[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010074124A - Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate - Google Patents

Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate Download PDF

Info

Publication number
JP2010074124A
JP2010074124A JP2009012998A JP2009012998A JP2010074124A JP 2010074124 A JP2010074124 A JP 2010074124A JP 2009012998 A JP2009012998 A JP 2009012998A JP 2009012998 A JP2009012998 A JP 2009012998A JP 2010074124 A JP2010074124 A JP 2010074124A
Authority
JP
Japan
Prior art keywords
optical semiconductor
semiconductor element
mounting
manufacturing
package substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009012998A
Other languages
Japanese (ja)
Inventor
Naoyuki Urasaki
直之 浦崎
Isato Kotani
勇人 小谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2009012998A priority Critical patent/JP2010074124A/en
Publication of JP2010074124A publication Critical patent/JP2010074124A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical semiconductor device capable of sufficiently suppressing deterioration of luminance. <P>SOLUTION: The optical semiconductor device 10 is provided with: an optical semiconductor element 8 connected to lead electrodes 1a, 1b; a package molded body for mounting the optical semiconductor element having a recess 6 for storing the optical semiconductor element 8; and a seal 20 consisting of resin having translucency and filled in the recess 6 to seal the optical semiconductor element. The package molded body for mounting the optical semiconductor element has: a wiring board 1 having the lead electrodes 1a, 1b on the surface; and a light reflection layer 5 consisting of a hardened material of thermosetting resin composition and formed on the board. The recess 6 is formed by a hole provided from the surface of the light reflection layer 5 to the surface on the board side, and the bottom 6a of the recess 6 is formed by the hardened material 5a of the resin composition for optical reflection layer 5 and the lead electrodes 1a, 1b. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光半導体素子と、当該光半導体素子を収納するとともに外部への光取出しのためのリフレクター機能を有する凹部が形成されたパッケージ成形体とを備えた光半導体装置に関する。また、本発明は、光半導体素子搭載用パッケージ基板の製造方法及びこのパッケージ基板を用いた光半導体装置の製造方法に関する。   The present invention relates to an optical semiconductor device that includes an optical semiconductor element and a package molded body that accommodates the optical semiconductor element and has a recess having a reflector function for extracting light to the outside. The present invention also relates to a method of manufacturing a package substrate for mounting an optical semiconductor element and a method of manufacturing an optical semiconductor device using the package substrate.

光半導体素子である、発光ダイオード(Light Emitting Diode:LED)は、安価で長寿命な素子として注目され、各種のインジケータ、光源、平面型表示装置、液晶ディスプレイのバックライト等に広く使用されている。このような光半導体装置の例としては、繊維入り基板と、この基板上に形成された樹脂成形体とを有するパッケージ基板に、光半導体素子を搭載したものがある(特許文献1参照)。図5(a)及び(b)は、従来の光半導体装置の一例を示す断面図及び平面図である。   Light Emitting Diodes (LEDs), which are optical semiconductor elements, are attracting attention as inexpensive and long-life elements, and are widely used in various indicators, light sources, flat display devices, liquid crystal display backlights, and the like. . As an example of such an optical semiconductor device, there is one in which an optical semiconductor element is mounted on a package substrate having a fiber-containing substrate and a resin molded body formed on the substrate (see Patent Document 1). 5A and 5B are a cross-sectional view and a plan view showing an example of a conventional optical semiconductor device.

図5に例示した光半導体装置50は、一般に「表面実装型」に分類されるものである。光半導体装置50は、配線板51と、この配線板51の上に形成された光反射層55と、配線板51上にマウントされた光半導体素子60と、光半導体素子60を覆うように充填された透明樹脂からなる封止体20とを有する。配線板51は、一対のリード電極51a,51bと、これらが表面に設けられた繊維入り基材51cとを有する。光反射層55は、配線板51上のリード電極51a,51bを熱硬化性樹脂によってモールドした構造を有する。配線板51と光反射層55との間には、ソルダーレジスト52が設けられている。ソルダーレジスト52は、配線板51上に光反射層55を設けるにあたり、光半導体素子60をマウントする領域9に樹脂が流入するのを防止するためのものである。すなわち、光反射層55を設ける際には、マウント領域9を金型で覆うとともに、金型をソルダーレジスト52の周縁部52aに当接させることで、マウント領域9に樹脂が流入するのを防止する。   The optical semiconductor device 50 illustrated in FIG. 5 is generally classified as “surface mount type”. The optical semiconductor device 50 is filled to cover the wiring board 51, the light reflection layer 55 formed on the wiring board 51, the optical semiconductor element 60 mounted on the wiring board 51, and the optical semiconductor element 60. And a sealing body 20 made of a transparent resin. The wiring board 51 has a pair of lead electrodes 51a and 51b and a fiber-containing substrate 51c provided on the surface thereof. The light reflecting layer 55 has a structure in which the lead electrodes 51a and 51b on the wiring board 51 are molded with a thermosetting resin. A solder resist 52 is provided between the wiring board 51 and the light reflection layer 55. The solder resist 52 is for preventing the resin from flowing into the region 9 where the optical semiconductor element 60 is mounted when the light reflecting layer 55 is provided on the wiring board 51. That is, when the light reflecting layer 55 is provided, the mount region 9 is covered with a mold, and the mold is brought into contact with the peripheral edge 52a of the solder resist 52, thereby preventing the resin from flowing into the mount region 9. To do.

光反射層55の形成後、マウント領域9上にダイボンド材15を介して光半導体素子60を設置する。光半導体素子60の電極(図示せず)とリード電極51a,51bとをボンディングワイア16によって接続する。その後、マウント領域9及び光反射層55によって形成される凹部56に透明樹脂を充填して封止体20を形成する。光半導体素子60は、2本のリード電極51a,51bを通して電力を供給されると発光し、その光が封止体20を通して、光取出面50Fから取り出される。   After the formation of the light reflection layer 55, the optical semiconductor element 60 is placed on the mount region 9 via the die bond material 15. An electrode (not shown) of the optical semiconductor element 60 and the lead electrodes 51 a and 51 b are connected by the bonding wire 16. Thereafter, the sealing body 20 is formed by filling the recess 56 formed by the mount region 9 and the light reflection layer 55 with a transparent resin. The optical semiconductor element 60 emits light when power is supplied through the two lead electrodes 51a and 51b, and the light is extracted from the light extraction surface 50F through the sealing body 20.

上記のような発光装置の分野においては、近年の電子機器の薄型化、小型化の伸展に伴い、パッケージサイズも小型化の傾向にある。小型のパッケージを生産性良く作るプロセスとして、熱硬化性樹脂を金型成形するトランスファー成形法が提案されている(特許文献2参照)。   In the field of light emitting devices as described above, the package size tends to be reduced with the recent progress of thinner and smaller electronic devices. As a process for producing a small package with high productivity, a transfer molding method in which a thermosetting resin is molded is proposed (see Patent Document 2).

特開2007−142253号公報JP 2007-142253 A 特開2007−235085号公報JP 2007-235085 A

ところで、図5に例示したような従来の光半導体装置について、本発明者が長期点灯試験を実施したところ、輝度が低下する現象が生じた。本発明者がこの現象について検討した結果、繊維入り基板が熱や光によって着色劣化することが一つの原因であることを見出した。すなわち、図5を参照しながら説明すると、マウント領域9のうち基材51cが露出した部分(露出部9a)が光半導体素子60の熱及び光によって劣化して着色し、これによっての光反射率が低下することで輝度が低下すると推察される。   By the way, when the present inventor conducted a long-term lighting test on the conventional optical semiconductor device as illustrated in FIG. As a result of studying this phenomenon, the present inventor has found that one reason is that the fiber-containing substrate is colored and deteriorated by heat and light. That is, with reference to FIG. 5, the portion of the mount region 9 where the base material 51 c is exposed (exposed portion 9 a) is deteriorated and colored by the heat and light of the optical semiconductor element 60, and thereby the light reflectance is increased. It is presumed that the luminance decreases due to the decrease.

本発明者の調査によると、露出部9aの着色は、繊維入り基材51cに含まれるベンゼン環を含む骨格を有した樹脂が熱及び光によって酸化されて茶色に変色すること主因と推察される。このように、光半導体装置を製造するにあたり、従来の樹脂組成物が基板や基材として使用された光半導体装置は、熱や光に曝される部分の着色に起因する輝度低下を十分に抑制することが困難であった。   According to the inventor's investigation, the coloring of the exposed portion 9a is presumed to be the main cause that the resin having a skeleton containing a benzene ring contained in the fiber-containing base material 51c is oxidized by heat and light and turns brown. . Thus, in manufacturing an optical semiconductor device, an optical semiconductor device in which a conventional resin composition is used as a substrate or a substrate sufficiently suppresses a decrease in luminance caused by coloring of a portion exposed to heat or light. It was difficult to do.

本発明は、上記課題を解決するためになされたものであり、輝度低下を十分に抑制できる光半導体装置及びこれを効率的に製造する方法を提供することを目的とする。また、本発明は、上記半導体装置を効率的に製造するのに有用な光半導体素子搭載用パッケージ基板の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an optical semiconductor device capable of sufficiently suppressing a decrease in luminance and a method for efficiently manufacturing the same. Another object of the present invention is to provide a method of manufacturing a package substrate for mounting an optical semiconductor element that is useful for efficiently manufacturing the semiconductor device.

本発明に係る光半導体装置は、リード電極と接続された光半導体素子と、光半導体素子を収納する凹部を有する光半導体素子搭載用パッケージ成形体と、透光性を有する樹脂からなり、凹部に充填されて光半導体素子を封止する封止体とを備える。上記光半導体素子搭載用パッケージ成形体は、リード電極を表面に有する配線板と、熱硬化性樹脂組成物の硬化物からなり配線板上に形成された光反射層とを有する。上記凹部は、光反射層の表面から配線板側の面にかけて設けられた孔によって形成されるものであり、当該凹部の底面は上記熱硬化性樹脂組成物の硬化物及び配線板表面のリード電極によって形成されている。   An optical semiconductor device according to the present invention comprises an optical semiconductor element connected to a lead electrode, an optical semiconductor element mounting package having a concave portion for accommodating the optical semiconductor element, and a light-transmitting resin. And a sealing body that is filled to seal the optical semiconductor element. The packaged body for mounting an optical semiconductor element includes a wiring board having lead electrodes on the surface, and a light reflecting layer made of a cured product of a thermosetting resin composition and formed on the wiring board. The concave portion is formed by a hole provided from the surface of the light reflecting layer to the surface on the wiring board side, and the bottom surface of the concave portion is a cured product of the thermosetting resin composition and a lead electrode on the surface of the wiring board. Is formed by.

上記光半導体装置は、熱硬化性樹脂組成物の硬化物及びリード電極によって凹部の底面が形成されており、配線板の基材が底面に露出していない。このため、基材に含まれる樹脂の変色による反射率の低下を十分に抑制できる。このため、上記光半導体装置は、長期にわたって使用しても輝度低下が十分に少なく、高い信頼性を達成できる。   In the optical semiconductor device, the bottom surface of the recess is formed by the cured product of the thermosetting resin composition and the lead electrode, and the base material of the wiring board is not exposed on the bottom surface. For this reason, the fall of the reflectance by discoloration of resin contained in a base material can fully be suppressed. For this reason, the above-mentioned optical semiconductor device is sufficiently low in luminance even when used for a long time, and can achieve high reliability.

本発明は、光半導体素子搭載用パッケージ基板を製造する方法であって、光半導体素子を収納する凹部をなす孔を複数有するとともに熱硬化性樹脂組成物の硬化物からなる光反射層を、光半導体素子と接続されるリード電極を有する配線板上に形成する工程を備え、光反射層をトランスファー成形によって形成する方法を提供する。トランスファー成形を採用することで、配線板上に光反射層を効率的に形成できる。具体的には、リードタイムの短縮、使用する材料の削減、低コスト化などが図られる。   The present invention is a method for manufacturing a package substrate for mounting an optical semiconductor element, wherein a light reflecting layer made of a cured product of a thermosetting resin composition and having a plurality of holes forming recesses for accommodating the optical semiconductor element Provided is a method of forming a light reflecting layer by transfer molding, comprising a step of forming on a wiring board having a lead electrode connected to a semiconductor element. By adopting transfer molding, the light reflecting layer can be efficiently formed on the wiring board. Specifically, lead time can be shortened, materials used can be reduced, and costs can be reduced.

本発明において、光反射層を形成するための熱硬化性樹脂組成物は、(A)エポキシ樹脂と、(B)硬化剤と、(C)硬化促進剤と、(D)無機充填剤と、(E)白色顔料と、(F)カップリング剤とを含有するものであり、熱硬化性樹脂組成物の硬化物は波長450nm〜800nmにおける光反射率が80%以上であることが好ましい。かかる構成を採用することにより、リフレクター機能が十分に高い光反射層を形成できる。熱硬化性樹脂組成物は、光反射層の形成の容易性の観点から熱硬化前においては室温(25℃)で加圧成形可能なものが好ましい。   In the present invention, the thermosetting resin composition for forming the light reflecting layer includes (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) It contains a white pigment and (F) a coupling agent, and the cured product of the thermosetting resin composition preferably has a light reflectance of 80% or more at a wavelength of 450 nm to 800 nm. By adopting such a configuration, a light reflection layer having a sufficiently high reflector function can be formed. The thermosetting resin composition is preferably one that can be pressure-molded at room temperature (25 ° C.) before thermosetting from the viewpoint of easy formation of the light reflecting layer.

(D)無機充填剤は、熱伝導性、光反射特性、成形性、難燃性の点から、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群の中から選ばれる少なくとも1種であることが好ましい。(E)白色顔料は、光反射特性の点から酸化チタンであることが好ましい。(E)白色顔料の平均粒径は、粒子の凝集を抑制するとともに優れた光反射特性を達成する観点から、0.1〜50μmの範囲内であることがこのましい。   (D) The inorganic filler is composed of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate in terms of thermal conductivity, light reflection characteristics, moldability, and flame retardancy. It is preferably at least one selected from the group. (E) The white pigment is preferably titanium oxide from the viewpoint of light reflection characteristics. (E) The average particle diameter of the white pigment is preferably in the range of 0.1 to 50 μm from the viewpoint of suppressing particle aggregation and achieving excellent light reflection characteristics.

(D)無機充填剤及び(E)白色顔料の合計量は、光反射層の優れた光反射特性及び成形性の両方を高水準に達成する観点から、熱硬化性樹脂組成物100体積部に対して60〜85体積部の範囲内であることが好ましい。   The total amount of (D) inorganic filler and (E) white pigment is 100 parts by volume of the thermosetting resin composition from the viewpoint of achieving both the excellent light reflection characteristics and moldability of the light reflection layer at a high level. On the other hand, it is preferably within the range of 60 to 85 parts by volume.

本発明においては、上記配線板としてプリント配線板、フレキシブル配線板又はメタルベース配線板を使用できる。   In the present invention, a printed wiring board, a flexible wiring board, or a metal base wiring board can be used as the wiring board.

本発明は、光半導体装置を製造する方法であって、上記の方法によって製造された光半導体素子搭載用パッケージ基板の凹部の各底面上に光半導体素子を搭載する第1工程と、光半導体素子を覆うように凹部に透光性を有する封止樹脂を充填する第2工程とを備える方法を提供する。この方法によれば、輝度低下を十分に抑制できる光半導体装置を効率的に製造できる。   The present invention is a method of manufacturing an optical semiconductor device, the first step of mounting the optical semiconductor element on each bottom surface of the recess of the optical semiconductor element mounting package substrate manufactured by the above method, and the optical semiconductor element And a second step of filling the concave portion with a light-transmitting sealing resin so as to cover the concave portion. According to this method, an optical semiconductor device that can sufficiently suppress a decrease in luminance can be efficiently manufactured.

本発明に係る光半導体装置の製造方法は、第2工程後、複数の光半導体素子が装着された光半導体素子搭載用パッケージ基板を分割して複数の光半導体装置を得る第3工程を更に備えることが好ましい。この第3工程における光半導体素子搭載用パッケージ基板の分割はダイシングによって行うことができる。   The method for manufacturing an optical semiconductor device according to the present invention further includes a third step of dividing the optical semiconductor element mounting package substrate on which the plurality of optical semiconductor elements are mounted to obtain a plurality of optical semiconductor devices after the second step. It is preferable. The division of the package substrate for mounting an optical semiconductor element in the third step can be performed by dicing.

本発明によれば、光半導体素子搭載用パッケージ成形体の凹部の底面をなす配線板表面の反射率低下を抑制できるため、光半導体装置の輝度低下を十分に抑制できる。その結果、本発明によれば、十分に高い信頼性を有する光半導体装置が提供される。   According to the present invention, it is possible to suppress a decrease in reflectance on the surface of the wiring board that forms the bottom surface of the concave portion of the package for mounting an optical semiconductor element, and thus it is possible to sufficiently suppress a decrease in luminance of the optical semiconductor device. As a result, according to the present invention, an optical semiconductor device having sufficiently high reliability is provided.

(a)及び(b)は、本発明に係る光半導体装置の好適な実施形態を示す断面図及び平面図である。(A) And (b) is sectional drawing and top view which show suitable embodiment of the optical semiconductor device which concerns on this invention. 本発明に係る光半導体素子搭載用パッケージ基板の製造方法の好適な実施形態を示す工程図である。It is process drawing which shows suitable embodiment of the manufacturing method of the package substrate for optical semiconductor element mounting which concerns on this invention. 本発明に係る方法によって製造された光半導体装置の一実施形態を示す平面図である。It is a top view which shows one Embodiment of the optical semiconductor device manufactured by the method based on this invention. 本発明に係る光半導体装置の他の実施形態を示す断面図である。It is sectional drawing which shows other embodiment of the optical semiconductor device which concerns on this invention. (a)及び(b)は、従来の光半導体装置の構成を示す断面図及び平面図である。(A) And (b) is sectional drawing and a top view which show the structure of the conventional optical semiconductor device.

<光半導体装置>
図1に示す光半導体装置10は、一般に「表面実装型」に分類されるものである。光半導体装置10は、配線板1と、この配線板1上に形成された光反射層5と、リード電極1a,1bに接続された光半導体素子8と、透光性を有する樹脂材料(以下、「透明封止樹脂」という。)からなる封止体20とを有する。本実施形態においては、配線板1及び光反射層5によって光半導体素子搭載用パッケージ成形体が形成されている。配線板1の表面にはリード電極1a,1b及び回路1c等が設けられている。配線板1の基材1dは樹脂材料によって形成されている。
<Optical semiconductor device>
The optical semiconductor device 10 shown in FIG. 1 is generally classified as a “surface mount type”. The optical semiconductor device 10 includes a wiring board 1, a light reflecting layer 5 formed on the wiring board 1, an optical semiconductor element 8 connected to the lead electrodes 1a and 1b, and a resin material having translucency (hereinafter referred to as a light-transmitting resin material). And a sealing body 20 made of “transparent sealing resin”. In the present embodiment, a package molded body for mounting an optical semiconductor element is formed by the wiring board 1 and the light reflecting layer 5. On the surface of the wiring board 1, lead electrodes 1a and 1b, a circuit 1c, and the like are provided. The substrate 1d of the wiring board 1 is formed of a resin material.

光反射層5は、熱硬化性樹脂組成物の硬化物からなり、配線板1のリード電極1a,1b上に形成されている。光反射層5は、その上面から配線板1側の面にかけて設けられた孔を有する。光反射層5が有する孔によって凹部6が形成され、この中に3つの光半導体素子8が収納されている。凹部6には配線板1上のリード電極1a,1b及びこれらの間に充填された光反射層5用樹脂組成物の硬化物が露出し、凹部6の底面6aをなしている。リード電極1a,1bの間の上記硬化物は光反射層5と同時に設けられたものである。光反射層5を形成する際、リード電極1a,1bの間に熱硬化性樹脂組成物を充填するには、例えば、光反射層5を成形するにあたり、ソルダーレジスト(図5参照)を使用せず、トランスファー成形を実施すればよい。なお、ソルダーレジストを使用しない場合、マウント領域9に樹脂バリが発生する傾向にあるが、樹脂組成物の組成や混練条件を調節することで樹脂バリの発生は十分に低減可能である。   The light reflecting layer 5 is made of a cured product of a thermosetting resin composition, and is formed on the lead electrodes 1 a and 1 b of the wiring board 1. The light reflecting layer 5 has a hole provided from its upper surface to the surface on the wiring board 1 side. A recess 6 is formed by a hole of the light reflecting layer 5, and three optical semiconductor elements 8 are accommodated therein. In the recess 6, the lead electrodes 1 a, 1 b on the wiring board 1 and the cured product of the resin composition for the light reflecting layer 5 filled therebetween are exposed, forming the bottom surface 6 a of the recess 6. The cured product between the lead electrodes 1 a and 1 b is provided simultaneously with the light reflecting layer 5. In order to fill the thermosetting resin composition between the lead electrodes 1a and 1b when forming the light reflecting layer 5, for example, when forming the light reflecting layer 5, use a solder resist (see FIG. 5). Instead, transfer molding may be performed. In the case where a solder resist is not used, resin burrs tend to be generated in the mount region 9, but the occurrence of resin burrs can be sufficiently reduced by adjusting the composition and kneading conditions of the resin composition.

光反射層5に形成された凹部6にダイボンド材15を介して光半導体素子8をマウントする。光半導体素子8の電極(図示せず)とリード電極1a,1bとをボンディングワイア16によって接続する。その後、透光性を有する樹脂材料を光半導体素子8の周囲、すなわち、凹部6内に充填して封止体20を形成する。光半導体素子8は、2本のリード電極1a,1bを通して電力を供給されると発光し、その光が封止体20を通して、光取出面10Fから取り出される。   The optical semiconductor element 8 is mounted on the recess 6 formed in the light reflecting layer 5 through the die bond material 15. An electrode (not shown) of the optical semiconductor element 8 and the lead electrodes 1 a and 1 b are connected by a bonding wire 16. Thereafter, a resin material having translucency is filled around the optical semiconductor element 8, that is, in the recess 6 to form the sealing body 20. The optical semiconductor element 8 emits light when electric power is supplied through the two lead electrodes 1a and 1b, and the light is extracted from the light extraction surface 10F through the sealing body 20.

上記構成の光半導体装置10によれば、長期にわたって使用しても輝度低下が十分に少なく、高い信頼性を達成できるという優れた効果が奏される。すなわち、光半導体装置10は、凹部6の底面6aが光反射層5用樹脂組成物の硬化物5a及びリード電極1a,1bによって形成されている。底面6aに配線板1の基材1dが露出していないため、基材1dに含まれる樹脂の変色による反射率の低下を十分に抑制できる。   According to the optical semiconductor device 10 having the above-described configuration, even when used for a long period of time, an excellent effect is achieved in that a decrease in luminance is sufficiently small and high reliability can be achieved. That is, in the optical semiconductor device 10, the bottom surface 6a of the recess 6 is formed by the cured product 5a of the resin composition for the light reflecting layer 5 and the lead electrodes 1a and 1b. Since the base material 1d of the wiring board 1 is not exposed on the bottom surface 6a, it is possible to sufficiently suppress a decrease in reflectance due to discoloration of the resin contained in the base material 1d.

光半導体装置10は、凹部6を有する光反射層5の直下に配線板1が位置する構成である。このため、配線板1の回路パターンを適宜設計することで、凹部6内に収納された3つの光半導体素子8の発光を比較的容易に制御できるという利点がある。かかる観点からすると、凹部6内には複数の光半導体素子8を搭載することが好ましい。   The optical semiconductor device 10 has a configuration in which the wiring board 1 is located immediately below the light reflecting layer 5 having the recess 6. For this reason, there is an advantage that the light emission of the three optical semiconductor elements 8 accommodated in the recesses 6 can be controlled relatively easily by appropriately designing the circuit pattern of the wiring board 1. From this point of view, it is preferable to mount a plurality of optical semiconductor elements 8 in the recess 6.

(配線板)
配線板1としては、銅箔付きの繊維入りの熱硬化性樹脂基板、銅箔付きのフィルム基板又は銅箔付きのメタルベース基板に対して、公知の手法を用いて回路となる配線を形成したものを使用できる。配線導体の厚さは、18〜150μmの範囲が好ましく、より好ましい範囲は35〜70μmである。配線導体の厚さが18μmよりも薄いと、熱容量が小さくなり放熱性が徐々に低下する傾向にある。150μmより厚いと、放熱性の点で好ましいが、配線形成が徐々に難しくなる傾向にある。配線形成後、電気めっきによりNi/銀めっきを施す。なお、基材1dを構成する樹脂にはベンゼン環の骨格を含む樹脂を用いてもかまわない。
(Wiring board)
As the wiring board 1, the wiring used as a circuit was formed using the well-known method with respect to the thermosetting resin board | substrate with a fiber with a copper foil, the film board with a copper foil, or the metal base board with a copper foil. Things can be used. The thickness of the wiring conductor is preferably in the range of 18 to 150 μm, and more preferably in the range of 35 to 70 μm. If the thickness of the wiring conductor is less than 18 μm, the heat capacity tends to be small and the heat dissipation tends to be gradually reduced. When it is thicker than 150 μm, it is preferable from the viewpoint of heat dissipation, but the wiring formation tends to become difficult gradually. After the wiring is formed, Ni / silver plating is performed by electroplating. A resin containing a benzene ring skeleton may be used as the resin constituting the substrate 1d.

(光反射層)
光反射層5は、熱硬化性樹脂組成物の硬化物からなる。熱硬化性樹脂組成物は、光反射層の形成の容易性の観点から熱硬化前においては室温(25℃)で加圧成形可能なものが好ましい。熱硬化性樹脂組成物に含まれる熱硬化性樹脂としては、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂、シアネート樹脂等種々のものを用いることができる。特に、エポキシ樹脂は、種々の材料に対する接着性が優れるため好ましい。
(Light reflecting layer)
The light reflection layer 5 is made of a cured product of a thermosetting resin composition. The thermosetting resin composition is preferably one that can be pressure-molded at room temperature (25 ° C.) before thermosetting from the viewpoint of easy formation of the light reflecting layer. As the thermosetting resin contained in the thermosetting resin composition, various resins such as an epoxy resin, a silicone resin, a urethane resin, and a cyanate resin can be used. In particular, an epoxy resin is preferable because of its excellent adhesion to various materials.

(A)エポキシ樹脂
エポキシ樹脂としては、ベンゼン環を含まない電子部品封止用エポキシ樹脂成形材料で一般に使用されているものを用いることができる。その具体例としては、水素添加したフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂をはじめとするフェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、水素添加したビスフェノールA、ビスフェノールF、ビスフェノールS、アルキル置換ビスフェノール等のジグリシジルエーテル、ジアミノジフェニルメタン、イソシアヌル酸等のポリアミンとエピクロルヒドリンの反応により得られるグリシジルアミン型エポキシ樹脂、オレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂、及び脂環族エポキシ樹脂等を挙げることができる。これらの樹脂は一種を単独で用いてもよく、二種以上を併用してもよい。なお、これらの樹脂のうち、比較的着色のないものを使用することが好ましく、例えば、水素添加ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジグリシジルイソシアヌレート、トリグリシジルイソシアヌレートが好適である。
(A) Epoxy resin As an epoxy resin, what is generally used with the epoxy resin molding material for electronic component sealing which does not contain a benzene ring can be used. Specific examples include epoxidized phenol and aldehyde novolak resins such as hydrogenated phenol novolac epoxy resins, orthocresol novolac epoxy resins, hydrogenated bisphenol A, bisphenol F, and bisphenol S. , Glycidylamine type epoxy resin obtained by reaction of polychlorinated diglycidyl ether such as alkyl-substituted bisphenol, diaminodiphenylmethane, isocyanuric acid and epichlorohydrin, linear aliphatic obtained by oxidizing olefinic bonds with peracid such as peracetic acid An epoxy resin, an alicyclic epoxy resin, etc. can be mentioned. These resins may be used alone or in combination of two or more. Among these resins, it is preferable to use those which are relatively uncolored, such as hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, diglycidyl isocyanurate, triglycidyl. Isocyanurate is preferred.

熱硬化性樹脂として、エポキシ樹脂を使用する場合、熱硬化性樹脂組成物に硬化剤及び硬化促進剤を配合することが好ましい。   When an epoxy resin is used as the thermosetting resin, it is preferable to mix a curing agent and a curing accelerator in the thermosetting resin composition.

(B)硬化剤
硬化剤としては、エポキシ樹脂と反応するものであれば、特に制限なく用いることができるが、比較的着色のないものが好ましい。例えば、酸無水物硬化剤、イソシアヌル酸誘導体、フェノール系硬化剤等が挙げられる。酸無水物系硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、無水コハク酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸が挙げられ、イソシアヌル酸誘導体としては、1,3,5−トリス(1−カルボキシメチル)イソシアヌレート、1,3,5−トリス(2−カルボキシエチル)イソシアヌレート、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレート、1,3−ビス(2−カルボキシエチル)イソシアヌレート等が挙げられる。
(B) Curing agent As the curing agent, any curing agent that can react with an epoxy resin can be used without particular limitation. For example, an acid anhydride curing agent, an isocyanuric acid derivative, a phenolic curing agent, and the like can be given. Examples of the acid anhydride curing agent include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, glutaric anhydride. Acid, dimethylglutaric anhydride, diethylglutaric anhydride, succinic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride. Examples of isocyanuric acid derivatives include 1,3,5-tris (1-carboxymethyl). ) Isocyanurate, 1,3,5-tris (2-carboxyethyl) isocyanurate, 1,3,5-tris (3-carboxypropyl) isocyanurate, 1,3-bis (2-carboxyethyl) isocyanurate, etc. Is mentioned.

上記の硬化剤の中でも無水フタル酸、無水トリメリット酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水グルタル酸、無水ジメチルグルタル酸、無水ジエチルグルタル酸、1,3,5−トリス(3−カルボキシプロピル)イソシアヌレートを用いることが好ましい。硬化剤は、その分子量が、100〜400程度のものが好ましく、また、無色ないし淡黄色のものが好ましい。   Among the above curing agents, phthalic anhydride, trimellitic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, glutaric anhydride, dimethylglutaric anhydride, diethylglutaric anhydride It is preferable to use an acid, 1,3,5-tris (3-carboxypropyl) isocyanurate. The curing agent preferably has a molecular weight of about 100 to 400, and is preferably colorless or light yellow.

熱硬化性樹脂組成物の硬化剤の含有量は、エポキシ樹脂100質量部に対して、50〜200質量部であることが好ましく、より好ましくは100〜150質量部である。硬化剤の含有量が、50質量部未満であると、エポキシ樹脂の硬化反応が十分に進行しない場合があり、また、200質量部を超えると、得られる成形体に変色が見られる場合がある。   It is preferable that content of the hardening | curing agent of a thermosetting resin composition is 50-200 mass parts with respect to 100 mass parts of epoxy resins, More preferably, it is 100-150 mass parts. When the content of the curing agent is less than 50 parts by mass, the curing reaction of the epoxy resin may not sufficiently proceed, and when it exceeds 200 parts by mass, discoloration may be seen in the obtained molded body. .

(C)硬化促進剤
硬化促進剤としては、特に限定されるものではなく、例えば、1,8−ジアザ−ビシクロ(5,4,0)ウンデセン−7、トリエチレンジアミン、トリ−2,4,6−ジメチルアミノメチルフェノール等の3級アミン類、2−エチル−4メチルイミダゾール、2−メチルイミダゾール等のイミダゾール類、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、テトラ−n−ブチルホスホニウム−テトラフルオロボレート、テトラ−n−ブチルホスホニウム−テトラフェニルボレート等のリン化合物、4級アンモニウム塩、有機金属塩類、及びこれらの誘導体等が挙げられる。これらは一種を単独で使用してもよく、二種以上を併用してもよい。これらの硬化促進剤の中では、3級アミン類、イミダゾール類、リン化合物を用いることが好ましい。
(C) Curing accelerator The curing accelerator is not particularly limited. For example, 1,8-diaza-bicyclo (5,4,0) undecene-7, triethylenediamine, tri-2,4,6. -Tertiary amines such as dimethylaminomethylphenol, imidazoles such as 2-ethyl-4methylimidazole and 2-methylimidazole, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetra-n-butylphosphonium-o, o -Phosphorus compounds such as diethyl phosphorodithioate, tetra-n-butylphosphonium-tetrafluoroborate, tetra-n-butylphosphonium-tetraphenylborate, quaternary ammonium salts, organometallic salts, and derivatives thereof . These may be used individually by 1 type and may use 2 or more types together. Among these curing accelerators, it is preferable to use tertiary amines, imidazoles, and phosphorus compounds.

熱硬化性樹脂組成物の硬化促進剤の含有量は、エポキシ樹脂100質量部に対して、0.01〜8.0質量部であることが好ましく、より好ましくは0.1〜3.0質量部である。硬化促進剤の含有量が、0.01質量部未満であると、十分な硬化促進効果を得られない場合があり、また、8.0質量部を超えると、得られる成形体に変色が見られる場合がある。   It is preferable that content of the hardening accelerator of a thermosetting resin composition is 0.01-8.0 mass parts with respect to 100 mass parts of epoxy resins, More preferably, it is 0.1-3.0 masses. Part. When the content of the curing accelerator is less than 0.01 parts by mass, a sufficient curing acceleration effect may not be obtained. When the content exceeds 8.0 parts by mass, discoloration is observed in the obtained molded product. May be.

(D)無機充填剤
無機充填剤としては、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン、酸化ジルコニウム、水酸化アルミニウム、水酸化マグネシウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群から選ばれる少なくとも1種を用いることができる。熱伝導性、光反射特性、成形性及び難燃性の点から、シリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群から選ばれる少なくとも1種を用いるのが好ましい。また無機の充填剤の粒径は、特に限定されるものではないが、白色顔料とのパッキングが効率良くなるように1〜100μmの範囲のものを用いることが好ましい。
(D) Inorganic filler The inorganic filler is selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, titanium oxide, zirconium oxide, aluminum hydroxide, magnesium hydroxide, barium sulfate, magnesium carbonate and barium carbonate. At least one kind can be used. At least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate and barium carbonate from the viewpoint of thermal conductivity, light reflection characteristics, moldability and flame retardancy It is preferable to use it. The particle size of the inorganic filler is not particularly limited, but it is preferable to use one having a particle size in the range of 1 to 100 μm so that packing with the white pigment is efficient.

難燃効果の観点からは、無機充填剤として水酸化アルミニウム又は水酸化マグネシウムを使用することが好ましい。水酸化アルミニウム及び水酸化マグネシウムは、白色であるため反射率に与える影響が無い点でも好ましい。また、耐湿信頼性の観点からイオン性不純物の少ない水酸化アルミニウムや水酸化マグネシウムを使用することが好ましい。無機充填剤に含まれるNa化合物(イオン性化合物)の含有量は0.2質量%以下が好ましい。無機充填剤として使用する水酸化アルミニウム又は水酸化マグネシウムの平均粒径は、特に制限はないが、難燃性及び流動性の観点から0.1〜50μmが好ましい。水酸化アルミニウム及び水酸化マグネシウムの配合量は、熱硬化性樹脂組成物の全質量を基準として10〜30質量%が好ましい。配合量が10質量%未満であると、難燃効果が徐々に得にくくなり、30質量%を超えると、流動性や硬化性に悪影響を与えることがある。   From the viewpoint of the flame retardant effect, it is preferable to use aluminum hydroxide or magnesium hydroxide as the inorganic filler. Since aluminum hydroxide and magnesium hydroxide are white, they are preferable in that they do not affect the reflectance. Moreover, it is preferable to use aluminum hydroxide and magnesium hydroxide with few ionic impurities from a viewpoint of moisture resistance reliability. The content of the Na compound (ionic compound) contained in the inorganic filler is preferably 0.2% by mass or less. The average particle diameter of aluminum hydroxide or magnesium hydroxide used as the inorganic filler is not particularly limited, but is preferably 0.1 to 50 μm from the viewpoint of flame retardancy and fluidity. As for the compounding quantity of aluminum hydroxide and magnesium hydroxide, 10-30 mass% is preferable on the basis of the total mass of a thermosetting resin composition. When the blending amount is less than 10% by mass, it becomes difficult to obtain the flame retarding effect gradually, and when it exceeds 30% by mass, the fluidity and curability may be adversely affected.

無機充填剤の配合量は、熱硬化性樹脂組成物の全体積を基準として10〜85体積%の範囲であることが好ましい。配合量が10体積%未満であると、光反射特性が不十分となりやすく、他方、85体積%を超えると成形性が悪くなり光反射層5の成形が困難となる傾向がある。   It is preferable that the compounding quantity of an inorganic filler is the range of 10-85 volume% on the basis of the whole volume of a thermosetting resin composition. If the blending amount is less than 10% by volume, the light reflection characteristics tend to be insufficient. On the other hand, if it exceeds 85% by volume, the moldability tends to deteriorate and the light reflection layer 5 tends to be difficult to mold.

(E)白色顔料
白色顔料としては、アルミナ、酸化マグネシウム、酸化アンチモン、酸化チタン又は酸化ジルコニウムを使用することができる。これらの中でも光反射性の点から酸化チタンが好ましい。白色顔料として無機中空粒子を使用してもよい。無機中空粒子の具体例として、珪酸ソーダガラス、アルミ珪酸ガラス、硼珪酸ソーダガラス、シラス等が挙げられる。白色顔料は、平均粒径が0.1〜50μmの範囲にあることが好ましい。平均粒径が0.1μm未満であると、粒子が凝集しやすくなり、分散性も悪くなる傾向がある。他方、平均粒径が50μmを超えると、光反射特性が不十分となる傾向がある。
(E) White pigment As the white pigment, alumina, magnesium oxide, antimony oxide, titanium oxide, or zirconium oxide can be used. Among these, titanium oxide is preferable from the viewpoint of light reflectivity. Inorganic hollow particles may be used as the white pigment. Specific examples of the inorganic hollow particles include sodium silicate glass, aluminum silicate glass, borosilicate soda glass, and shirasu. The white pigment preferably has an average particle size in the range of 0.1 to 50 μm. When the average particle size is less than 0.1 μm, the particles tend to aggregate and the dispersibility tends to deteriorate. On the other hand, when the average particle size exceeds 50 μm, the light reflection characteristics tend to be insufficient.

白色顔料の配合量は、上記無機充填剤の配合量を考慮して調整することが好ましい。白色顔料と無機充填剤との合計量は、熱硬化性樹脂組成物の全体積を基準として60〜85体積%の範囲であることが好ましい。   It is preferable to adjust the blending amount of the white pigment in consideration of the blending amount of the inorganic filler. The total amount of the white pigment and the inorganic filler is preferably in the range of 60 to 85% by volume based on the total volume of the thermosetting resin composition.

熱硬化性樹脂組成物は、カップリング剤を更に含有したものであってもよい。カップリング剤としては、シランカップリング剤やチタネート系カップリング剤等を例示できる。着色の観点から、一般にエポキシシラン系が優れており、具体例として3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等がある。カップリング剤の配合量は、熱硬化性樹脂組成物の全質量を基準として質量%以下が好ましい。熱硬化性樹脂組成物には、その他の添加剤として、酸化防止剤、離型剤、イオン捕捉剤等を配合してもよい。   The thermosetting resin composition may further contain a coupling agent. Examples of coupling agents include silane coupling agents and titanate coupling agents. From the viewpoint of coloring, epoxy silane is generally excellent, and specific examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- Examples include glycidoxypropylmethyldimethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane. The blending amount of the coupling agent is preferably not more than mass% based on the total mass of the thermosetting resin composition. In the thermosetting resin composition, an antioxidant, a release agent, an ion scavenger and the like may be blended as other additives.

(封止体)
封止体20は、透明封止樹脂からなり、これを凹部6に充填することで光半導体素子8を保護する。透明封止樹脂としては、弾性率が室温(25℃)において1MPa以下のものが好ましい。特に、透明性の点からシリコーン樹脂又はアクリル樹脂を採用することが好ましい。透明封止樹脂は、光を拡散する無機充填材や青色光を励起源として白色光とする蛍光体を更に含有してもよい。
(Sealed body)
The sealing body 20 is made of a transparent sealing resin, and fills the recess 6 to protect the optical semiconductor element 8. The transparent sealing resin preferably has an elastic modulus of 1 MPa or less at room temperature (25 ° C.). In particular, it is preferable to employ a silicone resin or an acrylic resin from the viewpoint of transparency. The transparent sealing resin may further contain an inorganic filler that diffuses light and a phosphor that emits white light using blue light as an excitation source.

(パッケージ基板の製造方法)
図1に示す光半導体装置10は、光半導体素子搭載用のパッケージ基板を使用することにより、効率的に量産することができる。図2を参照しながら、パッケージ基板30の製造方法について説明する。まず、銅張り積層板等に回路を形成した後、更にその表面にNi/Agめっきによってリード電極を形成して配線板31を得る。なお、配線板31として、メタルコア基板、フレキシブル基板等を使用してもよい。
(Manufacturing method of package substrate)
The optical semiconductor device 10 shown in FIG. 1 can be mass-produced efficiently by using a package substrate for mounting an optical semiconductor element. A method for manufacturing the package substrate 30 will be described with reference to FIG. First, after forming a circuit on a copper-clad laminate or the like, a lead electrode is further formed on the surface by Ni / Ag plating to obtain a wiring board 31. Note that a metal core substrate, a flexible substrate, or the like may be used as the wiring board 31.

図2(a)に示すように、一対の金型40a,40bの間に配線板31を配置する。次に、図2(b)に示すように、金型40a,40bの樹脂注入口(図示せず)から熱硬化性樹脂組成物を注入し、配線板31上に光反射層35を形成する。光反射層35はトランスファー成形法によって形成することが好ましい。光反射層35用の樹脂組成物の注入後、例えば、金型温度を180℃に90秒保持することによって樹脂組成物を硬化させる。なお、トランスファー成形時に金型内を減圧にすると、リード電極1a,1b間の樹脂充填性が向上するため好ましい。金型40a,40bからパッケージ基板30を取り出した後、温度120℃〜180℃で1〜3時間加熱することによって熱硬化性樹脂組成物のアフターキュアを行ってもよい。これらの工程を経ることによってパッケージ基板30が製造される。パッケージ基板30は、図2(c)に示す通り、配線板31と、その上に設けられた光反射層35とを備え、光反射層35は複数の凹部6を有する。   As shown in FIG. 2A, a wiring board 31 is disposed between a pair of molds 40a and 40b. Next, as shown in FIG. 2B, a thermosetting resin composition is injected from a resin injection port (not shown) of the molds 40 a and 40 b to form a light reflection layer 35 on the wiring board 31. . The light reflecting layer 35 is preferably formed by a transfer molding method. After injecting the resin composition for the light reflecting layer 35, for example, the resin composition is cured by maintaining the mold temperature at 180 ° C. for 90 seconds. It is preferable to reduce the pressure in the mold during transfer molding because the resin filling property between the lead electrodes 1a and 1b is improved. After taking out the package substrate 30 from the molds 40a and 40b, the thermosetting resin composition may be after-cured by heating at a temperature of 120 ° C. to 180 ° C. for 1 to 3 hours. The package substrate 30 is manufactured through these steps. As shown in FIG. 2C, the package substrate 30 includes a wiring board 31 and a light reflection layer 35 provided thereon, and the light reflection layer 35 has a plurality of recesses 6.

(光半導体装置の製造方法)
パッケージ基板30の各凹部6内に光半導体素子8を実装する(第1工程)。その後、光半導体素子8を覆うように各凹部6に透光封止樹脂を充填する(第2工程)。これにより、図3に示すように、複数の光半導体装置10が一体的に形成されてなる製品が得られる。その後、上記製品を分割することによって個片化された光半導体装置10が得られる(第3工程)。個片化はダイシングによって行うことができる。
(Manufacturing method of optical semiconductor device)
The optical semiconductor element 8 is mounted in each recess 6 of the package substrate 30 (first step). Thereafter, each recess 6 is filled with a translucent sealing resin so as to cover the optical semiconductor element 8 (second step). As a result, as shown in FIG. 3, a product in which a plurality of optical semiconductor devices 10 are integrally formed is obtained. Thereafter, the divided optical semiconductor device 10 is obtained by dividing the product (third step). Dividing can be performed by dicing.

ただし、複数の光半導体装置10が一体的に設けられた状態のままで光半導体装置10を使用する場合は、上記第3工程は実施しなくてもよい。また、図3に示す製品の光半導体装置10の数は4つに限られるものではない。光半導体装置10は、光反射層5の直下に配線板31が位置する構成である。このため、配線板31の回路パターンを適宜設計することで、各光半導体装置10の発光を比較的容易に制御できるという利点がある。   However, when the optical semiconductor device 10 is used in a state where the plurality of optical semiconductor devices 10 are integrally provided, the third step may not be performed. Further, the number of the optical semiconductor devices 10 of the product shown in FIG. 3 is not limited to four. The optical semiconductor device 10 has a configuration in which the wiring board 31 is located immediately below the light reflecting layer 5. For this reason, there is an advantage that the light emission of each optical semiconductor device 10 can be controlled relatively easily by appropriately designing the circuit pattern of the wiring board 31.

上記第2工程においては、透明封止樹脂として蛍光体を含有するものを使用し、光半導体装置10を製造してもよい。図4(a)に示す実施形態は、リード電極1a,1bと光半導体素子8とをボンディングワイア16で接続した後、蛍光体21aを含有する透明封止樹脂よって封止体21を形成したものである。図4(b)に示す実施形態は、リード電極1a,1bと光半導体素子8とをはんだバンプ17で接続した後、蛍光体21aを含有する透明封止樹脂よって封止体21を形成したものである。   In the second step, the optical semiconductor device 10 may be manufactured using a transparent sealing resin containing a phosphor. In the embodiment shown in FIG. 4A, after the lead electrodes 1a and 1b and the optical semiconductor element 8 are connected by the bonding wire 16, the sealing body 21 is formed by the transparent sealing resin containing the phosphor 21a. It is. In the embodiment shown in FIG. 4B, after the lead electrodes 1a and 1b and the optical semiconductor element 8 are connected by the solder bumps 17, the sealing body 21 is formed by the transparent sealing resin containing the phosphor 21a. It is.

(実施例1)
<プリント配線板の作製>
日立化成工業株式会社製のガラス布−エポキシ樹脂含浸両面銅張り積層板(商品名:MCL−E−679、基板厚さ0.6mm、銅箔厚さ35μm)を準備した。この積層板に対して穴あけ及び無電解めっき(厚さ20μm)の処理を施し、サブトラクト法によって回路を形成した。更に、銅の回路にNi/Agめっきによってリード電極を形成し、プリント配線板を作製した。
Example 1
<Production of printed wiring board>
A glass cloth-epoxy resin impregnated double-sided copper-clad laminate (trade name: MCL-E-679, substrate thickness 0.6 mm, copper foil thickness 35 μm) manufactured by Hitachi Chemical Co., Ltd. was prepared. The laminated plate was subjected to drilling and electroless plating (thickness 20 μm), and a circuit was formed by the subtract method. Furthermore, a lead electrode was formed on the copper circuit by Ni / Ag plating to produce a printed wiring board.

<光反射層用の熱硬化性樹脂組成物の調製>
下記の成分を混練温度20〜30℃、混練時間10分の条件で、ロール混練を行うことによって、光反射層用の熱硬化性樹脂組成物を調製した。
<Preparation of thermosetting resin composition for light reflecting layer>
A thermosetting resin composition for a light reflection layer was prepared by roll kneading the following components under conditions of a kneading temperature of 20 to 30 ° C. and a kneading time of 10 minutes.

(A)エポキシ樹脂:トリグリシジルイソシアヌレート、100質量部(エポキシ当量100)、
(B)硬化剤:ヘキサヒドロ無水フタル酸、140質量部、
(C)硬化促進剤:テトラ−n−ブチルホスホニウム−o,o−ジエチルホスホロジチオエート、2.4質量部、
(D)無機充填剤:溶融シリカA(平均粒径25μm)、600質量部、及び、溶融シリカB(平均粒径0.25μm)、890質量部、
(E)白色顔料:酸化チタン(堺化学工業株式会社製、FTR−700、平均粒径0.3μm)、185質量部、
(F)カップリング剤:エポキシシラン、19質量部、
(G)酸化防止剤:9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキシド、1質量部
<光半導体素子搭載用パッケージ基板の作製>
上記のようにして作製したプリント配線板を、図2に示す金型40a,40bと同様の形状の金型内に位置あわせして配置した。次いで、上記熱硬化性樹脂組成物を金型内に注入した後、トランスファー成型機(エムテックスマツムラ株式会社製、MF−FS01)を使用して金型内を減圧にした後、加熱加圧成形し、複数の凹部を有する光半導体素子搭載用パッケージ基板を得た。なお、成形の条件は、金型温度180℃、保持時間90秒、圧力6.9MPaとした。
(A) Epoxy resin: triglycidyl isocyanurate, 100 parts by mass (epoxy equivalent 100),
(B) Curing agent: hexahydrophthalic anhydride, 140 parts by mass,
(C) Curing accelerator: tetra-n-butylphosphonium-o, o-diethyl phosphorodithioate, 2.4 parts by mass,
(D) Inorganic filler: fused silica A (average particle size 25 μm), 600 parts by mass, and fused silica B (average particle size 0.25 μm), 890 parts by mass,
(E) White pigment: Titanium oxide (manufactured by Sakai Chemical Industry Co., Ltd., FTR-700, average particle size 0.3 μm), 185 parts by mass,
(F) Coupling agent: Epoxy silane, 19 parts by mass,
(G) Antioxidant: 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 1 part by mass <Preparation of package substrate for mounting optical semiconductor element>
The printed wiring board produced as described above was positioned and arranged in a mold having the same shape as the molds 40a and 40b shown in FIG. Next, after injecting the thermosetting resin composition into the mold, the mold is depressurized using a transfer molding machine (MF-FS01, manufactured by Mtex Matsumura Co., Ltd.), and then heated and pressed. Thus, an optical semiconductor element mounting package substrate having a plurality of recesses was obtained. The molding conditions were a mold temperature of 180 ° C., a holding time of 90 seconds, and a pressure of 6.9 MPa.

<光半導体装置の製造>
光半導体素子搭載用パッケージ基板の各凹部底面の回路上に、ダイボンド材(日立化成工業株式会社製、EN4620K)を介してLED素子を配置した。150℃で1時間加熱することにより、LED素子を端子上に固着させた。次いで、金線で、LED素子と配線板の端子とを電気的に接続した。その後、下記組成の透明封止樹脂を、ポッティングにより各凹部に流し込み、150℃で2時間、加熱硬化し、LED素子を樹脂封止した。
<Manufacture of optical semiconductor devices>
An LED element was disposed on a circuit at the bottom of each recess of the package substrate for mounting an optical semiconductor element via a die bond material (manufactured by Hitachi Chemical Co., Ltd., EN4620K). The LED element was fixed on the terminal by heating at 150 ° C. for 1 hour. Subsequently, the LED element and the terminal of the wiring board were electrically connected with a gold wire. Thereafter, a transparent sealing resin having the following composition was poured into each concave portion by potting and heat-cured at 150 ° C. for 2 hours to seal the LED element.

(透明封止樹脂の組成)
・水素添加ビスフェノールA型エポキシ樹脂:デナコールEX252(ナガセケムテックス社製)、90質量部、
・脂環式エポキシ樹脂:CEL−2021P(ダイセル化学工業株式会社製)、10質量部、
・4−メチルヘキサヒドロフタル酸無水物HN−5500E(日立化成工業株式会社製)、90質量部、
・2,6−ジターシャルブチル−4−メチルフェノールBHT、0.4質量部、
・2−エチル−4−メチルイミダゾール、0.9質量部
上記透明封止樹脂を硬化させた後、マトリックス状の光半導体装置を、ダイシング装置(株式会社ディスコ製DAD381)を使用して個片化し、LED素子を1つ有する単体の光半導体装置(SMD型LED)を複数製造した。
(Composition of transparent sealing resin)
-Hydrogenated bisphenol A type epoxy resin: Denacol EX252 (manufactured by Nagase ChemteX Corporation), 90 parts by mass,
-Alicyclic epoxy resin: CEL-2021P (manufactured by Daicel Chemical Industries, Ltd.), 10 parts by mass,
4-methylhexahydrophthalic anhydride HN-5500E (manufactured by Hitachi Chemical Co., Ltd.), 90 parts by mass,
2,6-ditertiary butyl-4-methylphenol BHT, 0.4 parts by mass,
-2-ethyl-4-methylimidazole, 0.9 mass part After hardening the said transparent sealing resin, a matrix-shaped optical semiconductor device is separated into pieces using a dicing apparatus (DAD381 by DISCO Corporation). A plurality of single optical semiconductor devices (SMD type LEDs) having one LED element were manufactured.

(実施例2)
プリント配線板の代わりにメタルコア基板を用いたことの他は、実施例1と同様にして光半導体装置を製造した。
(Example 2)
An optical semiconductor device was manufactured in the same manner as in Example 1 except that a metal core substrate was used instead of the printed wiring board.

(実施例3)
プリント配線板の代わりにフレキシブル基板を用いたことの他は、実施例1と同様にして光半導体装置を製造した。
(Example 3)
An optical semiconductor device was manufactured in the same manner as in Example 1 except that a flexible substrate was used instead of the printed wiring board.

(比較例1)
光反射層を形成するに先立ち、凹部の底面となる領域(マウント領域)以外のプリント配線板の表面をソルダーレジストで被覆したことの他は実施例1と同様にして光半導体装置を製造した。
(Comparative Example 1)
Prior to forming the light reflecting layer, an optical semiconductor device was manufactured in the same manner as in Example 1 except that the surface of the printed wiring board other than the region serving as the bottom surface of the recess (mounting region) was covered with a solder resist.

(比較例2)
光反射層の形成をトランスファー成形法で行う代わりに、大気圧の条件下で成形を行なったことの他は実施例1と同様にして光半導体装置を製造した。
(Comparative Example 2)
An optical semiconductor device was manufactured in the same manner as in Example 1 except that the light reflecting layer was formed under atmospheric pressure instead of the transfer molding method.

(評価)
実施例1〜3及び比較例1,2に係る光半導体装置を以下の項目について評価した。結果を表1に示す。
(Evaluation)
The optical semiconductor devices according to Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated for the following items. The results are shown in Table 1.

(1)リード電極間における樹脂の充填性
光半導体装置の凹部を目視により観察し、リード電極間における樹脂の充填性を以下の基準に基づいて評価した。
(1) Fillability of resin between lead electrodes The concave portion of the optical semiconductor device was visually observed, and the fillability of resin between the lead electrodes was evaluated based on the following criteria.

A:光反射層用の樹脂組成物がリード電極間に充填されている。   A: The resin composition for the light reflection layer is filled between the lead electrodes.

B:光反射層用の樹脂組成物がリード電極間に充分に充填されていない。   B: The resin composition for the light reflecting layer is not sufficiently filled between the lead electrodes.

(2)基材露出の有無
光半導体装置の凹部を目視により観察し、凹部の底面に配線板の基材が露出しているか否かを評価した。
(2) Existence of base material exposure The concave part of the optical semiconductor device was visually observed to evaluate whether the base material of the wiring board was exposed on the bottom surface of the concave part.

(3)樹脂着色の有無
200℃の雰囲気下にて、波長240〜380nmの光を、0.22W/cmの強さで、光半導体装置の凹部に向けて2時間照射した。その後、凹部の底面を目視により観察し、配線板の基材を構成する樹脂の着色が認められるか否かを評価した。
(3) Presence / absence of resin coloring Under an atmosphere of 200 ° C., light having a wavelength of 240 to 380 nm was irradiated with an intensity of 0.22 W / cm 2 toward the concave portion of the optical semiconductor device for 2 hours. Thereafter, the bottom surface of the concave portion was visually observed to evaluate whether or not coloring of the resin constituting the substrate of the wiring board was observed.

Figure 2010074124
Figure 2010074124

本発明によれば、凹部の底面がリード電極と光反射層をなす樹脂組成物の硬化物のみで形成されており、熱や光に対して劣化しやすい配線板の基材が露出していない。このため、輝度低下が抑制され、高い信頼性を有する光半導体装置が提供される。   According to the present invention, the bottom surface of the recess is formed only of the cured product of the resin composition that forms the lead electrode and the light reflecting layer, and the substrate of the wiring board that easily deteriorates against heat and light is not exposed. . For this reason, a reduction in luminance is suppressed, and an optical semiconductor device having high reliability is provided.

1,31,51…配線板、1a,1b,51a,51b…リード電極、1d,51c…基材、5,35,55…光反射層、5a…光反射層用樹脂組成物の硬化物、6,56…凹部、6a…凹部の底面、8,60…光半導体素子、9…マウント領域、9a…基材の露出部、10,50…光半導体装置、10F,50F…光取出面、15…ダイボンド材、16…ボンディングワイア、17…はんだバンプ、20,21…封止体(透明封止樹脂)、21a…蛍光体、30…光半導体素子搭載用パッケージ基板、40a,40b…金型、52…ソルダーレジスト、52a…ソルダーレジストの周縁部。   DESCRIPTION OF SYMBOLS 1,31,51 ... Wiring board, 1a, 1b, 51a, 51b ... Lead electrode, 1d, 51c ... Base material, 5, 35, 55 ... Light reflection layer, 5a ... Hardened | cured material of the resin composition for light reflection layers, 6, 56... Recess, 6a... Bottom surface of recess, 8, 60... Optical semiconductor element, 9... Mount region, 9a. ... die bond material, 16 ... bonding wire, 17 ... solder bump, 20, 21 ... sealing body (transparent sealing resin), 21a ... phosphor, 30 ... package substrate for mounting optical semiconductor elements, 40a, 40b ... mold, 52 ... Solder resist, 52a ... Peripheral edge of solder resist.

Claims (11)

リード電極と接続された光半導体素子と、
前記光半導体素子を収納する凹部を有する光半導体素子搭載用パッケージ成形体と、
透光性を有する樹脂からなり、前記凹部に充填されて前記光半導体素子を封止する封止体と、
を備え、
前記光半導体素子搭載用パッケージ成形体は、前記リード電極を表面に有する配線板と、熱硬化性樹脂組成物の硬化物からなり前記配線板上に形成された光反射層とを有し、
前記凹部は、前記光反射層の表面から前記配線板側の面にかけて設けられた孔によって形成されるものであり、当該凹部の底面が前記熱硬化性樹脂組成物の硬化物及び前記リード電極によって形成されている光半導体装置。
An optical semiconductor element connected to the lead electrode;
A package molded body for mounting an optical semiconductor element having a recess for accommodating the optical semiconductor element;
A sealing body made of a resin having translucency, filled in the recess and sealing the optical semiconductor element;
With
The optical semiconductor element mounting package molded body has a wiring board having the lead electrode on the surface thereof, and a light reflecting layer formed on the wiring board made of a cured product of a thermosetting resin composition,
The concave portion is formed by a hole provided from the surface of the light reflecting layer to the surface on the wiring board side, and the bottom surface of the concave portion is formed by the cured product of the thermosetting resin composition and the lead electrode. The formed optical semiconductor device.
光半導体素子搭載用パッケージ基板の製造方法であって、
光半導体素子を収納する凹部をなす孔を複数有するとともに熱硬化性樹脂組成物の硬化物からなる光反射層を、前記光半導体素子と接続されるリード電極を有する配線板上に形成する工程を備え、
前記光反射層をトランスファー成形によって形成する、光半導体素子搭載用パッケージ基板の製造方法。
A method of manufacturing a package substrate for mounting an optical semiconductor element,
Forming a light reflecting layer made of a cured product of a thermosetting resin composition on a wiring board having a lead electrode connected to the optical semiconductor element and having a plurality of holes forming recesses for accommodating the optical semiconductor element. Prepared,
A method of manufacturing a package substrate for mounting an optical semiconductor element, wherein the light reflecting layer is formed by transfer molding.
前記熱硬化性樹脂組成物は、(A)エポキシ樹脂と、(B)硬化剤と、(C)硬化促進剤と、(D)無機充填剤と、(E)白色顔料と、(F)カップリング剤とを含有するものであり、
前記熱硬化性樹脂組成物の硬化物は、波長450nm〜800nmにおける光反射率が80%以上である、請求項2に記載の光半導体素子搭載用パッケージ基板の製造方法。
The thermosetting resin composition comprises (A) an epoxy resin, (B) a curing agent, (C) a curing accelerator, (D) an inorganic filler, (E) a white pigment, and (F) a cup. Containing a ring agent,
The method for producing a package substrate for mounting an optical semiconductor element according to claim 2, wherein the cured product of the thermosetting resin composition has a light reflectance of 80% or more at a wavelength of 450 nm to 800 nm.
(D)無機充填剤がシリカ、アルミナ、酸化マグネシウム、酸化アンチモン、水酸化アルミニウム、硫酸バリウム、炭酸マグネシウム及び炭酸バリウムからなる群から選ばれる少なくとも1種である、請求項3に記載の光半導体素子搭載用パッケージ基板の製造方法。   (D) The optical semiconductor element according to claim 3, wherein the inorganic filler is at least one selected from the group consisting of silica, alumina, magnesium oxide, antimony oxide, aluminum hydroxide, barium sulfate, magnesium carbonate, and barium carbonate. A method for manufacturing a mounting package substrate. (E)白色顔料が酸化チタンである、請求項3又は4に記載の光半導体素子搭載用パッケージ基板の製造方法。   (E) The manufacturing method of the package substrate for optical semiconductor element mounting of Claim 3 or 4 whose white pigment is a titanium oxide. (E)白色顔料の平均粒径が0.1〜50μmの範囲内である、請求項3〜5のいずれか一項に記載の光半導体素子搭載用パッケージ基板の製造方法。   (E) The manufacturing method of the package substrate for optical semiconductor element mounting as described in any one of Claims 3-5 whose average particle diameter of a white pigment exists in the range of 0.1-50 micrometers. (D)無機充填剤及び(E)白色顔料の合計量は、前記熱硬化性樹脂組成物100体積部に対して60〜85体積部の範囲内である、請求項3〜6のいずれか一項に記載の光半導体素子搭載用パッケージ基板の製造方法。   The total amount of (D) inorganic filler and (E) white pigment is in the range of 60 to 85 parts by volume with respect to 100 parts by volume of the thermosetting resin composition. The manufacturing method of the package board | substrate for optical semiconductor element mounting of description. 前記リード電極を有する配線板は、プリント配線板、フレキシブル配線板又はメタルベース配線板である、請求項3〜7のいずれか一項に記載の光半導体素子搭載用パッケージ基板の製造方法。   The method of manufacturing a package substrate for mounting an optical semiconductor element according to any one of claims 3 to 7, wherein the wiring board having the lead electrode is a printed wiring board, a flexible wiring board, or a metal base wiring board. 光半導体装置の製造方法であって、
請求項2〜8のいずれか一項に記載の方法によって製造された光半導体素子搭載用パッケージ基板の前記凹部の各底面上に光半導体素子を搭載する第1工程と、
前記光半導体素子を覆うように前記凹部に透光性を有する封止樹脂を充填する第2工程と、
を備える光半導体装置の製造方法。
An optical semiconductor device manufacturing method comprising:
A first step of mounting an optical semiconductor element on each bottom surface of the recess of the package substrate for mounting an optical semiconductor element manufactured by the method according to claim 2;
A second step of filling the recess with a translucent sealing resin so as to cover the optical semiconductor element;
An optical semiconductor device manufacturing method comprising:
前記第2工程後、複数の前記光半導体素子が装着された光半導体素子搭載用パッケージ基板を分割して複数の光半導体装置を得る第3工程を更に備える、請求項9に記載の光半導体装置の製造方法。   The optical semiconductor device according to claim 9, further comprising a third step of dividing the optical semiconductor element mounting package substrate on which the plurality of optical semiconductor elements are mounted to obtain a plurality of optical semiconductor devices after the second step. Manufacturing method. 前記光半導体素子搭載用パッケージ基板の分割をダイシングによって行う、請求項10に記載の光半導体装置の製造方法。   The method of manufacturing an optical semiconductor device according to claim 10, wherein the optical semiconductor element mounting package substrate is divided by dicing.
JP2009012998A 2008-08-18 2009-01-23 Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate Pending JP2010074124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009012998A JP2010074124A (en) 2008-08-18 2009-01-23 Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008209703 2008-08-18
JP2009012998A JP2010074124A (en) 2008-08-18 2009-01-23 Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013000561A Division JP5565477B2 (en) 2008-08-18 2013-01-07 Method for manufacturing package substrate for mounting optical semiconductor element and method for manufacturing optical semiconductor device using the package substrate

Publications (1)

Publication Number Publication Date
JP2010074124A true JP2010074124A (en) 2010-04-02

Family

ID=42205599

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009012998A Pending JP2010074124A (en) 2008-08-18 2009-01-23 Optical semiconductor device, method for manufacturing package substrate for mounting optical semiconductor element, and method for manufacturing optical semiconductor device using package substrate
JP2013000561A Active JP5565477B2 (en) 2008-08-18 2013-01-07 Method for manufacturing package substrate for mounting optical semiconductor element and method for manufacturing optical semiconductor device using the package substrate

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2013000561A Active JP5565477B2 (en) 2008-08-18 2013-01-07 Method for manufacturing package substrate for mounting optical semiconductor element and method for manufacturing optical semiconductor device using the package substrate

Country Status (1)

Country Link
JP (2) JP2010074124A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2013179273A (en) * 2012-01-31 2013-09-09 Nichia Chem Ind Ltd Light-emitting device
EP2725060A1 (en) * 2011-06-27 2014-04-30 Daicel Corporation Curable resin composition for reflection of light, and optical semiconductor device
CN108735874A (en) * 2018-08-09 2018-11-02 东莞市欧思科光电科技有限公司 The LED and its technique of heat curing type package support and embedded communication IC integration packagings
US20230103341A1 (en) * 2020-06-22 2023-04-06 Nitto Denko Corporation Optical element bonding/reinforcing resin composition, and optical module produced by using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105849149A (en) 2013-12-18 2016-08-10 日本化药株式会社 Thermosetting resin composition, method for manufacturing reflective member for optical semiconductor device using same, and optical semiconductor device
JP2017168808A (en) * 2015-11-06 2017-09-21 株式会社カネカ Thermosetting white ink for CSP-LED
CN211045429U (en) * 2016-07-15 2020-07-17 3M创新有限公司 Flexible multilayer construction and L ESD package
KR102484799B1 (en) * 2018-04-16 2023-01-05 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
KR102556932B1 (en) * 2023-04-18 2023-07-19 주식회사 유환 Method of forming light-reflecting molded body peripheral site of LED device on printed circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device
JP2006156704A (en) * 2004-11-30 2006-06-15 Nichia Chem Ind Ltd Resin molding and surface-mounted light emitting device, and manufacturing method thereof
WO2007015426A1 (en) * 2005-08-04 2007-02-08 Nichia Corporation Light-emitting device, method for manufacturing same, molded body and sealing member
JP2007129173A (en) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using same, method for manufacturing same, and optical semiconductor device
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654670B2 (en) * 2003-12-16 2011-03-23 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2007201234A (en) * 2006-01-27 2007-08-09 Matsushita Electric Ind Co Ltd Light-emitting module, and manufacturing method thereof
JP5298468B2 (en) * 2006-09-26 2013-09-25 日立化成株式会社 Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2008112977A (en) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd Tablet molding die, tablet, manufacturing method for optical semiconductor element-mounting substrate and optical semiconductor device
JP2008159659A (en) * 2006-12-21 2008-07-10 Showa Denko Kk Light-emitting device and display unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140207A (en) * 2004-11-10 2006-06-01 Hitachi Chem Co Ltd Thermosetting resin composition for light reflection, optical semiconductor loading substrate using the same, its manufacturing method and optical semiconductor device
JP2006156704A (en) * 2004-11-30 2006-06-15 Nichia Chem Ind Ltd Resin molding and surface-mounted light emitting device, and manufacturing method thereof
WO2007015426A1 (en) * 2005-08-04 2007-02-08 Nichia Corporation Light-emitting device, method for manufacturing same, molded body and sealing member
JP2007129173A (en) * 2005-10-07 2007-05-24 Hitachi Chem Co Ltd Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using same, method for manufacturing same, and optical semiconductor device
JP2007235085A (en) * 2006-02-03 2007-09-13 Hitachi Chem Co Ltd Method of manufacturing package substrate for packaging optical semiconductor element and method of manufacturing optical semiconductor device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725060A1 (en) * 2011-06-27 2014-04-30 Daicel Corporation Curable resin composition for reflection of light, and optical semiconductor device
EP2725060A4 (en) * 2011-06-27 2015-04-15 Daicel Corp Curable resin composition for reflection of light, and optical semiconductor device
JP4991957B1 (en) * 2011-07-14 2012-08-08 積水化学工業株式会社 White curable composition for optical semiconductor device and molded article for optical semiconductor device
JP2013179273A (en) * 2012-01-31 2013-09-09 Nichia Chem Ind Ltd Light-emitting device
CN108735874A (en) * 2018-08-09 2018-11-02 东莞市欧思科光电科技有限公司 The LED and its technique of heat curing type package support and embedded communication IC integration packagings
CN108735874B (en) * 2018-08-09 2024-02-13 东莞市欧思科光电科技有限公司 LED (light-emitting diode) integrally packaged by thermosetting packaging bracket and embedded communication IC (integrated circuit) and process thereof
US20230103341A1 (en) * 2020-06-22 2023-04-06 Nitto Denko Corporation Optical element bonding/reinforcing resin composition, and optical module produced by using the same

Also Published As

Publication number Publication date
JP5565477B2 (en) 2014-08-06
JP2013065899A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
JP5565477B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element and method for manufacturing optical semiconductor device using the package substrate
US11984545B2 (en) Method of manufacturing a light emitting device
JP5232369B2 (en) Manufacturing method of package substrate for mounting optical semiconductor element and manufacturing method of optical semiconductor device using the same
US8212271B2 (en) Substrate for mounting an optical semiconductor element, manufacturing method thereof, an optical semiconductor device, and manufacturing method thereof
JP5060707B2 (en) Thermosetting resin composition for light reflection
JP2007297601A (en) Thermosetting resin composition for light reflection, substrate for loading photosemiconductor device using the same, method for producing the same, and photosemiconductor device
JP2011009519A (en) Optical semiconductor device and method for manufacturing the optical semiconductor device
JP5440096B2 (en) Optical semiconductor device manufacturing method, optical semiconductor element mounting substrate manufacturing method, and optical semiconductor device
JP2007129173A (en) Thermosetting light reflecting resin composition, optical semiconductor mounting substrate using same, method for manufacturing same, and optical semiconductor device
JP5233186B2 (en) Thermosetting light reflecting resin composition, substrate for mounting optical semiconductor element using the same, method for manufacturing the same, and optical semiconductor device
JP2009135484A (en) Optical semiconductor device
JP2009272616A (en) Surface mount type light-emitting device and method for manufacturing thereof
JP5956937B2 (en) Method for manufacturing package substrate for mounting optical semiconductor element
JP2014159600A (en) Thermosetting resin composition for light reflection, optical semiconductor mounting substrate using the same, method of manufacturing the optical semiconductor mounting substrate, and optical semiconductor device
JP6209928B2 (en) Optical semiconductor device, substrate for mounting optical semiconductor element, and thermosetting resin composition for light reflection
JP2012178567A (en) Thermosetting resin composition for reflecting light, substrate for mounting optical semiconductor element using the same and method for manufacturing the same, and optical semiconductor device
JP2013168684A (en) Member for mounting optical semiconductor element, and optical semiconductor device
JP2018053264A (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2017028310A (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2017011309A (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2016225666A (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2016219855A (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2016225665A (en) Optical semiconductor element mounting substrate and optical semiconductor device
JP2014132693A (en) Optical semiconductor element mounting substrate and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305