of rotation center line
JP2013152148A (en) Aspherical shape measuring method, shape measuring program, and shape measuring device
JP2012013593A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
JPH11211426A (en) Surface form measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110506

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5059700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250