[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010088991A - Water treatment agent and water treatment method - Google Patents

Water treatment agent and water treatment method Download PDF

Info

Publication number
JP2010088991A
JP2010088991A JP2008260382A JP2008260382A JP2010088991A JP 2010088991 A JP2010088991 A JP 2010088991A JP 2008260382 A JP2008260382 A JP 2008260382A JP 2008260382 A JP2008260382 A JP 2008260382A JP 2010088991 A JP2010088991 A JP 2010088991A
Authority
JP
Japan
Prior art keywords
water treatment
treatment agent
acid
iron
sulfide ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008260382A
Other languages
Japanese (ja)
Other versions
JP5239718B2 (en
Inventor
Takenori Shoda
武則 正田
Takeshi Hanzawa
武志 半澤
Junji Yamazaki
淳司 山崎
Masahiko Matsukata
正彦 松方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AZMEC KK
Waseda University
Original Assignee
AZMEC KK
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZMEC KK, Waseda University filed Critical AZMEC KK
Priority to JP2008260382A priority Critical patent/JP5239718B2/en
Publication of JP2010088991A publication Critical patent/JP2010088991A/en
Application granted granted Critical
Publication of JP5239718B2 publication Critical patent/JP5239718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment agent and a water treatment method economical and effective to remove harmful materials contained in waste water. <P>SOLUTION: The water treatment agent contains iron sulfide ore or iron sulfide ore and an activating agent. The iron sulfide ore is preferably iron disulfide, pyrite, marcasite or pyrrhotite and the activating agent is one of sulfuric acid, hydrochloric acid, nitric acid, acetic acid, carboxylic acid, sulfonic acid, a sulfuric acid compound, a chloride, a nitric acid compound, hydrogen peroxide water and sodium hypochlorite. The water treatment agent further may contain alkali, alkaline earth metal element-containing raw material or an aluminum-containing raw material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、排水中に含まれる鉛、亜鉛、カドミウム、銀、銅、スズ、ニッケル、水銀などの重金属イオン、ヒ素、六価クロム、セレン、有機塩素化合物等の有害物質の除去を行うための水処理剤組成、及びこれを応用した前記の有害物質とホウ素やフッ素を同時に含む石炭火力発電所等の排煙脱硫排水、製造業における排水などを処理するための水処理剤、これらの水処理剤を用いた水処理方法に関する。   The present invention is for removing harmful substances such as heavy metal ions such as lead, zinc, cadmium, silver, copper, tin, nickel, mercury, arsenic, hexavalent chromium, selenium, organochlorine compounds contained in waste water. Composition of water treatment agent, and water treatment agent for treating flue gas desulfurization effluent such as coal-fired power plant that contains boron and fluorine at the same time, and waste water in manufacturing industry, and these water treatments The present invention relates to a water treatment method using an agent.

経済産業省、環境省が作成した平成18年度PRTR資料によると、公共水域への有害物質の排出量は、ホウ素及びその化合物、フッ化水素及びその水溶液塩、マンガン及びその化合物、亜鉛の水溶性化合物などの順となっている。   According to the 2006 PRTR data prepared by the Ministry of Economy, Trade and Industry and the Ministry of the Environment, the amount of harmful substances released into public water bodies is boron and its compounds, hydrogen fluoride and its aqueous salts, manganese and its compounds, and the water solubility of zinc. It is in order of compounds.

また、環境省発表の平成18年度地下水測定結果によれば、平成18年度に測定を実施した井戸4,738本のうち、320本の井戸において環境基準超過が認められ(基準超過率6.8%)、項目別の環境基準超過率は、硝酸性窒素及び亜硝酸性窒素(4.3%)が最も高く、次いで、ヒ素(2.1%)、フッ素(0.8%)、テトラクロロエチレン(0.3%)、ほう素(0.2%)、鉛(0.2%)、シス-1,2−ジクロロエチレン(0.2%)、トリクロロエチレン(0.2%)の順であった。ここ数年の調査結果によれば地下水の基準超過率の動向はわずかに増加する傾向となっている。   Moreover, according to the groundwater measurement results in FY2006 released by the Ministry of the Environment, out of 4,738 wells measured in FY2006, 320 wells exceeded the environmental standard (standard excess rate 6.8). %), The percentage of environmental standards exceeded by item was highest for nitrate nitrogen and nitrite nitrogen (4.3%), followed by arsenic (2.1%), fluorine (0.8%), tetrachlorethylene ( 0.3%), boron (0.2%), lead (0.2%), cis-1,2-dichloroethylene (0.2%), and trichlorethylene (0.2%). According to the survey results of the past few years, the trend of the groundwater standard excess rate tends to increase slightly.

これらの各種調査結果により、本発明の対象である亜鉛、鉛、ヒ素等の無機有害物質とテトラクロロエチレン等の有機塩素化合物(VOC)の効率的な水処理技術の開発は、ニーズも多くあり社会的な意義が大きいと思われる。   Based on the results of these various surveys, the development of efficient water treatment technology for inorganic harmful substances such as zinc, lead and arsenic and organochlorine compounds (VOC) such as tetrachloroethylene, which are the subject of the present invention, has many needs and is social. It seems to have great significance.

一方、鉱山および製錬所から排出される鉱廃水については、ヒ素、セレン、鉛、銅、カドミウム、亜鉛、水銀等の多種の重金属や有害物質が混在することが特徴である。鉱業分野においては、かつてのような鉱廃水による被害は生じていないが、この有効な処理技術、なかでも水銀の処理については環境基準値が厳格であるため、経済的、効率的に処理する技術の確立が求められている。   On the other hand, the mining wastewater discharged from mines and smelters is characterized by the presence of various heavy metals and harmful substances such as arsenic, selenium, lead, copper, cadmium, zinc, and mercury. In the mining industry, damage caused by mining wastewater has not occurred, but this effective treatment technology, especially mercury treatment, has a strict environmental standard, so it is economical and efficient treatment technology. Establishment is required.

また、石炭火力発電所のおける排煙脱硫排水、貯炭場排水等は、石炭由来のホウ素、フッ素、ヒ素、セレン、六価クロムなどを含有し、また、水銀が含まれることがある。   In addition, flue gas desulfurization effluent, coal storage effluent, etc. in coal-fired power plants contain boron, fluorine, arsenic, selenium, hexavalent chromium, etc. derived from coal, and may contain mercury.

最近の石炭の価格高騰に伴い、今後は安価であるが、不純物の多い、すなわち有害物質の含有が多い石炭原料を使用する方向となってきており、これらの排水を効率的に、経済的に処理する技術の開発が求められている。   With the recent rise in coal prices, it is becoming cheaper in the future, but it is becoming the direction to use coal raw materials with many impurities, that is, containing a lot of harmful substances. Development of processing technology is required.

上記の排水処理を行う既存技術としては、例えば、特許文献1に開示された鉛と鉄の非晶質な酸化物を用いてセレンを吸着する方法、また、特許文献2のガラスウール、ロックウールなどの繊維状物質の表面に硫化鉄を被覆し、これに排水を通水し、排水に含まれる鉛、カドミウム等の重金属、セレン等を処理する方法、さらに特許文献3のグリーンラスト、鉄フェライト及び還元性鉄水酸化物を含むセレン、重金属類、有機塩素化合物を処理する水処理方法などが挙げられる。   As an existing technique for performing the above wastewater treatment, for example, a method of adsorbing selenium using an amorphous oxide of lead and iron disclosed in Patent Document 1, and glass wool and rock wool of Patent Document 2 A method of coating the surface of a fibrous material such as iron sulfide with water passing through it and treating heavy metals such as lead and cadmium, selenium, etc. contained in the waste water, and green last of Patent Document 3, iron ferrite And a water treatment method for treating selenium, heavy metals and organochlorine compounds containing reducible iron hydroxide.

特許文献4にはFe、Fe、Feを含有する硫化鉄の粒子を用いたセレン、重金属、及び有機塩素化合物を含む排水、地下水の処理に関する方法が、さらに特許文献6には鉄(II)イオンを含んだ溶液と硫黄イオンを含んだ溶液から製造したマキナワイト構造の硫化鉄を用いた水処理方法について記載されている。 Patent Document 4 discloses a method relating to treatment of wastewater and groundwater containing selenium, heavy metals, and organic chlorine compounds using iron sulfide particles containing Fe, Fe 3 O 4 , and Fe 2 O 3. Describes a water treatment method using a makinawite-structured iron sulfide produced from a solution containing iron (II) ions and a solution containing sulfur ions.

また、特許文献6には、金属チタンと他の金属との合金又は混合物と接触させて、排水中のセレンを処理する方法及び排煙脱硫排水の処理方法について記載されている。
特開2001−276604号公報 特開2006−75759号公報 特開2006?289338号公報 特開2003−340465号公報 特開2007−63026号公報 特開2008−30020号公報
Patent Document 6 describes a method for treating selenium in waste water by contacting with an alloy or a mixture of titanium metal and another metal, and a method for treating flue gas desulfurization waste water.
JP 2001-276604 A JP 2006-75759 A JP 2006-289338 A JP 2003-340465 A JP 2007-63026 A JP 2008-30020 JP

上記のように、これまで種々の関連技術が考案されてきたが、処理のプロセスが複雑で、さらに経済性の高い方法はまだ確立されるに至っていない。また、水硫化ソーダと二価鉄化合物より合成した硫化鉄溶液を用いるような方法においては、臭気を伴い、また、管理方法が適切でないと有毒な硫化水素ガスの発生する危険性を伴うこととなる。   As described above, various related technologies have been devised so far. However, a process with a complicated process and a more economical method have not yet been established. In addition, in a method using an iron sulfide solution synthesized from sodium hydrosulfide and a divalent iron compound, there is an odor, and there is a risk of generating toxic hydrogen sulfide gas if the management method is not appropriate. Become.

また、前述のように、ヒ素、六価クロム、セレン、鉛、亜鉛、カドミウム、銅、水銀などの有害物質を含む排水の処理方法については、様々な方法が考案されてきているが、特にセレン、水銀を含む排水の処理法等については未だ効率が良く、経済性の高い処理法が確立されているとはいえない。また、複数の種々の有害イオンが共存する排水の処理方法においては、汚染の原因物質に応じて処理方法を変更する必要があることから、すべての原因物質について厳しい環境基準に対応するように処理することは難しく、処理が煩雑、高コストになるという問題があった。   In addition, as described above, various methods have been devised for the treatment of wastewater containing toxic substances such as arsenic, hexavalent chromium, selenium, lead, zinc, cadmium, copper, and mercury. However, the treatment method for wastewater containing mercury is still efficient, and it cannot be said that an economical treatment method has been established. In addition, in the wastewater treatment method in which a plurality of various harmful ions coexist, it is necessary to change the treatment method according to the causative substance of the contamination, so that all causative substances are treated so as to comply with strict environmental standards. It is difficult to do so, and there is a problem that processing is complicated and expensive.

また、キレート剤を用いる方法では、キレート剤が一般的に高価であることによるコスト上の問題があるほか、キレート剤が有機材料であることにより、環境中で劣化しやすい性質があり、排水処理後のスラッジの処分における長期的な安定性が懸念される。   In addition, the method using a chelating agent has a problem of cost due to the fact that the chelating agent is generally expensive, and since the chelating agent is an organic material, the chelating agent is easily deteriorated in the environment. There is concern about long-term stability in later sludge disposal.

本発明の目的は、鉛、カドミウム、水銀、亜鉛、銅などの重金属イオン、ヒ素、六価クロム、セレン等の有害物質を含む種々の排水、地下水、浸出水、さらには有機塩素化合物(VOC)、有機塩素化合物と前記の重金属等有害物質を共存する地下水などの、経済的かつ効果的な処理技術を提供することにある。さらには、これらを応用して石炭火力発電所脱硫排水、貯炭場排水等のホウ素、フッ素、ヒ素、セレン、六価クロムなどが共存する排水を簡易に経済的に処理する技術を提供することにある。   The object of the present invention is to provide various drainage, groundwater, leachate, and organochlorine compounds (VOC) containing heavy metal ions such as lead, cadmium, mercury, zinc and copper, arsenic, hexavalent chromium and selenium. Another object of the present invention is to provide an economical and effective treatment technique such as groundwater in which an organic chlorine compound and the above-mentioned heavy metal and other harmful substances coexist. Furthermore, by applying these technologies, we will provide technology to easily and economically treat wastewater containing boron, fluorine, arsenic, selenium, hexavalent chromium, etc., such as coal-fired power plant desulfurization wastewater and coal storage wastewater. is there.

すなわち、本発明は、排水中に含まれる上記の有害物質の除去を行うための経済的かつ効果的な水処理剤及び水処理方法を提供することを目的とする。   That is, an object of the present invention is to provide an economical and effective water treatment agent and water treatment method for removing the above-mentioned harmful substances contained in waste water.

本発明の請求項1記載の水処理剤は、硫化鉄鉱を含有することを特徴とする。   The water treatment agent according to claim 1 of the present invention is characterized by containing iron sulfide ore.

本発明の請求項2記載の水処理剤は、硫化鉄鉱と、活性化剤とを含有することを特徴とする。   The water treatment agent according to claim 2 of the present invention is characterized by containing iron sulfide ore and an activator.

本発明の請求項3記載の水処理剤は、請求項1又は2において、前記硫化鉄鉱が、二硫化鉄、黄鉄鉱、白鉄鉱、又は磁硫鉄鉱であることを特徴とする。   The water treatment agent according to claim 3 of the present invention is characterized in that, in claim 1 or 2, the iron sulfide ore is iron disulfide, pyrite, pyrite, or pyrrhotite.

本発明の請求項4記載の水処理剤は、請求項2又は3において、前記活性化剤が、硫酸、塩酸、硝酸、酢酸、カルボン酸、スルホン酸、硫酸化合物、塩化物、硝酸化合物、過酸化水素水、次亜塩素酸ナトリウムのいずれかであることを特徴とする。   The water treatment agent according to claim 4 of the present invention is the water treatment agent according to claim 2 or 3, wherein the activator is sulfuric acid, hydrochloric acid, nitric acid, acetic acid, carboxylic acid, sulfonic acid, sulfuric acid compound, chloride, nitric acid compound, hydrogen peroxide. It is one of hydrogen oxide water and sodium hypochlorite.

本発明の請求項5記載の水処理剤は、請求項1〜4のいずれか1項において、さらにアルカリ、アルカリ土類金属元素含有原料を含有することを特徴とする。   The water treatment agent according to claim 5 of the present invention is characterized in that in any one of claims 1 to 4, the water treatment agent further contains an alkali or alkaline earth metal element-containing raw material.

本発明の請求項6記載の水処理剤は、請求項1〜5のいずれか1項において、さらにアルミニウム含有原料を含有することを特徴とする。   The water treatment agent according to claim 6 of the present invention is characterized in that, in any one of claims 1 to 5, an aluminum-containing raw material is further contained.

本発明の請求項7記載の水処理方法は、予め活性化成分を含有する溶液に少なくとも二硫化鉄、黄鉄鉱、磁硫化鉄鉱粉末を添加することを特徴とする。   The water treatment method according to claim 7 of the present invention is characterized in that at least iron disulfide, pyrite, and magnetite powder are added to a solution containing an activation component in advance.

本発明の請求項8記載の水処理方法は、請求項1〜6のいずれか1項記載の水処理剤を排水に添加することを特徴とする。   The water treatment method according to claim 8 of the present invention is characterized in that the water treatment agent according to any one of claims 1 to 6 is added to waste water.

本発明の水処理剤及び水処理方法は、天然鉱物として地表に豊富に存在する硫化鉄鉱を用いるものである。本発明の水処理剤を排水に添加し混合攪拌するのみで鉛、亜鉛、カドミウム、銅、水銀、ヒ素、六価クロム、セレン等の有害物質の除去、またトリクロロエチレン、ダイオキシン、PCB類等の有機塩素化合物の脱塩素分解による処理を確実に、効率よく行うことが可能である。また、フッ素やホウ素を併せて含む排煙脱硫排水や、フッ素と前記の有害物質とを共存する工場排水などの処理、地下水、土壌浸出水等の処理についても、確実に、効率よく行うことができる。   The water treatment agent and water treatment method of the present invention uses a sulfide ore that is abundant on the surface of the earth as a natural mineral. Removal of harmful substances such as lead, zinc, cadmium, copper, mercury, arsenic, hexavalent chromium, selenium, and organic substances such as trichlorethylene, dioxin, PCBs, etc. by simply adding the water treatment agent of the present invention to the waste water and mixing and stirring. It is possible to reliably and efficiently perform the treatment by dechlorination decomposition of the chlorine compound. In addition, the treatment of flue gas desulfurization effluent containing fluorine and boron, factory effluent coexisting fluorine and the above hazardous substances, and the treatment of groundwater, soil leachate, etc. must be performed reliably and efficiently. it can.

以下、本発明の水処理剤、水処理方法について詳細に説明する。   Hereinafter, the water treatment agent and the water treatment method of the present invention will be described in detail.

本発明の水処理剤は天然鉱物である黄鉄鉱、磁硫化鉄鉱、二硫化鉄などの硫化鉄鉱を含有することを特徴とし、又は硫化鉄鉱と活性化剤とを併せて含有することを特徴とするものである。   The water treatment agent of the present invention is characterized by containing a natural mineral pyrite, magnetosulfite, disulfide or the like, or a combination of a sulfide and an activator. Is.

硫化鉄鉱としては二硫化鉄、黄鉄鉱、白鉄鉱、磁硫鉄鉱を用いることができ、これらは、水処理剤の反応活性を高めるため、1.0mm以下、好ましくは0.2mm以下に粉砕して使用されることが好ましい。また、硫化鉄の純度は高いほど水処理効果は高く、80%以上の純度をもつものが好ましい。   Iron sulfide, pyrite, pyrite, pyrrhotite, and pyrrhotite can be used as the iron sulfide ore, and these are used by pulverizing to 1.0 mm or less, preferably 0.2 mm or less in order to increase the reaction activity of the water treatment agent. It is preferred that Further, the higher the purity of iron sulfide, the higher the water treatment effect, and those having a purity of 80% or more are preferred.

硫化鉄鉱は地表に多く存在し、日本国内にも海外にも広く分布する天然鉱物であるため、原料の確保の面で経済性に優れる利点をもっている。硫化鉄鉱は硫黄成分を40%程度も含有する硫化化合物でありながら、常温では安定な物質であり、悪臭も伴わず、また有毒な硫化水素ガスの発生も生じないため、取り扱いが容易である。しかしながら、硫化鉄鉱が安定な物質であるがために、従来はこれを有効に活用することができなったが、本発明では硫化鉄鉱と活性化成分とを混合し、硫化鉄鉱の酸化分解の促進を図ることで、重金属の固定や高い還元機能を硫化鉄鉱から引き出して利用するものである。   Since iron sulfide ore is a natural mineral widely distributed on the surface of the earth and widely distributed both in Japan and abroad, it has the advantage of being economical in terms of securing raw materials. Although iron sulfide ore is a sulfide compound containing about 40% of a sulfur component, it is a stable substance at room temperature, does not cause a bad odor, and does not generate toxic hydrogen sulfide gas, so it is easy to handle. However, since sulfide sulfide ore is a stable substance, it could not be effectively used in the past. However, in the present invention, sulfide sulfide ore and an activation component are mixed to promote oxidative decomposition of sulfide sulfide ore. By doing so, the heavy metal fixation and high reduction function are extracted from the sulfide ore and used.

また、本発明の水処理剤の主成分である硫化鉄鉱は密度が高い物質であるため、水処理において発生する汚泥量が少なく、スラッジの処理が容易である利点がある。また、同様な硫化剤であるキレート剤と比較すれば、耐光性が高く、スラッジの管理処分後の安定性も高い。   Further, since iron sulfide ore, which is the main component of the water treatment agent of the present invention, is a substance having a high density, there is an advantage that the amount of sludge generated in the water treatment is small and sludge treatment is easy. Moreover, compared with the chelating agent which is the same sulfurizing agent, it has high light resistance and high stability after sludge management disposal.

硫化鉄鉱の硫黄成分はヒ素、セレンなどと交換する性質をもち、この性質により、これらの成分を除去することができる。また、活性化剤は、硫化鉄鉱表面に作用し、硫化鉄鉱の酸化分解を促進する機能をもっており、これらを組み合わせて使用することで、比較的短時間に優れた重金属、その他の有害物質の除去効果を得ることができ、硫化鉄鉱単体を使用する場合より、より短時間に意図する処理効果を得ることができる。   The sulfur component of the pyrite has the property of exchanging with arsenic, selenium, etc., and these components can be removed by this property. The activator has the function of acting on the iron sulfide ore surface and promoting the oxidative decomposition of the iron sulfide ore. By using these in combination, removal of excellent heavy metals and other harmful substances in a relatively short time. The effect can be obtained, and the intended treatment effect can be obtained in a shorter time than the case of using a single sulfide ore.

排水の多くは、塩素イオン、硫酸イオン等を含有するため、この濃度が数1,000mg/L程度であれば、活性化剤を添加しなくても同様の効果を得ることができる。すなわち、排水に活性化剤の成分が含まれる場合には、この活性化剤の成分を利用し、硫化鉄鉱を添加するだけで同様の効果を得ることができる。したがって、予め活性化剤成分を含有する排水においては少なくとも硫化鉄鉱と必要に応じてpH調整成分のみを添加することで、有害物質を除去することができる。しなしながら、重金属濃度が比較的高い場合は水処理剤を多く添加する必要もあり、塩素イオン、硫酸イオン等の活性化剤成分濃度は10,000mg/L以上とすることが好ましい。   Since most of the wastewater contains chlorine ions, sulfate ions, etc., if this concentration is about several thousand mg / L, the same effect can be obtained without adding an activator. That is, when the activator component is contained in the waste water, the same effect can be obtained simply by using the activator component and adding the iron sulfide ore. Therefore, in wastewater containing activator components in advance, harmful substances can be removed by adding at least iron sulfide and, if necessary, pH adjusting components. However, when the heavy metal concentration is relatively high, it is necessary to add a large amount of water treatment agent, and the concentration of activator components such as chloride ions and sulfate ions is preferably 10,000 mg / L or more.

本発明において、活性化剤としては硫酸、塩酸、硝酸、カルボン酸、スルホン酸、硫酸化合物、塩化物、硝酸化合物、過酸化水素水、次亜塩素酸ナトリウム等を用いることができる。活性化剤として用いる硫酸化合物としては硫酸アルミニウム、硫酸カリウム、硫酸マグネシウム、硫酸ナトリウム、硫酸鉄(II)、硫酸鉄(III)、石膏、明礬、明礬石、鉄明礬石、重晶石等がある。また、塩化物としては塩化アルミニウム、塩化カリウム、塩化マグネシウム、塩化ナトリウム、塩化鉄(II)、塩化鉄(III)、塩化カルシウム、塩化バリウム等、硝酸化合物としては硝酸カリウム、硝酸ナトリウム、硝酸鉄(II)、硝酸鉄(III)硝酸カルシウム、硝酸バリウム等がある。さらにカルボン酸としては、酢酸、ギ酸等、スルホン酸としてはメタンスルホン酸、ベンゼンスルホン酸等が挙げられる。   In the present invention, as the activator, sulfuric acid, hydrochloric acid, nitric acid, carboxylic acid, sulfonic acid, sulfuric acid compound, chloride, nitric acid compound, hydrogen peroxide solution, sodium hypochlorite and the like can be used. Examples of sulfuric acid compounds used as activators include aluminum sulfate, potassium sulfate, magnesium sulfate, sodium sulfate, iron (II) sulfate, iron (III) sulfate, gypsum, alum, alumite, iron alumite, barite, etc. . Also, chlorides include aluminum chloride, potassium chloride, magnesium chloride, sodium chloride, iron (II) chloride, iron (III) chloride, calcium chloride, barium chloride, etc., and nitrate compounds include potassium nitrate, sodium nitrate, iron nitrate (II ), Iron (III) nitrate, calcium nitrate, and barium nitrate. Further, examples of the carboxylic acid include acetic acid and formic acid, and examples of the sulfonic acid include methanesulfonic acid and benzenesulfonic acid.

本発明において用いられる活性化剤は、硫酸イオン、塩素イオン、硝酸イオン、カルボキシル基、スルホ基等を付与する物質であればよく、その他の無機物質の化合物、有機物質であっても利用することが可能であるが、経済性を考慮すると無機材料の使用が好ましい。また、地下水などの汚染の影響の少ない硫酸、塩酸、硫酸化合物、塩素化合物の使用が好ましい。   The activator used in the present invention may be any substance that imparts sulfate ion, chloride ion, nitrate ion, carboxyl group, sulfo group, etc., and may be used even for other inorganic compounds and organic substances. However, it is preferable to use an inorganic material in consideration of economy. In addition, it is preferable to use sulfuric acid, hydrochloric acid, a sulfuric acid compound, or a chlorine compound that is less affected by contamination such as groundwater.

本発明の組成物である硫化鉄鉱は、水と酸素と接触することで酸化分解を生じ、さらに活性化剤と組み合わせて使用することで、この反応が促進され、より短期間に酸化分解を生じる(化1、化2)。   Iron sulfide ore, which is the composition of the present invention, undergoes oxidative degradation when in contact with water and oxygen, and when used in combination with an activator, this reaction is promoted and oxidative degradation occurs in a shorter time. (Chemical Formula 1, Chemical Formula 2).

Figure 2010088991
Figure 2010088991

Figure 2010088991
Figure 2010088991

この現象を利用して、例えば化3に示すように硫化鉄鉱の表面に鉛などの重金属を硫化物として析出させることにより固定する。本発明の水処理剤ではこの機構により鉛、カドミウム、亜鉛、水銀などの重金属の除去が可能である。   Utilizing this phenomenon, for example, as shown in Chemical Formula 3, the metal is fixed by depositing heavy metals such as lead as sulfides on the surface of the iron sulfide ore. The water treatment agent of the present invention can remove heavy metals such as lead, cadmium, zinc, and mercury by this mechanism.

Figure 2010088991
Figure 2010088991

また、硫化鉄鉱は分解し最終的には3価の鉄化合物まで酸化されるため、強い還元機能を有し、六価クロム、セレンなどの処理にも好適に用いることができる。化4には6価のセレン酸イオンSeO 2?が還元され、4価の亜セレン酸イオンSeO 2−に変化することを示した。亜セレン酸イオンは本発明の水処理剤の成分であるカルシムウム、マグネシウムなどと不溶の化合物を形成し溶液中より除去される。また、硫化鉄鉱の”S”分と置換され、溶液中より除去される。 Further, since iron sulfide ore is decomposed and finally oxidized to a trivalent iron compound, it has a strong reducing function and can be suitably used for treatment of hexavalent chromium, selenium and the like. Chemical formula 4 showed that the hexavalent selenate ion SeO 4 2? Was reduced and changed to the tetravalent selenite ion SeO 3 2− . Selenite ions are removed from the solution by forming an insoluble compound with calcium, magnesium and the like, which are components of the water treatment agent of the present invention. Further, it is replaced with the “S” content of iron sulfide ore and removed from the solution.

Figure 2010088991
Figure 2010088991

このほか、硫化鉄鉱の“S”部分はヒ素と置換される性質があり、これを利用してヒ素を水中から除去することも可能である。   In addition, the “S” portion of the iron sulfide ore has a property of being replaced with arsenic, and it is possible to remove arsenic from water using this.

さらに、本発明の水処理剤の強い還元機能を利用して、トリクロロエチレン、テトラクロロエチレンなど揮発性有機化合物(VOC)、ダイオキシン、PCB類等の有機塩素化合物の分解、脱塩素による無害化処理、前記の重金属等の有害物質と揮発性有機化合物との複合汚染の処理にも用いることができる。化5に有機塩素化合物(RCl)が不飽和炭化水素(RH)に還元処理場合される化学式を示す。   Further, by utilizing the strong reducing function of the water treatment agent of the present invention, the decomposition of volatile organic compounds (VOC) such as trichlorethylene and tetrachloroethylene, dioxins and PCBs, detoxification treatment by dechlorination, It can also be used for the treatment of complex contamination between toxic substances such as heavy metals and volatile organic compounds. Chemical formula 5 shows the chemical formula in the case where the organochlorine compound (RCl) is reduced to the unsaturated hydrocarbon (RH).

Figure 2010088991
Figure 2010088991

本発明の水処理剤には、さらにアルカリ、アルカリ土類金属元素含有原料を含有させることができる。アルカリ、アルカリ土類金属元素含有原料としては、水酸化ナトリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化カリウム、炭酸カリウム、生石灰、消石灰、塩化カルシウム、炭酸カルシウム、軽焼マグネシウム、水酸化マグネシウム(ブルーサイト)、塩化マグネシウム、ドロマイト、焼成ドロマイトからなる群のうち少なくとも1種を用いることができる。これらの原料の多くは、溶液のpH調整剤として用いることができる。さらには、次に示すようにアルミニウム含有原料と組み合わせて、用いることができる。   The water treatment agent of the present invention may further contain an alkali or alkaline earth metal element-containing raw material. Alkaline and alkaline earth metal element-containing raw materials include sodium hydroxide, sodium bicarbonate, sodium carbonate, potassium hydroxide, potassium carbonate, quicklime, slaked lime, calcium chloride, calcium carbonate, light burned magnesium, magnesium hydroxide (Brucite) ), At least one selected from the group consisting of magnesium chloride, dolomite and calcined dolomite. Many of these raw materials can be used as a pH adjuster for the solution. Furthermore, it can be used in combination with an aluminum-containing raw material as shown below.

ここで軽焼マグネシア(酸化マグネシウム)は、天然鉱物であるマグネサイト(炭酸マグネシウム)を700〜800℃で焼成したもの、ブルーサイト(水酸化マグネシウム)を300〜800℃で焼成したものが好適である。また、本発明に用いる焼成ドロマイトは天然鉱物であるドロマイトを700〜1300℃、好ましくは700〜1000℃で焼成したものが好適である。本発明に用いる軽焼マグネシア、生石灰、消石灰、ドロマイト、軽焼ドロマイトは反応性を高めるため、1mm以下、好ましくは0.5mm以下に粉砕した粉末として使用することが好ましい。   Here, light-burned magnesia (magnesium oxide) is preferably one obtained by firing natural magnesite (magnesium carbonate) at 700 to 800 ° C., or brucite (magnesium hydroxide) fired at 300 to 800 ° C. is there. The calcined dolomite used in the present invention is preferably a calcined dolomite at 700 to 1300 ° C, preferably 700 to 1000 ° C. Light burned magnesia, quick lime, slaked lime, dolomite, and light burned dolomite used in the present invention are preferably used as a powder pulverized to 1 mm or less, preferably 0.5 mm or less, in order to increase reactivity.

つぎに、本発明に用いられるアルミニウム含有原料としては、水酸化アルミニウム、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム(PAC)、硝酸アルミニウム、カリミョウバンなど、さらにはメタカオリン等のアルミニウム含有鉱物粉末などを挙げることができる。   Next, examples of the aluminum-containing raw material used in the present invention include aluminum hydroxide, aluminum sulfate, aluminum chloride, polyaluminum chloride (PAC), aluminum nitrate, potassium alum, and aluminum-containing mineral powder such as metakaolin. be able to.

硫酸アルミニウム、カリミョウバン、塩化アルミニウム、ポリ塩化アルミニウム、硝酸アルミニウムなどは溶液中に硫酸イオン、塩素イオン、硝酸イオンを供給するため、前記の活性化剤としても用いることができる。   Aluminum sulfate, potassium alum, aluminum chloride, polyaluminum chloride, aluminum nitrate, and the like can be used as the activator because they supply sulfate ions, chloride ions, and nitrate ions into the solution.

本発明の水処理剤は、アルミニウム含有原料と前記のアルカリ、アルカリ土類金属元素含有原料とを混合することで、鉛、水銀、カドミウム、亜鉛などの重金属、ヒ素、セレン、六価クロム、有機塩素化合物などの有害物質に加えて、さらにフッ素、ホウ素を含む水処理剤として好適に用いることができる。このような排水として石炭火力発電所等における排煙脱硫排水、貯炭場の排水、石炭灰埋め立て処分場の浸出水等が挙げられる。排煙脱硫排水に含まれる主な有害物質はホウ素、フッ素、セレンなどであり、希には水銀を含有することもある。本発明によればこれらの処理を同時に、容易に行うことができる。   The water treatment agent of the present invention is a mixture of an aluminum-containing raw material and the above-mentioned alkali or alkaline earth metal element-containing raw material, so that heavy metals such as lead, mercury, cadmium and zinc, arsenic, selenium, hexavalent chromium, organic In addition to harmful substances such as chlorine compounds, it can be suitably used as a water treatment agent containing fluorine and boron. Examples of such wastewater include flue gas desulfurization wastewater in coal-fired power plants, coal storage wastewater, leachate in a coal ash landfill site, and the like. The main harmful substances contained in flue gas desulfurization wastewater are boron, fluorine, selenium, and rarely contain mercury. According to the present invention, these processes can be easily performed simultaneously.

また、フッ素、ホウ素は前記のアルカリ、アルカリ土類金属元素含有原料、アルミニウム含有原料とを組み合わせることによる、アルミン酸化合物の形成等の機構で除去を行うことが可能となる。   Further, fluorine and boron can be removed by a mechanism such as formation of an aluminate compound by combining the alkali, alkaline earth metal element-containing raw material, and aluminum-containing raw material.

ホウ素の処理においては、ホウ酸のpH依存性によりpHを9.5〜12程度の高アルカリ域に制御することで、ホウ素をより低濃度までに除去することができる。また、フッ素の処理は幅広いpH範囲で行うことが可能であるが、中性付近の方がより低濃度までに除去することができる。   In the treatment of boron, boron can be removed to a lower concentration by controlling the pH to a high alkali range of about 9.5 to 12 due to the pH dependence of boric acid. Further, the fluorine treatment can be performed in a wide pH range, but the neutral region can be removed to a lower concentration.

なお、本発明の水処理方法の過程において、排水を40℃〜80℃の温度に加温する、また、曝気を行い、溶液中の溶存酸素量を増加させるなどの公知の方法を組み合わせて行うことは、硫化鉄鉱粉末の酸化分解を促進させ、水処理効果を向上させるために有効である。本発明の水処理剤はいわゆる凝集分離型の水処理方法に適用することができる。   In the course of the water treatment method of the present invention, the waste water is heated to a temperature of 40 ° C. to 80 ° C., or aeration is performed in combination with known methods such as increasing the amount of dissolved oxygen in the solution. This is effective for promoting the oxidative decomposition of the iron sulfide powder and improving the water treatment effect. The water treatment agent of the present invention can be applied to a so-called coagulation separation type water treatment method.

また、本発明の水処理剤は硫化鉄鉱の酸化分解により有害物質の除去効果を生ずるが、処理後もこの酸化分解反応が進行していくので、一旦、固液分離した後のスラッジを、繰り返し水処理剤として有効利用することもできる。   In addition, the water treatment agent of the present invention produces an effect of removing harmful substances by oxidative decomposition of iron sulfide ore, but since this oxidative decomposition reaction proceeds after the treatment, the sludge after solid-liquid separation is repeated repeatedly. It can also be effectively used as a water treatment agent.

なお、本発明は上記の実施例に限定されるものでなく、本発明の要旨の範囲内において種々の変形実施が可能である。   In addition, this invention is not limited to said Example, A various deformation | transformation implementation is possible within the scope of the summary of this invention.

以下、具体例に基づき、さらに詳細に説明する。   Hereinafter, based on a specific example, it demonstrates in detail.

鉛濃度:0.4mg/L、全セレン濃度:1.3mg/L、ヒ素濃度:0.53mg/L、塩素イオン濃度:2910mg/L、硫酸イオン濃度:4300mg/L、pH6.5の鉱業における排水に、(消石灰30質量%、二硫化鉄粉末70質量%)からなる水処理剤を溶液に対し3質量%添加して溶液を60分間攪拌し、10分静置後上澄み液を採取した。採取したサンプルの分析結果は鉛濃度:1.04mg/L、全セレン濃度:0.23mg/L、ヒ素濃度:不検出、pH12.1となり、鉛成分についてはpHの上昇により濃度が増加したが、セレン、ヒ素の大きな濃度低下が認められた。   In the mining industry where lead concentration: 0.4 mg / L, total selenium concentration: 1.3 mg / L, arsenic concentration: 0.53 mg / L, chloride ion concentration: 2910 mg / L, sulfate ion concentration: 4300 mg / L, pH 6.5 3% by mass of a water treatment agent (30% by mass of slaked lime, 70% by mass of iron disulfide powder) was added to the waste water, and the solution was stirred for 60 minutes. After standing for 10 minutes, the supernatant was collected. The analysis results of the collected samples were: lead concentration: 1.04 mg / L, total selenium concentration: 0.23 mg / L, arsenic concentration: not detected, pH 12.1, and the lead component increased in concentration due to pH increase A large decrease in selenium and arsenic concentrations was observed.

つぎに前記と同じ排水に、(消石灰30質量%、二硫化鉄粉末70質量%)の組成からなる水処理材を溶液に対し3質量%添加し、さらに活性化剤となる硫酸(純度>96%)を1.2質量%添加し、pH8〜8.5にコントロールして溶液を60分間攪拌し、10分静置後上澄み液を採取した。採取したサンプルの分析結果は、鉛濃度:不検出、全セレン濃度:0.03mg/L、ヒ素濃度:不検出の結果となり、全成分について排水基準値を下回った。   Next, 3% by mass of a water treatment material having a composition of (slaked lime 30% by mass, iron disulfide powder 70% by mass) is added to the same waste water as described above, and sulfuric acid (purity> 96 as an activator). %) Was added, and the solution was stirred for 60 minutes under control of pH 8 to 8.5, and allowed to stand for 10 minutes, and then the supernatant was collected. The analysis results of the collected samples were as follows: lead concentration: not detected, total selenium concentration: 0.03 mg / L, arsenic concentration: not detected, and all components were below the effluent standard value.

さらに前記と同一の排水に、(消石灰30質量%、二硫化鉄粉末70質量%)の組成からなる水処理剤を溶液に対し3質量%添加し、さらに活性化剤となる塩酸(純度35〜37%)を2.1質量%添加し、pH8〜8.5にコントロールして溶液を60分間攪拌し、10分静置後上澄み液を採取した。採取したサンプルの分析結果は鉛濃度:不検出、全セレン濃度:0.03mg/L、ヒ素濃度:不検出の結果となり、全成分について排水基準値を下回った
このように予め活性化成分である塩素イオン、硫酸イオンを含む排水に本発明の水処理剤を添加すると有害物を除去できるが、活性化剤と併せて用いることでその水処理効果はさらに大きくなる。
Furthermore, 3% by mass of a water treatment agent having a composition of (slaked lime 30% by mass, iron disulfide powder 70% by mass) is added to the same waste water as above, and hydrochloric acid (purity 35 to 35%) as an activator. 37%) was added in an amount of 2.1% by mass, the solution was stirred for 60 minutes while controlling the pH to 8 to 8.5, and allowed to stand for 10 minutes, and the supernatant was collected. The analysis results of the collected samples were as follows: lead concentration: not detected, total selenium concentration: 0.03 mg / L, arsenic concentration: not detected, and all components were below the effluent standard value. Although the harmful substances can be removed by adding the water treatment agent of the present invention to waste water containing chlorine ions and sulfate ions, the water treatment effect is further enhanced by using it together with the activator.

ここに排水基準値はセレン及びその化合物:0.1mg/L以下、ヒ素及びその化合物:0.1mg/L以下、鉛及びその化合物:0.1mg/L以下である。   The effluent standard values are selenium and its compounds: 0.1 mg / L or less, arsenic and its compounds: 0.1 mg / L or less, lead and its compounds: 0.1 mg / L or less.

上記で使用した二硫化鉄粉末(黄鉄鉱粉末)は、中国製粉砕品、粒度100メッシュ以下、組成(Fe:42.6質量%、S:48.1質量%、SiO:4.5質量%)の極めて純度の高いものである。また、消石灰は上田石灰製造株式会社製、工業用特号、粒度−0.6mm、組成(CaO72.5質量%以上)のものを使用した。硫酸、塩酸は前記濃度の関東化学株式会社製試薬を用いた。 The iron disulfide powder used in (pyrite powder), made in China pulverized product, the particle size 100 mesh or less, the composition (Fe: 42.6 wt%, S: 48.1 wt%, SiO 2: 4.5 wt% ) Of extremely high purity. Moreover, the slaked lime used the Ueda lime manufacture Co., Ltd. product, the industrial special number, a particle size -0.6mm, and a composition (CaO72.5 mass% or more). For the sulfuric acid and hydrochloric acid, the reagents having the above concentrations were used.

全セレン濃度:7.85mg/Lの濃度のメッキ業排水に、(生石灰30質量%、硫酸第1鉄七水和物20質量%、二硫化鉄粉末50質量%)から構成される水処理剤を溶液に対し5質量%添加した。この溶液にさらに活性化剤として塩酸を添加し、pH8〜8.5にコントロールして溶液を120分間攪拌し、10分静置後上澄み液を採取した。採取したサンプルの分析結果は全セレン濃度:0.01mg/Lとなり排水基準値以下となった。   Total selenium concentration: A water treatment agent composed of (calcium 30% by mass, ferrous sulfate heptahydrate 20% by mass, iron disulfide powder 50% by mass) in the plating industry effluent with a concentration of 7.85 mg / L. Was added in an amount of 5% by mass to the solution. To this solution, hydrochloric acid was further added as an activator, the pH was controlled to 8 to 8.5, the solution was stirred for 120 minutes, allowed to stand for 10 minutes, and the supernatant was collected. The analysis result of the collected sample was a total selenium concentration of 0.01 mg / L, which was below the effluent standard value.

ここで使用した二硫化鉄粉末(黄鉄鉱粉末)は、中国製粉砕品、粒度100メッシュ以下、組成(Fe:42.6質量%、S:48.1質量%、SiO:4.5質量%)の極めて純度の高いものである。 The iron disulfide powder (pyrite powder) used here is a pulverized product made in China, particle size of 100 mesh or less, composition (Fe: 42.6% by mass, S: 48.1% by mass, SiO 2 : 4.5% by mass). ) Of extremely high purity.

また、生石灰としては上田石灰製造株式会社製、粉末生石灰−0.5mm、組成(CaO:94.8%、SiO:0.7%、Al:0.3%、Fe:0.1%、MgO:0.9%、ig.loss:2.7%)を、硫酸第1鉄としてはテツゲン株式会社製、硫酸第一鉄7水和物(純度92〜99%)を使用した。 Further, Ueda lime manufacturing Co. as quicklime, powdered quicklime -0.5 mm, the composition (CaO: 94.8%, SiO 2 : 0.7%, Al 2 O 3: 0.3%, Fe 2 O 3 : 0.1%, MgO: 0.9%, ig.loss: 2.7%), as ferrous sulfate, manufactured by Tetsugen Co., Ltd., ferrous sulfate heptahydrate (purity 92-99%) It was used.

試薬を用いて、鉛濃度:5.3mg/L、全水銀濃度:5.1mg/L、pH2.0の濃度の試験用溶液を作成した。この溶液に(消石灰30質量%、二硫化鉄粉末70質量%)から構成される水処理剤を溶液に対し2質量%添加した後、溶液を60分間攪拌し、10分間静置した後に上澄み液を採取した。この結果、pH12.5、有害物質の濃度は鉛:3.5mg/L、水銀:0.046mg/Lとなった。   Using the reagents, a test solution having a lead concentration of 5.3 mg / L, a total mercury concentration of 5.1 mg / L, and a pH of 2.0 was prepared. After adding 2% by mass of a water treatment agent (30% by mass of slaked lime, 70% by mass of iron disulfide powder) to this solution, the solution was stirred for 60 minutes and allowed to stand for 10 minutes, then the supernatant liquid. Were collected. As a result, the pH was 12.5, the concentrations of harmful substances were lead: 3.5 mg / L, and mercury: 0.046 mg / L.

次に、同一の溶液に上記の水処理剤2質量%と硫酸を添加しpHを8にコントロールして、溶液を60分間攪拌し、10分間静置した後に上澄み液を採取した。採取した溶液に含まれる有害イオン濃度は鉛:不検出、全水銀:不検出となり、いずれも排水基準値である鉛及びその化合物:0.1mg/L以下、全水銀及びアルキル水銀その他の水銀化合物:0.005mg/Lを下回った。   Next, 2% by mass of the above-mentioned water treatment agent and sulfuric acid were added to the same solution to control the pH to 8, and the solution was stirred for 60 minutes and allowed to stand for 10 minutes, and then the supernatant was collected. The concentration of harmful ions contained in the collected solution is lead: not detected, total mercury: not detected, lead and its compounds, both of which are effluent standards: 0.1 mg / L or less, total mercury, alkyl mercury and other mercury compounds : Lower than 0.005 mg / L.

ここで使用した二硫化鉄粉末(黄鉄鉱粉末)は粒度100メッシュ以下、組成はFe:42.6質量%、S:48.1質量%、SiO:4.5質量%の極めて純度の高いものである。また、消石灰は上田石灰製造株式会社製、工業用特号、粒度−0.6mm、組成(CaO72.5質量%以上)のものを使用した。 Here iron disulfide powder (pyrite powder) used was particle size 100 mesh or less, the composition is Fe: 42.6 wt%, S: 48.1 wt%, SiO 2: 4.5 wt% of a very high purity It is. Moreover, the slaked lime used the Ueda lime manufacture Co., Ltd. product, the industrial special number, a particle size -0.6mm, and a composition (CaO72.5 mass% or more).

ホウ素濃度:403mg/L、全セレン濃度:0.74mg/Lの有害イオンを含む、脱硫排水に対し、生石灰:1.8質量%、硫酸アルミニウム・16水和物:1.2質量%、二硫化鉄粉:1.0質量%添加した。ここで硫酸アルミニウムはホウ素処理用の成分であるとともに、活性化成分としても機能している。   Boron concentration: 403 mg / L, total selenium concentration: 0.74 mg / L containing harmful ions, desulfurization wastewater, quick lime: 1.8% by mass, aluminum sulfate 16 hydrate: 1.2% by mass, two Iron sulfide powder: 1.0% by mass was added. Here, aluminum sulfate is a component for boron treatment and also functions as an activation component.

これらの水処理剤の添加後、最初の10分間は回転速度400rpmで攪拌し、さらに50分間回転速度150rpmで撹拌し、30分間静置した後に上澄み液を採取した。採取した溶液に含まれる有害イオン濃度はホウ素:181mg/L、全セレン:0.06mg/Lとなり、いずれも排水基準値であるホウ素及びその化合物:230mg/L以下(海域)、セレン:及びその化合物0.1mg/L以下を下回った。   After the addition of these water treatment agents, the mixture was stirred for the first 10 minutes at a rotational speed of 400 rpm, further stirred for 50 minutes at a rotational speed of 150 rpm, and allowed to stand for 30 minutes, and then the supernatant was collected. Harmful ion concentration contained in the collected solution is boron: 181 mg / L, total selenium: 0.06 mg / L, both of which are the drainage standard values of boron and its compounds: 230 mg / L or less (sea area), selenium: and its The compound was less than 0.1 mg / L or less.

ここで使用した二硫化鉄粉(黄鉄鉱粉)は、中国製粉砕品であり粒度100メッシュ以下、組成はFe:48.7質量%、S:45.9質量%、SiO:4.1質量%の高純度なものである。また、生石灰は上田石灰製造株式会社製(CaO:94.8%、SiO:0.7%、Al:0.3%、Fe:0.1%、MgO:0.9%、ig.loss:2.7%、−0.5mmふるい通過97%)を使用した。硫酸アルミニウムとしては、東信化学株式会社製、硫酸アルミニウム16水和物(Al:16.0%)を使用した。 Here iron disulfide powder used (pyrite powder) is made in China a pulverized material particle size 100 mesh or less, the composition is Fe: 48.7 wt%, S: 45.9 wt%, SiO 2: 4.1 wt % Of high purity. Moreover, quicklime Ueda lime manufacturing Co. (CaO: 94.8%, SiO 2 : 0.7%, Al 2 O 3: 0.3%, Fe 2 O 3: 0.1%, MgO: 0. 9%, ig.loss: 2.7%, -0.5 mm sieve passage 97%). As aluminum sulfate, Toshin Chemical Co., Ltd. aluminum sulfate 16 hydrate (Al 2 O 3 : 16.0%) was used.

試薬を用いて、トリクロロエチレン濃度:5mg/Lの試験用溶液を作成した。この溶液に(消石灰30質量%、二硫化鉄粉末70質量%)から校正される水処理剤を2質量%添加し、さらに硫酸(純度>96%)を添加してpHを7.5〜8.0に制御し。密閉状態で、室温にて2時間溶液を攪拌した。攪拌終了後の直ちにサンプルを採取した。この結果、溶液にはトリクロロエチレンは検出されず、排水基準値である0.3mg/L以下となった。   Using the reagent, a test solution having a trichlorethylene concentration of 5 mg / L was prepared. To this solution, 2% by mass of a water treatment agent calibrated from (slaked lime 30% by mass, iron disulfide powder 70% by mass) is added, and sulfuric acid (purity> 96%) is further added to adjust the pH to 7.5-8. Control to .0. The solution was stirred for 2 hours at room temperature in a sealed state. A sample was taken immediately after stirring. As a result, no trichlorethylene was detected in the solution, and the drainage standard value was 0.3 mg / L or less.

ここで使用した水処理剤原料は、硫化鉄粉(黄鉄鉱粉)は、中国製粉砕品であり粒度100メッシュ以下、組成はFe:48.7質量%、S:45.9質量%、SiO:4.1質量%の高純度なものである。また、生石灰は上田石灰製造株式会社製(CaO:94.8%、SiO:0.7%、Al:0.3%、Fe:0.1%、MgO:0.9%、ig.loss:2.7%、−0.5mmふるい通過97%)を使用した。硫酸は上記純度の関東化学株式会社製の試薬を使用した。 The water treatment agent raw material used here is iron sulfide powder (pyrite ore powder), which is a pulverized product made in China, with a particle size of 100 mesh or less, composition: Fe: 48.7 mass%, S: 45.9 mass%, SiO 2 : 4.1% by mass of high purity. Moreover, quicklime Ueda lime manufacturing Co. (CaO: 94.8%, SiO 2 : 0.7%, Al 2 O 3: 0.3%, Fe 2 O 3: 0.1%, MgO: 0. 9%, ig.loss: 2.7%, -0.5 mm sieve passage 97%). As the sulfuric acid, a reagent manufactured by Kanto Chemical Co., Inc. with the above purity was used.

Claims (8)

硫化鉄鉱を含有することを特徴とする水処理剤。 A water treatment agent characterized by containing iron sulfide ore. 硫化鉄鉱と、活性化剤とを含有することを特徴とする水処理剤。 A water treatment agent comprising iron sulfide ore and an activator. 前記硫化鉄鉱が、二硫化鉄、黄鉄鉱、白鉄鉱、又は磁硫鉄鉱であることを特徴とする請求項1又は2記載の水処理剤。 The water treatment agent according to claim 1 or 2, wherein the iron sulfide ore is iron disulfide, pyrite, pyrite, or pyrrhotite. 前記活性化剤が、硫酸、塩酸、硝酸、酢酸、カルボン酸、スルホン酸、硫酸化合物、塩化物、硝酸化合物、過酸化水素水、次亜塩素酸ナトリウムのいずれかであることを特徴とする請求項2又は3記載の水処理剤。 The activator is any one of sulfuric acid, hydrochloric acid, nitric acid, acetic acid, carboxylic acid, sulfonic acid, sulfuric acid compound, chloride, nitric acid compound, hydrogen peroxide solution, and sodium hypochlorite. Item 4. A water treatment agent according to Item 2 or 3. さらにアルカリ、アルカリ土類金属元素含有原料を含有することを特徴とする請求項1〜4のいずれか1項記載の水処理剤。 Furthermore, the water treatment agent of any one of Claims 1-4 containing the alkali and alkaline-earth metal element containing raw material. さらにアルミニウム含有原料を含有することを特徴とする請求項1〜5のいずれか1項記載の水処理剤。 Furthermore, an aluminum containing raw material is contained, The water treatment agent of any one of Claims 1-5 characterized by the above-mentioned. 予め活性化成分を含有する溶液に少なくとも二硫化鉄、黄鉄鉱、磁硫化鉄鉱粉末を添加することを特徴とする水処理方法。 A water treatment method comprising adding at least iron disulfide, pyrite, and magnetite powder to a solution containing an activation component in advance. 請求項1〜6のいずれか1項記載の水処理剤を排水に添加することを特徴とする水処理方法。 A water treatment method, wherein the water treatment agent according to any one of claims 1 to 6 is added to waste water.
JP2008260382A 2008-10-07 2008-10-07 Water treatment method for waste water containing heavy metals Active JP5239718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260382A JP5239718B2 (en) 2008-10-07 2008-10-07 Water treatment method for waste water containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260382A JP5239718B2 (en) 2008-10-07 2008-10-07 Water treatment method for waste water containing heavy metals

Publications (2)

Publication Number Publication Date
JP2010088991A true JP2010088991A (en) 2010-04-22
JP5239718B2 JP5239718B2 (en) 2013-07-17

Family

ID=42252238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260382A Active JP5239718B2 (en) 2008-10-07 2008-10-07 Water treatment method for waste water containing heavy metals

Country Status (1)

Country Link
JP (1) JP5239718B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101830A (en) * 2009-11-10 2011-05-26 Waseda Univ Water treatment agent and water treatment method
CN102249451A (en) * 2011-05-12 2011-11-23 泉州师范学院 Technology for producing flocculant through deleading and decoppering of lead and copper containing waste acid water
KR101228082B1 (en) * 2010-09-30 2013-01-31 한국광해관리공단 Composite mine mineral for purifying heavy metals and method for purifying heavy metals contaminated water
CN103979704A (en) * 2013-10-24 2014-08-13 李敏 Hexavalent chromium-containing wastewater treatment method
EP2813475A1 (en) * 2013-06-14 2014-12-17 STEAG Energy Services GmbH Method for the removal of mercury and selenium from waste water containing sulfates
CN104478054A (en) * 2014-12-15 2015-04-01 石轩 Compound diatomite flocculating agent and preparation method thereof
JP2016515044A (en) * 2013-03-07 2016-05-26 レドックス テクノロジー グループ リミティド ライアビリティ カンパニー Use of ferrous sulfide suspension to remove mercury from flue gas
CN105906021A (en) * 2016-06-23 2016-08-31 江门市江海区炜洁净水材料有限公司 Preparing method for polymeric phosphate-ferric chloride water purifying agent
JP2016168545A (en) * 2015-03-12 2016-09-23 戸田工業株式会社 Heavy metal treatment material and treatment method of heavy metal-containing fly ash washing liquid
CN106315848A (en) * 2016-11-17 2017-01-11 南京大学 Method for synchronously removing nitrate and arsenic in underground water by natural pyrrhotite and application of method
CN106396048A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a polyferric-aluminum-chloride water purifier
CN106396050A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a poly-aluminum-ferric-silicate water purifier
CN106395925A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a polyferricsulfate water purifier
CN106396049A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a polyferricsilicate water purifier
CN108097453A (en) * 2018-02-12 2018-06-01 包头市汇林薪宝矿业有限责任公司 The method that magnetic iron ore is removed from iron concentrate containing high sulphur
US10183879B2 (en) 2013-06-14 2019-01-22 Steag Energy Services Gmbh Method for removing mercury and selenium from sulfate-containing waste water
JP2020514495A (en) * 2017-04-28 2020-05-21 華南理工大学 Passivating agent for heavy metals and method for producing the same
CN111234832A (en) * 2020-01-14 2020-06-05 中南大学 FeS-containing2Composite material and reduced iron, preparation method and application thereof
JP2020200681A (en) * 2019-06-11 2020-12-17 鹿島建設株式会社 Lowering method of ground water cut-off property
CN114772652A (en) * 2022-04-18 2022-07-22 华南理工大学 Amorphous ferrous disulfide and preparation method and application thereof
CN114853146A (en) * 2022-04-25 2022-08-05 武汉理工大学 Water treatment agent and water treatment method of magnetic recyclable pyrrhotite catalyst

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105668654B (en) * 2014-11-19 2018-09-28 利津县双瀛水产苗种有限责任公司 A kind of aquaculture removing toxic substances water purification tablet
CN105668653B (en) * 2014-11-19 2018-09-04 山东利水环保科技有限公司 A kind of aquaculture removing toxic substances water purification block

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096053A (en) * 1973-12-26 1975-07-30
JPH1028979A (en) * 1996-07-17 1998-02-03 Chisso Corp Posttreatment of drinking water and swimming water sterilized with chlorine dioxide
JP2003266082A (en) * 2002-03-15 2003-09-24 Kurita Water Ind Ltd Dechlorination treatment agent
JP2005097431A (en) * 2003-09-25 2005-04-14 Tosoh Corp Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same
JP2005262119A (en) * 2004-03-19 2005-09-29 Dowa Mining Co Ltd Method for purifying contaminated soil or contaminated water
JP2007125536A (en) * 2005-01-31 2007-05-24 Egs:Kk Immobilizing agent and method for harmful component
JP2007209824A (en) * 2005-10-04 2007-08-23 Dowa Holdings Co Ltd Method for cleaning contaminated soil or contaminated groundwater

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096053A (en) * 1973-12-26 1975-07-30
JPH1028979A (en) * 1996-07-17 1998-02-03 Chisso Corp Posttreatment of drinking water and swimming water sterilized with chlorine dioxide
JP2003266082A (en) * 2002-03-15 2003-09-24 Kurita Water Ind Ltd Dechlorination treatment agent
JP2005097431A (en) * 2003-09-25 2005-04-14 Tosoh Corp Iron sulfide composition, its production method, heavy metals-treatment agent and treatment method using the same
JP2005262119A (en) * 2004-03-19 2005-09-29 Dowa Mining Co Ltd Method for purifying contaminated soil or contaminated water
JP2007125536A (en) * 2005-01-31 2007-05-24 Egs:Kk Immobilizing agent and method for harmful component
JP2007209824A (en) * 2005-10-04 2007-08-23 Dowa Holdings Co Ltd Method for cleaning contaminated soil or contaminated groundwater

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101830A (en) * 2009-11-10 2011-05-26 Waseda Univ Water treatment agent and water treatment method
KR101228082B1 (en) * 2010-09-30 2013-01-31 한국광해관리공단 Composite mine mineral for purifying heavy metals and method for purifying heavy metals contaminated water
CN102249451A (en) * 2011-05-12 2011-11-23 泉州师范学院 Technology for producing flocculant through deleading and decoppering of lead and copper containing waste acid water
JP2016515044A (en) * 2013-03-07 2016-05-26 レドックス テクノロジー グループ リミティド ライアビリティ カンパニー Use of ferrous sulfide suspension to remove mercury from flue gas
EP2813475A1 (en) * 2013-06-14 2014-12-17 STEAG Energy Services GmbH Method for the removal of mercury and selenium from waste water containing sulfates
US10183879B2 (en) 2013-06-14 2019-01-22 Steag Energy Services Gmbh Method for removing mercury and selenium from sulfate-containing waste water
CN103979704A (en) * 2013-10-24 2014-08-13 李敏 Hexavalent chromium-containing wastewater treatment method
CN103979704B (en) * 2013-10-24 2016-08-17 李敏 A kind of processing method containing hexavalent chromium wastewater
CN104478054A (en) * 2014-12-15 2015-04-01 石轩 Compound diatomite flocculating agent and preparation method thereof
JP2016168545A (en) * 2015-03-12 2016-09-23 戸田工業株式会社 Heavy metal treatment material and treatment method of heavy metal-containing fly ash washing liquid
CN106396050A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a poly-aluminum-ferric-silicate water purifier
CN105906021A (en) * 2016-06-23 2016-08-31 江门市江海区炜洁净水材料有限公司 Preparing method for polymeric phosphate-ferric chloride water purifying agent
CN106396048A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a polyferric-aluminum-chloride water purifier
CN106395925A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a polyferricsulfate water purifier
CN106396049A (en) * 2016-06-23 2017-02-15 江门市江海区炜洁净水材料有限公司 A method of preparing a polyferricsilicate water purifier
CN106315848B (en) * 2016-11-17 2019-08-06 南京大学 A kind of method and its application using the synchronous removal nitrate in groundwater and arsenic of natural magnetic iron ore
CN106315848A (en) * 2016-11-17 2017-01-11 南京大学 Method for synchronously removing nitrate and arsenic in underground water by natural pyrrhotite and application of method
JP2020514495A (en) * 2017-04-28 2020-05-21 華南理工大学 Passivating agent for heavy metals and method for producing the same
CN108097453A (en) * 2018-02-12 2018-06-01 包头市汇林薪宝矿业有限责任公司 The method that magnetic iron ore is removed from iron concentrate containing high sulphur
JP2020200681A (en) * 2019-06-11 2020-12-17 鹿島建設株式会社 Lowering method of ground water cut-off property
JP7149227B2 (en) 2019-06-11 2022-10-06 鹿島建設株式会社 Method for lowering water stoppage of ground
CN111234832A (en) * 2020-01-14 2020-06-05 中南大学 FeS-containing2Composite material and reduced iron, preparation method and application thereof
CN114772652A (en) * 2022-04-18 2022-07-22 华南理工大学 Amorphous ferrous disulfide and preparation method and application thereof
CN114853146A (en) * 2022-04-25 2022-08-05 武汉理工大学 Water treatment agent and water treatment method of magnetic recyclable pyrrhotite catalyst

Also Published As

Publication number Publication date
JP5239718B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5239718B2 (en) Water treatment method for waste water containing heavy metals
Doye et al. Neutralisation of acid mine drainage with alkaline industrial residues: laboratory investigation using batch-leaching tests
Rios et al. Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites
Wu et al. Red mud for the efficient adsorption of U (VI) from aqueous solution: influence of calcination on performance and mechanism
Mahedi et al. Effect of cement incorporation on the leaching characteristics of elements from fly ash and slag treated soils
JP5697334B2 (en) Heavy metal insolubilizer and method for insolubilizing heavy metal
AU2010225461A1 (en) Treatment or remediation of natural or waste water
del Valle-Zermeño et al. Low-grade magnesium oxide by-products for environmental solutions: characterization and geochemical performance
CN101663243B (en) Water-treating agent and method of treating water
TWI646994B (en) Hazardous substance treatment agent
JP5451323B2 (en) Water treatment method
JP5831914B2 (en) Water treatment method
Hase et al. A novel method for remediation of nickel containing wastewater at neutral conditions
US20100145130A1 (en) Treatment Method for Stabilizing Selenium in Coal Combustion Ash
Kuchar et al. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery
JP4531362B2 (en) Hazardous substance reducing material and method for treating sewage and soil using the same
Bouzar et al. Accelerated carbonation of waste paper fly ash by liquid process (NaHCO3) for stabilization of Ba and Pb
JP2005230643A (en) Cleaning method for polluted soil
JP4870423B2 (en) Heavy metal treatment material and heavy metal treatment method using the same
JP2006328498A (en) Method for making recyclable neutral sediment generated in water treatment stage for acid mining waste water
Saikia et al. Behavior of B, Cr, Se, As, Pb, Cd, and Mo present in waste leachates generated from combustion residues during the formation of ettringite
JP2006116468A (en) Treatment method for mine waste water
Martínez et al. Coal acid mine drainage treatment using cement kiln dust
JP5135552B2 (en) Method for producing steelmaking slag for water injection
Min et al. Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5239718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250