[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010088973A - Hydrogen-containing electrolytic water generation device and hot water supply device - Google Patents

Hydrogen-containing electrolytic water generation device and hot water supply device Download PDF

Info

Publication number
JP2010088973A
JP2010088973A JP2008258946A JP2008258946A JP2010088973A JP 2010088973 A JP2010088973 A JP 2010088973A JP 2008258946 A JP2008258946 A JP 2008258946A JP 2008258946 A JP2008258946 A JP 2008258946A JP 2010088973 A JP2010088973 A JP 2010088973A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
water
exchange membrane
electrolyzed water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258946A
Other languages
Japanese (ja)
Other versions
JP4536137B2 (en
Inventor
Hiroshi Tamura
博 田村
Keizo Iwai
圭三 岩井
Katsunori Yuki
克則 結城
Suehiro Sakai
末博 坂井
Masanori Akioka
正法 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Manufacturing Co Ltd
Original Assignee
Chugoku Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Manufacturing Co Ltd filed Critical Chugoku Electric Manufacturing Co Ltd
Priority to JP2008258946A priority Critical patent/JP4536137B2/en
Publication of JP2010088973A publication Critical patent/JP2010088973A/en
Application granted granted Critical
Publication of JP4536137B2 publication Critical patent/JP4536137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen-containing electrolytic water generation device which allows hydrogen gas having extremely small bubbles to be contained in hydrogen-containing electrolytic water. <P>SOLUTION: A cation exchange membrane 12 is held between a positive electrode 15 and a negative electrode 16, a channel 21 for passing city water is provided in a path of a cathode side between the negative electrode 16 and the cation exchange membrane 12, the negative electrode 16 is formed mesh-like and hydrogen gas generated in the negative electrode 16 is released in a state where a wetting angle of the bubbles of hydrogen gas is made small to obtain the small size of the bubbles. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水道水等の原水から水素含有電解水を得るための水素含有電解水生成装置及び給湯設備に関する。   The present invention relates to a hydrogen-containing electrolyzed water generator and hot water supply equipment for obtaining hydrogen-containing electrolyzed water from raw water such as tap water.

水道水から水素含有電解水(アルカリイオン水)及び酸性イオン水を生成するアルカリイオン整水器(水素含有電解水生成装置)としては、陽極、陰極の電極間にイオン交換膜を介在させ、水の電気分解作用を利用して、アルカリイオン水と酸性イオン水とに分離生成するものがある。また、このようなアルカリイオン整水器としては、水道のカラン(蛇口)に固定されるタイプのものや、水道管の途中に配置されるタイプ、いわゆるビルトインタイプのものがある。   As an alkali ion water conditioner (hydrogen-containing electrolyzed water generator) that generates hydrogen-containing electrolyzed water (alkaline ion water) and acidic ion water from tap water, an ion exchange membrane is interposed between the anode and cathode electrodes, Some of them are separated into alkaline ionized water and acidic ionized water by utilizing the electrolysis action. Moreover, as such an alkaline ionized water apparatus, there are a type fixed to a water supply currant (faucet), a type arranged in the middle of a water pipe, a so-called built-in type.

ビルトインタイプのアルカリイオン整水器としては、例えば、利用者が水栓を開くことによって原水管から水道水が通水されて電解槽に供給され、この電解槽でアルカリ水と酸性イオン水とが生成される。そして、電解槽で生成されたアルカリ水が吐水管を経て吐水されると共に、酸性イオン水が酸性イオン水吐出管を経て排水される。また、利用者が水栓を閉じ、原水管からの通水が停止されることによってアルカリ水の吐水が停止する(例えば、特許文献1参照)。   As a built-in type alkaline ion water conditioner, for example, when a user opens a faucet, tap water is passed from a raw water pipe and supplied to an electrolytic cell. In this electrolytic cell, alkaline water and acidic ion water are separated. Generated. And while the alkaline water produced | generated by the electrolytic vessel is discharged through a water discharge pipe, acidic ion water is drained through an acidic ion water discharge pipe. Further, the user closes the faucet and stops the water flow from the raw water pipe, thereby stopping the discharge of alkaline water (for example, see Patent Document 1).

アルカリイオン水には、肌を活性化させて脂肪塊を抑制する作用があることが知られている。また、アルカリイオン水は、体内の活性酸素と反応させる活性水素を含む飲料として用いられることが知られている。脂肪塊を効果的に抑制したり、活性酸素と反応する活性水素を得るためには、活性水素が十分に含まれたアルカリイオン水をアルカリイオン整水器で生成する必要がある。   It is known that alkaline ionized water has an action of activating skin and suppressing fat mass. In addition, it is known that alkaline ionized water is used as a beverage containing active hydrogen that reacts with active oxygen in the body. In order to effectively suppress fat masses or to obtain active hydrogen that reacts with active oxygen, it is necessary to generate alkaline ion water sufficiently containing active hydrogen with an alkali ion water conditioner.

しかしながら、従来のアルカリイオン整水器で生成されるアルカリイオン水には、充分に活性水素が含まれているとは言えず、脂肪塊を抑制する程度に肌を活性化できるには至っていないのが現状である。外部から水素ガスをバブリングして水素を溶存することも考えられるが、装置が大掛かりになると共に危険が伴うため、実現には至っていないのが現状である。   However, it cannot be said that the active ion is sufficiently contained in the alkaline ionized water produced by the conventional alkaline ionized water device, and the skin cannot be activated to the extent that the fat mass is suppressed. Is the current situation. Although it is conceivable that hydrogen gas is dissolved by bubbling hydrogen gas from the outside, since the apparatus becomes large and dangerous, it has not been realized.

特開平10−192858号公報JP-A-10-192858

本発明は上記状況に鑑みてなされたもので、陰極側の電極に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることができる水素含有電解水生成装置を提供することを目的とする。   The present invention has been made in view of the above situation, and provides a hydrogen-containing electrolyzed water generating apparatus capable of including hydrogen gas bubbles generated in a cathode-side electrode in the hydrogen-containing electrolyzed water in a state as small as possible. With the goal.

また、本発明は上記状況に鑑みてなされたもので、陰極側の電極に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることができる水素含有電解水生成装置を備えた給湯設備を提供することを目的とする。   In addition, the present invention has been made in view of the above situation, and includes a hydrogen-containing electrolyzed water generation device that can include hydrogen gas bubbles generated in the cathode-side electrode in the hydrogen-containing electrolyzed water in a state as small as possible. The purpose is to provide hot water supply facilities.

上記目的を達成するための請求項1に係る本発明の水素含有電解水生成装置は、陽極、陰極一対の電極に挟まれてイオン交換膜が電解槽内に備えられ、陰極側の通路に水を流通させる流通路を備え、陰極側の前記電極がメッシュ状に形成されていることを特徴とする。   In order to achieve the above object, a hydrogen-containing electrolyzed water generating apparatus according to the present invention according to claim 1 is provided with an ion exchange membrane in an electrolytic cell sandwiched between a pair of an anode and a cathode, and water is provided in a passage on the cathode side. The electrode on the cathode side is formed in a mesh shape.

請求項1に係る本発明では、陰極側の電極がメッシュ状に形成されているので、電極に生成される水素ガスの泡のぬれ角を小さくすることができ、水素ガスの泡を小さい状態で離脱させることができる。つまり、生成される水素ガスと電極の表面に生じる吸着力が、点接触に近い状態により表面張力が抑制されたものになり、水素ガスの泡を小さい状態で離脱させることができる。   In the present invention according to claim 1, since the electrode on the cathode side is formed in a mesh shape, the wetting angle of the hydrogen gas bubbles generated on the electrode can be reduced, and the hydrogen gas bubbles can be reduced. Can be withdrawn. In other words, the generated hydrogen gas and the adsorption force generated on the surface of the electrode are such that the surface tension is suppressed by a state close to point contact, and the bubbles of hydrogen gas can be released in a small state.

このため、陰極側の電極に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることが可能になり、活性水素が十分に含まれた水素含有還元水を得ることができる。メッシュの断面形状は、円形、三角形、四角以上の多角形等、種々の形状とすることが可能である。   Therefore, hydrogen gas bubbles generated in the cathode-side electrode can be contained in the hydrogen-containing electrolyzed water in a state as small as possible, and hydrogen-containing reduced water sufficiently containing active hydrogen can be obtained. . The cross-sectional shape of the mesh can be various shapes such as a circle, a triangle, and a polygon having four or more squares.

そして、請求項2に係る本発明の水素含有電解水生成装置は、請求項1に記載の水素含有電解水生成装置において、前記イオン交換膜が陽イオン交換膜であり、前記陽イオン交換膜と陰極側の前記電極との間に前記流通路の流入側の経路が形成され、陰極側の前記電極の前記陽イオン交換膜の反対側に前記流通路の流出側の経路が形成されていることを特徴とする。   And the hydrogen containing electrolyzed water generating apparatus of this invention which concerns on Claim 2 is a hydrogen containing electrolyzed water generating apparatus of Claim 1. WHEREIN: The said ion exchange membrane is a cation exchange membrane, The said cation exchange membrane, A flow path on the inflow side of the flow path is formed between the electrode on the cathode side, and a flow path on the outflow side of the flow path is formed on the opposite side of the cation exchange membrane of the electrode on the cathode side. It is characterized by.

請求項2に係る本発明では、陽イオン交換膜によりプラスの水素イオンだけが透過されてマイナスのイオンが陽極側に発生し難くなり、酸性ガスの発生を抑制して酸性電解水を減少させることができる。そして、陽イオン交換膜と陰極側の電極との間に形成された流通路の流入側の経路から陰極側の電極の反対側の面に水素ガスの気泡を通過させて水流と共に水素ガスを流出させる。このため、水素ガスの気泡が小さい状態で電極から離脱しやすくなる。   In the present invention according to claim 2, only positive hydrogen ions are permeated by the cation exchange membrane, and negative ions are hardly generated on the anode side, and generation of acidic gas is suppressed to reduce acidic electrolyzed water. Can do. Then, hydrogen gas bubbles are passed from the inflow side path of the flow path formed between the cation exchange membrane and the cathode side electrode to the surface on the opposite side of the cathode side electrode so that the hydrogen gas flows out together with the water flow. Let For this reason, it becomes easy to detach | leave from an electrode in the state where the bubble of hydrogen gas is small.

また、請求項3に係る本発明の水素含有電解水生成装置は、請求項2に記載の水素含有電解水生成装置において、前記陽イオン交換膜が陽極側の前記電極に密着していることを特徴とする。   Moreover, the hydrogen-containing electrolyzed water generating apparatus of the present invention according to claim 3 is the hydrogen-containing electrolyzed water generating apparatus according to claim 2, wherein the cation exchange membrane is in close contact with the electrode on the anode side. Features.

請求項3に係る本発明では、酸性ガスの発生を更に抑制して酸性電解水を大幅に減少させることができる。   In this invention which concerns on Claim 3, generation | occurrence | production of acidic gas can further be suppressed and acidic electrolyzed water can be reduced significantly.

また、請求項4に係る本発明の水素含有電解水生成装置は、請求項3に記載の水素含有電解水生成装置において、陽極側の前記電極がメッシュ状に形成されていることを特徴とする。   According to a fourth aspect of the present invention, there is provided the hydrogen-containing electrolyzed water generating device of the present invention, wherein the electrode on the anode side is formed in a mesh shape. .

請求項4に係る本発明では、陽極側の電極がメッシュ状に形成されているので、陽イオン交換膜への水分の拡散が容易になり、少ない水分量で陽イオン交換膜を湿潤させることができる。   In the present invention according to claim 4, since the anode-side electrode is formed in a mesh shape, the diffusion of moisture into the cation exchange membrane is facilitated, and the cation exchange membrane can be moistened with a small amount of moisture. it can.

また、請求項5に係る本発明の水素含有電解水生成装置は、請求項4に記載の水素含有電解水生成装置において、陽極側の前記電極は円筒状とされて外周部に円筒状の前記陽イオン交換膜が密着され、前記陽イオン交換膜が密着された陽極側の前記電極の外周に円筒状の陰極側の前記電極が配され、前記流通路は、陽極側の前記電極と陰極側の前記電極との間が前記流入側とされると共に、陰極側の前記電極の外側が前記流出側とされて水素含有電解水が流出されることを特徴とする。   Moreover, the hydrogen-containing electrolyzed water generating device of the present invention according to claim 5 is the hydrogen-containing electrolyzed water generating device according to claim 4, wherein the electrode on the anode side is formed in a cylindrical shape and is cylindrical at the outer peripheral portion. The cation exchange membrane is closely attached, and the cylindrical cathode side electrode is disposed on the outer periphery of the anode side electrode to which the cation exchange membrane is closely attached, and the flow path is formed between the anode side electrode and the cathode side. The inflow side between the electrode and the electrode is the inflow side, and the outside of the electrode on the cathode side is the outflow side, so that hydrogen-containing electrolyzed water flows out.

また、請求項6に係る本発明の水素含有電解水生成装置は、請求項5に記載の水素含有電解水生成装置において、前記流通路の前記流入側に流入される原水の一部を陽極側の前記電極の内周側に送る陽極側流路を備えたことを特徴とする。   Moreover, the hydrogen-containing electrolyzed water generating device of the present invention according to claim 6 is the hydrogen-containing electrolyzed water generating device according to claim 5, wherein a part of the raw water flowing into the inflow side of the flow passage is anode-side. An anode-side flow path that is fed to the inner peripheral side of the electrode is provided.

請求項5及び請求項6に係る本発明では、円筒状の電解槽を有する水素含有電解水生成装置を得ることができ、水道水配管等の配管系に容易に設置することができる。   In this invention which concerns on Claim 5 and Claim 6, the hydrogen containing electrolyzed water generating apparatus which has a cylindrical electrolytic vessel can be obtained, and can be easily installed in piping systems, such as a tap water piping.

上記目的を達成するための請求項7に係る本発明の給湯設備は、請求項1〜請求項6のいずれか一項に記載の水素含有電解水生成装置を2台備え、一方の水素含有電解水生成装置の原水入口側が冷水源に接続され、他方の水素含有電解水生成装置の原水入口側が温水源に接続され、2台の水素含有電解水生成装置の流通路の出口側が一つの混合給湯管に接続され、2台の水素含有電解水生成装置の電極の通電状況を個別に制御する制御手段を備えたことを特徴とする。   In order to achieve the above object, a hot water supply facility according to a seventh aspect of the present invention comprises two hydrogen-containing electrolyzed water generating devices according to any one of the first to sixth aspects, The raw water inlet side of the water generator is connected to the cold water source, the raw water inlet side of the other hydrogen-containing electrolyzed water generator is connected to the hot water source, and the outlet side of the flow path of the two hydrogen-containing electrolyzed water generators is one mixed hot water supply It is characterized by comprising control means connected to the pipe and individually controlling the energization status of the electrodes of the two hydrogen-containing electrolyzed water generating apparatuses.

そして、請求項8に係る給湯設備は、請求項7に記載の給湯設備において、前記制御手段には、前記電極の極性を逆にして陰極面の洗浄運転を行なう機能が備えられていることを特徴とする。   The hot water supply facility according to claim 8 is the hot water supply facility according to claim 7, wherein the control means is provided with a function of performing a cathode surface cleaning operation by reversing the polarity of the electrodes. Features.

請求項7及び請求項8に係る本発明では、陰極側の電極に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることができる水素含有電解水生成装置を備えた給湯設備となる。   In this invention which concerns on Claim 7 and Claim 8, the hot water supply provided with the hydrogen-containing electrolyzed water production | generation apparatus which can make hydrogen-containing electrolyzed water contain the bubble of the hydrogen gas produced | generated by the electrode on the cathode side as small as possible It becomes equipment.

本発明の水素含有電解水生成装置は、陰極側の電極に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることが可能になる。   The hydrogen-containing electrolyzed water generating apparatus of the present invention can include hydrogen gas bubbles generated in the electrode on the cathode side in the hydrogen-containing electrolyzed water in a state as small as possible.

また、本発明の給湯設備は、陰極側の電極に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることができる水素含有電解水生成装置を備えた給湯設備となる。   Moreover, the hot water supply equipment of the present invention is a hot water supply equipment provided with a hydrogen-containing electrolyzed water generation device that can contain hydrogen gas bubbles generated in the cathode-side electrode in the hydrogen-containing electrolyzed water in a state as small as possible.

図1には本発明の一実施形態例に係る水素含有電解水生成装置の原理説明、図2には本発明の一実施形態例に係る水素含有電解水生成装置の構成概念、図3には本発明の一実施形態例に係る水素含有電解水生成装置の全体を表す断面、図4には電極を分解した状態の斜視、図5には電極を組み付けた状態の一部断面状態、図6(a)(b)には下側基台の外観を表す側面及び平面、図7(a)(b)には上側基台の外観を表す側面及び平面、図8(a)(b)には負極電極の外観を表す側面及び平面、図9(a)(b)には正極電極の外観を表す側面及び平面、図10には電極の配置状況を表す平面、図11には本発明の一実施形態例に係る給湯設備の概略系統、図12には給湯設備の制御ブロック概念を示してある。   FIG. 1 illustrates the principle of a hydrogen-containing electrolyzed water generating device according to an embodiment of the present invention, FIG. 2 illustrates the configuration concept of a hydrogen-containing electrolyzed water generating device according to an embodiment of the present invention, and FIG. FIG. 4 is a cross-sectional view showing the entire hydrogen-containing electrolyzed water generating device according to an embodiment of the present invention, FIG. 4 is a perspective view of an exploded electrode, FIG. 5 is a partial cross-sectional view of an assembled electrode, and FIG. (A) and (b) are side surfaces and planes representing the appearance of the lower base, FIGS. 7 (a) and (b) are side surfaces and planes representing the appearance of the upper base, and FIGS. 8 (a) and (b). Is a side surface and a plane representing the appearance of the negative electrode, FIGS. 9A and 9B are side surfaces and a plane representing the appearance of the positive electrode, FIG. 10 is a plane representing the state of arrangement of the electrodes, and FIG. A schematic system of a hot water supply facility according to an embodiment, FIG. 12 shows a control block concept of the hot water supply facility.

図1に基づいて本発明の水素含有電解水生成装置の原理を説明する。   The principle of the hydrogen-containing electrolyzed water generating apparatus of the present invention will be described based on FIG.

図に示すように、電解槽1にはイオン交換膜2が設けられ、イオン交換膜2によって電解槽1の内部が2つの通路3、4に区切られている。イオン交換膜2を挟んで通路3には正電極5(陽極側電極)が設けられ、通路4には負電極6(陰極側電極)が設けられ、通路4が陰極側の通路4とされている。つまり、一対の電極(正電極5、負電極6)に挟まれてイオン交換膜2が備えられている。   As shown in the drawing, an ion exchange membrane 2 is provided in the electrolytic cell 1, and the inside of the electrolytic cell 1 is divided into two passages 3 and 4 by the ion exchange membrane 2. The passage 3 is provided with a positive electrode 5 (anode side electrode), the passage 4 is provided with a negative electrode 6 (cathode side electrode), and the passage 4 is defined as a cathode side passage 4 across the ion exchange membrane 2. Yes. That is, the ion exchange membrane 2 is provided between a pair of electrodes (positive electrode 5 and negative electrode 6).

陰極側の通路4及び陽極側の通路3に水(原水)を流通させる流通路7が備えられ、流通路7から通路4を流通した水は整水されてアルカリイオン水として排出され、流通路7から通路3を流通した水は整水されて酸性イオン水として排出される。通路4に設けられた負電極6は、細かい網目のメッシュ状に形成されている。   A flow passage 7 through which water (raw water) flows is provided in the cathode-side passage 4 and the anode-side passage 3, and the water that has passed through the passage 4 from the flow passage 7 is conditioned and discharged as alkaline ionized water. The water flowing through the passage 3 from the water 7 is conditioned and discharged as acidic ion water. The negative electrode 6 provided in the passage 4 is formed in a fine mesh.

正電極5及び負電極6の間に所定の電圧が印加され、電解槽1内に供給された水(原水)は、イオン交換膜2で区切られた通路3、4に流れ込む。流れ込んだ水は、イオン交換膜2と正電極5及び負電極6との間、即ち、通路3、4を通過する際に、水素イオンHと水酸イオンOHとに電離する。 A predetermined voltage is applied between the positive electrode 5 and the negative electrode 6, and water (raw water) supplied into the electrolytic cell 1 flows into the passages 3 and 4 separated by the ion exchange membrane 2. The water that has flowed in is ionized into hydrogen ions H + and hydroxide ions OH between the ion exchange membrane 2 and the positive electrode 5 and the negative electrode 6, that is, when passing through the passages 3 and 4.

電離した水素イオンHがイオン交換膜2を透過して陰極側の通路4に集まり、負電極6に水素ガスの気泡が生成され、水(2HO)は、電子(2e-)によりH+2OH-に整水され(水に水素ガスが溶存し)、水素が溶存されたアルカリイオン水が生成される。一方、電離した水酸イオンOHがイオン交換膜2を透過して陽極側の通路3に集まり、水(2HO)は、O+4H+4e-に整水され、酸性イオン水が生成される。 The ionized hydrogen ions H + pass through the ion exchange membrane 2 and gather in the passage 4 on the cathode side, hydrogen gas bubbles are generated in the negative electrode 6, and water (2H 2 O) is converted into H by electrons (2e ). The water is adjusted to 2 +2 OH (hydrogen gas is dissolved in water), and alkali ion water in which hydrogen is dissolved is generated. On the other hand, ionized hydroxide ions OH permeate the ion exchange membrane 2 and gather in the passage 3 on the anode side, and water (2H 2 O) is regulated to O 2 + 4H + + 4e , thereby generating acidic ion water. Is done.

本発明の水素含有電解水生成装置では、負電極6が細かい網目のメッシュ状に形成されている。このため、負電極6に生成される水素ガスの泡のぬれ角を小さくすることができ、水素ガスの泡を小さい状態で離脱させることができる。つまり、生成される水素ガスと負電極6の表面に生じる吸着力が、点接触に近い状態により表面張力が抑制されたものになり、水素ガスの泡を小さい状態で離脱させることができる。   In the hydrogen-containing electrolyzed water generating apparatus of the present invention, the negative electrode 6 is formed in a fine mesh. For this reason, the wetting angle of the hydrogen gas bubbles generated in the negative electrode 6 can be reduced, and the bubbles of hydrogen gas can be released in a small state. In other words, the generated hydrogen gas and the adsorption force generated on the surface of the negative electrode 6 are those in which the surface tension is suppressed by a state close to point contact, and the bubbles of hydrogen gas can be released in a small state.

このため、水素ガスが水に溶存し易くなり、長時間水に水素ガスを留まらせることが可能になる。   For this reason, it becomes easy for hydrogen gas to dissolve in water, and it becomes possible to keep hydrogen gas in water for a long time.

図2に基づいて本発明の一実施形態例に係る水素含有電解水生成装置の具体的な構成の概念を説明する。   Based on FIG. 2, the concept of the concrete structure of the hydrogen containing electrolyzed water generating apparatus which concerns on the example of 1 embodiment of this invention is demonstrated.

図に示すように、電解槽11には陽イオン交換膜12が設けられ、陽イオン交換膜12によって電解槽11の内部が2つの通路13、14に区切られている。陽イオン交換膜12はマイナスに帯電している膜であり、プラス側のイオンだけを引き付けてマイナス側のイオンを反発する。つまり、陽イオン(水素イオンH)だけを透過する膜であり、陰イオン(水酸イオンOH)が反発される膜である。 As shown in the figure, a cation exchange membrane 12 is provided in the electrolytic cell 11, and the inside of the electrolytic cell 11 is divided into two passages 13 and 14 by the cation exchange membrane 12. The cation exchange membrane 12 is a negatively charged membrane that attracts only positive ions and repels negative ions. That is, it is a film that transmits only cations (hydrogen ions H + ), and is a film that repels anions (hydroxide ions OH ).

陽イオン交換膜12を挟んで通路13には正電極15(陽極側電極)が設けられ、通路14には負電極16(陰極側電極)が設けられている。正電極15及び負電極16は、細かい網目のメッシュ状に形成されている。正電極15は通路13側で陽イオン交換膜12に密着されている。通路14側の陽イオン交換膜12の上部には上部スペーサ17が取り付けられ、上部スペーサ17には負電極16の上部が取り付けられている。そして、負電極16の下部は下部スペーサ18により電解槽11の内壁に取り付けられている。   A positive electrode 15 (anode side electrode) is provided in the passage 13 with the cation exchange membrane 12 interposed therebetween, and a negative electrode 16 (cathode side electrode) is provided in the passage 14. The positive electrode 15 and the negative electrode 16 are formed in a fine mesh. The positive electrode 15 is in close contact with the cation exchange membrane 12 on the passage 13 side. An upper spacer 17 is attached to the upper part of the cation exchange membrane 12 on the passage 14 side, and an upper part of the negative electrode 16 is attached to the upper spacer 17. The lower part of the negative electrode 16 is attached to the inner wall of the electrolytic cell 11 by a lower spacer 18.

電解槽11の下部には原水入口19が設けられ、陽イオン交換膜12の下方には原水入口19から流入した原水を通路13、14に流通させる流通路20が形成されている。つまり、流通路20は、陽イオン交換膜12の下方から、正電極15が密着された陽イオン交換膜12の側の通路13に原水を流入させると共に、負電極16と陽イオン交換膜12の間(負電極16の表側)に原水を流入させる。   A raw water inlet 19 is provided in the lower part of the electrolytic cell 11, and a flow passage 20 is formed below the cation exchange membrane 12 to distribute the raw water flowing from the raw water inlet 19 to the passages 13 and 14. That is, the flow passage 20 allows raw water to flow from below the cation exchange membrane 12 into the passage 13 on the side of the cation exchange membrane 12 to which the positive electrode 15 is in close contact, and between the negative electrode 16 and the cation exchange membrane 12. Raw water is allowed to flow in between (the front side of the negative electrode 16).

負電極16の表側から流入した原水は、上部スペーサ17の存在により、メッシュ状に形成された負電極16の裏側に移動して(図中矢印で示してある)排出される。つまり、陽イオン交換膜12と負電極16の間に流通路の流入側の経路21が形成され、負電極16の陽イオン交換膜12の反対側に流通路の流出側の経路22が形成されている。   The raw water flowing in from the front side of the negative electrode 16 moves to the back side of the negative electrode 16 formed in a mesh shape and is discharged (indicated by an arrow in the figure) due to the presence of the upper spacer 17. That is, a flow path 21 on the inflow side of the flow path is formed between the cation exchange membrane 12 and the negative electrode 16, and a flow path 22 on the outflow side of the flow path is formed on the opposite side of the negative electrode 16 to the cation exchange membrane 12. ing.

正電極15及び負電極16の間に所定の電圧が印加され、電解槽11内に供給された水(原水)は、陽イオン交換膜12で区切られた通路13、14に流れ込む。流れ込んだ水は、通路13、14を通過する際に、水素イオンHと水酸イオンOHとに電離する。 A predetermined voltage is applied between the positive electrode 15 and the negative electrode 16, and water (raw water) supplied into the electrolytic cell 11 flows into the passages 13 and 14 separated by the cation exchange membrane 12. The flowing water is ionized into hydrogen ions H + and hydroxide ions OH when passing through the passages 13 and 14.

電離した水素イオンHが陽イオン交換膜12を透過して陰極側の通路14に集まり、負電極16に水素ガスの気泡が生成され、水(2HO)は、電子(2e-)によりH+2OH-に整水され(水に水素ガスが溶存し)、水素が溶存されたアルカリイオン水が生成される。一方、電離した水酸イオンOHは陽イオン交換膜12を透過しないため陽極側の通路13には水酸イオンOHが集まらず、電子が与えられないためOの生成が大幅に抑制され、酸性イオン水がほとんど生成されない。 The ionized hydrogen ions H + permeate the cation exchange membrane 12 and gather in the cathode-side passage 14, hydrogen gas bubbles are generated in the negative electrode 16, and water (2H 2 O) is generated by electrons (2e ). The water is adjusted to H 2 + 2OH (hydrogen gas is dissolved in water) to generate alkali ion water in which hydrogen is dissolved. On the other hand, the ionized hydroxide ion OH does not permeate the cation exchange membrane 12, so that the hydroxide ion OH does not collect in the passage 13 on the anode side, and electrons are not given, so generation of O 2 is greatly suppressed. Almost no acidic ion water is generated.

負電極16が細かい網目のメッシュ状に形成されているため、負電極16に生成される水素ガスの泡のぬれ角を小さくすることができ、水素ガスの泡を小さい状態で離脱させることができる。つまり、生成される水素ガスと負電極16の表面に生じる吸着力が、点接触に近い状態により表面張力が抑制されたものになり、水素ガスの泡を小さい状態で離脱させることができ、水素ガスが水に溶存し易くなり、長時間水に水素ガスを留まらせることが可能になる。   Since the negative electrode 16 is formed in a fine mesh mesh, the wetting angle of the hydrogen gas bubbles generated on the negative electrode 16 can be reduced, and the hydrogen gas bubbles can be released in a small state. . That is, the adsorption force generated on the surface of the generated hydrogen gas and the negative electrode 16 is such that the surface tension is suppressed by a state close to point contact, and bubbles of hydrogen gas can be released in a small state. Gas becomes easy to dissolve in water, and it becomes possible to keep hydrogen gas in water for a long time.

そして、陽イオン交換膜12と負電極16との間に形成された流通路の流入側の経路から負電極16の反対側の面(裏面)に水素ガスの気泡を通過させて水流と共に水素ガスを流出させるので、水素ガスの気泡が小さい状態で負電極16から離脱しやすくなる。   Then, hydrogen gas bubbles are passed through the surface on the opposite side (back surface) of the negative electrode 16 from the inflow side path of the flow path formed between the cation exchange membrane 12 and the negative electrode 16, and together with the water flow, the hydrogen gas As a result, the hydrogen gas bubbles are easily detached from the negative electrode 16.

正電極15は通路13側で陽イオン交換膜12に密着されているので、陽イオン交換膜12によりプラスの水素イオンHだけが透過されて水酸イオンOHが正極側に発生し難くなり、酸性ガスの発生を抑制して酸性イオン水を大幅に減少させることができる。 Since the positive electrode 15 is in close contact with the cation exchange membrane 12 on the passage 13 side, only positive hydrogen ions H + are transmitted through the cation exchange membrane 12, and hydroxide ions OH are hardly generated on the positive electrode side. In addition, the generation of acidic gas can be suppressed and the amount of acidic ionized water can be greatly reduced.

また、正電極15がメッシュ状に形成されているので、陽イオン交換膜12への水分の拡散が容易になり、少ない水分量で陽イオン交換膜12を湿潤させることができ、酸性イオン水の排出量を大幅に減らすことができる。隔膜式電解装置の場合、ファラデーの法則によりアルカリイオン水と酸性イオン水の生成割合は2:1となる。正電極15をメッシュ状にして陽イオン交換膜12に密着させることで、酸性イオン水の排出量をアルカリイオン水の100分の1程度に低減できることが確認されている。   In addition, since the positive electrode 15 is formed in a mesh shape, the diffusion of moisture into the cation exchange membrane 12 is facilitated, and the cation exchange membrane 12 can be moistened with a small amount of moisture. Emissions can be greatly reduced. In the case of a diaphragm type electrolytic apparatus, the production ratio of alkaline ionized water and acidic ionized water is 2: 1 according to Faraday's law. It has been confirmed that the discharge amount of acidic ion water can be reduced to about 1 / 100th of alkaline ion water by making the positive electrode 15 mesh and closely contacting the cation exchange membrane 12.

図3〜図9に基づいて図2に示した水素含有電解水生成装置を更に具体的に説明する。尚、図2に示した部材と同一部材には同一符号を付してある。   The hydrogen-containing electrolyzed water generating device shown in FIG. 2 will be described more specifically based on FIGS. In addition, the same code | symbol is attached | subjected to the same member as the member shown in FIG.

主に図3に示すように、下側基台31には筒状の電解槽11が固定され、電解槽11の上部には上側基台32が固定されている。電解槽11は、筒の内側に出入り口を除いてプラスチック製のシート11aが配された構成とされている。電解槽11の下部の筒面には原水入口19が設けられ、電解槽11の上部筒面にはアルカリイオン水の吐出口33が設けられている。また、上側基台32には酸性水の排出口34が設けられている。   As shown mainly in FIG. 3, the cylindrical electrolytic cell 11 is fixed to the lower base 31, and the upper base 32 is fixed to the upper part of the electrolytic cell 11. The electrolytic cell 11 has a configuration in which a plastic sheet 11a is arranged inside a cylinder except for an entrance / exit. A raw water inlet 19 is provided on the lower cylindrical surface of the electrolytic cell 11, and a discharge port 33 of alkaline ion water is provided on the upper cylindrical surface of the electrolytic cell 11. The upper base 32 is provided with a discharge port 34 for acidic water.

主に図3、図6に示すように、下側基台31の上面には筒状の下ソケット35が設けられ、下ソケット35に略対応する下側基台31の面には、後述する電極棒のフランジがガスケットを介して嵌合する落し込み部36、37が形成されている。主に図3、図7に示すように、上側基台32の下面には筒状の上ソケット38が設けられ、上ソケット38の内側の上側基台32に排出口34が設けられている。   As shown mainly in FIGS. 3 and 6, a cylindrical lower socket 35 is provided on the upper surface of the lower base 31, and a surface of the lower base 31 substantially corresponding to the lower socket 35 will be described later. Drop portions 36 and 37 are formed in which the flanges of the electrode rods are fitted via gaskets. As shown mainly in FIGS. 3 and 7, a cylindrical upper socket 38 is provided on the lower surface of the upper base 32, and a discharge port 34 is provided on the upper base 32 inside the upper socket 38.

下ソケット35の上部には、負電極16の外側における電解槽11の内周側(後述する経路22)への原水の流入を規制する下部スペーサ18が設けられ、下ソケット35には原水を内側に流入させる流入口35aが設けられている。   The lower socket 35 is provided with a lower spacer 18 for restricting the flow of raw water to the inner peripheral side (path 22 to be described later) of the electrolytic cell 11 outside the negative electrode 16. An inflow port 35a is provided for inflowing into the air.

主に図3〜図5に示すように、下ソケット35の内側における下側基台31には、天井面を有する円筒状の台座41が設けられている。台座41の筒面には原水の流入口42が形成され、台座41の天井面の中心には台座41の内側からの原水を天井面に送る送出口43が形成されている。   As shown mainly in FIGS. 3 to 5, the lower base 31 inside the lower socket 35 is provided with a cylindrical base 41 having a ceiling surface. An inlet 42 of raw water is formed on the cylindrical surface of the pedestal 41, and an outlet 43 for sending raw water from the inside of the pedestal 41 to the ceiling surface is formed at the center of the ceiling surface of the pedestal 41.

台座41の天井面の上には筒状の正電極15が配され、正電極15は台座41と同径とされている。正電極15は細かい網目のメッシュ状に形成され、正電極15の周囲には陽イオン交換膜12の筒が嵌合している。つまり、円筒状の正電極15の外周部に円筒状の陽イオン交換膜12が密着されている。   A cylindrical positive electrode 15 is disposed on the ceiling surface of the pedestal 41, and the positive electrode 15 has the same diameter as the pedestal 41. The positive electrode 15 is formed in a fine mesh mesh, and a cylinder of the cation exchange membrane 12 is fitted around the positive electrode 15. That is, the cylindrical cation exchange membrane 12 is in close contact with the outer peripheral portion of the cylindrical positive electrode 15.

正電極15の上端部の内周は上ソケット38の外周側に嵌合し、円筒状の陽イオン交換膜12の下端部の内周は台座41の筒部に嵌合している。つまり、外周部に陽イオン交換膜12が密着された正電極15は、上ソケット38と台座41とに嵌合されて電解槽11に収容されている。   The inner circumference of the upper end portion of the positive electrode 15 is fitted to the outer circumference side of the upper socket 38, and the inner circumference of the lower end portion of the cylindrical cation exchange membrane 12 is fitted to the cylindrical portion of the pedestal 41. That is, the positive electrode 15 having the cation exchange membrane 12 in close contact with the outer peripheral portion is fitted in the upper socket 38 and the pedestal 41 and accommodated in the electrolytic cell 11.

主に図3〜図5及び図9、図10に示すように、正電極15の内周側には正極側の端子となる正電極棒45が固定され、正電極棒45の下部にはフランジ部46が設けられている。下側基台31の落し込み部36にはガスケット47が配され、正電極棒45のフランジ部46はガスケット47を介して落し込み部36に係合し、正電極棒45の下端部は下側基台31の貫通穴31aを貫通し、下端部は下側基台31から外部に導かれて図示しない電源に接続されている。   As shown mainly in FIGS. 3 to 5, 9, and 10, a positive electrode rod 45 serving as a positive electrode terminal is fixed to the inner peripheral side of the positive electrode 15, and a flange is formed below the positive electrode rod 45. A portion 46 is provided. A gasket 47 is disposed on the drop portion 36 of the lower base 31, the flange portion 46 of the positive electrode rod 45 engages with the drop portion 36 via the gasket 47, and the lower end portion of the positive electrode rod 45 is at the bottom. The through hole 31a of the side base 31 is penetrated, and the lower end portion is guided to the outside from the lower base 31 and connected to a power source (not shown).

主に図3〜図5に示すように、外周部に陽イオン交換膜12が密着された正電極15の外周側には筒状の負電極16が同心状態に隙間をあけて配され、陽イオン交換膜12と負電極16との間に経路21が形成されている。負電極16は細かい網目のメッシュ状に形成され、正電極15の上端側における陽イオン交換膜12の外周には上部スペーサ17が設けられ、負電極16の上端が上部スペーサ17に嵌合して経路21の上端が閉じられている。   As shown mainly in FIGS. 3 to 5, a cylindrical negative electrode 16 is concentrically arranged with a gap on the outer peripheral side of the positive electrode 15 in which the cation exchange membrane 12 is in close contact with the outer peripheral portion. A path 21 is formed between the ion exchange membrane 12 and the negative electrode 16. The negative electrode 16 is formed in a fine mesh mesh, an upper spacer 17 is provided on the outer periphery of the cation exchange membrane 12 on the upper end side of the positive electrode 15, and the upper end of the negative electrode 16 is fitted to the upper spacer 17. The upper end of the path 21 is closed.

負電極16の下端部は下ソケット35の内周側に嵌合し、負電極16は上部スペーサ17と下ソケット35とに嵌合されて、外周部に陽イオン交換膜12が密着された正電極15の外側に配された状態で電解槽11に収容されている。負電極16の外側における電解槽11の内周側(吐出口33に連通する部位)が経路22とされている。   The lower end portion of the negative electrode 16 is fitted to the inner peripheral side of the lower socket 35, the negative electrode 16 is fitted to the upper spacer 17 and the lower socket 35, and the positive electrode with the cation exchange membrane 12 in close contact with the outer peripheral portion. It is accommodated in the electrolytic cell 11 in a state of being arranged outside the electrode 15. The inner peripheral side of the electrolytic cell 11 outside the negative electrode 16 (portion communicating with the discharge port 33) is a path 22.

主に図3〜図5及び図8、図10に示すように、負電極16の外周側には負極側の端子となる負電極棒55が固定され、負電極棒55の下部にはフランジ部56が設けられている。下側基台31の落し込み部37にはガスケット57が配され、負電極棒55のフランジ部56はガスケット57を介して落し込み部37に係合し、負電極棒55の下端部は下側基台31の貫通穴31aを貫通し、下端部は下側基台31から外部に導かれて図示しない電源に接続されている。   As shown mainly in FIGS. 3 to 5, 8, and 10, a negative electrode rod 55 serving as a negative electrode terminal is fixed to the outer peripheral side of the negative electrode 16, and a flange portion is disposed below the negative electrode rod 55. 56 is provided. A gasket 57 is disposed on the drop portion 37 of the lower base 31, the flange portion 56 of the negative electrode rod 55 is engaged with the drop portion 37 via the gasket 57, and the lower end portion of the negative electrode rod 55 is at the bottom. The through hole 31a of the side base 31 is penetrated, and the lower end portion is guided to the outside from the lower base 31 and connected to a power source (not shown).

電解槽11の原水入口19から供給される原水は、下ソケット35の内側に導かれ(流通路20)、陽イオン交換膜12と負電極16との間に形成された経路21に送られる。また、下ソケット35の内側に導かれた原水の一部は、流入口42から台座41の内側に送られ、送出口43から正電極15の内周側に導かれる。つまり、流通路の流入側(経路21)に流入される原水の一部が正電極15の内周側に送られる陽電極側流路が構成されている。   The raw water supplied from the raw water inlet 19 of the electrolytic cell 11 is guided to the inside of the lower socket 35 (flow passage 20) and sent to a path 21 formed between the cation exchange membrane 12 and the negative electrode 16. A part of the raw water guided to the inside of the lower socket 35 is sent from the inlet 42 to the inside of the pedestal 41 and led from the outlet 43 to the inner peripheral side of the positive electrode 15. That is, a positive electrode side flow path is configured in which a part of the raw water flowing into the inflow side (path 21) of the flow path is sent to the inner peripheral side of the positive electrode 15.

正電極15及び負電極16の間に所定の電圧が印加され、原水入口19から流入し、経路21に流れ込んだ水及び正電極15の内周側に送られた水は、流通の過程で水素イオンHと水酸イオンOHとに電離する。 A predetermined voltage is applied between the positive electrode 15 and the negative electrode 16, the water flowing in from the raw water inlet 19 and flowing into the path 21 and the water sent to the inner peripheral side of the positive electrode 15 are hydrogenated in the course of circulation. It is ionized into ions H + and hydroxide ions OH .

電離した水素イオンHが陽イオン交換膜12を透過して陰極側の経路21に集まり、負電極16に水素ガスの気泡が生成され、水(2HO)は、電子(2e-)によりH+2OH-に整水され(水に水素ガスが溶存し)、水素が溶存されたアルカリイオン水が生成される。 The ionized hydrogen ions H + permeate through the cation exchange membrane 12 and collect in the cathode-side path 21, hydrogen gas bubbles are generated in the negative electrode 16, and water (2H 2 O) is generated by electrons (2e ). The water is adjusted to H 2 + 2OH (hydrogen gas is dissolved in water) to generate alkali ion water in which hydrogen is dissolved.

そして、陽イオン交換膜12と負電極16との間の経路21から負電極16の反対側(外周側)の面に水素ガスの気泡を通過させて水流と共に水素ガスを流出させ、水素ガスの気泡が小さい状態で負電極16から離脱させる。負電極16が細かい網目のメッシュ状に形成されているため、水素ガスの泡が小さい状態で離脱され、水素ガスが水に溶存し易くなり、長時間水に水素ガスを留まらせることが可能になる。水素ガスが溶存されたアルカリイオン水は、吐出口33から必要箇所に供給される。   Then, hydrogen gas bubbles are passed through the path 21 between the cation exchange membrane 12 and the negative electrode 16 to the surface on the opposite side (outer peripheral side) of the negative electrode 16 so that the hydrogen gas flows out together with the water flow. The bubbles are separated from the negative electrode 16 in a small state. Since the negative electrode 16 is formed in a fine mesh mesh shape, hydrogen gas bubbles are released in a small state, the hydrogen gas is easily dissolved in water, and the hydrogen gas can remain in the water for a long time. Become. Alkaline ion water in which hydrogen gas is dissolved is supplied from a discharge port 33 to a required location.

一方、電離した水酸イオンOHは陽イオン交換膜12を透過しないため陽極側の正電極15の内周側には水酸イオンOHが集まらず、酸性イオン水はほとんど生成されない。また、正電極15はメッシュ状に形成されているので、陽イオン交換膜12への水分の拡散が容易になり、少ない水分量で陽イオン交換膜12を湿潤させることができ、酸性イオン水の排出量を大幅に減らすことができる。このため、排出口34から排出される酸性イオン水は極僅かとなる。 On the other hand, since the ionized hydroxide ion OH does not pass through the cation exchange membrane 12, the hydroxide ion OH does not collect on the inner peripheral side of the positive electrode 15 on the anode side, and almost no acidic ion water is generated. Further, since the positive electrode 15 is formed in a mesh shape, the diffusion of moisture to the cation exchange membrane 12 is facilitated, and the cation exchange membrane 12 can be moistened with a small amount of water, so Emissions can be greatly reduced. For this reason, the acidic ion water discharged | emitted from the discharge port 34 becomes very little.

上述した水素含有電解水生成装置では、筒状の負電極16が細かい網目のメッシュ状に形成されているため、水素ガスの泡を小さい状態で内側から外側に水流と共に流して離脱させることができ、水素ガスが水に溶存し易くなり、長時間水に水素ガスを留まらせることが可能になる。   In the hydrogen-containing electrolyzed water generating apparatus described above, since the cylindrical negative electrode 16 is formed in a fine mesh mesh shape, hydrogen gas bubbles can be made to flow away from the inside to the outside together with the water flow and separated. This makes it easier for hydrogen gas to dissolve in water, allowing the hydrogen gas to remain in the water for a long time.

また、筒状の正電極15の外側に筒状の陽イオン交換膜12が密着して設けられているので、陽イオン交換膜12によりプラスの水素イオンHだけが透過されて水酸イオンOHが正極側に発生し難くなり、酸性ガスの発生を抑制することができ、酸性イオン水の排出量を大幅に減少させることができる。また、正電極15がメッシュ状に形成されているので、陽イオン交換膜12への水分の拡散が容易になり、下部からの少ない量の水分供給で陽イオン交換膜12を湿潤させることができ、酸性イオン水の排出量を大幅に減らすことができる。 Further, since the cylindrical cation exchange membrane 12 is provided in close contact with the outer side of the cylindrical positive electrode 15, only positive hydrogen ions H + are permeated through the cation exchange membrane 12, and hydroxide ions OH. - is less likely to occur in the positive electrode side, it is possible to suppress the generation of acid gas, it is possible to greatly reduce the emission of acidic ionized water. Further, since the positive electrode 15 is formed in a mesh shape, the diffusion of moisture into the cation exchange membrane 12 is facilitated, and the cation exchange membrane 12 can be wetted by supplying a small amount of moisture from the lower part. , Acid ion water discharge can be greatly reduced.

上述した水素含有電解水生成装置61を備えた給湯設備の一例を図11、図12に基づいて説明する。   An example of the hot water supply equipment provided with the hydrogen-containing electrolyzed water generating device 61 described above will be described with reference to FIGS.

図示の給湯設備は、2台の水素含有電解水生成装置61が備えられ、温水源としての温水と冷水源としての水道水とが原水として原水入口19に送られる。吐出口33からのアルカリイオン水はフロースイッチ63を備えた配管64を通して混合給湯管としての混合栓62に供給される。混合栓62により温水のアルカリイオン水と水道水のアルカリイオン水の割合が調整され、所望の温度のアルカリイオン水を得るようにされている。   The illustrated hot water supply equipment includes two hydrogen-containing electrolyzed water generating devices 61, and hot water as a hot water source and tap water as a cold water source are sent to the raw water inlet 19 as raw water. Alkaline ion water from the discharge port 33 is supplied to a mixing plug 62 as a mixed hot water supply pipe through a pipe 64 having a flow switch 63. The ratio of the alkaline ionized water to the tap water is adjusted by the mixing plug 62 to obtain alkaline ionized water having a desired temperature.

水素含有電解水生成装置61の排出口34には排出管66が接続され、排出管66には第1電磁弁65が設けられている。また、配管64から分岐して分岐管67が接続され、分岐管67は第1電磁弁65の後流側で排出管66に接続されている。分岐管67には第2電磁弁68が設けられている。   A discharge pipe 66 is connected to the discharge port 34 of the hydrogen-containing electrolyzed water generating device 61, and a first electromagnetic valve 65 is provided in the discharge pipe 66. Further, a branch pipe 67 is connected after branching from the pipe 64, and the branch pipe 67 is connected to the discharge pipe 66 on the downstream side of the first electromagnetic valve 65. The branch pipe 67 is provided with a second electromagnetic valve 68.

2台の水素含有電解水生成装置61を備えた給湯設備81では、制御手段としての制御装置71により電極の通電状況が個別に制御される。即ち、制御装置71には、フロースイッチ63、第1電磁弁65、第2電磁弁68の信号が入力され、制御装置71からは、電源及び各種作動信号が出力される。例えば、フロースイッチ63の信号に基づいてアルカリイオン水が流れている時に電気分解を実施したり、通電する電極の極性を逆にして洗浄運転が実施される。   In the hot water supply facility 81 provided with the two hydrogen-containing electrolyzed water generating devices 61, the energization state of the electrodes is individually controlled by the control device 71 as the control means. That is, the control device 71 receives signals from the flow switch 63, the first electromagnetic valve 65, and the second electromagnetic valve 68, and the control device 71 outputs a power source and various operation signals. For example, the electrolysis is performed when alkaline ionized water is flowing based on the signal from the flow switch 63, or the cleaning operation is performed with the polarity of the electrode to be energized reversed.

給湯設備の動作の一例を説明する。   An example of the operation of the hot water supply facility will be described.

配管64の内部に水が満たされた状態で、通常の給水時は、第1電磁弁65が開かれると共に、第2電磁弁68が閉じられる。混合栓62が閉じられた状態では、配管64の内部にアルカリイオン水は流れないので、フロースイッチ63がオフ状態になる。フロースイッチ63がオフの場合、制御装置71からの指令により電気分解が停止される。混合栓62が開かれると、配管64の内部のアルカリイオン水が流通し、フロースイッチ63がオンになる。フロースイッチ63がオンの場合、制御装置71からの指令により電気分解が開始される。このように、フロースイッチ63の信号が電気分解の開始・停止のトリガーとされている。   In a state where water is filled in the pipe 64, during normal water supply, the first electromagnetic valve 65 is opened and the second electromagnetic valve 68 is closed. In the state where the mixing plug 62 is closed, since the alkaline ionized water does not flow into the pipe 64, the flow switch 63 is turned off. When the flow switch 63 is off, the electrolysis is stopped by a command from the control device 71. When the mixing plug 62 is opened, the alkaline ionized water inside the pipe 64 flows and the flow switch 63 is turned on. When the flow switch 63 is on, electrolysis is started by a command from the control device 71. Thus, the signal of the flow switch 63 is used as a trigger for starting / stopping electrolysis.

フロースイッチ63のオン・オフの状態が制御装置で記憶され、オンからオフに変わった時からの累積時間等により洗浄運転が実施される。例えば、24時間毎に洗浄運転が実施されるように設定される。洗浄運転は、通電する電極の極性を逆にする。即ち、第2電磁弁68を開き、負電極に正極の電力を供給し、正電極に負極の電力を供給する。排出管66から洗浄処理後のアルカリイオン水が排出され、配管64及び分岐管67から洗浄後の酸性イオン水が排出される。つまり、電極に付着したカルシウム等が除去される。   The on / off state of the flow switch 63 is stored in the control device, and the cleaning operation is performed based on the accumulated time from when the flow switch 63 changes from on to off. For example, the cleaning operation is set to be performed every 24 hours. In the washing operation, the polarity of the energized electrode is reversed. That is, the second electromagnetic valve 68 is opened, positive power is supplied to the negative electrode, and negative power is supplied to the positive electrode. The alkaline ionized water after the cleaning process is discharged from the discharge pipe 66, and the acidic ionized water after the cleaning is discharged from the pipe 64 and the branch pipe 67. That is, calcium and the like attached to the electrode are removed.

また、洗浄処理が終了して電気分解を停止した後、電解水を排出するための原水置換が実施される。洗浄処理では通電する電極の極性を逆にしているため、洗浄処理が終了した直後にはアルカリイオン水の径路に酸性イオン水が残り蛇口から出ることが考えられる。このため、洗浄停止の後、所定時間の間電磁弁を開いて電気分解を停止した状態で原水を供給し、径路内を電気分解のない原水に置き換える。置換が終了した後、第2電磁弁68を閉じて通常の電気分解を伴う運転を実施する。   Moreover, after completion | finish of a washing process and stopping electrolysis, raw | natural water substitution for discharging | emitting electrolyzed water is implemented. Since the polarity of the electrode to be energized is reversed in the cleaning process, it is conceivable that the acidic ion water remains in the path of the alkaline ion water and exits from the faucet immediately after the cleaning process is completed. For this reason, after the washing is stopped, the raw water is supplied in a state where the electrolysis is stopped by opening the electromagnetic valve for a predetermined time, and the inside of the path is replaced with the raw water without electrolysis. After the replacement is completed, the second solenoid valve 68 is closed and an operation involving normal electrolysis is performed.

給湯の指示はリモコン72を通して行うことができ、また、給湯、洗浄、原水置換の状況がリモコン72に表示される。   Hot water supply can be instructed through the remote controller 72, and the status of hot water supply, washing, and replacement of raw water is displayed on the remote controller 72.

上述した給湯設備は、負電極16に生成される水素ガスの気泡を極力小さい状態で水素含有電解水に含ませることができる水素含有電解水生成装置を備えた給湯設備となる。   The hot-water supply equipment described above is a hot-water supply equipment provided with a hydrogen-containing electrolyzed water generating device that can contain hydrogen gas bubbles generated in the negative electrode 16 in the hydrogen-containing electrolyzed water in a state as small as possible.

本発明は水道水等の原水から水素含有電解水を得るための水素含有電解水生成装置及び給湯設備の産業分野で利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the industrial field | area of the hydrogen containing electrolyzed water production | generation apparatus and hot water supply equipment for obtaining hydrogen containing electrolyzed water from raw | natural waters, such as tap water.

本発明の一実施形態例に係る水素含有電解水生成装置の原理説明図である。It is principle explanatory drawing of the hydrogen containing electrolyzed water generating apparatus which concerns on one example of embodiment of this invention. 本発明の一実施形態例に係る水素含有電解水生成装置の構成概念図である。1 is a conceptual diagram of a configuration of a hydrogen-containing electrolyzed water generating device according to an embodiment of the present invention. 本発明の一実施形態例に係る水素含有電解水生成装置の全体を表す断面図である。It is sectional drawing showing the whole hydrogen containing electrolyzed water generating apparatus which concerns on the example of 1 embodiment of this invention. 電極を分解した状態の斜視図である。It is a perspective view of the state which decomposed | disassembled the electrode. 電極を組み付けた状態の一部断面図である。It is a partial cross section figure of the state which assembled | attached the electrode. 下側基台の外観図である。It is an external view of a lower side base. 上側基台の外観図である。It is an external view of an upper base. 負電極の外観図である。It is an external view of a negative electrode. 正電極の外観図である。It is an external view of a positive electrode. 電極の配置状況を表す平面図である。It is a top view showing the arrangement | positioning condition of an electrode. 本発明の一実施形態例に係る給湯設備の概略系統図である。1 is a schematic system diagram of a hot water supply facility according to an embodiment of the present invention. 給湯設備の制御ブロック概念図である。It is a control block conceptual diagram of a hot water supply equipment.

符号の説明Explanation of symbols

11 電解槽
12 陽イオン交換膜
13 通路(陽極側)
14 通路(陰極側)
15 正電極
16 負電極
17 上部スペーサ
18 下部スペーサ
19 原水入口
20 流通路
21 経路(流入側)
22 経路(流出側)
31 下側基台
32 上側基台
33 吐出口
34 排出口
35 下ソケット
36、37 落し込み部
38 上ソケット
41 台座
42 流入口
43 送出口
45 正電極棒
46 フランジ部
47 ガスケット
55 負電極棒
56 フランジ部
57 ガスケット
61 水素含有電解水生成装置
62 混合栓
63 フロースイッチ
64 配管
65 第1電磁弁
66 排出管
67 分岐管
68 第2電磁弁
71 制御装置
72 リモコン
81 給湯設備
11 Electrolysis cell 12 Cation exchange membrane 13 Passage (anode side)
14 passage (cathode side)
15 Positive electrode 16 Negative electrode 17 Upper spacer 18 Lower spacer 19 Raw water inlet 20 Flow passage 21 Path (inflow side)
22 route (outflow side)
31 Lower base 32 Upper base 33 Discharge port 34 Discharge port 35 Lower socket 36, 37 Drop part 38 Upper socket 41 Base 42 Inlet 43 Outlet 45 Positive electrode rod 46 Flange portion 47 Gasket 55 Negative electrode rod 56 Flange Portion 57 Gasket 61 Hydrogen-containing electrolyzed water generator 62 Mixing plug 63 Flow switch 64 Pipe 65 First solenoid valve 66 Drain pipe 67 Branch pipe 68 Second solenoid valve 71 Controller 72 Remote control 81 Hot water supply equipment

Claims (8)

陽極、陰極一対の電極に挟まれてイオン交換膜が電解槽内に備えられ、陰極側の通路に水を流通させる流通路を備え、陰極側の前記電極がメッシュ状に形成されていることを特徴とする水素含有電解水生成装置。   An ion exchange membrane is provided in the electrolytic cell sandwiched between a pair of anode and cathode electrodes, a flow passage for circulating water is provided in the cathode side passage, and the electrode on the cathode side is formed in a mesh shape. A hydrogen-containing electrolyzed water generating apparatus. 請求項1に記載の水素含有電解水生成装置において、
前記イオン交換膜が陽イオン交換膜であり、前記陽イオン交換膜と陰極側の前記電極との間に前記流通路の流入側の経路が形成され、陰極側の前記電極の前記陽イオン交換膜の反対側に前記流通路の流出側の経路が形成されている
ことを特徴とする水素含有電解水生成装置。
The hydrogen-containing electrolyzed water generating device according to claim 1,
The ion exchange membrane is a cation exchange membrane, an inflow path of the flow passage is formed between the cation exchange membrane and the electrode on the cathode side, and the cation exchange membrane of the electrode on the cathode side A hydrogen-containing electrolyzed water generating apparatus, wherein a flow path on the outflow side of the flow passage is formed on the opposite side of the flow path.
請求項2に記載の水素含有電解水生成装置において、
前記陽イオン交換膜が陽極側の前記電極に密着している
ことを特徴とする水素含有電解水生成装置。
The hydrogen-containing electrolyzed water generating device according to claim 2,
The cation exchange membrane is in close contact with the electrode on the anode side.
請求項3に記載の水素含有電解水生成装置において、
陽極側の前記電極がメッシュ状に形成されている
ことを特徴とする水素含有電解水生成装置。
In the hydrogen-containing electrolyzed water generating apparatus according to claim 3,
The electrode on the anode side is formed in a mesh shape. A hydrogen-containing electrolyzed water generating apparatus, wherein:
請求項4に記載の水素含有電解水生成装置において、
陽極側の前記電極は円筒状とされて外周部に円筒状の前記陽イオン交換膜が密着され、
前記陽イオン交換膜が密着された陽極側の前記電極の外周に円筒状の陰極側の前記電極が配され、
前記流通路は、陽極側の前記電極と陰極側の前記電極との間が前記流入側とされると共に、陰極側の前記電極の外側が前記流出側とされて水素含有電解水が流出される
ことを特徴とする水素含有電解水生成装置。
In the hydrogen-containing electrolyzed water generating apparatus according to claim 4,
The electrode on the anode side is cylindrical and the cylindrical cation exchange membrane is in close contact with the outer periphery,
The cylindrical cathode side electrode is arranged on the outer periphery of the anode side electrode to which the cation exchange membrane is closely attached,
The flow path has an inflow side between the electrode on the anode side and the electrode on the cathode side, and an outside of the electrode on the cathode side serves as the outflow side so that hydrogen-containing electrolyzed water flows out. The hydrogen-containing electrolyzed water generating apparatus characterized by the above-mentioned.
請求項5に記載の水素含有電解水生成装置において、
前記流通路の前記流入側に流入される原水の一部を陽極側の前記電極の内周側に送る陽極側流路を備えた
ことを特徴とする水素含有電解水生成装置。
In the hydrogen-containing electrolyzed water generating apparatus according to claim 5,
A hydrogen-containing electrolyzed water generating apparatus, comprising: an anode-side flow path that sends a part of raw water flowing into the inflow side of the flow passage to the inner peripheral side of the electrode on the anode side.
請求項1〜請求項6のいずれか一項に記載の水素含有電解水生成装置を2台備え、一方の水素含有電解水生成装置の原水入口側が冷水源に接続され、他方の水素含有電解水生成装置の原水入口側が温水源に接続され、2台の水素含有電解水生成装置の流通路の出口側が一つの混合給湯管に接続され、2台の水素含有電解水生成装置の電極の通電状況を個別に制御する制御手段を備えたことを特徴とする給湯設備。   Two hydrogen-containing electrolyzed water generating devices according to any one of claims 1 to 6 are provided, the raw water inlet side of one hydrogen-containing electrolyzed water generating device is connected to a cold water source, and the other hydrogen-containing electrolyzed water The raw water inlet side of the generator is connected to the hot water source, the outlet side of the flow path of the two hydrogen-containing electrolyzed water generators is connected to one mixed hot water pipe, and the energization status of the electrodes of the two hydrogen-containing electrolyzed water generators A hot water supply facility provided with a control means for individually controlling the water. 請求項7に記載の給湯設備において、
前記制御手段には、前記電極の極性を逆にして陰極面の洗浄運転を行なう機能が備えられている
ことを特徴とする給湯設備。
The hot water supply facility according to claim 7,
The hot water supply facility, wherein the control means is provided with a function of performing a cathode surface cleaning operation by reversing the polarity of the electrodes.
JP2008258946A 2008-10-03 2008-10-03 Hydrogen-containing electrolyzed water generator and hot water supply equipment Active JP4536137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258946A JP4536137B2 (en) 2008-10-03 2008-10-03 Hydrogen-containing electrolyzed water generator and hot water supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258946A JP4536137B2 (en) 2008-10-03 2008-10-03 Hydrogen-containing electrolyzed water generator and hot water supply equipment

Publications (2)

Publication Number Publication Date
JP2010088973A true JP2010088973A (en) 2010-04-22
JP4536137B2 JP4536137B2 (en) 2010-09-01

Family

ID=42252223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258946A Active JP4536137B2 (en) 2008-10-03 2008-10-03 Hydrogen-containing electrolyzed water generator and hot water supply equipment

Country Status (1)

Country Link
JP (1) JP4536137B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094622A (en) * 2008-10-17 2010-04-30 Spring:Kk Apparatus and method for producing dissolved hydrogen drinking water
JP2012013359A (en) * 2010-07-02 2012-01-19 Panasonic Corp Water heater
JP2013188163A (en) * 2012-03-13 2013-09-26 Ottochi Green Station:Kk Vegetable of excellent antioxidant capability using electrolytic hydrogen water, and method of processing the same
KR101352887B1 (en) * 2011-06-16 2014-01-23 문상봉 Electrolytically Ionized Water Generator
WO2014119761A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
WO2014119763A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
WO2014119760A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
WO2014119765A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Hydrogen-containing water generating device
WO2014119764A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Hydrogen-containing water generating device
WO2014119762A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Method of manufacturing electrode for generating hydrogen-containing water and electrode for generating hydrogen-containing water
WO2014156296A1 (en) * 2013-03-25 2014-10-02 中国電機製造株式会社 Device for producing hydrogen-containing water
KR101466883B1 (en) * 2011-06-29 2014-12-10 조영일 A system for generating and processing alkaline water used in car washing center
JP2016022469A (en) * 2014-07-24 2016-02-08 中国電力株式会社 Device for generating hydrogen-containing water, and bathing facility
JP2017087087A (en) * 2015-11-02 2017-05-25 国立研究開発法人日本原子力研究開発機構 Hydrogen water production apparatus
JP6593558B1 (en) * 2018-08-29 2019-10-23 中国電力株式会社 Hydrogen-containing water generator
WO2020009563A1 (en) 2018-07-06 2020-01-09 Hydro Techno Holdings Sdn Bhd Apparatus for generating hydrogen by the electrolysis of water
JP2021094539A (en) * 2019-12-18 2021-06-24 株式会社日本トリム Electrolytic water generation method and electrolytic water generation device
WO2024014743A1 (en) * 2022-07-13 2024-01-18 장한호 Electrode installation apparatus of water fluid transfer means

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109607709A (en) * 2019-01-12 2019-04-12 大连理工大学 A kind of electrochemistry deoxygen apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966392A (en) * 1982-10-04 1984-04-14 Tdk Corp Method and apparatus for manufacturing pasteurized ion water
JPH02133494U (en) * 1989-04-12 1990-11-06
JPH06158378A (en) * 1992-11-27 1994-06-07 Tdk Corp Electrode for electrolyzing drinking water and manufacture of the same and ionized water forming device
JPH07328632A (en) * 1994-06-15 1995-12-19 Hoshizaki Electric Co Ltd Reversible electrolyzed water producing device
JPH09299953A (en) * 1996-05-14 1997-11-25 Matsushita Refrig Co Ltd Electrolytic water generator
JPH11114564A (en) * 1997-10-14 1999-04-27 Honda Motor Co Ltd Electrolyzed water producing device
JP2000167557A (en) * 1998-09-30 2000-06-20 Osaka Gas Co Ltd Antibacterial water
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
JP2004042025A (en) * 2002-05-16 2004-02-12 Asahi Glass Engineering Co Ltd Electrolytic ion water generation method and device therefor
JP2007289838A (en) * 2006-04-24 2007-11-08 Tokyo Yogyo Co Ltd Electrolytic water generator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5966392A (en) * 1982-10-04 1984-04-14 Tdk Corp Method and apparatus for manufacturing pasteurized ion water
JPH02133494U (en) * 1989-04-12 1990-11-06
JPH06158378A (en) * 1992-11-27 1994-06-07 Tdk Corp Electrode for electrolyzing drinking water and manufacture of the same and ionized water forming device
JPH07328632A (en) * 1994-06-15 1995-12-19 Hoshizaki Electric Co Ltd Reversible electrolyzed water producing device
JPH09299953A (en) * 1996-05-14 1997-11-25 Matsushita Refrig Co Ltd Electrolytic water generator
JPH11114564A (en) * 1997-10-14 1999-04-27 Honda Motor Co Ltd Electrolyzed water producing device
JP2000167557A (en) * 1998-09-30 2000-06-20 Osaka Gas Co Ltd Antibacterial water
JP2003245669A (en) * 2002-02-25 2003-09-02 Matsushita Electric Works Ltd Electrolytic hydrogen dissolved water generator
JP2004042025A (en) * 2002-05-16 2004-02-12 Asahi Glass Engineering Co Ltd Electrolytic ion water generation method and device therefor
JP2007289838A (en) * 2006-04-24 2007-11-08 Tokyo Yogyo Co Ltd Electrolytic water generator

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094622A (en) * 2008-10-17 2010-04-30 Spring:Kk Apparatus and method for producing dissolved hydrogen drinking water
JP2012013359A (en) * 2010-07-02 2012-01-19 Panasonic Corp Water heater
KR101352887B1 (en) * 2011-06-16 2014-01-23 문상봉 Electrolytically Ionized Water Generator
KR101466883B1 (en) * 2011-06-29 2014-12-10 조영일 A system for generating and processing alkaline water used in car washing center
JP2013188163A (en) * 2012-03-13 2013-09-26 Ottochi Green Station:Kk Vegetable of excellent antioxidant capability using electrolytic hydrogen water, and method of processing the same
KR20150116832A (en) 2013-01-31 2015-10-16 쥬코쿠 덴료쿠 가부시키 가이샤 Method of manufacturing electrode for generating hydrogen-containing water and electrode for generating hydrogen-containing water
KR101682603B1 (en) * 2013-01-31 2016-12-05 쥬코쿠 덴료쿠 가부시키 가이샤 Method of manufacturing electrode for generating hydrogen-containing water and electrode for generating hydrogen-containing water
WO2014119765A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Hydrogen-containing water generating device
WO2014119764A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Hydrogen-containing water generating device
WO2014119762A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Method of manufacturing electrode for generating hydrogen-containing water and electrode for generating hydrogen-containing water
JP2014147886A (en) * 2013-01-31 2014-08-21 Chugoku Electric Manufacture Co Ltd Electrode for generating hydrogen-containing water and device for generating hydrogen-containing water
JP2014147884A (en) * 2013-01-31 2014-08-21 Chugoku Electric Manufacture Co Ltd Electrode for generating hydrogen-containing water and device for generating hydrogen-containing water
JP2014147887A (en) * 2013-01-31 2014-08-21 Chugoku Electric Manufacture Co Ltd Hydrogen-containing water generator
JP2014147889A (en) * 2013-01-31 2014-08-21 Chugoku Electric Manufacture Co Ltd Method for producing electrode for generating hydrogen-containing water, and electrode for generating hydrogen-containing water
JP2014147888A (en) * 2013-01-31 2014-08-21 Chugoku Electric Manufacture Co Ltd Device for generating hydrogen-containing water
JP2014147885A (en) * 2013-01-31 2014-08-21 Chugoku Electric Manufacture Co Ltd Electrode for generating hydrogen-containing water and device for generating hydrogen-containing water
US9963794B2 (en) 2013-01-31 2018-05-08 The Chugoku Electric Power Co., Inc. Hydrogen-containing water generating electrode and hydrogen-containing water generating device
WO2014119763A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
US9903030B2 (en) 2013-01-31 2018-02-27 The Chugoku Electric Power Co., Inc. Hydrogen-containing water generating electrode and hydrogen-containing water generating device
KR20150113957A (en) 2013-01-31 2015-10-08 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
WO2014119761A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR101814651B1 (en) * 2013-01-31 2018-01-04 쥬코쿠 덴료쿠 가부시키 가이샤 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR101714597B1 (en) 2013-01-31 2017-03-22 쥬코쿠 덴료쿠 가부시키 가이샤 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR101664972B1 (en) * 2013-01-31 2016-10-11 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
WO2014119760A1 (en) * 2013-01-31 2014-08-07 中国電機製造株式会社 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR20160148055A (en) 2013-01-31 2016-12-23 쥬코쿠 덴료쿠 가부시키 가이샤 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR20160149314A (en) 2013-01-31 2016-12-27 쥬코쿠 덴료쿠 가부시키 가이샤 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR20160150104A (en) 2013-01-31 2016-12-28 쥬코쿠 덴료쿠 가부시키 가이샤 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR101714602B1 (en) 2013-01-31 2017-03-22 쥬코쿠 덴료쿠 가부시키 가이샤 Electrode for generating hydrogen-containing water and hydrogen-containing water generating device
KR20170018476A (en) 2013-01-31 2017-02-17 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
KR20150120441A (en) 2013-03-25 2015-10-27 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
JP2014231024A (en) * 2013-03-25 2014-12-11 中国電機製造株式会社 Hydrogen-containing water production apparatus
WO2014156296A1 (en) * 2013-03-25 2014-10-02 中国電機製造株式会社 Device for producing hydrogen-containing water
KR101704654B1 (en) * 2013-03-25 2017-02-08 쥬코쿠 덴료쿠 가부시키 가이샤 Hydrogen-containing water generating device
JP2016022469A (en) * 2014-07-24 2016-02-08 中国電力株式会社 Device for generating hydrogen-containing water, and bathing facility
JP2017087087A (en) * 2015-11-02 2017-05-25 国立研究開発法人日本原子力研究開発機構 Hydrogen water production apparatus
WO2020009563A1 (en) 2018-07-06 2020-01-09 Hydro Techno Holdings Sdn Bhd Apparatus for generating hydrogen by the electrolysis of water
JP6593558B1 (en) * 2018-08-29 2019-10-23 中国電力株式会社 Hydrogen-containing water generator
WO2020044472A1 (en) * 2018-08-29 2020-03-05 中国電力株式会社 Hydrogen-containing water generation device
US11542182B2 (en) 2018-08-29 2023-01-03 The Chugoku Electric Power Co., Inc. Hydrogen-containing water generator
JP2021094539A (en) * 2019-12-18 2021-06-24 株式会社日本トリム Electrolytic water generation method and electrolytic water generation device
JP7165119B2 (en) 2019-12-18 2022-11-02 株式会社日本トリム Electrolyzed water generation method and electrolyzed water generator
WO2024014743A1 (en) * 2022-07-13 2024-01-18 장한호 Electrode installation apparatus of water fluid transfer means

Also Published As

Publication number Publication date
JP4536137B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4536137B2 (en) Hydrogen-containing electrolyzed water generator and hot water supply equipment
JP2010088972A (en) Hydrogen-containing electrolytic water generation device and hot water supply device
KR101370129B1 (en) Hydrogen abundant water making apparatus with function to adjust dissolved hydrogen
JP4497558B1 (en) Bathing facilities
KR101030721B1 (en) Apparatus for manufacturing hydrogen-abundant water
KR20180015081A (en) Method for producing hydrogen water
JP2010029841A (en) Method for producing hydrogenated water
JP2008168180A (en) Hydrogen-containing electrolytic water conditioner, bathtub facility, and method for producing hydrogen-containing electrolytic water
KR101504259B1 (en) Production device for hydrogen water
KR102215631B1 (en) Oxygen-water and hydrogen-water producing bath system
JP5991619B2 (en) Ozone water generator
US20180369755A1 (en) Electrochemical cell, water treatment device provided with same, and operating method for water treatment device
KR20180007849A (en) Hydrogen Water Generator
KR20120067142A (en) Softener having sterilized water chamber and method for working the same
JP2005324117A (en) Alkali ion water generator
JP2000202449A (en) Alkaline ionized water producer
JP2017164692A (en) Electrolytic water generator
JP4936423B2 (en) Electrolyzed water generating device and sink equipped with the same
WO2012132600A1 (en) Electrolyzed water generation device
JP5878300B2 (en) Hydrogen water supply device
CN221118659U (en) Bathing system
JP2017159275A (en) Bubble unit and electrolytic water generating device
JP2016022418A (en) Oxidation-reduction water production method, nozzle used in said method, and oxidation-reduction water production apparatus
JP2001340855A (en) Apparatus and method for making alkali ion water
JP3611848B1 (en) Alkaline ion water conditioner

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4536137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250