JP2010098074A - Separator for electric storage device - Google Patents
Separator for electric storage device Download PDFInfo
- Publication number
- JP2010098074A JP2010098074A JP2008266786A JP2008266786A JP2010098074A JP 2010098074 A JP2010098074 A JP 2010098074A JP 2008266786 A JP2008266786 A JP 2008266786A JP 2008266786 A JP2008266786 A JP 2008266786A JP 2010098074 A JP2010098074 A JP 2010098074A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- separator
- storage device
- synthetic fiber
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003860 storage Methods 0.000 title claims abstract description 27
- 239000000835 fiber Substances 0.000 claims abstract description 207
- -1 polyethylene terephthalate Polymers 0.000 claims abstract description 28
- 229920002994 synthetic fiber Polymers 0.000 claims abstract description 11
- 239000012209 synthetic fiber Substances 0.000 claims abstract description 11
- 229920001169 thermoplastic Polymers 0.000 claims abstract description 11
- 239000004416 thermosoftening plastic Substances 0.000 claims abstract description 11
- 229920000728 polyester Polymers 0.000 claims abstract description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 claims abstract description 10
- 239000005020 polyethylene terephthalate Substances 0.000 claims abstract description 10
- 239000004760 aramid Substances 0.000 claims abstract description 8
- 229920003235 aromatic polyamide Polymers 0.000 claims abstract description 8
- 125000003118 aryl group Chemical group 0.000 claims abstract description 8
- 229920006283 heat-resistant synthetic fiber Polymers 0.000 claims abstract description 8
- 239000004734 Polyphenylene sulfide Substances 0.000 claims abstract description 4
- 229920001230 polyarylate Polymers 0.000 claims abstract description 4
- 229920001707 polybutylene terephthalate Polymers 0.000 claims abstract description 4
- 229920000069 polyphenylene sulfide Polymers 0.000 claims abstract description 4
- 229920006012 semi-aromatic polyamide Polymers 0.000 claims abstract description 3
- 229920002678 cellulose Polymers 0.000 claims description 19
- 239000001913 cellulose Substances 0.000 claims description 19
- 239000003990 capacitor Substances 0.000 claims description 18
- 230000005611 electricity Effects 0.000 claims description 16
- 230000035699 permeability Effects 0.000 claims description 16
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000010409 thin film Substances 0.000 abstract description 4
- 239000002904 solvent Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000006185 dispersion Substances 0.000 description 15
- 239000010408 film Substances 0.000 description 14
- 230000000704 physical effect Effects 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 230000007774 longterm Effects 0.000 description 9
- 239000002608 ionic liquid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 6
- 238000005342 ion exchange Methods 0.000 description 6
- 229920000573 polyethylene Polymers 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010009 beating Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010294 electrolyte impregnation Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 244000099147 Ananas comosus Species 0.000 description 1
- 235000007119 Ananas comosus Nutrition 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 238000005079 FT-Raman Methods 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 240000000797 Hibiscus cannabinus Species 0.000 description 1
- 229920001407 Modal (textile) Polymers 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 210000000077 angora Anatomy 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 210000000085 cashmere Anatomy 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Cell Separators (AREA)
Abstract
Description
本発明は、例えば、リチウムイオン二次電池、ポリマーリチウム二次電池、アルミニウム電解コンデンサ、電気二重層キャパシタなどの蓄電デバイス用セパレータに関するものである。 The present invention relates to a separator for an electricity storage device such as a lithium ion secondary battery, a polymer lithium secondary battery, an aluminum electrolytic capacitor, and an electric double layer capacitor.
近年、産業用、民生用のいずれにおいても電気・電子機器の増加している上に、ハイブリッド自動車が実用化されたことにより、それらに搭載される蓄電デバイス、例えば、リチウムイオン二次電池、ポリマーリチウム二次電池、アルミニウム電解コンデンサ、電気二重層キャパシタなどの需要が著しく増加している。電気・電子機器は長寿命化、高機能化が日進月歩で進行しており、蓄電デバイス用セパレータにおいても長寿命化、高機能化が要求されており、過酷な環境下での使用も増えている。
リチウムイオン二次電池は、活物質とリチウム含有酸化物とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンで混合しアルミニウム製集電体上にシート化した正極と、リチウムイオンを吸蔵放出し得る炭素質材料とポリフッ化ビニリデン等のバインダーを1−メチル−2−ピロリドンで混合し銅製集電体上にシート化した負極と、ポリエチレンやポリプロピレン等により成る多孔質電解質膜とを、正極、電解質膜、負極の順に捲回もしくは積層した電極体に駆動用電解液を含浸し、アルミニウムケースにより封止した構造のものである。
In recent years, electrical and electronic equipment has increased in both industrial and consumer use, and since hybrid vehicles have been put into practical use, power storage devices such as lithium ion secondary batteries and polymers mounted on them Demand for lithium secondary batteries, aluminum electrolytic capacitors, electric double layer capacitors, etc. has increased significantly. Electrical and electronic equipment has long life and high functionality, and power device separators are required to have long life and high functionality, and use in harsh environments is increasing. .
A lithium ion secondary battery is a positive electrode in which an active material, a lithium-containing oxide, and a binder such as polyvinylidene fluoride are mixed with 1-methyl-2-pyrrolidone to form a sheet on an aluminum current collector, and lithium ions are occluded and released. A negative electrode formed by mixing a carbonaceous material and a binder such as polyvinylidene fluoride with 1-methyl-2-pyrrolidone into a sheet on a copper current collector, and a porous electrolyte membrane made of polyethylene, polypropylene, or the like, An electrode body wound or laminated in the order of an electrolyte membrane and a negative electrode is impregnated with a driving electrolyte solution and sealed with an aluminum case.
電気二重層キャパシタは、活性炭と導電剤及びバインダーを混錬したものをアルミニウム製正極、負極各集電体の両面に貼り付け、セルロース等により成るセパレータを介して捲回もしくは積層した電極体に駆動用電解液を含浸し、アルミニウムケースと封止体により梱包して短絡しないように正極リードと負極リードを封止体に貫通させ外部に引き出した構造のものである。
従来、前記リチウムイオン二次電池のセパレータとしてはポリエチレン、ポリプロピレン等の多孔質膜が使用されており、電気二重層キャパシタのセパレータとしては、セルロースパルプから成る紙や、セルロース繊維から成る不織布が使用されている。
An electric double layer capacitor is a mixture of activated carbon, conductive agent and binder, which is attached to both sides of the positive and negative current collectors made of aluminum and driven to a wound or laminated electrode body via a separator made of cellulose or the like. In this structure, the positive electrode lead and the negative electrode lead are passed through the sealing body so as not to be short-circuited by being impregnated with an electrolytic solution and packed with an aluminum case and a sealing body.
Conventionally, porous membranes such as polyethylene and polypropylene have been used as separators for the lithium ion secondary battery, and paper made of cellulose pulp and nonwoven fabric made of cellulose fibers have been used as separators for electric double layer capacitors. ing.
先述のような蓄電デバイスは、高容量化、高機能化の要求がますます大きくなっており、高容量化するためには、充放電時の自己発熱もしくは異常充電時などの異常発熱に耐え得るための耐熱性、機械的強度、寸法安定性をもったセパレータが求められている。一方、高機能化の一つとして急速充放電特性の向上、高出力特性の向上、高温雰囲気下での使用等が求められており、セパレータには薄膜化、均一性の向上、耐熱性が強く要求されている。しかしながら、従来のセパレータでは、耐熱性が不十分であるばかりか、薄膜化により貫通孔が存在しやすくまた機械的強度が低下し、その結果、電極間で内部短絡を生じたり、均一性が不十分でイオンの移動が局所的に集中する部分が発生しやすく、信頼性の低下等の問題があった。また上述のリチウムイオン二次電池、電気二重層キャパシタには駆動用電解液に有機溶剤やイオン性液体が使用されており、セルロース等のセパレータでは高温での長期耐久試験で放電容量の低下や膜厚の減少を伴う劣化を生ずる問題があった。 The demand for higher capacity and higher functionality is increasing for the electricity storage devices as described above, and in order to increase the capacity, it can withstand abnormal heat generation such as self-heating during charging or discharging or abnormal charging. Therefore, a separator having heat resistance, mechanical strength, and dimensional stability is required. On the other hand, improvement of rapid charge / discharge characteristics, improvement of high output characteristics, use in high-temperature atmosphere, etc. are required as one of higher functions, and separators are made thinner, more uniform, and more resistant to heat. It is requested. However, in the conventional separator, not only the heat resistance is insufficient, but through-holes are likely to exist due to the thin film, and the mechanical strength is lowered. As a result, internal short circuit occurs between the electrodes, and the uniformity is not good. There is a problem that a portion where ion movement is sufficiently concentrated and locally concentrated is likely to occur, resulting in a decrease in reliability. In the above lithium ion secondary battery and electric double layer capacitor, an organic solvent or an ionic liquid is used as a driving electrolyte, and in a separator such as cellulose, the discharge capacity is reduced or the film is subjected to a long-term durability test at a high temperature. There was a problem that caused deterioration with a decrease in thickness.
このようなセパレータの製造方法は、ポリエチレンやポリプロピレン等のオレフィン系樹脂を材料として使用し乾式不織布や織布とするスパンボンド法、セルロース等を材料とする湿式抄紙法がある。具体的には、繊維長3〜25mmの分割型複合繊維で形成した繊維ウェブに流体流を作用させる湿式製造法が提案されている(例えば、特許文献1参照)。しかしながら、分割型複合繊維で形成した繊維ウェブに流体流を作用させた場合、高圧にて流体を噴射し繊維を分割させる行為がピンホールのような貫通孔を生じさせ、電極間の内部短絡を生じさせていた。また、その他には、フィブリル化された高分子と、フィブリル化された天然繊維を混抄もしくは積層する湿式抄紙法が提案されている(例えば、特許文献2参照)。しかしながら、フィブリル化された繊維は、繊維表面に空気を抱き込みやすく、不織布層に巻き込まれた泡に起因するピンホールが電極間の内部短絡等の欠陥を生じさせていた。 As a method for manufacturing such a separator, there are a spunbond method using a dry nonwoven fabric or a woven fabric using an olefin resin such as polyethylene or polypropylene as a material, and a wet papermaking method using cellulose or the like as a material. Specifically, there has been proposed a wet manufacturing method in which a fluid flow is applied to a fiber web formed of split type composite fibers having a fiber length of 3 to 25 mm (see, for example, Patent Document 1). However, when a fluid flow is applied to a fiber web formed of split composite fibers, the action of jetting fluid at a high pressure to split the fibers creates through holes such as pinholes, causing internal short circuit between the electrodes. It was generated. In addition, there has been proposed a wet papermaking method in which fibrillated polymer and fibrillated natural fiber are mixed or laminated (see, for example, Patent Document 2). However, the fibrillated fiber is easy to embed air on the fiber surface, and pinholes caused by bubbles entrained in the nonwoven fabric layer cause defects such as an internal short circuit between the electrodes.
本発明は、耐熱性、耐溶剤性、寸法安定性をもった薄膜化した蓄電デバイス用セパレータを提供する。 The present invention provides a thin film separator for an electricity storage device having heat resistance, solvent resistance, and dimensional stability.
本発明の蓄電デバイス用セパレータ(以下、「セパレータ」という。)は、少なくとも熱可塑性合成繊維A(以下、「繊維A」という。)と、耐熱性合成繊維B(以下「繊維B」という。)および天然繊維C(以下、繊維「C」という。)を含有し、繊維Aが、結晶化度が50%以上のポリエステル繊維からなることを特徴とする。 The separator for an electricity storage device of the present invention (hereinafter referred to as “separator”) includes at least a thermoplastic synthetic fiber A (hereinafter referred to as “fiber A”) and a heat-resistant synthetic fiber B (hereinafter referred to as “fiber B”). And natural fiber C (hereinafter referred to as fiber “C”), wherein fiber A is made of a polyester fiber having a crystallinity of 50% or more.
本発明の蓄電デバイス用セパレータは、薄膜で、有機溶剤やイオン性液体存在下での高温環境下での長期使用時の耐久性に、非常に優れており、電気二重層キャパシタのような蓄電デバイスに好適に用いられ、電極間の短絡防止や自己放電の抑制に優れる。また、耐熱性および耐溶剤性が良好であり高温長期使用に安定である。 The separator for an electricity storage device of the present invention is a thin film, and is excellent in durability during long-term use in a high temperature environment in the presence of an organic solvent or an ionic liquid, and an electricity storage device such as an electric double layer capacitor And is excellent in prevention of short circuit between electrodes and suppression of self-discharge. In addition, it has good heat resistance and solvent resistance and is stable for long-term use at high temperatures.
本発明に使用される繊維Aは、結晶化度が50%以上のポリエチレンテレフタレート、ポリブチレンテレフタレート、全芳香族ポリアリレート等のポリエステル繊維から選ばれた樹脂よりなるものが好ましく使用される。繊維Aの結晶化度が50%以上であることによって、有機溶剤やイオン性液体、更には高温条件に対する耐久性が高くなり、長期間高温雰囲気下で使用され続けても劣化しにくいセパレータを提供することができる。 The fiber A used in the present invention is preferably made of a resin selected from polyester fibers such as polyethylene terephthalate, polybutylene terephthalate, wholly aromatic polyarylate having a crystallinity of 50% or more. When the fiber A has a crystallinity of 50% or more, it is highly resistant to organic solvents, ionic liquids, and high-temperature conditions, and provides a separator that does not deteriorate even if it is used in a high-temperature atmosphere for a long period of time. can do.
繊維Bは、全芳香族ポリアミド、全芳香族ポリエステル、半芳香族ポリアミド、ポリフェニレンサルファイド、ポリパラフェニレンベンゾビスオキサゾールから選ばれた少なくとも1種であればよく、2種以上を使用してもよい。これらの材料は、駆動用電解液に用いる有機溶剤やイオン性液体に対して溶解せず、微細繊維にフィブリル化することができる。
セパレータに繊維Bを含有させることによって、有機溶剤やイオン性液体、更には高温条件に対する耐久性が高くなり、長期間高温雰囲気下で使用し続けても劣化しにくくなる。又、フィブリル化した繊維Bを使用することによって、ピンホールが発生しにくくなるため、短絡防止に優れたセパレータとなる。
The fiber B may be at least one selected from wholly aromatic polyamide, wholly aromatic polyester, semi-aromatic polyamide, polyphenylene sulfide, and polyparaphenylene benzobisoxazole, and may use two or more. These materials can be fibrillated into fine fibers without dissolving in the organic solvent or ionic liquid used for the driving electrolyte.
By including the fiber B in the separator, durability against an organic solvent, an ionic liquid, and further a high temperature condition is increased, and it is difficult to deteriorate even if the separator is used for a long time in a high temperature atmosphere. Moreover, since it becomes difficult to generate | occur | produce a pinhole by using the fibrillated fiber B, it becomes a separator excellent in short circuit prevention.
本発明を構成する繊維Cとしては、例えば、綿、麻、ケナフ、バナナ、パイナップル、羊毛、絹、アンゴラ、カシミア、レーヨン、キュプラ、ポリノジック、溶剤紡糸セルロース等を使用することができる。繊維Cを構成する材料は1種でもよいし、2種以上であってもよい。これらの材料を使用したセパレータは、電解液の含浸性が向上する。本発明においては繊維Cとして、微細繊維にフィブリル化したものを使用することが好ましく、特に、フィブリル化された溶剤紡糸セルロースを使用することが好ましい。フィブリル化された溶剤紡糸セルロースは、電解液の含浸性に優れ、又、繊維の絡み合いも十分であることから、機械的強度にも優れたセパレータとなる。 As the fiber C constituting the present invention, for example, cotton, hemp, kenaf, banana, pineapple, wool, silk, angora, cashmere, rayon, cupra, polynosic, solvent-spun cellulose and the like can be used. The material constituting the fiber C may be one type or two or more types. Separators using these materials have improved electrolyte impregnation properties. In the present invention, it is preferable to use fibrillated fibers as fiber C, and it is particularly preferable to use fibrillated solvent-spun cellulose. The fibrillated solvent-spun cellulose is excellent in electrolytic solution impregnation and has sufficient fiber entanglement, so that it becomes a separator excellent in mechanical strength.
本発明において、繊維Aの繊維径は5μm以下、繊維長は10mm以下が好ましく、特に好ましくは繊維径が3μm以下、繊維長が7mm以下である。繊維径が5μm未満、繊維長が10mm超になると、薄膜化した際に貫通孔ができる可能性が高くなり、内部短絡の原因となりやすい。また、繊維Aの結晶化度は50%以上であり、特に好ましくは70%以上である。結晶化度が50%未満になると、有機溶剤やイオン性液体に溶解しやすくなり、長期間高温雰囲気下で使用されると劣化の原因となる。 In the present invention, the fiber A has a fiber diameter of 5 μm or less and a fiber length of preferably 10 mm or less, particularly preferably a fiber diameter of 3 μm or less and a fiber length of 7 mm or less. When the fiber diameter is less than 5 μm and the fiber length is more than 10 mm, there is a high possibility that a through hole will be formed when the film is thinned, which is likely to cause an internal short circuit. Further, the crystallinity of the fiber A is 50% or more, and particularly preferably 70% or more. When the degree of crystallinity is less than 50%, it becomes easy to dissolve in an organic solvent or an ionic liquid, and when used in a high temperature atmosphere for a long time, it causes deterioration.
ポリエステル繊維の結晶化度は、DSC(示差走査熱量計)を用いて、結晶化に由来する吸熱ピークを定量することにより、測定することが出来る。また、FT−ラマン分光法を用いて、結晶性の違いが現れるピークバンドと密度との相関を得ることにより、測定することが出来る。
本発明において、フィブリル化された繊維Bの繊維径は1μm以下、繊維長は3mm以下が好ましく、特に好ましくは繊維長が1mm以下である。繊維径が1μm超、繊維長が3mm超になると、薄膜化した際に貫通孔ができる可能性が高くなり、内部短絡の原因となりやすく、繊維同士の絡み合いが弱くなり、機械的強度が弱くなる傾向にある。
The crystallinity of the polyester fiber can be measured by quantifying the endothermic peak derived from crystallization using a DSC (differential scanning calorimeter). Moreover, it can measure by obtaining the correlation of the peak band and the density which show the difference in crystallinity using FT-Raman spectroscopy.
In the present invention, the fiber diameter of the fibrillated fiber B is 1 μm or less, the fiber length is preferably 3 mm or less, and particularly preferably the fiber length is 1 mm or less. When the fiber diameter exceeds 1 μm and the fiber length exceeds 3 mm, there is a high possibility that a through-hole will be formed when the film is thinned, which is likely to cause an internal short circuit, the entanglement between fibers becomes weak, and the mechanical strength becomes weak. There is a tendency.
本発明において、フィブリル化された繊維Cの繊維径は1μm以下、繊維長は3mm以下が好ましく、特に好ましくは繊維長が1mm以下である。繊維径が1μm超、繊維長が3mm超になると、薄膜化した際に貫通孔ができる可能性が高くなり、内部短絡の原因となりやすく、繊維同士の絡み合いが弱くなり、機械的強度が弱くなる傾向にあり、且つ電解液の含浸性も十分に得られにくい。
本発明において、繊維A、繊維Bおよび繊維Cは、全繊維中、下記の配合比であることが好ましい。すなわち、繊維Aはセパレータを構成する全繊維の25〜50質量%の範囲で混合されていることが好ましい。25質量%未満であると、セパレータのZ軸方向につぶれにくい効果(スペーサー効果)を十分に発揮できず、圧縮により短絡が発生しやすくなる。50質量%超になると、空隙率の低下や孔を塞いでしまい、内部抵抗の増大に繋がる。又、熱可塑性ということで、高温時に不安定になり、耐久性の低下にも繋がる。更に、セパレータ中のフィブリル化された微細繊維の量が50質量%未満になってしまい、セパレータの孔径を制御することができず、内部短絡を起こしやすい。
また、繊維Bは、セパレータを構成する全繊維の60〜10質量%の範囲で混合されていることが好ましい。10質量%未満であるとフィブリル化された微細繊維の量が足りず、セパレータの孔径を制御することができず、内部短絡を起こしやすい。60質量%超になると、フィブリル化された微細繊維の量が多すぎてセパレータが緻密に成りすぎ、その結果内部抵抗の増大に繋がる。
さらにまた、繊維Cはセパレータを構成する全繊維の15〜40質量%の範囲で混合されていることが好ましい。15質量%未満であると、繊維同士の絡み合いが弱くなり、機械的強度が弱くなる傾向にあり、且つ電解液の含浸性も十分に得られにくい。40質量%超になると、高温雰囲気条件下での有機溶剤やイオン性液体により耐久性の低下を招きやすい。
In the present invention, the fiber diameter of the fibrillated fiber C is preferably 1 μm or less, the fiber length is preferably 3 mm or less, and particularly preferably the fiber length is 1 mm or less. When the fiber diameter exceeds 1 μm and the fiber length exceeds 3 mm, there is a high possibility that a through-hole will be formed when the film is thinned, which is likely to cause an internal short circuit, the entanglement between fibers becomes weak, and the mechanical strength becomes weak. In addition, it is difficult to obtain sufficient electrolyte impregnation.
In this invention, it is preferable that the fiber A, the fiber B, and the fiber C are the following compounding ratios in all the fibers. That is, it is preferable that the fiber A is mixed in the range of 25 to 50% by mass of the total fibers constituting the separator. If it is less than 25% by mass, the effect of preventing the separator from being crushed in the Z-axis direction (spacer effect) cannot be sufficiently exhibited, and a short circuit is likely to occur due to compression. If it exceeds 50% by mass, the porosity is reduced and the pores are blocked, leading to an increase in internal resistance. In addition, because it is thermoplastic, it becomes unstable at high temperatures, leading to a decrease in durability. Furthermore, the amount of fibrillated fine fibers in the separator is less than 50% by mass, the pore diameter of the separator cannot be controlled, and an internal short circuit is likely to occur.
Moreover, it is preferable that the fiber B is mixed in the range of 60 to 10% by mass of the total fibers constituting the separator. If the amount is less than 10% by mass, the amount of fine fibers fibrillated is insufficient, the pore diameter of the separator cannot be controlled, and an internal short circuit tends to occur. If it exceeds 60% by mass, the amount of fibrillated fine fibers is too large and the separator becomes too dense, resulting in an increase in internal resistance.
Furthermore, it is preferable that the fiber C is mixed in the range of 15 to 40% by mass of the total fibers constituting the separator. If it is less than 15% by mass, the entanglement between the fibers tends to be weak, the mechanical strength tends to be weak, and the impregnation property of the electrolytic solution is hardly obtained. When it exceeds 40% by mass, durability tends to be lowered due to an organic solvent or an ionic liquid under a high-temperature atmosphere condition.
本発明において、繊維層の細孔径は、バブルポイント法による平均孔径が0.1μm〜15μmであることが好ましく、より好ましくは0.1μm〜5.0μmの範囲である。平均孔径が0.1μmより小さいと、イオン伝導性が低下し、内部抵抗が高くなりやすい。また、セパレータの製造の際に水が抜けにくいため、製造しにくくなる。15μmを超えると、薄膜化した場合に内部短絡を生じやすくなる。尚、バブルポイント法による孔径の測定は、西華産業社製のポロメーターを使用すればよい。 In the present invention, the pore diameter of the fiber layer is preferably 0.1 μm to 15 μm, more preferably 0.1 μm to 5.0 μm, as the average pore diameter measured by the bubble point method. When the average pore diameter is smaller than 0.1 μm, the ionic conductivity is lowered and the internal resistance tends to be high. Further, since it is difficult for water to escape during the production of the separator, it is difficult to produce the separator. If it exceeds 15 μm, an internal short circuit is likely to occur when the film is thinned. In addition, the measurement of the hole diameter by the bubble point method may be performed by using a porometer manufactured by Seika Sangyo Co., Ltd.
本発明のセパレータには、十分な引っ張り強度、圧縮強度があるが、更に高強度を得るために、バインダー樹脂又はバインダー繊維を混合することも可能である。バインダー樹脂又はバインダー繊維としては、ポリビニルアルコール、ポリアクリロニトリル、ポリエチレン、それらの誘導体等さまざまなものがあり、これらに限定されるものではない。 The separator of the present invention has sufficient tensile strength and compressive strength, but it is also possible to mix a binder resin or binder fiber in order to obtain higher strength. The binder resin or binder fiber includes various materials such as polyvinyl alcohol, polyacrylonitrile, polyethylene, and derivatives thereof, but is not limited thereto.
本発明のセパレータの膜厚は60μm以下であることが好ましい。セパレータの膜厚が60μmを超えると、蓄電デバイスの薄型化に不利になると同時に、一定のセル体積に入れられる電極材の量が少なくなり、容量が小さくなってしまうばかりでなく、抵抗が高くなり好ましくない。
また、本発明のセパレータの密度は、0.20g/cm3〜0.70g/cm3であることが好ましい。0.25g/cm3〜0.65g/cm3であることがさらに好ましく、0.30g/cm3〜0.60g/cm3であることが特に好ましい。0.20g/cm3未満であると、セパレータの空隙部分が過多となり、短絡の発生や、耐自己放電性が悪化しやすいなどの不具合を生じやすい。一方、密度が0.70g/cm3より大きいと、セパレータを構成する材料の詰まり方が過多となるために、イオン移動が阻害され抵抗が高くなりやすい。
The film thickness of the separator of the present invention is preferably 60 μm or less. If the thickness of the separator exceeds 60 μm, it will be disadvantageous for thinning of the electricity storage device, and at the same time, the amount of electrode material that can be put in a certain cell volume will be reduced, the capacity will be reduced, and the resistance will be increased. It is not preferable.
The density of the separator of the present invention is preferably 0.20g / cm 3 ~0.70g / cm 3 . More preferably from 0.25g / cm 3 ~0.65g / cm 3 , particularly preferably 0.30g / cm 3 ~0.60g / cm 3 . If it is less than 0.20 g / cm 3 , the void portion of the separator becomes excessive, and problems such as occurrence of short circuits and deterioration of self-discharge resistance are likely to occur. On the other hand, if the density is larger than 0.70 g / cm 3 , the material constituting the separator becomes excessively clogged, so that ion migration is hindered and resistance is likely to increase.
本発明のセパレータの透気度は、100秒/100ml以下であることが好ましい。イオン伝導性を好適に維持することができる。なお、本発明のセパレータにおける透気度は、ガーレ透気度測定器を用いて測定した値をいう。 The air permeability of the separator of the present invention is preferably 100 seconds / 100 ml or less. Ionic conductivity can be suitably maintained. In addition, the air permeability in the separator of this invention says the value measured using the Gurley air permeability measuring device.
以上説明したように、本発明のセパレータは、繊維A、繊維Bおよび繊維Cを含有し、繊維Aが、結晶化度が50%以上のポリエステル繊維からなるため、高温雰囲気下においても有機溶剤やイオン性液体に劣化しにくく、リチウムイオン二次電池、リチウムイオンキャパシタ、ポリマー電池及び電気二重層キャパシタなどの蓄電デバイスに好適に使用することができる。なお、本発明のセパレータを用いて蓄電デバイスを作製する場合、正極、負極、電解液など電気化学素子を構成する材料は、従来周知のものなら如何なるものでも使用することができる。 As described above, the separator of the present invention contains fibers A, fibers B and fibers C, and the fibers A are made of polyester fibers having a crystallinity of 50% or more. It is difficult to deteriorate into an ionic liquid, and can be suitably used for power storage devices such as lithium ion secondary batteries, lithium ion capacitors, polymer batteries, and electric double layer capacitors. In addition, when producing an electrical storage device using the separator of this invention, what is conventionally well-known can be used for the materials which comprise electrochemical elements, such as a positive electrode, a negative electrode, and electrolyte solution.
次に、本発明のセパレータの製造方法について説明するが、これのみに限定されるものではなく、他の方法でも本発明のセパレータを製造することは可能である。先ず、繊維径5μm以下、繊維長10mm以下に裁断もしくは叩解された一種類以上の繊維Aと、繊維径1μm以下、繊維長3mm以下にフィブリル化された繊維Bと、繊維径1μm以下、繊維長3mm以下にフィブリル化された繊維Cを水に分散する。水に投入する順序は決まっていない。本発明に用いる繊維は、非常に微細なために離解工程では均一に分散しにくいため、パルパーやアジテータのような分散装置や、超音波分散装置を用いることによって、良好な分散が可能である。また、この分散工程で使用する水は、イオン性不純物をできるだけ少なくするために、イオン交換水を用いた方が好ましい。次に、上記と同一の合成繊維又は異種繊維を上記とは別のパルパーやアジテータのような分散装置で水に分散する。叩解は、一般的な叩解機であるボールミル、ビーター、ランペルミル、PFIミル、SDR(シングルディスクリファイナー)、DDR(ダブルディスクリファイナー)、高圧ホモジナイザー、ホモミクサー、あるいはその他のリファイナー等を使用して叩解することができる。 Next, although the manufacturing method of the separator of this invention is demonstrated, it is not limited only to this, The separator of this invention can be manufactured also by another method. First, one or more kinds of fibers A cut or beaten to a fiber diameter of 5 μm or less and a fiber length of 10 mm or less, a fiber B fibrillated to a fiber diameter of 1 μm or less and a fiber length of 3 mm or less, a fiber diameter of 1 μm or less, a fiber length Fiber C fibrillated to 3 mm or less is dispersed in water. The order in which it is put into water is not fixed. Since the fibers used in the present invention are very fine and difficult to disperse uniformly in the disaggregation process, good dispersion is possible by using a dispersing device such as a pulper or an agitator or an ultrasonic dispersing device. The water used in this dispersion step is preferably ion-exchanged water in order to minimize ionic impurities. Next, the same synthetic fiber or different fiber as described above is dispersed in water by a dispersing device such as a pulper or agitator different from the above. The beating may be performed using a general beating machine such as a ball mill, beater, lampel mill, PFI mill, SDR (single disc refiner), DDR (double disc refiner), high pressure homogenizer, homomixer, or other refiner. it can.
上記で得られた繊維の分散体を、長網式、短網式、円網式、傾斜式などの湿式抄紙機を適用し、抄造する。連続したワイヤーメッシュ状の脱水パートで脱水する。湿式抄紙機の中で、2つのヘッドを有する傾斜ワイヤー抄紙機を用いると、2層以上の繊維層を重ね抄き合わせする場合、繊維層間の境界もできにくく、また、ピンホールのない均一なセパレータが得られる。重ね抄き合わせした後、多筒式やヤンキー式ドライヤー等の乾燥パートを通すことによって、本発明のセパレータを得ることができる。 The fiber dispersion obtained above is made by applying a wet paper machine such as a long-mesh type, a short-mesh type, a circular net type, or an inclined type. Dehydrate in a continuous wire mesh dewatering part. When using an inclined wire paper machine with two heads in a wet paper machine, when two or more fiber layers are laminated together, it is difficult to create a boundary between fiber layers, and there is no pinhole. A separator is obtained. After the sheets are overlaid, the separator of the present invention can be obtained by passing through a drying part such as a multi-cylinder type or Yankee type dryer.
上記の乾燥パートを通すことによって、繊維Aの熱融着が生じ、該繊維Aがフィブリル化された繊維B及び/又はフィブリル化された繊維Cに絡み合う。これによって、機械的強度に優れたセパレータを提供することができる。 By passing the drying part, heat fusion of the fiber A occurs, and the fiber A is entangled with the fibrillated fiber B and / or the fibrillated fiber C. Thereby, a separator excellent in mechanical strength can be provided.
繊維径2.5μm、繊維長6mm、結晶化度55%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。
上記抄紙材料を、JIS P8222に規定する標準型手抄き装置を用いて湿体シートを抄造した。その後、得られた湿体シートを手抄き装置から取り出した後に、ヤンキードライヤーにて130℃で乾燥して本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は31μm、密度は0.41g/cm3、透気度は8秒/100mlであった。
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm, a fiber length of 6 mm, and a crystallinity of 55%; and a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm; Fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm was charged into the pulper at a mass ratio of 25:60:15 in ion-exchanged water at a concentration of 0.05% by mass. Then, a paper-making material comprising a fiber dispersion was produced by dispersing for 30 minutes.
A wet sheet was made from the above papermaking material using a standard type handmaking apparatus defined in JIS P8222. Thereafter, the obtained wet sheet was taken out from the hand-making apparatus and then dried at 130 ° C. with a Yankee dryer to obtain the separator of the present invention. As for the physical properties of the obtained separator, the thickness of the separator was 31 μm, the density was 0.41 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
繊維径2.5μm、繊維長6mm、結晶化度73%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。
上記抄紙材料を、JIS P8222に規定する標準型手抄き装置を用いて湿体シートを抄造した。その後、得られた湿体シートを手抄き装置から取り出した後に、ヤンキードライヤーにて130℃で乾燥して本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は30μm、密度は0.41g/cm3、透気度は8秒/100mlであった。
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm, a fiber length of 6 mm, and a crystallinity of 73%; and a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm; Fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm was charged into the pulper at a mass ratio of 25:60:15 in ion-exchanged water at a concentration of 0.05% by mass. Then, a paper-making material comprising a fiber dispersion was produced by dispersing for 30 minutes.
A wet sheet was made from the above papermaking material using a standard type handmaking apparatus defined in JIS P8222. Thereafter, the obtained wet sheet was taken out from the hand-making apparatus and then dried at 130 ° C. with a Yankee dryer to obtain the separator of the present invention. As for the physical properties of the obtained separator, the thickness of the separator was 30 μm, the density was 0.41 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
繊維径3.2μm、繊維長6mm、結晶化度55%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々40:40:20の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、実施例1と同様にして本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は49μm、密度は0.32g/cm3、透気度は15秒/100mlであった。 A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 3.2 μm, a fiber length of 6 mm, and a crystallinity of 55%; and a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm; Fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm is charged into the pulper at a concentration of 0.05% by mass in ion-exchanged water at a mass ratio of 40:40:20, respectively. Then, a paper-making material comprising a fiber dispersion was produced by dispersing for 30 minutes. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the thickness of the separator was 49 μm, the density was 0.32 g / cm 3 , and the air permeability was 15 seconds / 100 ml.
繊維径2.5μm、繊維長6mm、結晶化度55%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.8μm、繊維長1.5mmにフィブリル化されたポリフェニレンサルファイドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々30:30:40の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、実施例1と同様にして本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は22μm、密度は0.45g/cm3、透気度は5秒/100mlであった。 Fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm, fiber length of 6 mm, and crystallinity of 55%, Fiber B made of polyphenylene sulfide fibrillated to a fiber diameter of 0.8 μm and fiber length of 1.5 mm, and fiber Fibers C made of solvent-spun cellulose fibrillated to a diameter of 0.5 μm and a fiber length of 1 mm were charged in ion exchange water at a mass ratio of 30:30:40, respectively, into a pulper at a concentration of 0.05% by mass. A papermaking material made of a fiber dispersion was prepared by dispersing for a minute. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the thickness of the separator was 22 μm, the density was 0.45 g / cm 3 , and the air permeability was 5 seconds / 100 ml.
繊維径3μm、繊維長6mm、結晶化度55%のポリブチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々50:30:20の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、実施例1と同様にして本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は57μm、密度は0.36g/cm3、透気度は19秒/100mlであった。 A fiber A made of polybutylene terephthalate fiber having a fiber diameter of 3 μm, a fiber length of 6 mm, and a crystallinity of 55%; and a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm; Fibers C made of solvent-spun cellulose fibrillated with a fiber diameter of 0.5 μm and a fiber length of 1 mm were introduced into the pulper at a mass ratio of 50:30:20 in ion exchange water at a concentration of 0.05% by mass. A papermaking material made of a fiber dispersion was prepared by dispersing for 30 minutes. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the thickness of the separator was 57 μm, the density was 0.36 g / cm 3 , and the air permeability was 19 seconds / 100 ml.
繊維径3μm、繊維長6mm、結晶化度55%の全芳香族ポリアリレート繊維からなる繊維Aと、繊維径0.4μm、繊維長1mmにフィブリル化された全芳香族ポリエステルからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、実施例1と同様にして本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は32μm、密度は0.45g/cm3、透気度は11秒/100mlであった。 A fiber A composed of wholly aromatic polyarylate fibers having a fiber diameter of 3 μm, a fiber length of 6 mm, and a crystallinity of 55%; and a fiber B composed of wholly aromatic polyester fibrillated to a fiber diameter of 0.4 μm and a fiber length of 1 mm; Fibers C made of solvent-spun cellulose fibrillated with a fiber diameter of 0.5 μm and a fiber length of 1 mm were introduced into the pulper at a mass ratio of 25:60:15 in ion exchange water at a concentration of 0.05% by mass. A papermaking material made of a fiber dispersion was prepared by dispersing for 30 minutes. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the film thickness of the separator was 32 μm, the density was 0.45 g / cm 3 , and the air permeability was 11 seconds / 100 ml.
繊維径2.5μm、繊維長6mm、結晶化度55%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.3μm、繊維長1mmにフィブリル化されたポリパラフェニレンベンゾビスオキサゾールからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:50:25の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。その後、実施例1と同様にして本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は38μm、密度は0.62g/cm3、透気度は42秒/100mlであった。 A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm, a fiber length of 6 mm, and a crystallinity of 55%; and a fiber B made of polyparaphenylenebenzobisoxazole fibrillated to a fiber diameter of 0.3 μm and a fiber length of 1 mm; The fibers C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm were charged into the pulper at a mass ratio of 25:50:25 in ion exchange water at a concentration of 0.05% by mass. Then, a paper-making material comprising a fiber dispersion was produced by dispersing for 30 minutes. Thereafter, the separator of the present invention was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the thickness of the separator was 38 μm, the density was 0.62 g / cm 3 , and the air permeability was 42 seconds / 100 ml.
(比較例1)
繊維径2.5μm、繊維長6mm、結晶化度20%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.2μm、繊維長0.6mmにフィブリル化された全芳香族ポリアミドからなる繊維Bと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々25:60:15の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維の分散体からなる抄紙材料を作製した。
上記抄紙材料を、JIS P8222に規定する標準型手抄き装置を用いて湿体シートを抄造した。その後、得られた湿体シートを手抄き装置から取り出した後に、ヤンキードライヤーにて130℃で乾燥して本発明のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は30μm、密度は0.41g/cm3、透気度は8秒/100mlであった。
(Comparative Example 1)
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm, a fiber length of 6 mm, and a crystallinity of 20%; and a fiber B made of wholly aromatic polyamide fibrillated to a fiber diameter of 0.2 μm and a fiber length of 0.6 mm; Fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm was charged into the pulper at a mass ratio of 25:60:15 in ion-exchanged water at a concentration of 0.05% by mass. Then, a paper-making material comprising a fiber dispersion was produced by dispersing for 30 minutes.
A wet sheet was made from the above papermaking material using a standard type handmaking apparatus defined in JIS P8222. Thereafter, the obtained wet sheet was taken out from the hand-making apparatus and then dried at 130 ° C. with a Yankee dryer to obtain the separator of the present invention. As for the physical properties of the obtained separator, the thickness of the separator was 30 μm, the density was 0.41 g / cm 3 , and the air permeability was 8 seconds / 100 ml.
(比較例2)
繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cをイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維A及び繊維Bを含まない繊維Cのみの分散体からなる抄紙材料を作製した。その後、実施例1と同様にして比較用のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は35μm、密度は0.41g/cm3、透気度は5秒/100mlであった。
(Comparative Example 2)
A fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm is charged into ion exchange water at a concentration of 0.05% by mass in a pulper and dispersed for 30 minutes. A papermaking material consisting of a dispersion of only fibers C not containing was prepared. Thereafter, a comparative separator was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the thickness of the separator was 35 μm, the density was 0.41 g / cm 3 , and the air permeability was 5 seconds / 100 ml.
(比較例3)
繊維径2.5μm、繊維長6mm、結晶化度55%のポリエチレンテレフタレート繊維からなる繊維Aと、繊維径0.5μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々80:20の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維Bを含まない繊維A及び繊維Cの分散体からなる抄紙材料を作製した。その後、実施例1と同様にして比較用のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は70μm、密度は0.32g/cm3、透気度は39秒/100mlであった。
(Comparative Example 3)
A fiber A made of polyethylene terephthalate fiber having a fiber diameter of 2.5 μm, a fiber length of 6 mm, and a crystallinity of 55%, and a fiber C made of solvent-spun cellulose fibrillated to a fiber diameter of 0.5 μm and a fiber length of 1 mm were each 80 : A papermaking material composed of a dispersion of fibers A and C not containing fiber B was prepared by adding it into a pulper at a mass ratio of 20 in ion exchange water at a concentration of 0.05% by mass and dispersing for 30 minutes. Thereafter, a comparative separator was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the film thickness of the separator was 70 μm, the density was 0.32 g / cm 3 , and the air permeability was 39 seconds / 100 ml.
(比較例4)
繊維径3μm、繊維長6mm、結晶化度55%のポリエチレン繊維と、繊維径0.4μm、繊維長1mmにフィブリル化された溶剤紡糸セルロースからなる繊維Cを、各々30:70の質量比率でイオン交換水に0.05質量%の濃度でパルパー内に投入し30分間分散し、繊維Bを含まないポリエチレン繊維と繊維Cの分散体からなる抄紙材料を作製した。その後、実施例1と同様にして比較用のセパレータを得た。得られたセパレータの物性は、セパレータの膜厚は51μm、密度は0.72g/cm3、透気度は104秒/100mlであった。
(Comparative Example 4)
Fiber C made of polyethylene fiber having a fiber diameter of 3 μm, a fiber length of 6 mm, and a crystallinity of 55% and solvent-spun cellulose fibrillated to a fiber diameter of 0.4 μm and a fiber length of 1 mm is ionized at a mass ratio of 30:70, respectively. A papermaking material composed of a dispersion of polyethylene fibers not containing fiber B and fibers C was prepared by adding the dispersion water to the pulper at a concentration of 0.05 mass% and dispersing for 30 minutes. Thereafter, a comparative separator was obtained in the same manner as in Example 1. Regarding the physical properties of the obtained separator, the film thickness of the separator was 51 μm, the density was 0.72 g / cm 3 , and the air permeability was 104 seconds / 100 ml.
前記実施例1〜7及び比較例1〜4で得られたセパレータにおいて下記評価を行い、蓄電デバイス用セパレータとしての特性を評価した。なお、それぞれのセパレータについて、繊維の配合割合、膜厚、密度、透気度の物性値を表1に示す。 The following evaluation was performed on the separators obtained in Examples 1 to 7 and Comparative Examples 1 to 4, and the characteristics as the separator for an electricity storage device were evaluated. In addition, about each separator, the physical-property value of the mixture ratio of a fiber, a film thickness, a density, and air permeability is shown in Table 1.
<電気二重層キャパシタの組み立てと高温長期試験中の放電容量の変化の評価>
実施例1〜7及び比較例1〜4のセパレータについて、正極、負極の電極を用いて電気二重層キャパシタを組み立てて、各々100個ずつ捲回型セルを作製した。なお、捲回型セルの作製においては、電極として電気二重層キャパシタ用の活性炭電極(宝泉株式会社製)を用いた。また、電解液としてプロピレンカーボネートに、1mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレート(キシダ化学株式会社製)を溶解したものを用いた。
作製された捲回型セルの放電容量について、初期、2000時間試験後、4000時間試験後にそれぞれLCRメーターで測定し、高温長期試験後の放電容量の変化(低下)を評価した。なお、試験条件は、80℃、2.5V印加で行った。
得られた結果を表2に示す。
<Assembly of electric double layer capacitor and evaluation of change in discharge capacity during long-term high temperature test>
About the separator of Examples 1-7 and Comparative Examples 1-4, the electric double layer capacitor was assembled using the electrode of a positive electrode and a negative electrode, and each 100 pieces each wound type cell was produced. In the production of the wound cell, an activated carbon electrode for electric double layer capacitor (made by Hosen Co., Ltd.) was used as the electrode. Moreover, what melt | dissolved the tetraethylammonium tetrafluoroborate (made by Kishida-Chemical Co., Ltd.) was used for the electrolyte solution in propylene carbonate so that it might become 1 mol / L.
About the discharge capacity of the produced wound type cell, it measured with the LCR meter after the initial stage, 2000 hours test, and 4000 hours test, respectively, and the change (decrease) of the discharge capacity after a high temperature long-term test was evaluated. The test conditions were 80 ° C. and 2.5 V applied.
The obtained results are shown in Table 2.
表2の結果から明らかなように、本発明のセパレータを用いた電気二重層キャパシタは、80℃、2.5V電圧印加の40000時間後も8.9F以上の十分な放電容量を維持し耐久性に優れることが確認できた。これに対して、比較例1〜4のセパレータを用いた電気二重層キャパシタは、放電容量の低下が非常に大きく、又内部短絡を起こすものもあり、特性が著しく劣るものであった。 As is apparent from the results in Table 2, the electric double layer capacitor using the separator of the present invention maintains a sufficient discharge capacity of 8.9 F or more even after 40000 hours of application of a voltage of 2.5 V at 80 ° C. and durability. It was confirmed that it was excellent. On the other hand, the electric double layer capacitors using the separators of Comparative Examples 1 to 4 have a very large decrease in discharge capacity, and some of them cause an internal short circuit, and the characteristics are extremely inferior.
<高温長期試験4000時間終了後のセパレータの膜厚比較>
前記の高温長期試験4000時間終了した電気二重層キャパシタを分解し、素子内からセパレータを取り出し、メタノールで洗浄し乾燥した後にセパレータの膜厚を測定した。得られた結果を表3に示す。
<Comparison of separator film thickness after 4000 hours of high-temperature long-term test>
The electric double layer capacitor after the high temperature long-term test of 4000 hours was disassembled, the separator was taken out from the device, washed with methanol and dried, and then the thickness of the separator was measured. The obtained results are shown in Table 3.
表3の結果から明らかなように、本発明のセパレータは、80℃、2.5V、4000時間電圧印加後も初期の膜厚との差が3μm以内で保持しており、耐熱性、耐溶剤性が良好であり、高温長期試験に安定であることが確認された。これに対して比較例1〜4のセパレータは4000時間電圧印加後の膜厚と初期の膜厚との差が6μm以上あり大幅に薄くなっており、高温長期試験に対する安定性に劣る。 As is clear from the results in Table 3, the separator of the present invention maintains a difference from the initial film thickness within 3 μm even after application of a voltage of 80 ° C., 2.5 V, and 4000 hours. It was confirmed that the property was good and stable in the high-temperature long-term test. On the other hand, the separators of Comparative Examples 1 to 4 have a difference between the film thickness after application of a voltage for 4000 hours and the initial film thickness of 6 μm or more and are significantly thin, and are inferior in stability to a high-temperature long-term test.
Claims (12)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266786A JP2010098074A (en) | 2008-10-15 | 2008-10-15 | Separator for electric storage device |
US13/123,005 US20110206972A1 (en) | 2008-10-15 | 2009-10-14 | Power storage device separator |
CN2009801400583A CN102177561A (en) | 2008-10-15 | 2009-10-14 | Power storage device separator |
PCT/JP2009/005365 WO2010044264A1 (en) | 2008-10-15 | 2009-10-14 | Power storage device separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008266786A JP2010098074A (en) | 2008-10-15 | 2008-10-15 | Separator for electric storage device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010098074A true JP2010098074A (en) | 2010-04-30 |
Family
ID=42259562
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008266786A Pending JP2010098074A (en) | 2008-10-15 | 2008-10-15 | Separator for electric storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010098074A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013084840A1 (en) * | 2011-12-07 | 2013-06-13 | 株式会社カネカ | Nonaqueous electrolyte secondary battery and assembled battery using same |
KR20140058443A (en) * | 2011-05-20 | 2014-05-14 | 드림위버 인터내셔날 인코포레이티드 | Single-layer lithium ion battery separator |
JP2014534603A (en) * | 2011-11-30 | 2014-12-18 | ザ・リパブリック・オブ・コリア・(フォレストリー・アドミニストレイション・フォレストリー・リサーチ・インスティテュート) | Porous separator for secondary battery having cellulose nanofiber and method for producing the same |
JP2016502738A (en) * | 2012-11-20 | 2016-01-28 | ジー. モリン,ブライアン | Versatile single-layer lithium-ion battery separator with nanofiber and microfiber components |
JP2018170518A (en) * | 2014-09-26 | 2018-11-01 | 旭化成株式会社 | Thin film sheet including cellulose fine fiber layer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005101432A1 (en) * | 2004-04-16 | 2005-10-27 | Mitsubishi Paper Mills Limited | Separator for electrochemical element |
JP2006176932A (en) * | 2004-12-24 | 2006-07-06 | Japan Vilene Co Ltd | Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery and electric double layer capacitor or lithium ion secondary battery using nonwoven fabric |
JP2006188770A (en) * | 2004-12-10 | 2006-07-20 | Japan Vilene Co Ltd | Nonwoven fabric, method for producing nonwoven fabric, separator for electric double layer capacitor by using nonwoven fabric, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery |
WO2007061108A1 (en) * | 2005-11-28 | 2007-05-31 | Mitsubishi Paper Mills Limited | Separator for electric double layer capacitor |
JP2008186707A (en) * | 2007-01-30 | 2008-08-14 | Tomoegawa Paper Co Ltd | Separator for electrochemical element |
-
2008
- 2008-10-15 JP JP2008266786A patent/JP2010098074A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005101432A1 (en) * | 2004-04-16 | 2005-10-27 | Mitsubishi Paper Mills Limited | Separator for electrochemical element |
JP2006188770A (en) * | 2004-12-10 | 2006-07-20 | Japan Vilene Co Ltd | Nonwoven fabric, method for producing nonwoven fabric, separator for electric double layer capacitor by using nonwoven fabric, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery |
JP2006176932A (en) * | 2004-12-24 | 2006-07-06 | Japan Vilene Co Ltd | Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery and electric double layer capacitor or lithium ion secondary battery using nonwoven fabric |
WO2007061108A1 (en) * | 2005-11-28 | 2007-05-31 | Mitsubishi Paper Mills Limited | Separator for electric double layer capacitor |
JP2008186707A (en) * | 2007-01-30 | 2008-08-14 | Tomoegawa Paper Co Ltd | Separator for electrochemical element |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140058443A (en) * | 2011-05-20 | 2014-05-14 | 드림위버 인터내셔날 인코포레이티드 | Single-layer lithium ion battery separator |
JP2014519683A (en) * | 2011-05-20 | 2014-08-14 | ドリームウィーバー・インターナショナル・インコーポレイテッド | Single layer lithium ion battery separator |
JP2017098253A (en) * | 2011-05-20 | 2017-06-01 | ドリームウィーバー・インターナショナル・インコーポレイテッド | Single-layer lithium ion battery separator |
KR102059206B1 (en) * | 2011-05-20 | 2019-12-24 | 드림위버 인터내셔날 인코포레이티드 | Single-layer lithium ion battery separator |
JP2022064977A (en) * | 2011-05-20 | 2022-04-26 | ドリームウィーバー・インターナショナル・インコーポレイテッド | Single-layer lithium ion battery separator; battery, capacitor, supercapacitor or ultracapacitor comprising separator; method of generating electricity through utilization of battery; and method of manufacturing battery separator |
JP2023012514A (en) * | 2011-05-20 | 2023-01-25 | ドリームウィーバー・インターナショナル・インコーポレイテッド | Method for manufacturing single layer lithium ion battery separator |
JP7478454B2 (en) | 2011-05-20 | 2024-05-07 | ドリームウィーバー・インターナショナル・インコーポレイテッド | Monolayer lithium ion battery separator, battery, capacitor, supercapacitor or ultracapacitor including the separator, method for generating electricity by utilizing a battery, and method for manufacturing a battery separator |
JP2014534603A (en) * | 2011-11-30 | 2014-12-18 | ザ・リパブリック・オブ・コリア・(フォレストリー・アドミニストレイション・フォレストリー・リサーチ・インスティテュート) | Porous separator for secondary battery having cellulose nanofiber and method for producing the same |
WO2013084840A1 (en) * | 2011-12-07 | 2013-06-13 | 株式会社カネカ | Nonaqueous electrolyte secondary battery and assembled battery using same |
JP2016502738A (en) * | 2012-11-20 | 2016-01-28 | ジー. モリン,ブライアン | Versatile single-layer lithium-ion battery separator with nanofiber and microfiber components |
JP2018170518A (en) * | 2014-09-26 | 2018-11-01 | 旭化成株式会社 | Thin film sheet including cellulose fine fiber layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010044264A1 (en) | Power storage device separator | |
JP2008186707A (en) | Separator for electrochemical element | |
WO2010106793A1 (en) | Separator for electrical storage device and method for producing same | |
US6905798B2 (en) | Separator for electrochemical device and method for producing the same | |
EA029971B1 (en) | Single-layer lithium ion battery separator | |
JP5695477B2 (en) | Electrochemical element separator and electrochemical element using the same | |
CN104885257A (en) | Method of making single layer lithium ion battery separator with nanofiber and microfiber components | |
KR20080064963A (en) | Electrochemical double layer capacitors including improved nanofiber separators | |
JP2016502736A (en) | Low shrinkage single layer lithium ion battery separator | |
CN104871341A (en) | Universal single-layer lithium ion battery separator with nanofiber and microfiber components | |
JP2009076486A (en) | Separator for electrochemical element | |
CN108140491B (en) | Separator for electrochemical element and electrochemical element | |
JP2000003834A (en) | Electric double-layer capacitor | |
JP2015088703A (en) | Separator for capacitors, and capacitor using the same | |
KR102660222B1 (en) | Separator for electrochemical devices and electrochemical devices | |
JP2010219335A (en) | Separator for storage device, and method of manufacturing the same | |
JP2010098074A (en) | Separator for electric storage device | |
JP2010232205A (en) | Separator for electric storage device | |
JP2010129308A (en) | Power storage device separator | |
JP2010238640A (en) | Separator for power storage device | |
JP2010232202A (en) | Separator for electricity storage device | |
JP2010287697A (en) | Separator for energy storage device | |
JP2016170974A (en) | Separator for alkaline battery and alkaline battery | |
JP2010239028A (en) | Separator for electric storage device | |
JP2010277800A (en) | Separator for power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120821 |