JP2010090433A - Method of manufacturing metal strip - Google Patents
Method of manufacturing metal strip Download PDFInfo
- Publication number
- JP2010090433A JP2010090433A JP2008261209A JP2008261209A JP2010090433A JP 2010090433 A JP2010090433 A JP 2010090433A JP 2008261209 A JP2008261209 A JP 2008261209A JP 2008261209 A JP2008261209 A JP 2008261209A JP 2010090433 A JP2010090433 A JP 2010090433A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- compound
- metal strip
- alloy layer
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本発明は自動車・民生機器等の電気配線の接続に使用されるかん合端子を有するコネクタおよびコネクタの材料となる表面処理された金属条の製法に関する。特に、低接触抵抗、耐食性、はんだ付け性のほか、高耐熱性および低挿入力を要求されるコネクタ用金属条の製造方法に関する。 The present invention relates to a connector having mating terminals used for connecting electrical wiring of automobiles / consumer equipment and the like, and a method for producing a surface-treated metal strip as a connector material. In particular, the present invention relates to a method for manufacturing a metal strip for a connector that requires high heat resistance and low insertion force in addition to low contact resistance, corrosion resistance, and solderability.
自動車・民生機器等の電気配線の接続に使用されるコネクタ用端子には、低レベルの信号電圧および電流に対して高い電気的接続の信頼性が求められる重要な電気回路の場合などを除き、Snめっき(はんだめっき等のSn合金めっきを含む)を施したCuまたはCu合金が用いられている。 Except in the case of important electrical circuits that require high electrical connection reliability for low-level signal voltages and currents, etc., for connector terminals used to connect electrical wiring of automobiles and consumer devices, etc. Cu or Cu alloy subjected to Sn plating (including Sn alloy plating such as solder plating) is used.
SnめっきはAuめっきや他の表面処理に比べて低コストである。また、Snは軟らかく(ビッカース硬度Hv≒30)、表面に薄く安定な酸化皮膜があり、これは少しの力で破壊され、摺動動作を行うとSn自体が有する低い接触抵抗値(5mΩ以下)を示す。このような特徴からSnめっきは多く使われており、中でも、近年の環境負荷物質規制への対応から鉛を含まないSnめっき、特にウィスカの発生による回路ショート障害の報告のほとんどないリフローSnめっきが主流となっている。 Sn plating is less expensive than Au plating and other surface treatments. In addition, Sn is soft (Vickers hardness H v ≒ 30) and has a thin and stable oxide film on the surface. This is destroyed by a little force, and when it slides, it has a low contact resistance value (less than 5mΩ) ). Because of these characteristics, Sn plating is often used. Among them, Sn-free plating that responds to recent regulations on environmentally hazardous substances, especially reflow Sn plating that has almost no reports of short circuit failure due to whisker generation. It has become mainstream.
しかし、Snはその軟らかさから、コネクタの接点においてオスとメスを凝着させるガスタイト(気密)構造となるため、金めっき等で構成されるコネクタに比べ、コネクタの挿入に必要な挿入力が高い。近年、電気・電子部品の回路数増大により、回路に電気信号を供給するコネクタの多極化が進んでおり、これに伴うコネクタ挿入力の増大が問題となっている。例えば、自動車の組立ラインでは、コネクタを嵌合させる作業は、現在ほとんど人力で行われている。コネクタの挿入力が大きくなると、組立ラインで作業者に負担がかかり、作業効率の低下に直結する。このことから、Snめっき材の挿入力の低減が強く望まれている。 However, Sn has a gas tight (airtight) structure that adheres male and female at the contact point of the connector due to its softness, so the insertion force required to insert the connector is higher than a connector made of gold plating or the like . In recent years, due to the increase in the number of circuits of electric / electronic components, the number of connectors for supplying electric signals to the circuits has been increased, and the accompanying increase in connector insertion force has become a problem. For example, in an automobile assembly line, the work of fitting a connector is currently almost done manually. If the insertion force of the connector is increased, a burden is placed on the worker on the assembly line, which directly leads to a decrease in work efficiency. For this reason, it is strongly desired to reduce the insertion force of the Sn plating material.
ここで、リフローによってめっき層内部に形成される化合物層(例えばCu-Sn化合物)は硬いため、この化合物層の存在により、挿入力の低減が可能となる。挿入力低減の観点からは、化合物層は表面に露出していても最表面のSn層の直下に存在していてもよいが、前者の場合、高温で放置すると表面に露出したCu-Sn化合物のCuが酸化して酸化Cuができてしまうため、接触抵抗が大きく増大し、はんだ付け性も大きく劣化してしまう。すなわち高耐熱性を有さない。 Here, since the compound layer (for example, Cu—Sn compound) formed inside the plating layer by reflow is hard, the insertion force can be reduced by the presence of this compound layer. From the viewpoint of reducing insertion force, the compound layer may be exposed on the surface or directly below the outermost Sn layer, but in the former case, the Cu-Sn compound exposed on the surface when left at high temperature Since Cu is oxidized to form Cu oxide, the contact resistance is greatly increased and the solderability is greatly deteriorated. That is, it does not have high heat resistance.
一方、自動車においては安全性、環境性、快適性の追求から電装化が急速に進行している。これに伴い、回路数が増加するため、コネクタ用端子などの接続部品は省スペース化のためにエンジンルーム内への搭載が可能な高耐熱性が求められるようになってきている。よって、低挿入力と高耐熱性を両立させるためには、後者のようにCu-Sn化合物を表面に露出させることなく、Cu-Sn化合物の上のSn層の厚さを薄く制御する必要がある。Cu-Sn化合物の上のSn層の厚さが厚いと、Snは軟らかいので、挿入力が高くなってしまう。 On the other hand, in the automobile, the electrification is rapidly progressing from the pursuit of safety, environment and comfort. Along with this, the number of circuits increases, so that connection parts such as connector terminals are required to have high heat resistance that can be mounted in an engine room in order to save space. Therefore, in order to achieve both low insertion force and high heat resistance, it is necessary to control the thickness of the Sn layer on the Cu-Sn compound to be thin without exposing the Cu-Sn compound to the surface as in the latter case. is there. If the Sn layer on the Cu-Sn compound is thick, Sn is soft and the insertion force becomes high.
母材金属上にNiめっき、Cuめっき、Snめっきの順で電気めっきを施し、その後リフローすることにより、Cu合金Snめっき条の挿抜性と耐熱性を両立する方法が提案されている(特許文献1)。また、母材金属表面を粗面化した後、この上にCuめっき層、Snめっき層を順に形成し、さらにリフロー処理することにより、低挿入力と高温長時間保持後の低接触抵抗を両立する方法が提案されている(特許文献2)。 A method has been proposed in which the electroplating is performed in the order of Ni plating, Cu plating, and Sn plating on the base metal, and then reflow is performed, so that both the insertability and heat resistance of the Cu alloy Sn plating strip are compatible (Patent Literature). 1). Also, after roughening the surface of the base metal, a Cu plating layer and an Sn plating layer are formed in this order on top of each other, and by reflow treatment, both low insertion force and low contact resistance after holding at high temperature for a long time are achieved. A method to do this has been proposed (Patent Document 2).
しかし、特許文献1では、化合物層の表面粗さを低減することにより、最表面のSn層厚さを薄く制御しようとしているが、Ni/Cu/Sn 3層めっきをリフローする方法では、各層を精度よく十分に薄く制御することは困難である。その結果、リフロー後の最表面Sn層の平均厚さが最小0.02μmとなっており、化合物層の面粗さを考慮すると、化合物層の一部が表面に露出する構造となってしまう。これでは低挿入力は実現できても、前述したように高耐熱性も両立することはできない。
However,
また、特許文献2では、化合物の一部が表面から露出してしまうことが前提となっており、この露出率を制御することにより、低挿入力と高耐熱性を両立させようとしている。しかしながら、これでは特許文献1同様、低挿入力は実現できても、高耐熱性も両立することはできない。
In
本発明は、リフロー処理後に化合物層の表面露出がなく、かつ挿入力が小さい(動摩擦係数の小さい)コネクタ用の金属条の製造方法を提供するものである。 The present invention provides a method for producing a metal strip for a connector that has no compound layer surface exposure after reflow treatment and has a small insertion force (small coefficient of dynamic friction).
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば次のとおりである。
(1)金属条の製造方法であって、母材金属上にNi層、Sn-Cu合金層を順次積層させる第一工程と、前記積層された母材金属をSn-Cu共晶の融点以上に熱処理して、前記母材金属上の前記Ni層上に、Cu-Ni-Sn化合物とCu-Sn化合物とが混合した化合物層、Sn層又Sn系合金層が順次積層された構造を形成する第二工程と、を有し、前記第一工程では、前記Sn-Cu合金層としてCu含有率が5mass%以上のSn-Cu合金層を用いることを特徴とする金属条の製造方法である。
(2)金属条の製造方法であって、母材金属上にNi層、Sn-Cu合金層を順次積層させる第一工程と、前記積層された母材金属をSn-Cu共晶の融点以上に熱処理して、前記母材金属上の前記Ni層上に、Cu-Ni-Sn化合物層又はCu-Sn化合物層、Sn層又Sn系合金層が順次積層された構造を形成する第二工程と、を有し、前記第一工程では、前記Sn-Cu合金層としてCu含有率が5mass%以上のSn-Cu合金層を用いることを特徴とする金属条の製造方法である。
The following is a brief description of an outline of typical inventions disclosed in the present application.
(1) A method for producing a metal strip, in which a Ni layer and a Sn—Cu alloy layer are sequentially laminated on a base metal, and the laminated base metal is at least the melting point of the Sn—Cu eutectic. To form a structure in which a compound layer in which a Cu-Ni-Sn compound and a Cu-Sn compound are mixed, a Sn layer or a Sn-based alloy layer are sequentially laminated on the Ni layer on the base metal. A metal strip manufacturing method characterized in that, in the first step, a Sn-Cu alloy layer having a Cu content of 5 mass% or more is used as the Sn-Cu alloy layer. .
(2) A method for producing a metal strip, in which a Ni layer and a Sn—Cu alloy layer are sequentially laminated on a base metal, and the laminated base metal is at least the melting point of the Sn—Cu eutectic. A second step of forming a structure in which a Cu-Ni-Sn compound layer, a Cu-Sn compound layer, a Sn layer or a Sn-based alloy layer is sequentially laminated on the Ni layer on the base metal In the first step, a Sn-Cu alloy layer having a Cu content of 5 mass% or more is used as the Sn-Cu alloy layer.
本発明の製造方法により製造された金属条、及びこれを用いたコネクタは最表面にCu-Ni-Sn化合物もしくはCu-Sn化合物が露出していないため、長期間保存したり、高温で長時間使用しても、最表面にCuの酸化物が形成されないため、接触抵抗の著しい増大やはんだ付け性の著しい劣化が発生しない。すなわち、高耐熱性を有する。またリフロー後にNi層の直上に形成されるCu-Ni-Sn化合物層もしくはCu-Sn化合物層の表面粗さを低減できるので、これらの化合物を表面露出させず、最表面のSn層もしくはSn-Cu合金層の厚さを薄く制御することが可能となるため、動摩擦係数を小さくでき、ひいてはコネクタの挿入力を低減できる。 Since the metal strip manufactured by the manufacturing method of the present invention and the connector using the same are not exposed to the Cu-Ni-Sn compound or Cu-Sn compound, they can be stored for a long time or at a high temperature for a long time. Even when used, since no Cu oxide is formed on the outermost surface, contact resistance is not significantly increased and solderability is not significantly deteriorated. That is, it has high heat resistance. In addition, the surface roughness of the Cu-Ni-Sn compound layer or Cu-Sn compound layer formed immediately above the Ni layer after reflow can be reduced, so these compounds are not exposed to the surface, and the outermost Sn layer or Sn- Since the thickness of the Cu alloy layer can be controlled thinly, the coefficient of dynamic friction can be reduced, and the insertion force of the connector can be reduced.
図2は、本発明に係る金属条を製造するために用いる熱処理前の金属条の層構造の断面を示すものである。母材金属上にはNi層とNi層上に形成されたSn-Cu合金層とによる積層構造が設けられている。一般に母材金属としてはCu合金が用いられる。Cu合金としてはリン青銅やバネ性のあるコルソン合金等が本発明のコネクタ用の金属条として適用可能である。Ni層は通常は電気Niめっきで形成するが、他の方法で形成しても構わない。Ni層はリフロー時に化合物層に溶け込み、リフロー後に消失する箇所が生じないように十分厚く形成する必要がある。そのためにはNi層の厚さはできれば0.7μm以上、少なくとも0.4μm以上は必要である。Sn-Cu合金層も通常は電気めっきで形成するが、他の方法(ディッピング等)で形成してもよい。Sn-Cu合金層の厚さは1〜5μmの範囲とすることが好ましい。1μm未満であると、はんだ付け性が低下し、5μmを超えると、金属条の成形加工性が低下するからである。また表面層(Ni層、Sn-Cu合金層)の合計厚さは、1〜10μmの範囲とすることが好ましい。1μm未満であると、はんだ付け性が低下し、10μmを超えると、金属条の成形加工性が低下するからである。 FIG. 2 shows a cross section of the layer structure of the metal strip before heat treatment used for producing the metal strip according to the present invention. On the base metal, a laminated structure is formed by a Ni layer and a Sn—Cu alloy layer formed on the Ni layer. In general, a Cu alloy is used as a base metal. As the Cu alloy, phosphor bronze, spring Corson alloy or the like is applicable as the metal strip for the connector of the present invention. The Ni layer is usually formed by electro Ni plating, but may be formed by other methods. The Ni layer needs to be formed thick enough so that it does not dissolve in the compound layer during reflow and disappears after reflow. For this purpose, the Ni layer should have a thickness of 0.7 μm or more, preferably at least 0.4 μm, if possible. The Sn—Cu alloy layer is also usually formed by electroplating, but may be formed by other methods (dipping or the like). The thickness of the Sn—Cu alloy layer is preferably in the range of 1 to 5 μm. This is because if the thickness is less than 1 μm, the solderability decreases, and if it exceeds 5 μm, the moldability of the metal strip decreases. The total thickness of the surface layers (Ni layer and Sn—Cu alloy layer) is preferably in the range of 1 to 10 μm. This is because if the thickness is less than 1 μm, the solderability decreases, and if it exceeds 10 μm, the moldability of the metal strip decreases.
次に、この熱処理前の金属条をSn-Cu合金層の融点227℃(固相線温度)以上の温度まで上げることにより、Sn-Cu合金層が部分的に融ける。これにより、Sn-Cu合金層中に浮島状に存在していたCu-Sn化合物の一部が融ける。さらに液相線以上の温度まで上げた場合には、Sn-Cu合金層およびCu-Sn化合物が完全に融ける。この際にNi層からNiが一部融けこむことにより、その後、冷却するとCu-Ni-Sn化合物が再析出してくる。この時、Ni層が再析出の核となり、Cu-Ni-Sn化合物はNi層の上に析出し、図4乃至図6のいずれかの積層構造となる。なお、Cu-Ni-Sn化合物以外にCu-Sn化合物も析出する場合がある。ここで、熱処理は、はんだ付け性確保、表面硬度上昇抑止の観点から、なるべく、300℃以下の低温で、0〜60s程度の短時間で行うことが望ましい。雰囲気は酸素濃度10ppm以下の不活性ガス中、例えばN2中が望ましい。表面の硬度が高くなると、コネクタのおす端子とめす端子をかん合して、外部から応力を印加した場合に、かん合部に圧縮応力が発生し、電気的短絡の原因となるウィスカが発生・成長しやすくなる。また高温で熱処理すると表面の酸化度合いが高くなり、はんだ濡れ性が著しく劣化する。 Next, the Sn—Cu alloy layer is partially melted by raising the metal strip before the heat treatment to a temperature equal to or higher than the melting point 227 ° C. (solidus temperature) of the Sn—Cu alloy layer. Thereby, a part of Cu-Sn compound which existed in the floating island shape in the Sn-Cu alloy layer melts. Furthermore, when the temperature is raised to a temperature above the liquidus, the Sn—Cu alloy layer and the Cu—Sn compound are completely melted. At this time, a part of Ni is melted from the Ni layer, and then the Cu—Ni—Sn compound is reprecipitated when cooled. At this time, the Ni layer serves as a nucleus for reprecipitation, and the Cu—Ni—Sn compound precipitates on the Ni layer, resulting in any one of the laminated structures shown in FIGS. In addition to the Cu—Ni—Sn compound, a Cu—Sn compound may also precipitate. Here, it is desirable that the heat treatment be performed at a low temperature of 300 ° C. or less and in a short time of about 0 to 60 seconds as much as possible from the viewpoint of securing solderability and suppressing the increase in surface hardness. The atmosphere is preferably in an inert gas having an oxygen concentration of 10 ppm or less, for example, in N 2 . When the hardness of the surface is high, when the male terminal and female terminal of the connector are mated and stress is applied from the outside, compressive stress is generated in the mating part, causing whiskers that cause electrical shorting. It becomes easy to grow. Further, when heat treatment is performed at a high temperature, the degree of oxidation of the surface is increased, and the solder wettability is remarkably deteriorated.
ここで、本発明ではSn-Cu合金層としてCu含有率が5mass%以上のものを用いることにより、後に詳説するように、Ni層上に析出するCu-Ni-Sn化合物が小塊状となり、図4に示す積層構造のように化合物層の表面粗さを小さくすることが可能となる。さらに、リフロー前の層構造はNi層とSn-Cu合金層との2層のみであり、厚さ制御が容易であるため、リフロー後の表面粗さを踏まえ、リフロー後の最表面Sn層の厚さを薄くするように予め調整することが容易となる。 Here, in the present invention, by using a Sn-Cu alloy layer having a Cu content of 5 mass% or more, the Cu-Ni-Sn compound precipitated on the Ni layer becomes a small lump, as will be described in detail later. As in the laminated structure shown in FIG. 4, the surface roughness of the compound layer can be reduced. Furthermore, the layer structure before reflow is only two layers of Ni layer and Sn-Cu alloy layer, and thickness control is easy, so the surface roughness of the outermost Sn layer after reflow is based on the surface roughness after reflow. It becomes easy to adjust in advance to reduce the thickness.
以下、リフロー前のSn-Cu合金層のCu含有率が5mass%未満の場合と5mass%以上の場合と相違するリフロー後の化合物層界面について説明する。
Ni層上に形成するSn-Cu合金層のCu含有率が5mass%未満の場合、図9に一例として示したような棒状のCu-Ni-Sn化合物が析出することが判明した。この化合物をEDXで分析したところNi/Cu比の高い、比較的Ni含有量の多いCu-Ni-Sn化合物であることがわかった(図10)。このような化合物が生成すると、図9の断面SEM像からもわかるように、化合物層の凹凸度(表面粗さ)は大きくなる。Sn-Cu合金層のCu含有率が5mass%未満の各種試料の化合物層の表面粗さRmaxを測定したところ、めっき層総厚の大きい試料では1.2μm以上、めっき層総厚の小さい試料でも0.8μm以上と大きかった。
Hereinafter, the compound layer interface after reflow which is different from the case where the Cu content of the Sn—Cu alloy layer before reflow is less than 5 mass% and the case where it is 5 mass% or more will be described.
When the Cu content of the Sn—Cu alloy layer formed on the Ni layer is less than 5 mass%, it was found that a rod-like Cu—Ni—Sn compound as shown as an example in FIG. 9 is precipitated. When this compound was analyzed by EDX, it was found to be a Cu—Ni—Sn compound having a high Ni / Cu ratio and a relatively high Ni content (FIG. 10). When such a compound is generated, as can be seen from the cross-sectional SEM image of FIG. 9, the degree of unevenness (surface roughness) of the compound layer increases. When the surface roughness Rmax of the compound layer of various samples with a Cu content of the Sn-Cu alloy layer of less than 5 mass% was measured, it was 1.2 μm or more for a sample with a large plating layer thickness, and 0.8 for a sample with a small plating layer total thickness. It was as large as μm or more.
これらの結果を図3に比較例として纏めた。化合物層の表面粗さが大きかったこれらの試料は、化合物が表面に露出してしまった試料(図5)と表面粗さは大きいが化合物が表面に露出していない試料(図6)の2種類に分けられた。前者の試料は動摩擦係数が0.4前後と低く、低挿入力レベルにあるが、化合物露出により150℃、1000h放置後の接触抵抗が13.5〜14.0mΩと著しく高くなってしまっている。これは前述のように、部分的に表面に露出したCu-Ni-Sn化合物のCuが高温長時間放置により酸化して酸化Cuとなったことが原因と考えられる。後者の試料は化合物露出が無かったため、高温長時間放置後も接触抵抗の低下はほとんど見られなかった。しかしながら、最表面のSnもしくはSn合金層の平均厚さが0.65〜0.75μmと大きく、また化合物層凹部の上のSnもしくはSn合金層の厚さが非常に厚いため(図6)、動摩擦係数は何れも0.52〜0.68と大きく、挿入力が高いレベルにあった。 These results are summarized in FIG. 3 as a comparative example. These samples in which the surface roughness of the compound layer was large are two of the sample in which the compound is exposed on the surface (FIG. 5) and the sample in which the compound is large but the compound is not exposed on the surface (FIG. 6). Divided into types. The former sample has a low coefficient of dynamic friction of around 0.4 and a low insertion force level, but the contact resistance after leaving at 150 ° C. for 1000 hours after exposure to the compound is significantly high at 13.5 to 14.0 mΩ. As described above, this is considered to be because Cu of the Cu—Ni—Sn compound partially exposed on the surface is oxidized by leaving it at a high temperature for a long time to form Cu oxide. Since the latter sample was not exposed to the compound, there was almost no decrease in contact resistance even after standing at high temperature for a long time. However, the average thickness of the outermost Sn or Sn alloy layer is as large as 0.65 to 0.75 μm, and the Sn or Sn alloy layer on the compound layer recess is very thick (FIG. 6). All were large, 0.52 to 0.68, and the insertion force was at a high level.
次に、Ni層上に形成するSn-Cu合金層のCu含有率が5mass%以上の場合、図7に一例として示したような小塊状のCu-Ni-Sn化合物が析出することが判明した。この化合物をEDXで分析したところNi/Cu比の低い、比較的Ni含有量の少ないCu-Ni-Sn化合物であることがわかった(図8)。このような化合物が生成すると、図7の断面SEM像からもわかるように、化合物層の凹凸度(表面粗さ)は小さくなる。Sn-Cu合金層のCu含有率が5mass%以上の各種試料の化合物層の表面粗さRmaxを測定したところ、何れの試料でも0.5〜0.6μmと小さかった。 Next, when the Cu content of the Sn-Cu alloy layer formed on the Ni layer is 5 mass% or more, it was found that a small block of Cu-Ni-Sn compound as shown as an example in FIG. 7 is precipitated. . When this compound was analyzed by EDX, it was found to be a Cu-Ni-Sn compound having a low Ni / Cu ratio and a relatively low Ni content (FIG. 8). When such a compound is produced, as can be seen from the cross-sectional SEM image of FIG. 7, the degree of unevenness (surface roughness) of the compound layer becomes small. When the surface roughness Rmax of the compound layer of various samples having a Cu content of 5 mass% or more in the Sn—Cu alloy layer was measured, all samples were as small as 0.5 to 0.6 μm.
これらの結果を図3に実施例として纏めた。化合物層の表面粗さが小さかったこれらの試料は、化合物の表面露出はなく(図4)、動摩擦係数は0.4前後と低く、低挿入力レベルにあり、高温長時間放置後も接触抵抗の低下はほとんど見られなかった。接触抵抗の劣化が無かった理由は前述の通りである。動摩擦係数が低かった理由は、化合物層の表面粗さが小さいために、最表面のSnもしくはSn合金層の平均厚さが0.30〜0.35μmと小さく、また化合物層凹部の上のSnもしくはSn合金層の厚さも比較的薄い(図4)ためである。 These results are summarized as an example in FIG. These samples, which had a small surface roughness of the compound layer, had no surface exposure of the compound (Fig. 4), had a low coefficient of dynamic friction of around 0.4, a low insertion force level, and reduced contact resistance even after standing at high temperature for a long time. Was hardly seen. The reason why the contact resistance did not deteriorate is as described above. The reason why the coefficient of dynamic friction was low was that the surface roughness of the compound layer was small, so the average thickness of the outermost Sn or Sn alloy layer was as small as 0.30 to 0.35 μm, and the Sn or Sn alloy above the compound layer recess This is because the layer thickness is also relatively thin (FIG. 4).
図4で最表面のSnもしくはSn合金層の厚さの微妙な最終調整は、初期にNi層上に形成するSn-Cu合金層のCu含有率を5mass%以上とすることに加えて、Sn-Cu合金層の厚さを制御することにより行う。Sn-Cu合金層の厚さが薄いほど、リフロー後の最表面のSnもしくはSn合金層の厚さも薄くなる。 In FIG. 4, the final final adjustment of the thickness of the outermost Sn or Sn alloy layer is that the Sn content of the Sn—Cu alloy layer formed on the Ni layer in the initial stage is set to 5 mass% or more. This is done by controlling the thickness of the Cu alloy layer. The thinner the Sn—Cu alloy layer, the thinner the outermost Sn or Sn alloy layer after reflow.
リフロー後の最表面の層はCu-Ni-Sn化合物再析出後の残存相となるので、通常Sn-0.7Cuの共晶組成となる。しかし、この相は非常に薄いので、Sn-0.7Cu共晶相の中に通常は分散して存在するCu-Sn化合物(Cu6Sn5)相がCu-Ni-Sn化合物層と一体化し、最表面は純Snになる場合も想定される。これはSn-0.7Cu層が非常に薄い場合、Cu-Sn化合物がSn-Cu共晶組成の相として存在するよりもCu-Ni-Sn化合物層と一体化し、最表面がSn層となった方が安定状態となるためである。 Since the outermost layer after reflowing becomes a residual phase after reprecipitation of the Cu—Ni—Sn compound, it usually has a eutectic composition of Sn—0.7Cu. However, since this phase is very thin, the Cu-Sn compound (Cu 6 Sn 5 ) phase that is normally dispersed in the Sn-0.7Cu eutectic phase is integrated with the Cu-Ni-Sn compound layer, It is also assumed that the outermost surface is pure Sn. This is because when the Sn-0.7Cu layer is very thin, the Cu-Sn compound is integrated with the Cu-Ni-Sn compound layer rather than existing as a phase of the Sn-Cu eutectic composition, and the outermost surface becomes the Sn layer. This is because the direction becomes stable.
以下、具体的な実験の結果を示す。
[実験例]
本発明の金属条のサンプル(実施例1〜3)、従来の金属条のサンプル(比較例1〜6)について、化合物層表面粗さ(a)、最表面のSnもしくはSn系合金層の平均厚さ(b)、化合物の表面露出の有無、断面状態、動摩擦係数、150℃、1000h放置後の接触抵抗を調べた結果を図3に示す。サンプルには、リン青銅製の母材金属(32mm×15mm×厚さ0.25mm)を使用し、めっき前処理として、電解脱脂処理および酸活性処理を行った後、表面にめっき層を通常の電気めっき法により逐次、形成した。めっき膜厚の測定は蛍光X線膜厚計を用いた。その後、N2中、260℃で10秒間保持して、熱処理した。
The results of specific experiments are shown below.
[Experimental example]
About the metal strip samples (Examples 1 to 3) of the present invention and the conventional metal strip samples (Comparative Examples 1 to 6), the compound layer surface roughness (a), the average of the outermost Sn or Sn-based alloy layer FIG. 3 shows the results of examining the thickness (b), presence / absence of surface exposure of the compound, cross-sectional state, dynamic friction coefficient, contact resistance after leaving at 150 ° C. for 1000 hours. For the sample, a phosphor bronze base metal (32 mm x 15 mm x 0.25 mm thickness) was used. After the electrolytic degreasing treatment and acid activation treatment were performed as plating pretreatment, the plating layer was applied to the surface of a normal electric layer. It formed one by one by the plating method. A fluorescent X-ray film thickness meter was used to measure the plating film thickness. Then, it heat-processed by hold | maintaining for 10 second at 260 degreeC in N2.
化合物層表面粗さ(a)(最大高さRmax)、最表面のSnもしくはSn系合金層の平均厚さ(b)はサンプルを深さ方向にFIB加工して断面を出し、断面のSIM像を観察することにより求めた。化合物の表面露出の有無、断面状態は、サンプルを断面研磨後、SEM/EDXで観察・分析して確認した。 The compound layer surface roughness (a) (maximum height Rmax) and the average thickness (b) of the Sn or Sn alloy layer on the outermost surface are FIB processed in the depth direction to obtain a cross-section, and the cross-section SIM image It was determined by observing. The presence or absence of the surface exposure of the compound and the cross-sectional state were confirmed by observing and analyzing the sample with SEM / EDX after cross-sectional polishing.
動摩擦係数は、板状試料と接触試料の両方を金属条のサンプルで作製し、これらを荷重4.9N、送り速度50mm/minで15mmしゅう動させた時の最大摩擦力の平均値から求めた。接触子試料のRは3.5mmとした。
接触抵抗は、四端子法で測定した。開放電圧20mV、電流10mA、しゅう動荷重0.49N、速度1mm/min、距離1mmとした。
The dynamic friction coefficient was obtained from the average value of the maximum frictional force when both the plate specimen and the contact specimen were made of metal strip samples and they were slid 15 mm at a load of 4.9 N and a feed rate of 50 mm / min. The contact sample R was 3.5 mm.
Contact resistance was measured by the four probe method. The open-circuit voltage was 20mV, the current was 10mA, the sliding load was 0.49N, the speed was 1mm / min, and the distance was 1mm.
実施例1〜3では、化合物層の表面粗さRmax(a)は0.5〜0.6μmと小さかった。また化合物の表面露出もなく、最表面のSnもしくはSn系合金層の平均厚さ(b)も0.30〜0.32mmと小さかった。すなわち断面状態は図4に示すような状態になっていた。動摩擦係数は0.4前後と低く、低挿入力レベルにあり、高温長時間放置後も接触抵抗の低下はほとんど見られなかった。また実際のリフロー後の断面のSEM像の一例を図7に示した。Cu-Ni-Sn化合物は小塊状で、凹凸度が低かった。このCu-Ni-Sn化合物は図8に示したEDX分析結果から、Ni/Cu比が比較的低いNi含有量の少ないCu-Ni-Sn化合物であることがわかった。 In Examples 1 to 3, the surface roughness Rmax (a) of the compound layer was as small as 0.5 to 0.6 μm. Further, the surface of the compound was not exposed, and the average thickness (b) of the outermost Sn or Sn-based alloy layer was as small as 0.30 to 0.32 mm. That is, the cross-sectional state was as shown in FIG. The coefficient of dynamic friction was as low as around 0.4, and it was at a low insertion force level, and contact resistance was hardly reduced even after standing at high temperature for a long time. An example of the SEM image of the cross section after actual reflow is shown in FIG. The Cu—Ni—Sn compound was in a small lump shape and had a low degree of unevenness. The Cu—Ni—Sn compound was found to be a Cu—Ni—Sn compound having a relatively low Ni / Cu ratio and a low Ni content from the EDX analysis results shown in FIG.
従来の金属条サンプルを用いた比較例1〜6では、何れも化合物層の表面粗さRmax(a)は0.8〜1.4μmと大きかった。めっき層総厚の大きい試料では1.2μm以上、めっき層総厚の小さい試料でも0.8μm以上と大きかった。比較例1および5では、化合物の表面露出があり、それによって高温長時間保持後の接触抵抗が13.5〜14.0と著しく高かった。動摩擦係数は0.4以下と低かった。最表面のSnもしくはSn系合金層の平均厚さ(b)と断面観察結果から、断面状態は図5のようになっていた。 In Comparative Examples 1 to 6 using conventional metal strip samples, the surface roughness Rmax (a) of the compound layer was as large as 0.8 to 1.4 μm. The sample with a larger total plating layer thickness was 1.2 μm or more, and the sample with a smaller total plating layer thickness was 0.8 μm or more. In Comparative Examples 1 and 5, there was exposure of the surface of the compound, whereby the contact resistance after holding at high temperature for a long time was remarkably high at 13.5 to 14.0. The coefficient of dynamic friction was as low as 0.4 or less. From the average thickness (b) of the outermost Sn or Sn-based alloy layer and the cross-sectional observation results, the cross-sectional state was as shown in FIG.
一方、比較例2〜4および6では、化合物の表面露出はなかった。それに伴い高温長時間保持後の接触抵抗が2.2〜2.5と低かった。動摩擦係数は0.52〜0.68と高かった。最表面のSnもしくはSn系合金層の平均厚さ(b)と断面観察結果から、断面状態は図6のようになっていた。 On the other hand, in Comparative Examples 2 to 4 and 6, there was no surface exposure of the compound. Accordingly, the contact resistance after holding at high temperature for a long time was as low as 2.2 to 2.5. The coefficient of dynamic friction was as high as 0.52 to 0.68. From the average thickness (b) of the outermost Sn or Sn-based alloy layer and the cross-sectional observation results, the cross-sectional state was as shown in FIG.
初期のSn-Cu合金層のCu含有率とリフロー後にNi上に形成される化合物層の表面粗さの関係を纏めて図1にプロットした。Sn-Cu合金層のCu含有率が5mass%以上か未満かで、リフロー後にNi上に形成される化合物の組成が異なり、それに伴い化合物層の表面粗さに大きな差が生じた。 The relationship between the Cu content of the initial Sn—Cu alloy layer and the surface roughness of the compound layer formed on Ni after reflow is summarized in FIG. The composition of the compound formed on Ni after reflow differs depending on whether the Cu content of the Sn-Cu alloy layer is 5 mass% or more, and a large difference was caused in the surface roughness of the compound layer.
以上の実験結果から、本発明に係る金属条の製造方法を用いれば、低挿入力と高耐熱性を両立するコネクタを構成する金属条を容易に製造することが可能である。 From the above experimental results, if the method for producing a metal strip according to the present invention is used, it is possible to easily produce a metal strip constituting a connector that achieves both low insertion force and high heat resistance.
本発明の金属条の主な利用形態はコネクタである。コネクタは電気・電子機器の組立てを簡便化するために、ケーブル同士、ケーブルと基板、基板同士を接続する際に使われるメス・オスが対となる接続器であり、かん合用端子を有する。一般的な要求特性は低接触抵抗、耐食性、はんだ付け性である。本発明の金属条は特に、これらの要求特性以外に、高耐熱性および低挿入力も要求されるコネクタに対して利用できる。 The main use form of the metal strip of the present invention is a connector. In order to simplify the assembly of electrical and electronic equipment, the connector is a connector that is a pair of females and males used when connecting cables, cables and boards, and boards, and has mating terminals. Typical required characteristics are low contact resistance, corrosion resistance, and solderability. The metal strip of the present invention can be used particularly for connectors that require high heat resistance and low insertion force in addition to these required characteristics.
Claims (5)
母材金属上にNi層、Sn-Cu合金層を順次積層させる第一工程と、
前記積層された母材金属をSn-Cu共晶の融点以上に熱処理して、前記母材金属上の前記Ni層上に、Cu-Ni-Sn化合物とCu-Sn化合物とが混合した化合物層、Sn層又Sn系合金層が順次積層された構造を形成する第二工程と、
を有し、
前記第一工程では、前記Sn-Cu合金層としてCu含有率が5mass%以上のSn-Cu合金層を用いることを特徴とする金属条の製造方法。 A method of manufacturing a metal strip,
A first step of sequentially laminating a Ni layer and a Sn-Cu alloy layer on the base metal,
A compound layer in which a Cu—Ni—Sn compound and a Cu—Sn compound are mixed on the Ni layer on the base metal by heat-treating the laminated base metal above the melting point of the Sn—Cu eutectic. A second step of forming a structure in which Sn layers or Sn-based alloy layers are sequentially laminated;
Have
In the first step, a Sn-Cu alloy layer having a Cu content of 5 mass% or more is used as the Sn-Cu alloy layer.
母材金属上にNi層、Sn-Cu合金層を順次積層させる第一工程と、
前記積層された母材金属をSn-Cu共晶の融点以上に熱処理して、前記母材金属上の前記Ni層上に、Cu-Ni-Sn化合物層又はCu-Sn化合物層、Sn層又Sn系合金層が順次積層された構造を形成する第二工程と、
を有し、
前記第一工程では、前記Sn-Cu合金層としてCu含有率が5mass%以上のSn-Cu合金層を用いることを特徴とする金属条の製造方法。 A method of manufacturing a metal strip,
A first step of sequentially laminating a Ni layer and a Sn-Cu alloy layer on the base metal,
The laminated base metal is heat-treated to a melting point of Sn-Cu eutectic or higher, and a Cu-Ni-Sn compound layer, a Cu-Sn compound layer, a Sn layer, or a Sn layer is formed on the Ni layer on the base metal. A second step of forming a structure in which Sn-based alloy layers are sequentially laminated;
Have
In the first step, a Sn-Cu alloy layer having a Cu content of 5 mass% or more is used as the Sn-Cu alloy layer.
前記第一工程では、前記Ni層の厚さを0.4μm以上とすることを特徴とする金属条の製造方法。 It is a manufacturing method of the metal strip according to claim 1 or 2,
In the first step, the thickness of the Ni layer is 0.4 μm or more.
前記第一工程では、前記Sn-Cu合金層の厚さを1μm以上5μm以下とすることを特徴とする金属条の製造方法。 It is a manufacturing method of the metal strip according to claim 3,
In the first step, the thickness of the Sn—Cu alloy layer is set to 1 μm to 5 μm.
前記母材金属としてCu合金を用いることを特徴とする金属条の製造方法。 A method for producing a metal strip according to any one of claims 1 to 4,
A method for producing a metal strip, wherein a Cu alloy is used as the base metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008261209A JP2010090433A (en) | 2008-10-08 | 2008-10-08 | Method of manufacturing metal strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008261209A JP2010090433A (en) | 2008-10-08 | 2008-10-08 | Method of manufacturing metal strip |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010090433A true JP2010090433A (en) | 2010-04-22 |
Family
ID=42253423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008261209A Pending JP2010090433A (en) | 2008-10-08 | 2008-10-08 | Method of manufacturing metal strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010090433A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013231223A (en) * | 2012-05-01 | 2013-11-14 | Dowa Metaltech Kk | Plated material and method for producing the same |
US20170141068A1 (en) * | 2015-11-16 | 2017-05-18 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing semiconductor device |
US20180080135A1 (en) * | 2015-05-07 | 2018-03-22 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
-
2008
- 2008-10-08 JP JP2008261209A patent/JP2010090433A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013231223A (en) * | 2012-05-01 | 2013-11-14 | Dowa Metaltech Kk | Plated material and method for producing the same |
US20180080135A1 (en) * | 2015-05-07 | 2018-03-22 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
US10676835B2 (en) * | 2015-05-07 | 2020-06-09 | Dowa Metaltech Co., Ltd. | Tin-plated product and method for producing same |
US20170141068A1 (en) * | 2015-11-16 | 2017-05-18 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing semiconductor device |
KR20170057138A (en) * | 2015-11-16 | 2017-05-24 | 도요타지도샤가부시키가이샤 | Method of manufacturing semiconductor device |
CN107104056A (en) * | 2015-11-16 | 2017-08-29 | 丰田自动车株式会社 | The manufacture method of semiconductor device |
KR101967511B1 (en) * | 2015-11-16 | 2019-04-09 | 도요타지도샤가부시키가이샤 | Method of manufacturing semiconductor device |
US10312211B2 (en) * | 2015-11-16 | 2019-06-04 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4402132B2 (en) | Reflow Sn plating material and electronic component using the same | |
KR102058344B1 (en) | Electronic component metal material and manufacturing method thereof, and connector terminal, connector and electronic component using said electronic component metal material | |
JP4956997B2 (en) | Flat cable | |
JP2008031550A (en) | Pb-FREE Sn-BASED MATERIAL, AND CONDUCTOR FOR ELECTRIC WIRING, TERMINAL-CONNECTING SECTION AND Pb-FREE SOLDER ALLOY | |
JP2009057630A (en) | Sn-PLATED CONDUCTIVE MATERIAL, METHOD FOR PRODUCING THE SAME, AND ELECTRICITY CARRYING COMPONENT | |
EP2682263A2 (en) | Tin-plated copper-alloy material for terminal and method for producing the same | |
JP2003293187A (en) | Copper or copper alloy subjected to plating and method for manufacturing the same | |
JP3874621B2 (en) | Sn-plated copper alloy material for mating type connection terminals and mating type connection terminals | |
JP2007299722A (en) | Wiring conductor, its manufacturing method, terminal connection part, and pb-free solder alloy | |
JPH11350188A (en) | Material for electric and electronic parts, its production, and electric and electronic parts lising the same | |
JP2009084616A (en) | REFLOW Sn PLATED MATERIAL AND ELECTRONIC COMPONENT USING THE SAME | |
JPH11193494A (en) | Plating material for fit type connecting terminal and fit type connecting terminal | |
JP2005226097A (en) | Tinned copper alloy material for electrical/electronic component, and its production method | |
US8389854B2 (en) | Metal strip, connector, and method of manufacturing metal strip | |
JP4847898B2 (en) | Wiring conductor and method for manufacturing the same | |
JP2010090433A (en) | Method of manufacturing metal strip | |
JP2011006760A (en) | Method for producing copper alloy strip | |
JP4090488B2 (en) | Conductive material plate for connecting part forming process and manufacturing method thereof | |
JP2007084921A (en) | Cu-Zn-Sn BASED ALLOY TIN PLATED STRIP | |
JP6503159B2 (en) | Metal material for electronic parts, connector terminal using the same, connector and electronic parts | |
CN107849721B (en) | Plating material having excellent heat resistance and method for producing same | |
JPH1060666A (en) | Tin or tin alloy-plated copper alloy for multipole terminal and its production | |
JP2009097050A (en) | Tin-plated material for electronic parts | |
JP4090483B2 (en) | Conductive connection parts | |
WO2018074256A1 (en) | Conductive bar material |