以下各図面に示される同一または同等の構成要素、部材には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図面における部材の寸法は、理解を容易にするために適宜拡大、縮小して示される。また、各図面において本発明に係る各実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
In the following, the same or equivalent components and members shown in each drawing will be denoted by the same reference numerals, and repeated description will be omitted as appropriate. In addition, the dimensions of the members in each drawing are appropriately enlarged or reduced for easy understanding. Moreover, in each drawing, a part of member which is not important when describing each embodiment which concerns on this invention is abbreviate | omitted and displayed.
(第1の実施の形態)
第1の実施の形態に係る振動モータ100は、携帯電話などの携帯端末装置における振動発生用のモータに好適に用いられるリニア駆動型振動モータ(リニアモータ)である。振動モータ100では、可動部を構成する永久磁石が、コイルとの間に働く引きつけ合う磁力(以降磁気引力と略す)および遠ざけ合う磁力(以降磁気斥力と略す)によって往復移動を行う。これにより、振動モータ100が振動する。
(First embodiment)
The vibration motor 100 according to the first embodiment is a linear drive vibration motor (linear motor) that is preferably used as a vibration generating motor in a mobile terminal device such as a mobile phone. In the vibration motor 100, the permanent magnets constituting the movable part reciprocate by an attracting magnetic force (hereinafter abbreviated as magnetic attraction) and a moving away magnetic force (hereinafter abbreviated as magnetic repulsive force) acting between the coils. Thereby, the vibration motor 100 vibrates.
図1は、第1の実施の形態に係る振動モータ100の上面図である。図1ではカバー102を取り外した状態を示す。図2は、図1のA−A線断面図である。以下では、図1および図2を使用しながら振動モータ100の構成を説明する。振動モータ100は、コイル12と総称される第1の平面コイル12aおよび第2の平面コイル12bを有する積層基板10と、可動部を構成する永久磁石20と、ガイド枠30と、第1の板バネ42および第2の板バネ44と、カバー102と、図1および図2では図示しない移動制御部412と、を備える。以下、積層基板10の面のうち永久磁石20が搭載されている面を上面とし、その反対側の面を下面とする。また、説明の便宜上、積層基板10の下面が地表を向いており、重力は下方向に働く場合について考える。
FIG. 1 is a top view of the vibration motor 100 according to the first embodiment. FIG. 1 shows a state where the cover 102 is removed. 2 is a cross-sectional view taken along line AA in FIG. Below, the structure of the vibration motor 100 is demonstrated, using FIG. 1 and FIG. The vibration motor 100 includes a laminated substrate 10 having a first planar coil 12a and a second planar coil 12b collectively referred to as a coil 12, a permanent magnet 20 constituting a movable portion, a guide frame 30, and a first plate. A spring 42 and a second plate spring 44, a cover 102, and a movement control unit 412 (not shown in FIGS. 1 and 2) are provided. Hereinafter, of the surfaces of the laminated substrate 10, the surface on which the permanent magnet 20 is mounted is referred to as the upper surface, and the opposite surface is referred to as the lower surface. Further, for convenience of explanation, consider a case where the lower surface of the laminated substrate 10 faces the ground surface and gravity works downward.
積層基板10は、第1絶縁樹脂層52と、コイル12が形成される配線層54と、第2絶縁樹脂層56とを上面側からこの順番に積層してなる基板である。第1絶縁樹脂層52は、レジスト材料等によって形成される絶縁層である。第1絶縁樹脂層52の上面には、第1絶縁樹脂層52の表面が有する摩擦係数よりも低い摩擦係数を有する素材によって形成される低摩擦層58が設けられる。この場合、永久磁石20との間の摩擦抵抗を軽減することができるので、電気エネルギーを振動へ変換する効率が上昇する。さらに、永久磁石20の応答時間(永久磁石20が所定の振動量に達するまでの時間)を短縮することもできる。ここで「振動量」とは、振動モータが取り付けられた物体(たとえば、携帯電話)の加速度、または加速度を重力加速度(9.8m/s2)で割った値である。上述の低摩擦層58を構成する材料としては、炭素系材料であるダイヤモンドライクカーボン(DLC)やフラーレンなど、フッ素樹脂であるポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)など、ポリオレフィン樹脂であるポリエチレン、ポリプロピレンなど、チタン系材料であるチタン、窒化チタン、酸化チタンなど、が挙げられる。
The laminated substrate 10 is a substrate obtained by laminating a first insulating resin layer 52, a wiring layer 54 on which the coil 12 is formed, and a second insulating resin layer 56 in this order from the upper surface side. The first insulating resin layer 52 is an insulating layer formed of a resist material or the like. On the upper surface of the first insulating resin layer 52, a low friction layer 58 formed of a material having a friction coefficient lower than that of the surface of the first insulating resin layer 52 is provided. In this case, since the frictional resistance with the permanent magnet 20 can be reduced, the efficiency of converting electric energy into vibration increases. Furthermore, the response time of the permanent magnet 20 (time until the permanent magnet 20 reaches a predetermined vibration amount) can be shortened. Here, the “vibration amount” is the acceleration of an object (for example, a mobile phone) to which a vibration motor is attached, or a value obtained by dividing the acceleration by the gravitational acceleration (9.8 m / s 2 ). The material constituting the low friction layer 58 includes carbon-based materials such as diamond-like carbon (DLC) and fullerene, which are fluororesins such as polytetrafluoroethylene (PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer. Examples thereof include titanium (titanium nitride), titanium nitride (titanium oxide), and the like such as coalesce (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polyolefin resin polyethylene, and polypropylene.
配線層54は、コイル12と総称される第1の平面コイル12aおよび第2の平面コイル12bを含む。第1絶縁樹脂層52および第2絶縁樹脂層56は、配線層54に含まれる第1の平面コイル12aおよび第2の平面コイル12bを外部から絶縁する。
The wiring layer 54 includes a first planar coil 12 a and a second planar coil 12 b that are collectively referred to as the coil 12. The first insulating resin layer 52 and the second insulating resin layer 56 insulate the first planar coil 12a and the second planar coil 12b included in the wiring layer 54 from the outside.
第1の平面コイル12aおよび第2の平面コイル12bはどちらも平らな渦巻状のコイルであり、そのコイルの面が積層基板10の上面10aに対して平行となるように配列される。ここで、平行とは、互いに平行な状態だけでなく、永久磁石20が移動する際の妨げとならない程度に平行な状態からずれた状態を含んでいる。第1の平面コイル12aの渦巻の中心に当たる一端は第1接続配線62と接続され、第1の平面コイル12aの渦巻の外側に当たる一端は第2接続配線64と接続される。第2の平面コイル12bの渦巻の中心に当たる一端は第4接続配線68と接続され、第2の平面コイル12bの渦巻の外側に当たる一端は第3接続配線66と接続される。第1の平面コイル12aおよび第2の平面コイル12bは、永久磁石20の移動方向に沿って互いに離間して配列される。
Both the first planar coil 12 a and the second planar coil 12 b are flat spiral coils, and are arranged so that the surfaces of the coils are parallel to the upper surface 10 a of the multilayer substrate 10. Here, the term “parallel” includes not only the state of being parallel to each other but also the state of being deviated from the state of being parallel to such an extent that the permanent magnet 20 does not hinder the movement. One end corresponding to the center of the spiral of the first planar coil 12a is connected to the first connection wiring 62, and one end corresponding to the outside of the spiral of the first planar coil 12a is connected to the second connection wiring 64. One end corresponding to the center of the spiral of the second planar coil 12 b is connected to the fourth connection wiring 68, and one end corresponding to the outside of the spiral of the second planar coil 12 b is connected to the third connection wiring 66. The first planar coil 12a and the second planar coil 12b are arranged apart from each other along the moving direction of the permanent magnet 20.
第1接続配線62および第4接続配線68は移動制御部412に適切な結線手段により接続される。第2接続配線64と、第3接続配線66は共に入力端16に接続される。入力端16は適切な結線手段により移動制御部412に接続される。第1の平面コイル12aの渦巻の巻回の方向と、第2の平面コイル12bの渦巻の巻回の方向は異なるように形成される。このようなコイル12の構成では、入力端16から駆動電流を流すと、第1の平面コイル12aおよび第2の平面コイル12bには互いに逆方向の磁束が発生する。そしてそれぞれのコイル12に発生する磁束の向きは、駆動電流の極性が反転すると反転する。その結果、駆動電流の極性の時間的変動に応じて、それぞれのコイル12によって発生される磁束の向きも時間的に変動する。
The first connection wiring 62 and the fourth connection wiring 68 are connected to the movement control unit 412 by appropriate connection means. Both the second connection wiring 64 and the third connection wiring 66 are connected to the input end 16. The input terminal 16 is connected to the movement control unit 412 by appropriate connection means. The direction of the spiral winding of the first planar coil 12a is different from the direction of the spiral winding of the second planar coil 12b. In such a configuration of the coil 12, when a drive current is passed from the input end 16, magnetic fluxes in opposite directions are generated in the first planar coil 12a and the second planar coil 12b. The direction of the magnetic flux generated in each coil 12 is reversed when the polarity of the drive current is reversed. As a result, the direction of the magnetic flux generated by each coil 12 also varies with time in accordance with the temporal variation of the polarity of the drive current.
永久磁石20は、フェライトやネオジウムなどの強磁性材料からなる直径10mm、厚さ1.4mmの円板形状に形成されている。また、永久磁石20は、その厚み方向に着磁されており、積層基板10の上面10aと対向した磁極面20NがN極、磁極面20Nと反対側の磁極面20SがS極となっている。そして、永久磁石20は、コイル12のそれぞれとN極との間の磁力が引力と斥力との間で切り替わることによって積層基板10の上面10a側をコイル12の配列方向(矢印A1または矢印A2の方向)に沿って移動する。
The permanent magnet 20 is formed in a disc shape having a diameter of 10 mm and a thickness of 1.4 mm made of a ferromagnetic material such as ferrite or neodymium. The permanent magnet 20 is magnetized in the thickness direction, the magnetic pole surface 20N facing the top surface 10a of the multilayer substrate 10 is an N pole, and the magnetic pole surface 20S opposite to the magnetic pole surface 20N is an S pole. . And the permanent magnet 20 switches the upper surface 10a side of the laminated substrate 10 by the arrangement direction of the coil 12 (in the direction of the arrow A1 or the arrow A2) by switching the magnetic force between each of the coils 12 and the N pole between the attractive force and the repulsive force. Direction).
永久磁石20の縁部22は丸みを帯びた形状に加工され、その断面は円弧の一部を形成する。さらに永久磁石20の表面には、その少なくとも一部が覆われるように薄く磁性流体(不図示)が設けられている。磁性流体は磁性を有する流体であり、永久磁石20との磁気引力により永久磁石20の表面に引きつけられる。磁性流体は、例えばマグネタイト等の強磁性材料の微粒子と、その微粒子の表面を覆う界面活性剤と、水や油などの溶媒とを混合して製造される。
The edge 22 of the permanent magnet 20 is processed into a rounded shape, and its cross section forms part of an arc. Further, a thin magnetic fluid (not shown) is provided on the surface of the permanent magnet 20 so as to cover at least a part thereof. The magnetic fluid is a fluid having magnetism, and is attracted to the surface of the permanent magnet 20 by a magnetic attractive force with the permanent magnet 20. The magnetic fluid is produced by mixing fine particles of a ferromagnetic material such as magnetite, a surfactant that covers the surface of the fine particles, and a solvent such as water or oil.
ガイド枠30は、永久磁石20およびコイル12の配列を囲むように積層基板10の上面10a上に設けられる。ガイド枠30は、第1の板バネ42および第2の板バネ44と共に永久磁石20の往復移動を振動モータ100全体に伝達するように形成された、厚さが1.6mmで一定の幅を持つ長方形の枠であり、アルミニウムやプラスチックなどの非磁性素材によって形成される。ガイド枠30の内周面30aの短手方向の長さは10.5mmであり、永久磁石20の直径よりも僅かに大きくなるように形成される。また、その内周面30aの長手方向の長さは13.5mmであり、永久磁石20と内周面30aとの間の距離に余裕を持たせるように形成される。これにより永久磁石20はガイド枠30の長手方向(矢印A1または矢印A2の方向)に、積層基板10の上面10aに沿って往復移動する。
The guide frame 30 is provided on the upper surface 10 a of the multilayer substrate 10 so as to surround the arrangement of the permanent magnets 20 and the coils 12. The guide frame 30 is formed so as to transmit the reciprocating movement of the permanent magnet 20 together with the first plate spring 42 and the second plate spring 44 to the entire vibration motor 100 and has a constant width of 1.6 mm. A rectangular frame with a non-magnetic material such as aluminum or plastic. The length of the inner peripheral surface 30a of the guide frame 30 in the short direction is 10.5 mm, and is formed to be slightly larger than the diameter of the permanent magnet 20. Further, the length of the inner peripheral surface 30a in the longitudinal direction is 13.5 mm, and is formed so as to give a margin in the distance between the permanent magnet 20 and the inner peripheral surface 30a. Accordingly, the permanent magnet 20 reciprocates along the upper surface 10a of the laminated substrate 10 in the longitudinal direction of the guide frame 30 (the direction of the arrow A1 or the arrow A2).
図2に示されるように、ガイド枠30の接着面30bに対応する積層基板10の上面10a上の領域では第1絶縁樹脂層52が除去される。そして、そこに露出している配線層54の面と、接着面30bとが接着される。
As shown in FIG. 2, the first insulating resin layer 52 is removed in a region on the upper surface 10 a of the laminated substrate 10 corresponding to the bonding surface 30 b of the guide frame 30. Then, the surface of the wiring layer 54 exposed there and the bonding surface 30b are bonded.
ガイド枠30の一方の短辺側に第1の板バネ42が、他方の短辺側に第2の板バネ44が設けられる。各板バネは、PET(PolyEthylene Terephthalate)などの非磁性材料からなる厚さ350μm、長さ10mm、幅1.2mmのバネである。第1の板バネ42および第2の板バネ44のそれぞれの一端はガイド枠30の内部に埋設される。そして、第1の板バネ42および第2の板バネ44のそれぞれの他端により、永久磁石20をその側面から挟み込んでいる。このようにすることで、各板バネは、それぞれ、ガイド枠30への取り付け部分を支持点として撓み変形可能になり、永久磁石20を互いに他方の板バネ側に付勢する機能を有する。各板バネは、静止状態(コイル12に電流を流していない状態)においては永久磁石20をガイド枠30の長手方向略中央部に保持する。そして、積層基板10の上面10a上において永久磁石20が往復移動する際、第1の板バネ42および第2の板バネ44は交互に永久磁石20によって押される。これによりこれらの板バネからガイド枠30に振動が伝達される。その結果、ガイド枠30およびそれを含む振動モータ100全体が振動する。
A first leaf spring 42 is provided on one short side of the guide frame 30, and a second leaf spring 44 is provided on the other short side. Each leaf spring is a spring having a thickness of 350 μm, a length of 10 mm, and a width of 1.2 mm made of a non-magnetic material such as PET (PolyEthylene Terephthalate). One end of each of the first plate spring 42 and the second plate spring 44 is embedded in the guide frame 30. The permanent magnet 20 is sandwiched from the side surfaces by the other ends of the first plate spring 42 and the second plate spring 44. By doing so, each leaf spring can be bent and deformed with the attachment portion to the guide frame 30 as a supporting point, and has a function of biasing the permanent magnets 20 toward the other leaf spring. Each leaf spring holds the permanent magnet 20 at a substantially central portion in the longitudinal direction of the guide frame 30 in a stationary state (a state where no current is passed through the coil 12). Then, when the permanent magnet 20 reciprocates on the upper surface 10 a of the multilayer substrate 10, the first leaf spring 42 and the second leaf spring 44 are alternately pressed by the permanent magnet 20. Thereby, vibration is transmitted from these leaf springs to the guide frame 30. As a result, the guide frame 30 and the entire vibration motor 100 including the guide frame 30 vibrate.
ガイド枠30の上面にはカバー102が接着され、永久磁石20の飛び出しを防止する。
また、カバー102の積層基板10側の面に、第1絶縁樹脂層52の表面が有する摩擦係数よりも低い摩擦係数を有する素材によって形成される低摩擦層を設けてもよい。こうした低摩擦層を構成する材料としては、第1絶縁樹脂層52の上面に形成される低摩擦層58と同様の材料が用いられる。この場合、永久磁石20とカバー102との間の摩擦抵抗を軽減することができるので、電気エネルギーを振動へ変換する効率が上昇する。さらに、永久磁石20の応答時間(永久磁石20が所定の振動量に達するまでの時間)を短縮することもできる。
A cover 102 is bonded to the upper surface of the guide frame 30 to prevent the permanent magnet 20 from popping out.
Further, a low friction layer formed of a material having a friction coefficient lower than the friction coefficient of the surface of the first insulating resin layer 52 may be provided on the surface of the cover 102 on the laminated substrate 10 side. As a material constituting such a low friction layer, the same material as that of the low friction layer 58 formed on the upper surface of the first insulating resin layer 52 is used. In this case, since the frictional resistance between the permanent magnet 20 and the cover 102 can be reduced, the efficiency of converting electric energy into vibration increases. Furthermore, the response time of the permanent magnet 20 (time until the permanent magnet 20 reaches a predetermined vibration amount) can be shortened.
振動モータ100を駆動する際には、移動制御部412は、入力端16からコイル12に駆動電流(交流電流)を供給する。これにより、永久磁石20のN極とコイル12の一方との間に磁気引力が生じ、永久磁石20のN極とコイル12の他方との間に磁気斥力が生じる。移動制御部412は、永久磁石20の磁極面20Nが積層基板10の上面10aに対して傾斜した状態で永久磁石20が往復移動するように、永久磁石20に対して磁気引力および磁気斥力による推力を働かせる。なお、永久磁石20の傾斜した状態での往復移動については後述する。
When driving the vibration motor 100, the movement control unit 412 supplies a drive current (alternating current) to the coil 12 from the input end 16. Thereby, a magnetic attractive force is generated between the N pole of the permanent magnet 20 and one of the coils 12, and a magnetic repulsive force is generated between the N pole of the permanent magnet 20 and the other of the coil 12. The movement control unit 412 thrusts the permanent magnet 20 by a magnetic attractive force and a magnetic repulsive force so that the permanent magnet 20 reciprocates while the magnetic pole surface 20N of the permanent magnet 20 is inclined with respect to the upper surface 10a of the laminated substrate 10. Work. The reciprocating movement of the permanent magnet 20 in an inclined state will be described later.
以上のように構成された振動モータ100の動作について説明する。振動モータ100の静止状態においては第1の平面コイル12aおよび第2の平面コイル12bには駆動電流は流れず、第1の板バネ42および第2の板バネ44によって挟持された永久磁石20は、ガイド枠30の長手方向略中央部に図1のように静止する。
The operation of the vibration motor 100 configured as described above will be described. When the vibration motor 100 is stationary, no driving current flows through the first planar coil 12a and the second planar coil 12b, and the permanent magnet 20 sandwiched between the first leaf spring 42 and the second leaf spring 44 is As shown in FIG. 1, the guide frame 30 is stationary at substantially the center in the longitudinal direction.
振動モータ100を駆動する際は、移動制御部412は、入力端16から、所定の周波数でその極性が反転する駆動電流を供給する。これにより第1の平面コイル12aと第2の平面コイル12bには、そのコイル面に垂直な方向、つまり積層基板10の上面10aに垂直な方向に磁束が発生する。ここで第1の平面コイル12aに発生する磁束の向きは第2の平面コイル12bに発生する磁束の向きと逆である。
When driving the vibration motor 100, the movement control unit 412 supplies a drive current whose polarity is inverted at a predetermined frequency from the input end 16. Thereby, magnetic flux is generated in the first planar coil 12a and the second planar coil 12b in a direction perpendicular to the coil surfaces, that is, a direction perpendicular to the upper surface 10a of the multilayer substrate 10. Here, the direction of the magnetic flux generated in the first planar coil 12a is opposite to the direction of the magnetic flux generated in the second planar coil 12b.
第1の平面コイル12aおよび第2の平面コイル12bには互いに逆方向の磁束が発生するので、永久磁石20はコイル12の一方の側に引き寄せられる。そして、その磁束の向きが駆動電流の極性の反転によって反転すると、今度はコイル12の他方の側に引き寄せられる。これが繰り返されることにより永久磁石20は、積層基板10の上面10aに沿って第1の平面コイル12a側と第2の平面コイル12b側との間で往復移動する。
Since magnetic fluxes in opposite directions are generated in the first planar coil 12a and the second planar coil 12b, the permanent magnet 20 is attracted to one side of the coil 12. Then, when the direction of the magnetic flux is reversed by the reversal of the polarity of the drive current, it is attracted to the other side of the coil 12 this time. By repeating this, the permanent magnet 20 reciprocates between the first planar coil 12a side and the second planar coil 12b side along the upper surface 10a of the laminated substrate 10.
コイル12のそれぞれから永久磁石20のN極に及ぼされる磁力は、積層基板10の上面10aに垂直な方向の成分を有する。したがって、その垂直成分によって永久磁石20には、永久磁石20の片側を積層基板10の上面10aに対して浮き上がらせるようなトルクが加えられる。また、移動制御部412は、駆動電流の極性を反転させることによって、コイル12のそれぞれから永久磁石20のN極に及ぼされる磁力を引力と斥力との間で変動させる。これにより、移動制御部412は、永久磁石20に加えられるトルクを変動させ、永久磁石20を部分的に積層基板10の上面10aに垂直な方向に移動させる。
The magnetic force exerted from each of the coils 12 on the north pole of the permanent magnet 20 has a component in a direction perpendicular to the upper surface 10 a of the laminated substrate 10. Therefore, a torque that causes one side of the permanent magnet 20 to float with respect to the upper surface 10a of the multilayer substrate 10 is applied to the permanent magnet 20 by the vertical component. Further, the movement control unit 412 changes the magnetic force exerted from each of the coils 12 to the north pole of the permanent magnet 20 between attractive force and repulsive force by reversing the polarity of the drive current. Thereby, the movement control unit 412 varies the torque applied to the permanent magnet 20 and moves the permanent magnet 20 partially in a direction perpendicular to the upper surface 10 a of the laminated substrate 10.
図3(a)〜(d)は、永久磁石20の往復移動の様子を示す概念図である。永久磁石20は、図3(a)、図3(b)、図3(c)、図3(d)と進んで再び図3(a)に戻るような往復移動を行う。なお、図3中では第1の板バネ42および第2の板バネ44は図示せず省略している。
3A to 3D are conceptual diagrams showing how the permanent magnet 20 reciprocates. The permanent magnet 20 reciprocates as shown in FIGS. 3 (a), 3 (b), 3 (c), and 3 (d) and back to FIG. 3 (a). In FIG. 3, the first plate spring 42 and the second plate spring 44 are not shown and are omitted.
図3(a)は、永久磁石20がガイド枠30の長手方向中央付近を矢印A1の方向に移動している時の概略的な断面図である。ここでは移動制御部412は、入力端16から第1接続配線62および第4接続配線68に向けて駆動電流を流す。したがって、第1の平面コイル12aの上面はS極、第2の平面コイル12bの上面はN極となる。永久磁石20の積層基板10に対向する面はN極であるので、永久磁石20には第1の平面コイル12aによって磁気引力が、第2の平面コイル12bによって磁気斥力が加えられる。これにより永久磁石20には、積層基板10の上面10a上を、矢印A1の方向に移動せしめる推力が働く。
FIG. 3A is a schematic cross-sectional view when the permanent magnet 20 is moving in the vicinity of the center in the longitudinal direction of the guide frame 30 in the direction of the arrow A1. Here, the movement control unit 412 allows a drive current to flow from the input end 16 toward the first connection wiring 62 and the fourth connection wiring 68. Therefore, the upper surface of the first planar coil 12a is an S pole, and the upper surface of the second planar coil 12b is an N pole. Since the surface of the permanent magnet 20 facing the laminated substrate 10 is an N pole, a magnetic attractive force is applied to the permanent magnet 20 by the first planar coil 12a and a magnetic repulsive force is applied by the second planar coil 12b. As a result, a thrust that moves the upper surface 10a of the laminated substrate 10 in the direction of the arrow A1 acts on the permanent magnet 20.
この際、第2の平面コイル12bと永久磁石20のN極との間の磁気斥力は、積層基板10の上面10aに対して垂直上向きの成分を有する。第1の平面コイル12aと永久磁石20のN極との間の磁気引力は、積層基板10の上面10aに対して垂直下向きの成分を有する。したがって、移動制御部412は、永久磁石20を第1の平面コイル12a側へ向かって移動させる際、永久磁石20を磁極面20Nの縁部のうち第2の平面コイル12b側の縁部P2が積層基板10の上面10aから離れた状態で移動させる。また、移動制御部412は、永久磁石20を磁極面20Nの縁部のうち第1の平面コイル12a側の縁部P1が積層基板10の上面10aと接した状態で移動させる。磁極面20Nの縁部は略円形であるので、永久磁石20と積層基板10との接触部分はほぼ点状となる。このように、永久磁石20はその磁極面20Nが積層基板10の上面10aに対して傾斜した状態で移動する。
At this time, the magnetic repulsive force between the second planar coil 12 b and the N pole of the permanent magnet 20 has a component that is vertically upward with respect to the upper surface 10 a of the multilayer substrate 10. The magnetic attractive force between the first planar coil 12 a and the north pole of the permanent magnet 20 has a component that is perpendicular to the upper surface 10 a of the laminated substrate 10. Therefore, when the movement control unit 412 moves the permanent magnet 20 toward the first planar coil 12a, the edge P2 on the second planar coil 12b side of the edge of the magnetic pole surface 20N moves the permanent magnet 20 to the side. The laminated substrate 10 is moved away from the upper surface 10a. Further, the movement control unit 412 moves the permanent magnet 20 in a state where the edge P1 on the first planar coil 12a side of the edge of the magnetic pole surface 20N is in contact with the upper surface 10a of the multilayer substrate 10. Since the edge of the magnetic pole surface 20N is substantially circular, the contact portion between the permanent magnet 20 and the laminated substrate 10 is substantially point-like. Thus, the permanent magnet 20 moves in a state where the magnetic pole surface 20N is inclined with respect to the upper surface 10a of the laminated substrate 10.
図3(b)は、永久磁石20が最も第1の平面コイル12a側に寄り、そこでその移動の向きを変える際の概略的な断面図である。まず、永久磁石20は図3(a)の状態から第1の板バネ42(図1および図2参照)を押してゆき、もうそれ以上は押せない程度まで押す。この時の永久磁石20が図3(b)の鎖線で示される。同時に移動制御部412は、駆動電流の向きを反転させる。その結果、第1の平面コイル12aの上面はN極、第2の平面コイル12bの上面はS極となる。この状態では磁極面20NのN極は第2の平面コイル12bから磁気引力、第1の平面コイル12aから磁気斥力を受ける。これにより、図3(b)に示すように磁極面20Nの第1の平面コイル12a側の縁部P1が積層基板10の上面10aから離れ、磁極面20Nの第2の平面コイル12b側の縁部P2が積層基板10の上面10aに接するようになる。そして、第2の平面コイル12bからの磁気引力および第1の平面コイル12aからの磁気斥力の、積層基板10の上面10aに平行な成分によって、永久磁石20は矢印A2の方向に移動を開始する。
FIG. 3B is a schematic cross-sectional view when the permanent magnet 20 is closest to the first planar coil 12a side and the direction of movement thereof is changed there. First, the permanent magnet 20 pushes the first leaf spring 42 (see FIGS. 1 and 2) from the state of FIG. 3A and pushes it to the extent that it cannot be pushed any further. The permanent magnet 20 at this time is indicated by a chain line in FIG. At the same time, the movement control unit 412 reverses the direction of the drive current. As a result, the upper surface of the first planar coil 12a has an N pole, and the upper surface of the second planar coil 12b has an S pole. In this state, the N pole of the magnetic pole surface 20N receives a magnetic attractive force from the second planar coil 12b and a magnetic repulsive force from the first planar coil 12a. 3B, the edge P1 of the magnetic pole surface 20N on the first planar coil 12a side is separated from the upper surface 10a of the multilayer substrate 10, and the edge of the magnetic pole surface 20N on the second planar coil 12b side is separated. The part P2 comes into contact with the upper surface 10a of the multilayer substrate 10. Then, the permanent magnet 20 starts to move in the direction of the arrow A2 by a component parallel to the upper surface 10a of the laminated substrate 10 of the magnetic attractive force from the second planar coil 12b and the magnetic repulsive force from the first planar coil 12a. .
図3(c)は、永久磁石20がガイド枠30の長手方向中央付近を矢印A2の方向に移動している時の概略的な断面図である。この時の動作は、図3(a)で説明した動作と同様であるので説明を省略する。
FIG. 3C is a schematic cross-sectional view when the permanent magnet 20 is moving in the vicinity of the center in the longitudinal direction of the guide frame 30 in the direction of the arrow A2. Since the operation at this time is the same as the operation described with reference to FIG.
図3(d)は、永久磁石20が最も第2の平面コイル12b側に寄り、そこでその移動の向きを変える時の概略的な断面図である。この時の動作は、図3(b)で説明した動作と同様であるので説明を省略する。
FIG. 3D is a schematic cross-sectional view when the permanent magnet 20 is closest to the second planar coil 12b side and the direction of movement thereof is changed there. The operation at this time is the same as the operation described with reference to FIG.
このようにして、駆動電流の反転とほぼ同じ周波数で、永久磁石20の接触部分が切り替わりつつ、永久磁石20が積層基板10の上面10aに沿った方向に往復移動する。この2つの動作(接触部分の切り替わり動作と永久磁石20の往復動作)の周期は図3(a)〜(d)から分かる通り同じである。永久磁石20の質量はその周りの質量に対して無視できないので、永久磁石20の往復移動に合わせて、その周りの例えば積層基板10およびガイド枠30が振動する。
In this manner, the permanent magnet 20 reciprocates in the direction along the upper surface 10a of the multilayer substrate 10 while the contact portion of the permanent magnet 20 is switched at substantially the same frequency as the inversion of the drive current. The period of these two operations (contact portion switching operation and reciprocating operation of the permanent magnet 20) is the same as can be seen from FIGS. Since the mass of the permanent magnet 20 cannot be ignored with respect to the mass around it, for example, the laminated substrate 10 and the guide frame 30 around it vibrate in accordance with the reciprocating movement of the permanent magnet 20.
第1の実施の形態に係る振動モータ100では、例えば以下の効果を得ることができる。
In the vibration motor 100 according to the first embodiment, for example, the following effects can be obtained.
(1)永久磁石20はコイル12の配列方向(矢印A1または矢印A2の方向)に沿って積層基板10の上面10a側を移動する構成とされる。したがって、従来の縦振動型(基板面と垂直な方向への振動)のみの振動モータに比べて、積層基板10の上面10aと垂直な方向への永久磁石20の移動空間を設ける必要がないので、その方向の厚みを小さくするための設計の自由度を確保することができる。その結果、薄型化を図ることが可能な振動モータを提供することができる。
(1) The permanent magnet 20 is configured to move on the upper surface 10a side of the multilayer substrate 10 along the arrangement direction of the coils 12 (the direction of the arrow A1 or the arrow A2). Therefore, it is not necessary to provide a space for moving the permanent magnet 20 in the direction perpendicular to the upper surface 10a of the multilayer substrate 10 as compared with the conventional vibration motor of only the vertical vibration type (vibration in the direction perpendicular to the substrate surface). The degree of freedom in design for reducing the thickness in that direction can be ensured. As a result, a vibration motor that can be reduced in thickness can be provided.
(2)永久磁石20を、その磁極面20Nが積層基板10の上面10aに対して傾斜した状態で移動するようにしたことで、永久磁石20がコイル12間を移動する際は、永久磁石20と積層基板10との接触部分はほぼ点状となる。したがって、永久磁石20の磁極面20N全体が積層基板10の上面10aに接触した状態で移動する場合に比べて、接触部分で発生する摩擦抵抗を軽減することができる。
(2) Since the permanent magnet 20 is moved in a state where the magnetic pole surface 20N is inclined with respect to the upper surface 10a of the multilayer substrate 10, when the permanent magnet 20 moves between the coils 12, the permanent magnet 20 The contact portion between the laminated substrate 10 and the laminated substrate 10 is substantially point-like. Therefore, compared to the case where the entire magnetic pole surface 20N of the permanent magnet 20 moves in contact with the upper surface 10a of the multilayer substrate 10, the frictional resistance generated at the contact portion can be reduced.
(3)永久磁石20と積層基板10との接触部分に当たる永久磁石20の縁部22が丸みを帯びた形状に加工したことで、そこでの摩擦抵抗をたとえば角接触する場合に比べて軽減できる。また、縁部22の断面を円弧の一部となるようにすることで、さらにそこでの摩擦抵抗を軽減できる。
(3) Since the edge 22 of the permanent magnet 20 that contacts the contact portion between the permanent magnet 20 and the laminated substrate 10 is processed into a rounded shape, the frictional resistance can be reduced as compared with, for example, corner contact. Further, by making the cross section of the edge portion 22 a part of the arc, the frictional resistance there can be further reduced.
(4)永久磁石20がコイル12上を移動する際、永久磁石20は、その移動方向に対して永久磁石20の先頭部分がコイル12側に下がって傾斜した状態で移動する。したがって、永久磁石20に対する空気抵抗が減少し、永久磁石20の移動がスムーズとなる。
(4) When the permanent magnet 20 moves on the coil 12, the permanent magnet 20 moves in a state where the leading portion of the permanent magnet 20 is inclined downward toward the coil 12 with respect to the moving direction. Therefore, the air resistance with respect to the permanent magnet 20 decreases, and the movement of the permanent magnet 20 becomes smooth.
(5)永久磁石20は、その移動方向が切り替わる際に、永久磁石20の移動方向に対して永久磁石20の先頭部分がコイル12側に下がって傾斜した状態に切り替わって移動する。したがって、永久磁石20の積層基板10に接触する部分が切り替わる際の運動エネルギーが積層基板10に与えられるので、振動モータ100全体の振動量がさらに増加する。
(5) When the movement direction of the permanent magnet 20 is switched, the permanent magnet 20 is switched to a state in which the leading portion of the permanent magnet 20 is lowered toward the coil 12 and is inclined with respect to the movement direction of the permanent magnet 20. Therefore, since the kinetic energy when the portion of the permanent magnet 20 that contacts the laminated substrate 10 is switched is given to the laminated substrate 10, the vibration amount of the vibration motor 100 as a whole further increases.
(6)永久磁石20の表面に、その少なくとも一部が覆われるように薄く磁性流体を設けたことで、この磁性流体が積層基板10の上面10aと永久磁石20との間の摩擦抵抗を軽減するので、摩擦抵抗による熱や音の発生を軽減すると共に、より効率的に電気エネルギーを振動に変換することができる。
(6) By providing a thin magnetic fluid on the surface of the permanent magnet 20 so that at least a part of the permanent magnet 20 is covered, the magnetic fluid reduces the frictional resistance between the upper surface 10a of the laminated substrate 10 and the permanent magnet 20. Therefore, generation of heat and sound due to frictional resistance can be reduced, and electric energy can be more efficiently converted into vibration.
(7)永久磁石20の表面に、その少なくとも一部が覆われるように薄く磁性流体を設けたことで、この磁性流体が、永久磁石20が第1の板バネ42または第2の板バネ44に衝突するときの緩衝材として作用する。したがって、衝突の際に発生する騒音を軽減できる。
(7) Since the surface of the permanent magnet 20 is provided with a thin magnetic fluid so that at least a part of the permanent magnet 20 is covered, the permanent magnet 20 is used as the first leaf spring 42 or the second leaf spring 44 by the magnetic fluid. Acts as a cushioning material when it collides. Therefore, noise generated at the time of a collision can be reduced.
(8)磁性流体は、永久磁石20との間の磁気引力によって自ら永久磁石20に付着しようとするので、通常のオイルを使用する場合と比べて、所望する摩擦抵抗の軽減効果を得るために塗布すべき量は少量で済む。この結果、振動モータ100の製造コストを低減することができる。
(8) Since the magnetic fluid tries to adhere to the permanent magnet 20 by the magnetic attraction between the magnetic fluid and the permanent magnet 20, in order to obtain a desired frictional resistance reduction effect compared to the case of using normal oil. The amount to be applied is small. As a result, the manufacturing cost of the vibration motor 100 can be reduced.
(9)コイル12に電流が供給された際に、第1の平面コイル12aと第2の平面コイル12bとでは互いに逆方向の磁束が生成されるように構成したことで、第1の平面コイル12aと永久磁石20との間、および、第2の平面コイル12bと永久磁石20との間に、容易に引力および斥力を加えることができる。
(9) When the current is supplied to the coil 12, the first planar coil 12a and the second planar coil 12b are configured such that magnetic fluxes in opposite directions are generated in the first planar coil. Attraction and repulsion can be easily applied between 12a and the permanent magnet 20, and between the second planar coil 12b and the permanent magnet 20.
(10)平らなコイル12が用いられ、そのコイル12の面が積層基板10の上面10aに対して平行となるように配置される。したがって、積層基板10を薄くすることができるので振動モータ100全体の薄型化に貢献する。
(10) A flat coil 12 is used, and the surface of the coil 12 is arranged so as to be parallel to the upper surface 10 a of the multilayer substrate 10. Therefore, since the laminated substrate 10 can be made thin, it contributes to the thinning of the vibration motor 100 as a whole.
(11)ガイド枠30は非磁性材料によって形成されるので、永久磁石24とガイド枠30との間に働く磁力は無視できるほど小さい。したがって、永久磁石20の移動はよりスムーズとなる。
(11) Since the guide frame 30 is made of a nonmagnetic material, the magnetic force acting between the permanent magnet 24 and the guide frame 30 is negligibly small. Therefore, the movement of the permanent magnet 20 becomes smoother.
(12)第1の板バネ42および第2の板バネ44は非磁性材料によって形成されるので、永久磁石20と第1および第2の板バネ42、44との間に働く磁力は無視できるほど小さい。したがって、永久磁石20のよりスムーズな移動が実現される。
(12) Since the first plate spring 42 and the second plate spring 44 are made of a nonmagnetic material, the magnetic force acting between the permanent magnet 20 and the first and second plate springs 42 and 44 can be ignored. Small enough. Therefore, smoother movement of the permanent magnet 20 is realized.
(13)配線層54の面と、接着面30bとが接着される。これによりガイド枠30と積層基板10との接着強度をより高めることができる。
(13) The surface of the wiring layer 54 and the bonding surface 30b are bonded. Thereby, the adhesive strength between the guide frame 30 and the laminated substrate 10 can be further increased.
(14)永久磁石20の移動の際に摩擦抵抗を軽減したことで、軽減された分の摩擦抵抗に対抗する推力の分だけ、コイル12に流す電流を低減できる。その結果、消費電力の低減を図ることが可能な振動モータを提供することができる。
(14) Since the frictional resistance is reduced when the permanent magnet 20 is moved, the current flowing through the coil 12 can be reduced by the amount of thrust that opposes the reduced frictional resistance. As a result, a vibration motor capable of reducing power consumption can be provided.
(15)第1および第2の平面コイル12a、12bの表面に対向するように、永久磁石20の磁極面が配置されるように構成している。これにより、永久磁石20側から発生する磁力線(磁力線が生じる磁極面)と第1および第2の平面コイル12a、12bに電流を流すことにより発生する磁束線(磁束線が生じるコイル面)とが平行になる。これに対して、上記特許文献2に記載の構成では、磁石からの磁力線とコイルからの磁束線とは直交する。したがって、上記特許文献2に記載の構成に比べて振動モータ100における構成は、磁力線と磁束線とが重なる量が大きいので、その分、永久磁石20を移動させる際の駆動力を大きくすることができる。
(15) The magnetic pole surface of the permanent magnet 20 is arranged so as to face the surfaces of the first and second planar coils 12a and 12b. As a result, the lines of magnetic force generated from the permanent magnet 20 side (the magnetic pole surface where the lines of magnetic force are generated) and the magnetic flux lines generated when an electric current is passed through the first and second planar coils 12a and 12b (the coil surface where the magnetic flux lines are generated). Become parallel. On the other hand, in the structure of the said patent document 2, the magnetic force line from a magnet and the magnetic flux line from a coil are orthogonally crossed. Therefore, compared with the configuration described in Patent Document 2, the configuration of the vibration motor 100 has a large amount of overlapping of the magnetic lines of force and the lines of magnetic flux, and accordingly, the driving force when moving the permanent magnet 20 can be increased accordingly. it can.
(第2の実施の形態)
図4は、第2の実施の形態に係る携帯端末装置400を示す斜視図である。携帯端末装置400は、携帯電話やPDAなどの携帯端末であり、通信機能を有する。
(Second Embodiment)
FIG. 4 is a perspective view showing a portable terminal device 400 according to the second embodiment. The mobile terminal device 400 is a mobile terminal such as a mobile phone or a PDA, and has a communication function.
携帯端末装置400は、表示部402と、電源スイッチ404と、アンテナ406と、筐体408と、第1の実施の形態に係る振動モータ100と、を備える。これら以外の構成は、説明を明瞭にするために省略する。表示部402は、液晶パネルと、その上を覆うタッチパネルと、を含む。ユーザは、その液晶パネルに表示されるボタン等に対応するタッチパネルの部分を押し下げることで携帯端末装置400を操作する。ユーザは電源スイッチ404をオンにして携帯端末装置400に電源を入れる。アンテナ406は、無線信号を送受信する。
The mobile terminal device 400 includes a display unit 402, a power switch 404, an antenna 406, a housing 408, and the vibration motor 100 according to the first embodiment. Other configurations are omitted for the sake of clarity. The display unit 402 includes a liquid crystal panel and a touch panel that covers the liquid crystal panel. The user operates the portable terminal device 400 by pressing down a part of the touch panel corresponding to a button or the like displayed on the liquid crystal panel. The user turns on the power switch 404 to turn on the mobile terminal device 400. The antenna 406 transmits and receives radio signals.
図5は、携帯端末装置400の機能ブロック図である。携帯端末装置400は、振動モータ100と、アンテナ406と、通信部414と、を備える。通信部414はアンテナ406と接続される。
FIG. 5 is a functional block diagram of the mobile terminal device 400. The mobile terminal device 400 includes the vibration motor 100, an antenna 406, and a communication unit 414. The communication unit 414 is connected to the antenna 406.
移動制御部412は、入力端16、第1接続配線62および第4接続配線68を介して、所定の周波数でその極性が変わる駆動電流をコイル12に供給して振動モータ100の振動を制御する。この移動制御部412により、振動モータ100は、タッチパネルの部分が押圧されたことを検知した場合や、電話やEメールを着信した際にマナーモードに設定されている場合などに振動する。
通信部414は、アンテナ406を介して無線信号を送受信し、外部との通信を制御する。
The movement control unit 412 controls the vibration of the vibration motor 100 by supplying a drive current whose polarity changes at a predetermined frequency to the coil 12 via the input end 16, the first connection wiring 62 and the fourth connection wiring 68. . The movement control unit 412 causes the vibration motor 100 to vibrate when it is detected that the touch panel portion is pressed or when the manner mode is set when a call or e-mail is received.
The communication unit 414 transmits and receives radio signals via the antenna 406 and controls communication with the outside.
以上のように構成された携帯端末装置400の動作について説明する。通信部414がアンテナ406を通じて、携帯端末装置400への着信を知らせる無線信号を検知すると、通信部414は移動制御部412へ振動を開始せしめる信号を発信する。移動制御部412はその信号を受信すると、コイル12へ所定の周波数でその極性が反転する駆動電流を供給する。振動モータ100は第1の実施の形態の動作の項で述べた通りに振動する。振動モータ100は筐体408に固定されるので、振動モータ100の振動は筐体408に伝わり、筐体408が振動する。
The operation of the mobile terminal device 400 configured as described above will be described. When the communication unit 414 detects a wireless signal that notifies the mobile terminal device 400 of an incoming call through the antenna 406, the communication unit 414 transmits a signal that causes the movement control unit 412 to start vibration. When the movement control unit 412 receives the signal, the movement control unit 412 supplies a driving current whose polarity is inverted at a predetermined frequency to the coil 12. The vibration motor 100 vibrates as described in the operation section of the first embodiment. Since the vibration motor 100 is fixed to the housing 408, the vibration of the vibration motor 100 is transmitted to the housing 408, and the housing 408 vibrates.
第2の実施の形態に係る携帯端末装置400によれば、例えば以下の効果を得ることができる。
According to the mobile terminal device 400 according to the second embodiment, for example, the following effects can be obtained.
(16)上記の振動モータ100を振動源として搭載することで、振動モータ100が薄型化される分、装置全体の薄型化を図ることが可能となる。
(16) By mounting the vibration motor 100 as a vibration source, it is possible to reduce the thickness of the entire apparatus by reducing the thickness of the vibration motor 100.
(17)上記の振動モータ100を振動源として搭載することで、振動モータ100の消費電力が低減される分、装置全体の消費電力を低減することが可能となる。
(17) By mounting the vibration motor 100 as a vibration source, it is possible to reduce the power consumption of the entire apparatus as much as the power consumption of the vibration motor 100 is reduced.
(第3の実施の形態)
第3の実施の形態に係る振動モータ500は、第1の実施の形態に係る振動モータ100と同様にリニア駆動型振動モータ(リニアモータ)である。第1の実施の形態に係る振動モータ100と第3の実施の形態に係る振動モータ500との差異のうち特徴的なのは、永久磁石の磁極の対の数および平面コイルの配置である。振動モータ500では、対となる磁極を2つ有し可動部を構成する永久磁石が、コイルとの間に働く引きつけ合う磁力(以降磁気引力と略す)および遠ざけ合う磁力(以降磁気斥力と略す)によって往復移動を行う。これにより、振動モータ500が振動する。2つの平面コイルは基板の厚み方向に重ねて配置される。
(Third embodiment)
The vibration motor 500 according to the third embodiment is a linear drive type vibration motor (linear motor) similarly to the vibration motor 100 according to the first embodiment. Among the differences between the vibration motor 100 according to the first embodiment and the vibration motor 500 according to the third embodiment, the characteristic is the number of pairs of magnetic poles of the permanent magnet and the arrangement of the planar coils. In the vibration motor 500, a permanent magnet having two magnetic poles that form a pair and forming a movable part has an attractive magnetic force (hereinafter abbreviated as magnetic attractive force) acting between the coils and a magnetic force (hereinafter abbreviated as magnetic repulsive force). Move back and forth with. Thereby, the vibration motor 500 vibrates. The two planar coils are arranged so as to overlap in the thickness direction of the substrate.
図7は、第3の実施の形態に係る振動モータ500の上面図である。図8は、図7のA−A線断面図である。図7ではカバー基板502を取り外した状態を示す。また、図7では、第1絶縁樹脂層551の下にある第1の平面コイル512a、第1ビア504および第2ビア506を示す。ガイド枠530および移動子520の下に隠れる部分を破線で、それ以外の部分を実線で示す。以下では、図7および図8を使用しながら振動モータ500の構成を説明する。
FIG. 7 is a top view of a vibration motor 500 according to the third embodiment. 8 is a cross-sectional view taken along line AA in FIG. FIG. 7 shows a state where the cover substrate 502 is removed. Further, FIG. 7 shows the first planar coil 512a, the first via 504, and the second via 506 under the first insulating resin layer 551. A portion hidden under the guide frame 530 and the mover 520 is indicated by a broken line, and the other portion is indicated by a solid line. Below, the structure of the vibration motor 500 is demonstrated, using FIG. 7 and FIG.
振動モータ500は、平面コイル512と総称される第1の平面コイル512aおよび第2の平面コイル512bを含む積層基板510と、移動子520と、ガイド枠530と、第1の板バネ542および第2の板バネ544と、カバー基板502と、を備える。以下、積層基板510の面のうち移動子520が搭載されている面を上面とし、その反対側の面を下面とする。また、説明の便宜上、積層基板510の下面が地表を向いており、重力は下方向に働く場合について考える。
The vibration motor 500 includes a laminated substrate 510 including a first planar coil 512a and a second planar coil 512b collectively referred to as a planar coil 512, a moving element 520, a guide frame 530, a first leaf spring 542, and a first planar coil 512b. 2 leaf springs 544 and a cover substrate 502. Hereinafter, of the surfaces of the multilayer substrate 510, the surface on which the moving element 520 is mounted is the upper surface, and the opposite surface is the lower surface. Further, for convenience of explanation, consider a case where the lower surface of the multilayer substrate 510 faces the ground surface and gravity works downward.
積層基板510は、第1絶縁樹脂層551と、第1の平面コイル512aが形成される第1配線層552と、第2絶縁樹脂層553と、第2の平面コイル512bが形成される第2配線層554と、第3絶縁樹脂層555と、を上面側からこの順番に積層してなる基板である。第1絶縁樹脂層551、第2絶縁樹脂層553および第3絶縁樹脂層555は、レジスト材料等によって形成される絶縁層である。第2絶縁樹脂層553には、第1の平面コイル512aと第2の平面コイル512bとを電気的に接続する第1ビア504が設けられる。第1絶縁樹脂層551は第1の平面コイル512aを外部から絶縁する。第3絶縁樹脂層555は第2の平面コイル512bを外部から絶縁する。
The multilayer substrate 510 includes a first insulating resin layer 551, a first wiring layer 552 on which the first planar coil 512a is formed, a second insulating resin layer 553, and a second plane on which the second planar coil 512b is formed. A substrate in which a wiring layer 554 and a third insulating resin layer 555 are laminated in this order from the upper surface side. The first insulating resin layer 551, the second insulating resin layer 553, and the third insulating resin layer 555 are insulating layers formed of a resist material or the like. The second insulating resin layer 553 is provided with a first via 504 that electrically connects the first planar coil 512a and the second planar coil 512b. The first insulating resin layer 551 insulates the first planar coil 512a from the outside. The third insulating resin layer 555 insulates the second planar coil 512b from the outside.
第1の平面コイル512aおよび第2の平面コイル512bはどちらも平らな渦巻状のコイルであり、そのコイルの面が積層基板510の上面510aに対して平行となるように形成される。ここで、平行とは、互いに平行な状態だけでなく、移動子520が移動する際の妨げとならない程度に平行な状態からずれた状態を含んでいる。第1の平面コイル512aおよび第2の平面コイル512bはいずれも矩形であり、後述する移動子520の移動方向に沿う辺を有する。
第1の平面コイル512aおよび第2の平面コイル512bは、それらを積層基板510の上面510aへ投影した像が互いに重なり合うように形成される。
Both the first planar coil 512 a and the second planar coil 512 b are flat spiral coils, and are formed so that the surfaces of the coils are parallel to the upper surface 510 a of the multilayer substrate 510. Here, the term “parallel” includes not only a state parallel to each other but also a state deviated from a parallel state to the extent that the moving element 520 does not hinder the movement. The first planar coil 512a and the second planar coil 512b are both rectangular and have sides along the moving direction of the mover 520 described later.
The first planar coil 512a and the second planar coil 512b are formed so that images obtained by projecting them onto the upper surface 510a of the multilayer substrate 510 overlap each other.
第1の平面コイル512aの辺のうち、移動子520の移動方向に沿った辺に含まれる配線群の幅d2が、移動方向と交差する辺に含まれる配線群の幅d1よりも小さくなるように、第1の平面コイル512aが形成される。これは、移動方向に沿った辺に含まれる配線群の配線の幅、ピッチ又はその両方を、移動方向と交差する辺に含まれる配線群のそれよりも小さくすることにより達成される。
第2の平面コイル512bも同様に形成される。
平面コイル512のさらなる詳細は図9および図10で後述する。
Of the sides of the first planar coil 512a, the width d2 of the wiring group included in the side along the moving direction of the movable element 520 is smaller than the width d1 of the wiring group included in the side intersecting the moving direction. In addition, the first planar coil 512a is formed. This is achieved by making the wiring width, pitch, or both of the wiring group included in the side along the moving direction smaller than that of the wiring group included in the side crossing the moving direction.
The second planar coil 512b is formed similarly.
Further details of the planar coil 512 will be described later with reference to FIGS.
移動子520は、第1磁気シールド部材522と、第1の永久磁石524と、第2の永久磁石526と、を含む。
第1の永久磁石524および第2の永久磁石526はそれぞれ、フェライトやネオジウムなどの強磁性材料からなる矩形状に形成され、その厚み方向に1対の磁極を成すように着磁されている。第1の永久磁石524および第2の永久磁石526の面積および厚みはほぼ同じくなるよう形成される。
The mover 520 includes a first magnetic shield member 522, a first permanent magnet 524, and a second permanent magnet 526.
Each of the first permanent magnet 524 and the second permanent magnet 526 is formed in a rectangular shape made of a ferromagnetic material such as ferrite or neodymium, and is magnetized so as to form a pair of magnetic poles in the thickness direction. The first permanent magnet 524 and the second permanent magnet 526 are formed to have substantially the same area and thickness.
第1の永久磁石524と第2の永久磁石526とは、その厚み方向でずれがないよう接着固定される。そのようにして接着固定された第1の永久磁石524および第2の永久磁石526を総称して接着済み永久磁石と呼ぶ。第2の永久磁石526の重心から第1の永久磁石524の重心へ向かう方向を矢印A1で示し、その逆の方向を矢印A2で示す。
The first permanent magnet 524 and the second permanent magnet 526 are bonded and fixed so that there is no deviation in the thickness direction. The first permanent magnet 524 and the second permanent magnet 526 thus bonded and fixed together are collectively referred to as bonded permanent magnets. A direction from the center of gravity of the second permanent magnet 526 to the center of gravity of the first permanent magnet 524 is indicated by an arrow A1, and the opposite direction is indicated by an arrow A2.
接着済み永久磁石は、積層基板510に面し平面コイル512のコイル面に対向する第1磁極面560と、その反対側の第2磁極面562と、を有する。第1の永久磁石524のN極と第2の永久磁石526のS極とが第1磁極面560に配置される。第1の永久磁石524のS極と第2の永久磁石526のN極とが第2磁極面562に配置される。
接着済み永久磁石の側面のうち第1の板バネ542が当接する部分を第1当接部分E、第2の板バネ544が当接する部分を第2当接部分Fと呼ぶ。
第2磁極面562には、第1磁気シールド部材522が取り付けられる。
The bonded permanent magnet has a first magnetic pole surface 560 that faces the laminated substrate 510 and faces the coil surface of the planar coil 512, and a second magnetic pole surface 562 on the opposite side. The north pole of the first permanent magnet 524 and the south pole of the second permanent magnet 526 are disposed on the first magnetic pole surface 560. The S pole of the first permanent magnet 524 and the N pole of the second permanent magnet 526 are disposed on the second magnetic pole surface 562.
Of the side surfaces of the bonded permanent magnet, a portion where the first plate spring 542 contacts is referred to as a first contact portion E, and a portion where the second plate spring 544 contacts is referred to as a second contact portion F.
A first magnetic shield member 522 is attached to the second magnetic pole surface 562.
接着済み永久磁石を含む移動子520は、平面コイル512から接着済み永久磁石へ及ぼされる磁力によって積層基板510の上面510a側を、第1磁極面560における磁極の配置の方向(矢印A1または矢印A2の方向、以降磁極配置方向と略す)に沿って移動する。
The mover 520 including the bonded permanent magnet is disposed on the upper surface 510a side of the laminated substrate 510 by the magnetic force exerted from the planar coil 512 to the bonded permanent magnet, in the direction of the magnetic pole arrangement on the first magnetic pole surface 560 (arrow A1 or arrow A2). (Hereinafter abbreviated as the magnetic pole arrangement direction).
第1磁気シールド部材522は、接着済み永久磁石の第2磁極面562からはみ出さないよう形成された矩形の板状部材であり、透磁率の比較的高い材料によって形成される。この材料としては、ソフトフェライト(軟鉄)、ケイ素鋼板、パーマロイ(鉄とニッケルの合金)、スーパーマロイ(鉄とニッケルとモリブデンの合金)、パーメンジュール(鉄とコバルトの合金)、センダスト(鉄とシリコンとアルミニウムの合金)などの軟磁性材料が適している。第1磁気シールド部材522は透磁率が高いので、周囲の磁束線がより多くその内部を選択的に通過する。これにより、接着済み永久磁石からの磁束が第1磁気シールド部材522を越えて広がることを抑制する。
なお、前述のごとく第1の永久磁石524および第2の永久磁石526は矩形であり、第1磁気シールド部材522は第2磁極面562からはみ出さないので、移動子520は全体として矩形状である。
以降、第1磁気シールド部材522の質量は、接着済み永久磁石の質量に比べて小さく、接着済み永久磁石の重心Gと移動子520の重心とがほぼ一致する場合を考える。したがって、移動子520の重心を便宜上重心Gと呼ぶ。
The first magnetic shield member 522 is a rectangular plate-shaped member formed so as not to protrude from the second magnetic pole surface 562 of the bonded permanent magnet, and is formed of a material having a relatively high magnetic permeability. This material includes soft ferrite (soft iron), silicon steel plate, permalloy (iron-nickel alloy), supermalloy (iron-nickel-molybdenum alloy), permendur (iron-cobalt alloy), sendust (iron and iron) A soft magnetic material such as an alloy of silicon and aluminum is suitable. Since the first magnetic shield member 522 has a high magnetic permeability, there are more surrounding magnetic flux lines and selectively pass through the inside. Thereby, the magnetic flux from the bonded permanent magnet is prevented from spreading beyond the first magnetic shield member 522.
As described above, the first permanent magnet 524 and the second permanent magnet 526 are rectangular, and the first magnetic shield member 522 does not protrude from the second magnetic pole surface 562. Therefore, the moving element 520 has a rectangular shape as a whole. is there.
Hereinafter, the case where the mass of the first magnetic shield member 522 is smaller than the mass of the bonded permanent magnet, and the center of gravity G of the bonded permanent magnet and the center of gravity of the moving element 520 substantially coincide is considered. Therefore, the center of gravity of the mover 520 is referred to as the center of gravity G for convenience.
第1磁気シールド部材522と接着済み永久磁石との間には比較的強い磁気引力が働くので、第1磁気シールド部材522は接着済み永久磁石にこの磁気引力によって固定される。
Since a relatively strong magnetic attractive force acts between the first magnetic shield member 522 and the bonded permanent magnet, the first magnetic shield member 522 is fixed to the bonded permanent magnet by this magnetic attractive force.
詳細は後述するが、第1の板バネ542および第2の板バネ544には折り返された折曲部が設けられている。その折曲部は、図7に示す第1当接部分Eおよび第2当接部分Fが磁極配置方向(矢印A1または矢印A2の方向)に沿って並び、振動モータ500の上面から見た場合にそれらを結ぶ線分EFが移動子520の重心Gを通過するよう形成される。また、移動子520の往復移動中、第1当接部分Eおよび第2当接部分Fは接着済み永久磁石の側面上でその位置を変えない。
なお、線分EFは移動子520の重心Gの十分近く、たとえば重心Gから接着済み永久磁石の短辺の10分の1程度の距離の範囲内を通過してもよい。また、第1当接部分Eおよび第2当接部分Fは幅を有する面であってもよい。
Although details will be described later, the first plate spring 542 and the second plate spring 544 are provided with bent portions. In the bent portion, when the first contact portion E and the second contact portion F shown in FIG. 7 are arranged along the magnetic pole arrangement direction (the direction of the arrow A1 or the arrow A2) and viewed from the upper surface of the vibration motor 500. A line segment EF connecting them to each other passes through the center of gravity G of the moving element 520. Further, during the reciprocating movement of the moving element 520, the positions of the first contact portion E and the second contact portion F do not change on the side surface of the bonded permanent magnet.
Note that the line segment EF may be sufficiently close to the center of gravity G of the mover 520, for example, within a range of about a tenth of the short side of the bonded permanent magnet from the center of gravity G. Further, the first contact portion E and the second contact portion F may be surfaces having a width.
移動子520を上から見たときの移動子520の4つの角部520aは、丸みを帯びた形状に加工されている。また、移動子520の移動方向側の縁部520bも、丸みを帯びた形状に加工されている。
The four corners 520a of the movable element 520 when the movable element 520 is viewed from above are processed into a rounded shape. The edge 520b on the moving direction side of the moving element 520 is also processed into a rounded shape.
ガイド枠530は、移動子520および平面コイル512を囲むように積層基板510の上面510a上に設けられる。ガイド枠530は、第1の板バネ542および第2の板バネ544と共に移動子520の往復移動を振動モータ500全体に伝達するように形成された、長方形の枠であり、アルミニウムやプラスチックなどの非磁性素材によって形成される。
The guide frame 530 is provided on the upper surface 510 a of the multilayer substrate 510 so as to surround the moving element 520 and the planar coil 512. The guide frame 530 is a rectangular frame formed so as to transmit the reciprocating movement of the moving element 520 to the entire vibration motor 500 together with the first leaf spring 542 and the second leaf spring 544, and is made of aluminum or plastic. It is made of a non-magnetic material.
ここで便宜的にガイド枠530を、磁極配置方向に沿う第1ガイド部532と、第1ガイド部532と対向し磁極配置方向に沿う第2ガイド部534と、磁極配置方向の一端側に位置する第1バネ取り付け部536と、磁極配置方向の他端側に位置する第2バネ取り付け部538と、に分ける。
Here, for the sake of convenience, the guide frame 530 is positioned on the first guide portion 532 along the magnetic pole arrangement direction, the second guide portion 534 facing the first guide portion 532 along the magnetic pole arrangement direction, and one end side in the magnetic pole arrangement direction. The first spring mounting portion 536 is divided into a second spring mounting portion 538 located on the other end side in the magnetic pole arrangement direction.
図7に示されるとおり、第1ガイド部532および第2ガイド部534は、平面コイル512の辺のうち移動子520の移動方向に沿った辺に含まれる配線群と重複する。
なお、図7は移動方向に沿った配線群の全てが第1ガイド部532および第2ガイド部534の下になっている場合を示しているが、配線群の一部のみが重複してもよい。
As shown in FIG. 7, the first guide portion 532 and the second guide portion 534 overlap the wiring group included in the side along the moving direction of the moving element 520 among the sides of the planar coil 512.
FIG. 7 shows a case where all the wiring groups along the moving direction are under the first guide portion 532 and the second guide portion 534, but even if only a part of the wiring groups overlap. Good.
第1バネ取り付け部536の内面536aに第1の板バネ542が取り付けられる。第1の板バネ542は、PETなどの非磁性材料からなるバネである。第1の板バネ542の一部は内面536aに接着固定される。第1の板バネ542のうち、内面536aから出て第1当接部分Eに至るまでの間には一度折り返された折曲部542aが設けられる。
A first leaf spring 542 is attached to the inner surface 536 a of the first spring attachment portion 536. The first leaf spring 542 is a spring made of a nonmagnetic material such as PET. A part of the first leaf spring 542 is bonded and fixed to the inner surface 536a. Of the first leaf spring 542, a bent portion 542a that is folded once is provided from the inner surface 536a to the first contact portion E.
第2バネ取り付け部538の内面538aに第2の板バネ544が取り付けられる。第2の板バネ544は、第1の板バネ542と同様、PETなどの非磁性材料からなるバネである。第2の板バネ544の一部は内面538aに接着固定される。第2の板バネ544のうち、内面538aから出て第2当接部分Fに至るまでの間には一度折り返された折曲部544aが設けられる。
第1の板バネ542および第2の板バネ544は、上から見ると、ガイド枠530の中心を通り積層基板510に垂直な軸に対して180度の回転対称となっている。
A second leaf spring 544 is attached to the inner surface 538 a of the second spring attachment portion 538. Similar to the first plate spring 542, the second plate spring 544 is a spring made of a nonmagnetic material such as PET. A part of the second leaf spring 544 is bonded and fixed to the inner surface 538a. Of the second leaf spring 544, a bent portion 544a that is folded once is provided from the inner surface 538a to the second contact portion F.
When viewed from above, the first plate spring 542 and the second plate spring 544 have a rotational symmetry of 180 degrees with respect to an axis that passes through the center of the guide frame 530 and is perpendicular to the laminated substrate 510.
各板バネは、図7のような静止状態(平面コイル512に電流を流していない状態)においては移動子520を磁極配置方向の略中央部に保持する。そして、積層基板510の上面510a上において移動子520が往復移動する際、第1の板バネ542および第2の板バネ544は交互に移動子520によって押される。これによりこれらの板バネからガイド枠530に圧力が伝達される。その結果、ガイド枠530およびそれを含む振動モータ500全体が振動する。
Each leaf spring holds the moving element 520 at a substantially central portion in the magnetic pole arrangement direction in a stationary state as shown in FIG. 7 (a state in which no current flows through the planar coil 512). When the movable element 520 reciprocates on the upper surface 510 a of the multilayer substrate 510, the first leaf spring 542 and the second leaf spring 544 are alternately pressed by the movable element 520. As a result, pressure is transmitted from these leaf springs to the guide frame 530. As a result, the guide frame 530 and the entire vibration motor 500 including the guide frame 530 vibrate.
ガイド枠530の上面にはカバー基板502が接着され、移動子520の飛び出しを防止する。
積層基板510の下面510bには第2磁気シールド部材570が取り付けられる。第2磁気シールド部材570は、第1磁気シールド部材522と同様の材料によって形成される。第2磁気シールド部材570は透磁率が高いので、周囲の磁束線がより多くその内部を選択的に通過する。これにより、接着済み永久磁石からの磁束が第2磁気シールド部材570を越えて広がることを抑制する。
A cover substrate 502 is bonded to the upper surface of the guide frame 530 to prevent the mover 520 from popping out.
A second magnetic shield member 570 is attached to the lower surface 510 b of the multilayer substrate 510. The second magnetic shield member 570 is formed of the same material as the first magnetic shield member 522. Since the second magnetic shield member 570 has a high magnetic permeability, there are more surrounding magnetic flux lines and selectively pass through the inside thereof. Thereby, the magnetic flux from the bonded permanent magnet is prevented from spreading beyond the second magnetic shield member 570.
図9は、図7の第1配線層552の上面図である。第1の平面コイル512aの渦巻の中心に当たる一端は第1ビア504を介して第2の平面コイル512bの渦巻の中心に当たる一端と接続される。第1の平面コイル512aの渦巻の外側に当たる一端は第2ビア506と接続される。第2ビア506は、積層基板510の下面510bに設けられた第1電極パッド506aに接続される。
FIG. 9 is a top view of the first wiring layer 552 of FIG. One end corresponding to the center of the spiral of the first planar coil 512a is connected to one end corresponding to the center of the spiral of the second planar coil 512b via the first via 504. One end of the first planar coil 512 a that contacts the outside of the spiral is connected to the second via 506. The second via 506 is connected to the first electrode pad 506 a provided on the lower surface 510 b of the multilayer substrate 510.
図10は、図7の第2配線層554の上面図である。第2の平面コイル512bの渦巻の外側に当たる一端は第3ビア508と接続される。第3ビア508は、積層基板510の下面510bに設けられた第2電極パッド508aに接続される。
FIG. 10 is a top view of the second wiring layer 554 of FIG. One end of the second planar coil 512b that is outside the spiral is connected to the third via 508. The third via 508 is connected to the second electrode pad 508 a provided on the lower surface 510 b of the multilayer substrate 510.
第2ビア506および第3ビア508は第1電極パッド506aおよび第2電極パッド508aを介してそれぞれ振動モータ500の駆動回路に接続される。図9および図10に示されるとおり、第1の平面コイル512aの渦巻の巻回の方向と、第2の平面コイル512bの渦巻の巻回の方向は異なるように形成される。このような平面コイル512の構成では、第2ビア506または第3ビア508から駆動電流を流すと、第1の平面コイル512aおよび第2の平面コイル512bには同じ向きの磁束が発生する。そしてそれぞれの平面コイル512に発生する磁束の向きは、駆動電流の極性が反転すると反転する。その結果、駆動電流の極性の時間的変動に応じて、それぞれの平面コイル512によって発生される磁束の向きも時間的に変動する。
The second via 506 and the third via 508 are connected to the drive circuit of the vibration motor 500 via the first electrode pad 506a and the second electrode pad 508a, respectively. As shown in FIGS. 9 and 10, the spiral direction of the first planar coil 512a is formed different from the spiral direction of the second planar coil 512b. In such a configuration of the planar coil 512, when a drive current is passed from the second via 506 or the third via 508, magnetic fluxes in the same direction are generated in the first planar coil 512a and the second planar coil 512b. The direction of the magnetic flux generated in each planar coil 512 is reversed when the polarity of the drive current is reversed. As a result, the direction of the magnetic flux generated by each planar coil 512 also varies with time in accordance with the temporal variation of the polarity of the drive current.
図11は、図7の振動モータ500の下面図である。第2磁気シールド部材570には、第1電極パッド506aおよび第2電極パッド508aが覆われないよう切り欠き部分が設けられる。これにより外部から給電端子などを第1電極パッド506aおよび第2電極パッド508aへ接続することが可能となる。
FIG. 11 is a bottom view of the vibration motor 500 of FIG. The second magnetic shield member 570 is provided with a cutout portion so that the first electrode pad 506a and the second electrode pad 508a are not covered. This makes it possible to connect a power supply terminal or the like from the outside to the first electrode pad 506a and the second electrode pad 508a.
図12は、移動子520が第1の板バネ542側に寄った状態を示す上面図である。移動子520は第1の板バネ542によって第2の板バネ544側に付勢される。また、第1の板バネ542の折曲部542aは、静止状態と比べて折りたたまれた状態となる。したがって、折曲部542aが元の状態に戻ろうとする力により、移動子520は第2の板バネ544側へさらに付勢される。図12のように移動子520が片方の板バネ側に寄った状態であっても移動子520は、振動モータ500の上面から見た場合に線分EFが移動子520の重心Gを通過する状態を維持しながら移動する。第2の板バネ544側に寄った場合についても同様である。
FIG. 12 is a top view showing a state in which the moving element 520 is close to the first leaf spring 542 side. The mover 520 is biased toward the second plate spring 544 by the first plate spring 542. In addition, the bent portion 542a of the first leaf spring 542 is folded compared to the stationary state. Therefore, the moving element 520 is further biased toward the second leaf spring 544 by the force of the bent portion 542a returning to the original state. As shown in FIG. 12, even when the moving element 520 is close to one leaf spring, the moving element 520 has a line segment EF passing through the center of gravity G of the moving element 520 when viewed from the upper surface of the vibration motor 500. Move while maintaining state. The same applies to the case of approaching the second leaf spring 544 side.
以上のように構成された振動モータ500の動作について説明する。振動モータ500の静止状態においては第1の平面コイル512aおよび第2の平面コイル512bには駆動電流は流れず、第1の板バネ542および第2の板バネ544によって挟持された移動子520は、ガイド枠530の磁極配置方向の略中央部に図7のように静止する。
The operation of the vibration motor 500 configured as described above will be described. When the vibration motor 500 is stationary, no driving current flows through the first planar coil 512a and the second planar coil 512b, and the movable element 520 sandwiched between the first leaf spring 542 and the second leaf spring 544 As shown in FIG. 7, the guide frame 530 is stationary at a substantially central portion in the magnetic pole arrangement direction.
振動モータ500を駆動する際は、第2ビア506または第3ビア508から、所定の周波数でその極性が反転する駆動電流(交流電流)が供給される。これにより第1の平面コイル512aと第2の平面コイル512bには、そのコイル面に垂直な方向、つまり積層基板510の上面510aに垂直な方向に磁束が発生する。ここで第1の平面コイル512aに発生する磁束の向きは第2の平面コイル512bに発生する磁束の向きと同じである。
When driving the vibration motor 500, a drive current (AC current) whose polarity is inverted at a predetermined frequency is supplied from the second via 506 or the third via 508. Thereby, magnetic flux is generated in the first planar coil 512a and the second planar coil 512b in a direction perpendicular to the coil surfaces, that is, a direction perpendicular to the upper surface 510a of the multilayer substrate 510. Here, the direction of the magnetic flux generated in the first planar coil 512a is the same as the direction of the magnetic flux generated in the second planar coil 512b.
上向きに磁束が発生するよう平面コイル512に駆動電流が流れる場合、平面コイル512に面する永久磁石のN極にはローレンツ力の反作用力の合力として平面コイル512の中心から遠ざかる向きの力が加えられる。反対にS極には平面コイル512の中心へ向かう向きの力が加えられる。下向きに磁束が発生するよう平面コイル512に駆動電流が流れる場合は、加えられる力の向きが逆になる。
When a driving current flows through the planar coil 512 so as to generate a magnetic flux upward, a force in a direction away from the center of the planar coil 512 is applied to the north pole of the permanent magnet facing the planar coil 512 as a resultant force of the reaction force of the Lorentz force. It is done. On the contrary, a force directed toward the center of the planar coil 512 is applied to the south pole. When a drive current flows through the planar coil 512 so that a magnetic flux is generated downward, the direction of the applied force is reversed.
したがって、第2ビア506から第3ビア508に向けて駆動電流が流れる場合は、N極が平面コイル512と対向する第1の永久磁石524には矢印A1の向きに力が加えられる。S極が平面コイル512と対向する第2の永久磁石526にも矢印A1の向きに力が加えられる。結果として移動子520には、積層基板510の上面510a上を、矢印A1の向きに、第1の板バネ542を押す形で移動せしめる力が働く。
駆動電流の向きが反転した場合は、N極が平面コイル512と対向する第1の永久磁石524には矢印A2の向きに力が加えられる。S極が平面コイル512と対向する第2の永久磁石526にも矢印A2の向きに力が加えられる。結果として移動子520には、積層基板510の上面510a上を、矢印A2の向きに、第2の板バネ544を押す形で移動せしめる力が働く。このようにして、駆動電流の反転とほぼ同じ周波数で移動子520がその周り、例えば積層基板510およびガイド枠530に対して往復移動する。移動子520の質量はその周りの質量に対して無視できないので、移動子520の往復移動に合わせて、その周りも振動する。
Therefore, when a drive current flows from the second via 506 toward the third via 508, a force is applied to the first permanent magnet 524 whose N pole faces the planar coil 512 in the direction of the arrow A1. A force is also applied to the second permanent magnet 526 whose S pole faces the planar coil 512 in the direction of arrow A1. As a result, a force is applied to the mover 520 to move the first plate spring 542 in the direction of the arrow A1 on the upper surface 510a of the multilayer substrate 510.
When the direction of the drive current is reversed, a force is applied to the first permanent magnet 524 whose N pole faces the planar coil 512 in the direction of the arrow A2. A force is also applied to the second permanent magnet 526 whose S pole faces the planar coil 512 in the direction of the arrow A2. As a result, a force is applied to the mover 520 to move the second plate spring 544 in the direction of the arrow A2 on the upper surface 510a of the multilayer substrate 510. In this way, the moving element 520 reciprocates around the moving substrate 520, for example, with respect to the laminated substrate 510 and the guide frame 530 at substantially the same frequency as the reversal of the driving current. Since the mass of the moving element 520 is not negligible with respect to the surrounding mass, the surrounding area vibrates in accordance with the reciprocating movement of the moving element 520.
平面コイル512から第1の永久磁石524および第2の永久磁石526に及ぼされる磁力は、積層基板510の上面510aに垂直な方向の成分を有する。これは平面コイル512を磁石に見立てることにより理解される。つまり平面コイル512の上がN極となるように駆動電流が流れると、第1の永久磁石524は磁気斥力によって浮き上がろうとする一方、第2の永久磁石526は磁気引力により積層基板510の上面510aに引きつけられる。したがって、移動子520には、第1の永久磁石524側を積層基板510の上面510aに対して浮き上がらせるようなトルクが加えられる。平面コイル512の上がS極となるように駆動電流が流れると、移動子520には、第2の永久磁石526側を積層基板510の上面510aに対して浮き上がらせるようなトルクが加えられる。
The magnetic force exerted from the planar coil 512 to the first permanent magnet 524 and the second permanent magnet 526 has a component in a direction perpendicular to the upper surface 510 a of the laminated substrate 510. This is understood by regarding the planar coil 512 as a magnet. In other words, when a drive current flows so that the top of the planar coil 512 has an N pole, the first permanent magnet 524 tries to float by the magnetic repulsion, while the second permanent magnet 526 has a magnetic attraction force. It is attracted to the upper surface 510a. Therefore, a torque is applied to the moving element 520 so that the first permanent magnet 524 side is lifted with respect to the upper surface 510 a of the multilayer substrate 510. When a driving current flows so that the top of the planar coil 512 is an S pole, a torque is applied to the moving element 520 so that the second permanent magnet 526 side is lifted with respect to the upper surface 510 a of the multilayer substrate 510.
図13(a)〜(d)は、移動子520の往復移動の様子を示す概念図である。移動子520は、図13(a)、図13(b)、図13(c)、図13(d)と進んで再び図13(a)に戻るような往復移動を行う。なお、図13中ではカバー基板502、第2磁気シールド部材570、第1の板バネ542および第2の板バネ544は図示せず省略している。また、説明を明瞭にするため、第1の平面コイル512aおよび第2の平面コイル512bをひとつの平面コイル512として示している。
FIGS. 13A to 13D are conceptual diagrams showing how the moving element 520 reciprocates. The mover 520 performs a reciprocating movement as shown in FIG. 13A, FIG. 13B, FIG. 13C, and FIG. 13D and returning to FIG. 13A again. In FIG. 13, the cover substrate 502, the second magnetic shield member 570, the first leaf spring 542, and the second leaf spring 544 are not shown and are omitted. For the sake of clarity, the first planar coil 512a and the second planar coil 512b are shown as one planar coil 512.
図13(a)は、移動子520がガイド枠530の磁極配置方向の中央付近を矢印A1の方向に移動している時の概略的な断面図である。ここでは第2ビア506から第3ビア508に向けて駆動電流を流す。したがって上述の通り移動子520には、積層基板510の上面510a上を、矢印A1の方向に移動せしめる推力が働く。
FIG. 13A is a schematic cross-sectional view when the mover 520 is moving in the direction of the arrow A1 around the center of the guide frame 530 in the magnetic pole arrangement direction. Here, a drive current flows from the second via 506 toward the third via 508. Therefore, as described above, the moving element 520 has a thrust force that moves the upper surface 510a of the multilayer substrate 510 in the direction of the arrow A1.
この際、上述の通り第1の永久磁石524は平面コイル512と反発して浮き上がろうとし、第2の永久磁石526は積層基板510へ引きつけられる。したがって、移動子520が第1バネ取り付け部536側へ向かって移動する際、移動子520の縁部520bのうち第2バネ取り付け部538側の縁部P2が積層基板510の上面510aと接した状態で移動する。また、移動子520の縁部520bのうち第1バネ取り付け部536側の縁部P1が積層基板510の上面510aから離れた状態で移動する。このように、移動子520はその第1磁極面560が積層基板510の上面510aに対して傾斜した状態で移動する。
At this time, as described above, the first permanent magnet 524 repels the plane coil 512 and tends to float, and the second permanent magnet 526 is attracted to the laminated substrate 510. Therefore, when the mover 520 moves toward the first spring attachment portion 536, the edge portion P2 on the second spring attachment portion 538 side of the edge portion 520b of the mover 520 is in contact with the upper surface 510a of the multilayer substrate 510. Move in state. Further, the edge portion P1 on the first spring mounting portion 536 side of the edge portion 520b of the moving element 520 moves in a state where it is separated from the upper surface 510a of the multilayer substrate 510. As described above, the mover 520 moves in a state where the first magnetic pole surface 560 is inclined with respect to the upper surface 510 a of the multilayer substrate 510.
図13(b)は、移動子520が最も第1バネ取り付け部536側に寄り、そこでその移動の向きを変える際の概略的な断面図である。まず、移動子520は図13(a)の状態から第1の板バネ542(図7および図8参照)を押してゆき、もうそれ以上は押せない程度まで押す。この時の移動子520が図13(b)の鎖線で示される。ここで駆動電流の向きが反転すると第1の永久磁石524および第2の永久磁石526に働く力の向きが逆になる。この状態では上述の通り、第2の永久磁石526は平面コイル512と反発して浮き上がろうとし、第1の永久磁石524は積層基板510へ引きつけられる。これにより、図13(b)に示すように第2バネ取り付け部538側の縁部P2が積層基板510の上面510aから離れ、第1バネ取り付け部536側の縁部P1が積層基板510の上面510aに接するようになる。そして、移動子520は矢印A2の方向に移動を開始する。
FIG. 13B is a schematic cross-sectional view when the moving element 520 is closest to the first spring mounting portion 536 side and the direction of the movement is changed there. First, the moving element 520 pushes the first leaf spring 542 (see FIGS. 7 and 8) from the state of FIG. 13A, and pushes it to the extent that it cannot be pushed any more. The moving element 520 at this time is indicated by a chain line in FIG. Here, when the direction of the drive current is reversed, the directions of the forces acting on the first permanent magnet 524 and the second permanent magnet 526 are reversed. In this state, as described above, the second permanent magnet 526 is repelled by the planar coil 512 and tends to float, and the first permanent magnet 524 is attracted to the laminated substrate 510. Accordingly, as shown in FIG. 13B, the edge P2 on the second spring mounting portion 538 side is separated from the upper surface 510a of the multilayer substrate 510, and the edge P1 on the first spring mounting portion 536 side is the upper surface of the multilayer substrate 510. 510a comes into contact. Then, the mover 520 starts moving in the direction of the arrow A2.
図13(c)は、移動子520がガイド枠530の磁極配置方向の中央付近を矢印A2の方向に移動している時の概略的な断面図である。この時の動作は、図13(a)で説明した動作と同様であるので説明を省略する。
FIG. 13C is a schematic cross-sectional view when the mover 520 is moving in the direction of the arrow A2 in the vicinity of the center of the guide frame 530 in the magnetic pole arrangement direction. Since the operation at this time is the same as the operation described with reference to FIG.
図13(d)は、移動子520が最も第2バネ取り付け部538側に寄り、そこでその移動の向きを変える時の概略的な断面図である。この時の動作は、図13(b)で説明した動作と同様であるので説明を省略する。
FIG. 13D is a schematic cross-sectional view when the moving element 520 is closest to the second spring mounting portion 538 side and the direction of movement is changed there. Since the operation at this time is the same as the operation described in FIG.
このようにして、駆動電流の反転とほぼ同じ周波数で、移動子520の接触部分が切り替わりつつ、移動子520が積層基板510の上面510aに沿った方向に往復移動する。この2つの動作(接触部分の切り替わり動作と移動子520の往復動作)の周期は図13(a)〜(d)から分かる通り同じである。
In this way, the moving part 520 reciprocates in the direction along the upper surface 510a of the multilayer substrate 510 while the contact portion of the moving part 520 is switched at substantially the same frequency as the inversion of the drive current. The periods of these two operations (contact portion switching operation and reciprocating operation of the moving element 520) are the same as can be seen from FIGS.
第3の実施の形態に係る振動モータ500では、例えば以下の効果を得ることができる。
In the vibration motor 500 according to the third embodiment, for example, the following effects can be obtained.
(18)移動子520は磁極配置方向(矢印A1または矢印A2の方向)に沿って積層基板510の上面510a側を移動する構成とされる。したがって、従来の縦振動型(基板面と垂直な方向への振動)のみの振動モータに比べて、積層基板510の上面510aと垂直な方向への移動子520の移動空間を設ける必要がないので、その方向の厚みを小さくするための設計の自由度を確保することができる。その結果、薄型化を図ることが可能な振動モータを提供することができる。
(18) The moving element 520 is configured to move on the upper surface 510a side of the multilayer substrate 510 along the magnetic pole arrangement direction (the direction of the arrow A1 or the arrow A2). Therefore, it is not necessary to provide a moving space for the mover 520 in a direction perpendicular to the upper surface 510a of the multilayer substrate 510, compared to a conventional vibration motor of only a vertical vibration type (vibration in a direction perpendicular to the substrate surface). The degree of freedom in design for reducing the thickness in that direction can be ensured. As a result, a vibration motor that can be reduced in thickness can be provided.
(19)平らな平面コイル512が用いられ、その平面コイル512の面が積層基板510の上面510aに対して平行となるように配置される。したがって、積層基板510を薄くすることができるので振動モータ500全体の薄型化に貢献する。
(19) A flat planar coil 512 is used, and the surface of the planar coil 512 is disposed so as to be parallel to the upper surface 510 a of the multilayer substrate 510. Therefore, since the laminated substrate 510 can be made thin, it contributes to the thinning of the vibration motor 500 as a whole.
(20)第1の永久磁石524のN極と第2の永久磁石526のS極とが第1磁極面560に配置される。したがって、第1の永久磁石524のN極から出た磁束の多くは第2の永久磁石526のS極に帰るので、第1磁極面560から振動モータ500の外部への磁束の漏れ出しを軽減することができる。特に、積層基板510の下面510bに第2磁気シールド部材570を設けても、第2磁気シールド部材570と接着済み永久磁石との間の磁気引力によって移動子520の移動が阻害されない程度まで軽減することができる。
(20) The N pole of the first permanent magnet 524 and the S pole of the second permanent magnet 526 are arranged on the first magnetic pole surface 560. Therefore, most of the magnetic flux emitted from the north pole of the first permanent magnet 524 is returned to the south pole of the second permanent magnet 526, so that leakage of the magnetic flux from the first magnetic pole surface 560 to the outside of the vibration motor 500 is reduced. can do. In particular, even if the second magnetic shield member 570 is provided on the lower surface 510b of the multilayer substrate 510, the movement of the mover 520 is reduced to such an extent that the magnetic attractive force between the second magnetic shield member 570 and the bonded permanent magnet is not hindered. be able to.
(21)第1の永久磁石524のS極と第2の永久磁石526のN極とが第2磁極面562に配置される。したがって、第2の永久磁石526のN極から出た磁束の多くは第1の永久磁石524のS極に帰るので、第2磁極面562から振動モータ500の外部への磁束の漏れ出しを軽減することができる。
(21) The S pole of the first permanent magnet 524 and the N pole of the second permanent magnet 526 are disposed on the second magnetic pole surface 562. Therefore, most of the magnetic flux emitted from the N pole of the second permanent magnet 526 returns to the S pole of the first permanent magnet 524, and thus leakage of the magnetic flux from the second magnetic pole surface 562 to the outside of the vibration motor 500 is reduced. can do.
(22)接着済み永久磁石の第2磁極面562は第1磁気シールド部材522によって覆われている。したがって、第2磁極面562から振動モータ500の外部への磁束の漏れ出しを軽減することができる。
(22) The second magnetic pole surface 562 of the bonded permanent magnet is covered with the first magnetic shield member 522. Therefore, leakage of magnetic flux from the second magnetic pole surface 562 to the outside of the vibration motor 500 can be reduced.
(23)第1磁気シールド部材522は接着済み永久磁石に取り付けられ、第1磁気シールド部材522と接着済み永久磁石は一体的に移動する。したがって、第1磁気シールド部材522と接着済み永久磁石との間の磁気引力は移動子520の移動へ作用しないので、よりスムーズな動作が実現できる。
(23) The first magnetic shield member 522 is attached to the bonded permanent magnet, and the first magnetic shield member 522 and the bonded permanent magnet move together. Accordingly, the magnetic attractive force between the first magnetic shield member 522 and the bonded permanent magnet does not act on the movement of the moving element 520, so that a smoother operation can be realized.
(24)第1磁気シールド部材522と接着済み永久磁石との間には比較的強い磁気引力が働くので、第1磁気シールド部材522は接着済み永久磁石にこの磁気引力によって固定される。つまりなんら他の部材を介さずに互いに固定されるので、振動モータ500の製造工程の簡素化やコストダウンに貢献する。
(24) Since a relatively strong magnetic attractive force acts between the first magnetic shield member 522 and the bonded permanent magnet, the first magnetic shield member 522 is fixed to the bonded permanent magnet by this magnetic attractive force. That is, since they are fixed to each other without any other member, the manufacturing process of the vibration motor 500 can be simplified and the cost can be reduced.
(25)積層基板510の下面510bには第2磁気シールド部材570が取り付けられる。したがって、第1磁極面560から振動モータ500の外部への磁束の漏れ出しを軽減することができる。
(25) The second magnetic shield member 570 is attached to the lower surface 510b of the multilayer substrate 510. Therefore, leakage of magnetic flux from the first magnetic pole surface 560 to the outside of the vibration motor 500 can be reduced.
(26)移動子520を付勢する部材として板バネを用いている。したがって、たとえばつるまきバネを使用する場合と比べて、バネが占めるスペースを小さくすることができる。これは移動子520が移動方向に変位できる量の向上に寄与し、ひいては振動モータ500の振動量を増やすこともできる。
(26) A plate spring is used as a member for urging the mover 520. Therefore, for example, the space occupied by the spring can be reduced as compared with the case where a helical spring is used. This contributes to an improvement in the amount that the moving element 520 can be displaced in the moving direction, and as a result, the vibration amount of the vibration motor 500 can be increased.
(27)第1の板バネ542には折曲部542aが、第2の板バネ544には折曲部544aが設けられる。したがって、その折曲部によって板バネの弾性力が向上し、移動子520の往復移動がより安定する。
(27) The first leaf spring 542 is provided with a bent portion 542a, and the second leaf spring 544 is provided with a bent portion 544a. Therefore, the elastic force of the leaf spring is improved by the bent portion, and the reciprocating movement of the moving element 520 is further stabilized.
(28)第1の板バネ542および第2の板バネ544は、上から見ると、ガイド枠530の中心を通り積層基板510に垂直な軸に対して180度の回転対称となっている。これにより、移動子520へ加えられる力の対称性が高まり、移動子520の移動がよりスムーズとなる。
(28) When viewed from above, the first plate spring 542 and the second plate spring 544 have a rotational symmetry of 180 degrees with respect to an axis that passes through the center of the guide frame 530 and is perpendicular to the laminated substrate 510. Thereby, the symmetry of the force applied to the moving element 520 increases, and the moving of the moving element 520 becomes smoother.
(29)移動子520における第1当接部分Eおよび第2当接部分Fが磁極配置方向(矢印A1または矢印A2の方向)に沿って並ぶよう第1の板バネ542の折曲部542aおよび第2の板バネ544の折曲部544aが形成される。したがって、移動子520の往復移動中、移動子520にはその位置によらず移動方向に沿った力が加えられる。これにより、より効率良く移動子520を往復移動させることができる。また、移動子520の移動方向のぶれを小さくすることができ、より安定した振動モータ500の動作を実現できる。
(29) The bent portion 542a of the first leaf spring 542 so that the first contact portion E and the second contact portion F of the moving element 520 are aligned along the magnetic pole arrangement direction (the direction of the arrow A1 or the arrow A2) A bent portion 544a of the second leaf spring 544 is formed. Therefore, during the reciprocating movement of the moving element 520, a force along the moving direction is applied to the moving element 520 regardless of its position. Thereby, the mover 520 can be reciprocated more efficiently. Further, the movement of the moving element 520 in the moving direction can be reduced, and a more stable operation of the vibration motor 500 can be realized.
(30)移動子520における第1当接部分Eおよび第2当接部分Fを結ぶ線分EFが移動子520の重心Gまたは重心Gの十分近くを通過するよう第1の板バネ542の折曲部542aおよび第2の板バネ544の折曲部544aが形成される。したがって、各板バネが移動子520に加える力は移動子520の重心Gを向いており、重心G周りの回転を誘導しない。これにより、移動子520の重心G周りの回転は起こりにくく、より効率良く安定した移動子520の往復移動を実現できる。
(30) Folding of the first leaf spring 542 so that the line segment EF connecting the first contact portion E and the second contact portion F of the moving element 520 passes through the center of gravity G of the moving element 520 or sufficiently close to the center of gravity G. A bent portion 544a and a bent portion 544a of the second leaf spring 544 are formed. Accordingly, the force applied by each leaf spring to the moving element 520 is directed to the center of gravity G of the moving element 520 and does not induce rotation around the center of gravity G. Thereby, the rotation of the moving element 520 around the center of gravity G hardly occurs, and the reciprocating movement of the moving element 520 can be realized more efficiently and stably.
(31)振動モータ500では、板バネを一体的に構成して、さらにガイド枠530に沿ってはめ込むようにする。これにより、長期間振動動作を繰り返しても、支持点(支持部)となるガイド枠の切り込み部分が広がるなど変形することはなく、板バネの緩みなどによる振動モータの動作信頼性の低下(劣化)を防止できる。
(31) In the vibration motor 500, the leaf spring is integrally formed and further fitted along the guide frame 530. As a result, even if the vibration operation is repeated for a long period of time, the notch portion of the guide frame that becomes the support point (support portion) will not be deformed, for example, and the operational reliability of the vibration motor will be degraded (deteriorated) due to the looseness of the leaf spring. ) Can be prevented.
(32)移動子520と積層基板510との接触部分に当たる、移動子520の移動方向側の縁部520bを丸みを帯びた形状に加工したことで、そこでの摩擦抵抗を角接触する場合に比べて軽減できる。
(32) The edge 520b on the moving direction side of the moving element 520, which corresponds to the contact portion between the moving element 520 and the multilayer substrate 510, is processed into a rounded shape, so that the frictional resistance there is compared with a case where the contact is angular contact. Can be reduced.
(33)移動子520を、その第1磁極面560が積層基板510の上面510aに対して傾斜した状態で移動するようにしたことで、移動子520が平面コイル512上を移動する際は、移動子520と積層基板510との接触部分はほぼ線状となる。したがって、移動子の第1磁極面全体が積層基板の上面に接触した状態で移動する場合に比べて、接触部分で発生する摩擦抵抗を軽減することができる。
(33) When the movable element 520 moves on the planar coil 512 by moving the movable element 520 in a state where the first magnetic pole surface 560 is inclined with respect to the upper surface 510a of the multilayer substrate 510, The contact portion between the mover 520 and the laminated substrate 510 is substantially linear. Therefore, the frictional resistance generated at the contact portion can be reduced as compared with the case where the entire first magnetic pole surface of the mover moves in contact with the upper surface of the multilayer substrate.
(34)移動子520は、その移動方向が切り替わる際に、その傾斜の状態を切り替える。したがって、移動子520の積層基板510に接触する部分が切り替わる際の運動エネルギーが積層基板510に与えられるので、振動モータ500全体の振動量がさらに増加する。
(34) The moving element 520 switches the state of the inclination when the moving direction is switched. Therefore, since the kinetic energy when the portion of the moving element 520 that contacts the laminated substrate 510 is switched is given to the laminated substrate 510, the vibration amount of the vibration motor 500 as a whole further increases.
(35)移動子520が磁極配置方向に沿って移動するようガイド枠530が形成される。したがって、磁力による推力を移動子520により効率的に伝えることができる。
(35) The guide frame 530 is formed so that the mover 520 moves along the magnetic pole arrangement direction. Therefore, the thrust by magnetic force can be efficiently transmitted by the mover 520.
(36)平面コイル512のコイル面と第1磁極面560とが対向する構成とされる。したがって、平面コイル512をより薄くすることによってその分の振動モータ500のさらなる薄型化が可能となる。
(36) The coil surface of the planar coil 512 and the first magnetic pole surface 560 are configured to face each other. Therefore, by making the planar coil 512 thinner, the vibration motor 500 can be further reduced in thickness.
(37)積層基板510は、矩形の移動子520を備える。したがって、移動子520の回転は第1ガイド部532および第2ガイド部534によってより抑制されるので、移動子520の移動がより安定する。また、矩形としたことで、たとえばその長辺と同じ直径を有する円形の移動子よりも重くすることができ、振動量を増やすことができる。
(37) The laminated substrate 510 includes a rectangular moving element 520. Accordingly, the rotation of the mover 520 is further suppressed by the first guide part 532 and the second guide part 534, so that the movement of the mover 520 is more stable. Moreover, by making it rectangular, for example, it can be made heavier than a circular moving element having the same diameter as its long side, and the amount of vibration can be increased.
(38)移動子520を上から見たときの移動子520の4つの角部520aは、丸みを帯びた形状に加工されている。したがって、移動子520の角部520aがガイド枠530に突き当たったとしてもそこで引っかかりにくくなり、移動子520の移動がより安定する。
(38) The four corners 520a of the mover 520 when the mover 520 is viewed from above are processed into a rounded shape. Therefore, even if the corner portion 520a of the moving element 520 hits the guide frame 530, it becomes difficult to be caught there, and the movement of the moving element 520 becomes more stable.
(39)第1の平面コイル512aの辺のうち、移動子520の移動方向に沿った辺に含まれる配線群の幅d2が、移動方向と交差する辺に含まれる配線群の幅d1よりも小さくなるように、第1の平面コイル512aが形成される。第2の平面コイル512bについても同様とされる。したがって、たとえば幅d1と幅d2とが等しい場合に比べて、幅d2を小さくした分、移動方向と交差する辺に含まれる配線群の長さを長くすることができる。これにより、同じ駆動電流でより大きな推力を移動子520に加えることができ、効率的である。
(39) Of the sides of the first planar coil 512a, the width d2 of the wiring group included in the side along the moving direction of the mover 520 is greater than the width d1 of the wiring group included in the side intersecting the moving direction. The first planar coil 512a is formed to be smaller. The same applies to the second planar coil 512b. Therefore, for example, as compared with the case where the width d1 and the width d2 are equal, the length of the wiring group included in the side intersecting with the moving direction can be increased by reducing the width d2. As a result, a larger thrust can be applied to the moving element 520 with the same driving current, which is efficient.
(40)第1ガイド部532および第2ガイド部534は、平面コイル512の辺のうち移動子520の移動方向に沿った辺に含まれる配線群と重複する。したがって、移動子520は移動方向に沿った辺に含まれる配線群からより遠くなる。その結果、移動子520に加わる力のうち、移動子520の移動方向以外の方向の成分を低減できるので、移動子520の移動がよりスムーズとなる。
(40) The first guide part 532 and the second guide part 534 overlap the wiring group included in the side along the moving direction of the moving element 520 among the sides of the planar coil 512. Therefore, the mover 520 is further away from the wiring group included in the side along the moving direction. As a result, a component in a direction other than the moving direction of the moving element 520 out of the force applied to the moving element 520 can be reduced, so that the moving element 520 moves more smoothly.
(41)第1および第2の平面コイル512a、512bの表面に対向するように、移動子520の磁極面が配置されるように構成している。これにより、移動子520側から発生する磁力線(磁力線が生じる磁極面)と第1および第2の平面コイル512a、512bに電流を流すことにより発生する磁束線(磁束線が生じるコイル面)とが平行になる。これに対して、上記特許文献2に記載の構成では、磁石からの磁力線とコイルからの磁束線とは直交する。したがって、上記特許文献2に記載の構成に比べて振動モータ500における構成は、磁力線と磁束線とが重なる量が大きいので、その分、移動子520を移動させる際の駆動力を大きくすることができる。
(41) The magnetic pole surface of the mover 520 is arranged so as to face the surfaces of the first and second planar coils 512a and 512b. As a result, there are magnetic lines of force (magnetic pole surface where magnetic lines of force are generated) generated from the mover 520 side and magnetic flux lines (coil surfaces where magnetic flux lines are generated) generated by passing current through the first and second planar coils 512a and 512b. Become parallel. On the other hand, in the structure of the said patent document 2, the magnetic force line from a magnet and the magnetic flux line from a coil are orthogonally crossed. Therefore, compared with the configuration described in Patent Document 2, the configuration of the vibration motor 500 has a large amount of overlapping of the magnetic field lines and the magnetic flux lines, and accordingly, the driving force when moving the moving element 520 can be increased accordingly. it can.
(42)第1の平面コイル512aおよび第2の平面コイル512bは、それらを積層基板510の上面510aへ投影した像が互いに重なり合うように形成される。さらに第2ビア506または第3ビア508から駆動電流を流すと、第1の平面コイル512aおよび第2の平面コイル512bには同じ向きの磁束が発生する。したがって、平面コイル512に発生する磁界を増強することができるので、移動子520の駆動力が向上する。その結果、移動子520の応答時間(移動子520が所定の振動量に達するまでの時間)を短縮することができる。
(42) The first planar coil 512a and the second planar coil 512b are formed so that images obtained by projecting them onto the upper surface 510a of the multilayer substrate 510 overlap each other. Further, when a drive current is passed from the second via 506 or the third via 508, magnetic fluxes in the same direction are generated in the first planar coil 512a and the second planar coil 512b. Therefore, since the magnetic field generated in the planar coil 512 can be increased, the driving force of the mover 520 is improved. As a result, the response time of the mover 520 (time until the mover 520 reaches a predetermined vibration amount) can be shortened.
また、平面コイルをひとつだけ備える場合は、平面コイルの2つの電極のうちひとつを平面コイルの中心から取り出さなければならない。したがって、積層基板の下面の中心付近に設けられる電極パッドに対応する開口部を第2磁気シールド部材に設ける必要がある。しかしながら第3の実施の形態に係る振動モータ500では平面コイルの2つの電極の両方を平面コイルの外側から取り出すことができる。したがって、図11に示されるとおり第2磁気シールド部材570に切り欠きを設けるだけでよく、開口部を設ける場合に比べて第2磁気シールド部材570の製造上有利である。
When only one planar coil is provided, one of the two electrodes of the planar coil must be taken out from the center of the planar coil. Therefore, it is necessary to provide the second magnetic shield member with an opening corresponding to the electrode pad provided near the center of the lower surface of the multilayer substrate. However, in the vibration motor 500 according to the third embodiment, both of the two electrodes of the planar coil can be taken out from the outside of the planar coil. Therefore, as shown in FIG. 11, it is only necessary to provide a cutout in the second magnetic shield member 570, which is advantageous in manufacturing the second magnetic shield member 570 as compared with the case where the opening is provided.
なお、第2の実施の形態において、携帯端末装置は、第1の実施の形態に係る振動モータ100の代わりに第3の実施の形態に係る振動モータ500を搭載してもよい。この場合、薄型で漏れ磁束の少ない携帯端末装置が実現できる。
In the second embodiment, the mobile terminal device may be mounted with the vibration motor 500 according to the third embodiment instead of the vibration motor 100 according to the first embodiment. In this case, a thin portable terminal device with little leakage magnetic flux can be realized.
以上、実施の形態に係る振動モータおよび携帯端末装置の構成と動作について説明した。これらの実施の形態は例示であり、それらの各構成要素の組み合わせにいろいろな変形例が可能なこと、また、そうした変形例も本発明の範囲にあることは当業者に理解されるところである。
The configuration and operation of the vibration motor and the mobile terminal device according to the embodiment have been described above. It is to be understood by those skilled in the art that these embodiments are exemplifications, and that various modifications can be made to combinations of the respective components, and such modifications are also within the scope of the present invention.
第1の実施の形態では、ガイド枠30が永久磁石20およびコイル12を囲むように積層基板10の上面10a上に設けられる場合について説明したが、これに限られない。たとえば、ガイド枠30がコイル12全体を囲む必要はなく、ガイド枠30の下にもコイル12が設けられてもよい。
In the first embodiment, the case where the guide frame 30 is provided on the upper surface 10a of the multilayer substrate 10 so as to surround the permanent magnet 20 and the coil 12 has been described. However, the present invention is not limited to this. For example, the guide frame 30 does not have to surround the entire coil 12, and the coil 12 may be provided under the guide frame 30.
第1の実施の形態では、積層基板10の配線層54として単層のコイル12を採用する場合について説明したが、これに限られない。たとえば、コイル12として2層あるいは3層以上の積層コイルを採用してもよい。この場合、コイル12に発生する磁界を増強することができるので、永久磁石20の駆動力が向上する。その結果、永久磁石20の応答時間(永久磁石20が所定の振動量に達するまでの時間)を短縮することができる。
In the first embodiment, the case where the single-layer coil 12 is employed as the wiring layer 54 of the multilayer substrate 10 has been described. However, the present invention is not limited to this. For example, a laminated coil having two layers or three or more layers may be adopted as the coil 12. In this case, since the magnetic field generated in the coil 12 can be enhanced, the driving force of the permanent magnet 20 is improved. As a result, the response time of the permanent magnet 20 (time until the permanent magnet 20 reaches a predetermined vibration amount) can be shortened.
第1の実施の形態では、永久磁石20の一方の磁極面側に積層基板10が存在し、他方の磁極面側にカバーが存在する場合について説明したが、これに限られない。たとえば、カバー102の代わりに積層基板10と同様の構造のものを採用してもよい。このように構成することで、永久磁石20がその両磁極面側から駆動され、永久磁石20の駆動力が向上する。その結果、永久磁石20の応答時間(永久磁石20が所定の振動量に達するまでの時間)を短縮することができる。
In the first embodiment, the case where the laminated substrate 10 is present on one magnetic pole surface side of the permanent magnet 20 and the cover is present on the other magnetic pole surface side is described, but the present invention is not limited to this. For example, instead of the cover 102, a structure similar to the laminated substrate 10 may be adopted. By comprising in this way, the permanent magnet 20 is driven from the both magnetic pole surface side, and the driving force of the permanent magnet 20 improves. As a result, the response time of the permanent magnet 20 (time until the permanent magnet 20 reaches a predetermined vibration amount) can be shortened.
第1の実施の形態では、永久磁石20の表面には、その少なくとも一部が覆われるように薄く磁性流体が塗布される場合について説明したが、塗布される磁性流体の量は、永久磁石20の全面を覆う程度であって、かつ永久磁石20の発する磁束を有意に遮蔽しない程度の量であることが望ましい。この場合、永久磁石20の発する磁束をそれほど邪魔せずに上述の摩擦抵抗を削減する効果を得ることができる。
In the first embodiment, the case where the magnetic fluid is thinly applied to the surface of the permanent magnet 20 so as to cover at least a part thereof has been described. It is desirable that the amount is such that it covers the entire surface of the magnet and does not significantly shield the magnetic flux generated by the permanent magnet 20. In this case, the above-mentioned effect of reducing the frictional resistance can be obtained without disturbing the magnetic flux generated by the permanent magnet 20 so much.
第1および第3の実施の形態では、永久磁石を用いる場合について説明したが、これに限られず、磁極を有する部材であればよい。また、永久磁石の磁極を反転させた場合でも同様の議論が成立することは言うまでもない。また第1の実施の形態では、永久磁石20は、1対の磁極を1つ有する場合について説明したが、これに限られず、1対の磁極をいくつ有してもよい。
In the first and third embodiments, the case of using a permanent magnet has been described. However, the present invention is not limited to this, and any member having a magnetic pole may be used. It goes without saying that the same argument holds even when the magnetic poles of the permanent magnet are reversed. In the first embodiment, the case where the permanent magnet 20 has one pair of magnetic poles has been described. However, the present invention is not limited to this, and the permanent magnet 20 may have any number of pairs of magnetic poles.
第1および第3の実施の形態では、積層基板がコイルを2つ含む場合について説明したが、コイルの数はこれに限られない。
In the first and third embodiments, the case where the laminated substrate includes two coils has been described, but the number of coils is not limited thereto.
第1および第3の実施の形態では、振動モータの下面が地表を向いている場合について説明したが、これに限られず、振動モータの上面が地表を向いていてもよい。この場合、永久磁石はカバー(第3の実施の形態の場合はカバー基板)の内側の面に接して往復移動する。
In the first and third embodiments, the case where the lower surface of the vibration motor faces the ground surface has been described. However, the present invention is not limited to this, and the upper surface of the vibration motor may face the ground surface. In this case, the permanent magnet reciprocates in contact with the inner surface of the cover (the cover substrate in the case of the third embodiment).
第1の実施の形態では、永久磁石20は円板形状に形成される場合について説明したが、これに限られず、例えば小判型形状に形成されてもよい。図6は、変形例に係る永久磁石28を示す上面図である。永久磁石28は、円板から2つの互いに平行な弦に沿って2つの部分(破線で示される部分)を切り落とした形状を有する。永久磁石28は図6の矢印A1および矢印A2の方向に移動するように振動モータに搭載される。この場合、切り落とした部分だけ永久磁石28の移動量(移動範囲)が拡がるので、その分、永久磁石28がさらに加速されるので、振動モータの振動量が増加する。また、永久磁石28がコイル12間を移動する際は、永久磁石28と積層基板10との接触部分は線状となるが、永久磁石28が傾斜せず面接触する場合よりも摩擦抵抗が軽減される。
In the first embodiment, the case where the permanent magnet 20 is formed in a disk shape has been described. However, the present invention is not limited thereto, and may be formed in an oval shape, for example. FIG. 6 is a top view showing a permanent magnet 28 according to a modification. The permanent magnet 28 has a shape in which two parts (parts indicated by broken lines) are cut off from the disk along two mutually parallel strings. The permanent magnet 28 is mounted on the vibration motor so as to move in the directions of arrows A1 and A2 in FIG. In this case, since the movement amount (movement range) of the permanent magnet 28 is expanded only by the cut-off portion, the permanent magnet 28 is further accelerated by that amount, so that the vibration amount of the vibration motor increases. Further, when the permanent magnet 28 moves between the coils 12, the contact portion between the permanent magnet 28 and the laminated substrate 10 is linear, but the frictional resistance is reduced as compared with the case where the permanent magnet 28 is not inclined but is in surface contact. Is done.
第1の実施の形態では、第2接続配線64と第3接続配線66は共に入力端16に接続され、第1の平面コイル12aの渦巻の巻回の方向と、第2の平面コイル12bの渦巻の巻回の方向が異なるように形成される場合について説明したが、これに限られず、例えば第1の平面コイル12aの一端と第2の平面コイル12bの一端が接続され、両コイルに共通する駆動電流を流すと両コイルが互いに異なる方向の磁束を発生する構成とされればよい。この場合、1つの駆動電流源によって同時に両方のコイルを駆動できるので、駆動回路の簡素化に貢献する。
In the first embodiment, both the second connection wiring 64 and the third connection wiring 66 are connected to the input end 16, and the direction of the spiral of the first planar coil 12a and the second planar coil 12b The case where the spirals are formed in different directions has been described. However, the present invention is not limited to this. For example, one end of the first planar coil 12a and one end of the second planar coil 12b are connected and common to both coils. When a driving current is applied, both coils may be configured to generate magnetic fluxes in different directions. In this case, both coils can be driven simultaneously by one drive current source, which contributes to simplification of the drive circuit.
第1の実施の形態では、移動制御部412が第1の平面コイル12aおよび第2の平面コイル12bのどちらにも駆動電流を供給する場合について説明したが、これに限られない。たとえば、第1の平面コイル12aおよび第2の平面コイル12bはそれぞれ別の移動制御部を備えてもよい。この場合、両コイルは積層基板内に埋設されてしまっているのでその渦巻のピッチなどを変えることが困難な状況において、それぞれのコイルに流す駆動電流の量などを調節することにより、両コイル間の特性、例えばインダクタンス、の違いを、振動モータの性能が上がるように簡易に補償することができる。
In the first embodiment, the case where the movement control unit 412 supplies the drive current to both the first planar coil 12a and the second planar coil 12b has been described. However, the present invention is not limited to this. For example, the first planar coil 12a and the second planar coil 12b may each include a separate movement control unit. In this case, since both coils are embedded in the laminated substrate, it is difficult to change the pitch of the spirals. The difference in the characteristics, for example, the inductance, can be easily compensated so that the performance of the vibration motor is improved.
第3の実施の形態では、磁気シールド部材は永久磁石に磁気引力によって固定される場合について説明したが、これに限られず、例えば磁気シールド部材は接着剤などの固定手段によって永久磁石に固定されてもよい。この場合、磁気シールド部材と永久磁石との間の固定の信頼性を更に高めることができる。
In the third embodiment, the case where the magnetic shield member is fixed to the permanent magnet by magnetic attraction has been described. However, the present invention is not limited to this. For example, the magnetic shield member is fixed to the permanent magnet by fixing means such as an adhesive. Also good. In this case, the reliability of fixing between the magnetic shield member and the permanent magnet can be further enhanced.
第3の実施の形態では、磁気シールド部材と永久磁石とが接する場合について説明したが、これに限られず、磁気シールド部材は永久磁石に伴って動けばよい。
In the third embodiment, the case where the magnetic shield member and the permanent magnet are in contact with each other has been described. However, the present invention is not limited to this, and the magnetic shield member may be moved along with the permanent magnet.
第3の実施の形態に係る振動モータ500において、第1絶縁樹脂層551またはカバー基板502もしくはその両方の移動子520側の表面に、第1絶縁樹脂層551(またはカバー基板502)の表面が有する摩擦係数よりも低い摩擦係数を有する材料によって形成される低摩擦層が設けられてもよい。この場合、移動子520との間の摩擦抵抗を軽減することができるので、電気エネルギーを振動へ変換する効率が上昇する。さらに、移動子520の応答時間(移動子520が所定の振動量に達するまでの時間)を短縮することもできる。上述の低摩擦層を構成する材料としては、第1の実施の形態における低摩擦層58と同様の材料が用いられる。
In the vibration motor 500 according to the third embodiment, the surface of the first insulating resin layer 551 (or the cover substrate 502) is on the surface of the first insulating resin layer 551 and / or the cover substrate 502 or both on the moving element 520 side. There may be provided a low friction layer formed of a material having a lower coefficient of friction than the coefficient of friction it has. In this case, since the frictional resistance with the moving element 520 can be reduced, the efficiency of converting electric energy into vibration increases. Furthermore, the response time of the mover 520 (time until the mover 520 reaches a predetermined vibration amount) can be shortened. As a material constituting the above-described low friction layer, the same material as that of the low friction layer 58 in the first embodiment is used.
第3の実施の形態では、第1磁気シールド部材522は、接着済み永久磁石の第2磁極面562からはみ出さないよう形成される場合について説明したが、これに限られない。たとえば、第1磁気シールド部材は、接着済み永久磁石の平面コイル512と対向する第1磁極面560とは反対側の第2磁極面562に取り付けられた部分から、接着済み永久磁石の側面の少なくとも一部を覆うように延在してもよい。この場合、第1磁気シールド部材は接着済み永久磁石を径方向に固定する。したがって、移動子520が往復移動する際、接着済み永久磁石と第1磁気シールド部材とが径方向に互いにずれにくい。これにより第1磁気シールド部材と接着済み永久磁石との固定の信頼性が向上する。
In the third embodiment, the case where the first magnetic shield member 522 is formed so as not to protrude from the second magnetic pole surface 562 of the bonded permanent magnet is described, but the present invention is not limited to this. For example, the first magnetic shield member has at least a side surface of the bonded permanent magnet from a portion attached to the second magnetic pole surface 562 opposite to the first magnetic pole surface 560 facing the planar coil 512 of the bonded permanent magnet. You may extend so that a part may be covered. In this case, the first magnetic shield member fixes the bonded permanent magnet in the radial direction. Therefore, when the mover 520 reciprocates, the bonded permanent magnet and the first magnetic shield member are not easily displaced from each other in the radial direction. Thereby, the reliability of fixation between the first magnetic shield member and the bonded permanent magnet is improved.
また、側面に延在する部分により、移動子520の径方向への磁束の漏れ出しを軽減することができる。また、第1磁気シールド部材の内側の側面の高さは接着済み永久磁石の厚さに揃えるように形成されてもよい。この場合、上記の径方向への磁束の漏れ出しはさらに軽減される。
Further, the leakage of magnetic flux in the radial direction of the moving element 520 can be reduced by the portion extending to the side surface. Further, the height of the inner side surface of the first magnetic shield member may be formed so as to be equal to the thickness of the bonded permanent magnet. In this case, the leakage of the magnetic flux in the radial direction is further reduced.
第3の実施の形態では、積層基板510が第1の平面コイル512aおよび第2の平面コイル512bを含む場合について説明したが、これに限られない。たとえば、積層基板が平面コイルをひとつだけ含んでもよい。この場合、積層基板の構成が簡単となる。
In the third embodiment, the case where the multilayer substrate 510 includes the first planar coil 512a and the second planar coil 512b has been described. However, the present invention is not limited to this. For example, the laminated substrate may include only one planar coil. In this case, the configuration of the laminated substrate is simplified.
第3の実施の形態では、第1の永久磁石524と第2の永久磁石526とが直接互いに接着固定される場合について説明したが、これに限られない。たとえば第1の永久磁石524と第2の永久磁石526との間にスペーサを挿入し、第1の永久磁石524および第2の永久磁石526をそのスペーサに接着固定してもよい。この場合、そのスペーサの質量分だけ移動子520の質量を増やすことができ、振動量の増加に寄与する。
In the third embodiment, the case where the first permanent magnet 524 and the second permanent magnet 526 are directly bonded and fixed to each other has been described. However, the present invention is not limited to this. For example, a spacer may be inserted between the first permanent magnet 524 and the second permanent magnet 526, and the first permanent magnet 524 and the second permanent magnet 526 may be bonded and fixed to the spacer. In this case, the mass of the movable element 520 can be increased by the mass of the spacer, which contributes to an increase in the vibration amount.
第3の実施の形態では、移動子に板バネの一端を固定しておらず、これが当該移動子が積層基板に対して傾斜して移動する一因となっているが、当該移動子を傾斜させて移動させる手段はこれに限られない。たとえば、平面コイルの配線のピッチを、中央側を密に、外側を疎にしてもよい。また、第2磁気シールド部材を外すと、第2磁気シールド部材と移動子との間の磁気引力が無くなり、移動子はより傾斜しやすくなる。
In the third embodiment, one end of the leaf spring is not fixed to the mover, which is one factor that causes the mover to move while being inclined with respect to the laminated substrate. The means for moving them is not limited to this. For example, the pitch of the wiring of the planar coil may be made dense on the center side and sparse on the outside. Further, when the second magnetic shield member is removed, the magnetic attractive force between the second magnetic shield member and the mover is lost, and the mover is more easily inclined.
第3の実施の形態では、接着済み永久磁石が2対の磁極を有する構成について説明したが、これに限らず、平面コイルと対向する面においてN極とS極とを有している構成であればよい。
In the third embodiment, the configuration in which the bonded permanent magnet has two pairs of magnetic poles has been described. However, the present invention is not limited to this, and the configuration has an N pole and an S pole on the surface facing the planar coil. I just need it.
第3の実施の形態では、第1の板バネ542および第2の板バネ544はどちらもPETなどの非磁性材料からなるバネである場合について説明したが、これに限られない。
In the third embodiment, the case where both the first plate spring 542 and the second plate spring 544 are springs made of a nonmagnetic material such as PET has been described. However, the present invention is not limited to this.