[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010073889A - Semiconductor device and method of manufacturing the same - Google Patents

Semiconductor device and method of manufacturing the same Download PDF

Info

Publication number
JP2010073889A
JP2010073889A JP2008239659A JP2008239659A JP2010073889A JP 2010073889 A JP2010073889 A JP 2010073889A JP 2008239659 A JP2008239659 A JP 2008239659A JP 2008239659 A JP2008239659 A JP 2008239659A JP 2010073889 A JP2010073889 A JP 2010073889A
Authority
JP
Japan
Prior art keywords
insulating layer
semiconductor substrate
hole
layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008239659A
Other languages
Japanese (ja)
Inventor
Osamu Yamazaki
治 山▲崎▼
Takao Kinoshita
多賀雄 木下
Tatsu Kaihara
竜 海原
Hisaaki Okai
久晃 岡井
Tomonori Terada
智則 寺田
Hiroaki Nakajima
裕明 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008239659A priority Critical patent/JP2010073889A/en
Publication of JP2010073889A publication Critical patent/JP2010073889A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05541Structure
    • H01L2224/05548Bonding area integrally formed with a redistribution layer on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13022Disposition the bump connector being at least partially embedded in the surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device which prevents the generation of notch of an insulating layer in a via hole bottom formed in a semiconductor substrate, avoid a damage which may be caused in an interconnect layer under the via hole, and can reduce electric insulating deterioration and poor connection of the interconnect layer, and to provide a method of manufacturing the same. <P>SOLUTION: The semiconductor device includes a first insulating layer 203; a first interconnect layer 204 on the first insulating layer; a via hole 201a penetrating through the semiconductor 201 and being equipped at a bottom with a sectional etching part which is obtained by removing the first insulating layer to a perpendicular direction; a second insulating layer 206 which covers from an inner wall except the sectional etching part of the via hole at the bottom, to the second surface of the semiconductor substrate; an opening 203a which is formed on the first insulating layer so that the first interconnect layer is exposed to the bottom of the via hole; and the second interconnect layer 202 which is in contact with the first interconnect layer at the opening and extends from the second insulating layer of the via hole to the second insulating layer of the second surface of the semiconductor substrate, wherein the first insulating layer in contact with the opening has smaller thickness than the first insulating layer in contact with the semiconductor substrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体装置及びその製造方法に関する。更に詳しくは、本発明は、配線用貫通孔を有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device and a manufacturing method thereof. More specifically, the present invention relates to a semiconductor device having a wiring through hole and a method for manufacturing the same.

半導体集積回路を利用したメモリデバイスのメモリ容量を高めるため、メモリチップを多段に積層することが提案されている。メモリチップには、貫通孔が形成され、貫通孔内に配線を設けてチップ裏面に金属バンプを配置し、上段のメモリチップの集積回路部分と下段メモリチップの集積回路部分とを電気的に接続することにより積層を実現する。上段チップの金属バンプは下側チップの表面に形成された金属パッドに電気的に接合されている。従来の貫通孔を有する半導体装置として、半導体基板の裏面からエッチングにより貫通孔を形成し、半導体基板の表面と裏面の配線間を電気的に接続したものがある。   In order to increase the memory capacity of a memory device using a semiconductor integrated circuit, it has been proposed to stack memory chips in multiple stages. A through hole is formed in the memory chip, wiring is provided in the through hole, metal bumps are disposed on the back surface of the chip, and the integrated circuit portion of the upper memory chip and the integrated circuit portion of the lower memory chip are electrically connected. By doing so, stacking is realized. The metal bumps of the upper chip are electrically bonded to metal pads formed on the surface of the lower chip. As a conventional semiconductor device having a through-hole, there is a semiconductor device in which a through-hole is formed by etching from the back surface of a semiconductor substrate and the wirings on the front surface and the back surface of the semiconductor substrate are electrically connected.

以下、図10により従来の半導体装置(半導体チップ)を説明する。図において、半導体装置100では、シリコンで形成された半導体基板101の内部に貫通配線102を形成している。貫通配線102は、半導体基板101の貫通孔101a内に設けられている。貫通配線102は、半導体基板101の表面に形成された配線層104と、裏面に形成された外部端子105とを電気的に接続している。半導体基板101の表面には、集積回路によりイメージセンサ等の半導体デバイスが形成されている。半導体基板101の表面の第一の絶縁層103上に配線層104が設けられている。更に、基板101の裏面には、貫通配線102に接続された外部端子(半田ボール)105と、第二の絶縁層106と、保護膜107が設けられている。外部端子105は、裏面の外側に突出している。   Hereinafter, a conventional semiconductor device (semiconductor chip) will be described with reference to FIG. In the figure, in a semiconductor device 100, a through wiring 102 is formed inside a semiconductor substrate 101 made of silicon. The through wiring 102 is provided in the through hole 101 a of the semiconductor substrate 101. The through wiring 102 electrically connects the wiring layer 104 formed on the front surface of the semiconductor substrate 101 and the external terminal 105 formed on the back surface. On the surface of the semiconductor substrate 101, a semiconductor device such as an image sensor is formed by an integrated circuit. A wiring layer 104 is provided on the first insulating layer 103 on the surface of the semiconductor substrate 101. Furthermore, an external terminal (solder ball) 105 connected to the through wiring 102, a second insulating layer 106, and a protective film 107 are provided on the back surface of the substrate 101. The external terminal 105 protrudes outside the back surface.

上記半導体装置100では、貫通孔101aと第一の絶縁層103の開口部103aの径はほぼ同じ形状になるように作られている。上記の形状は、例えば半導体基板101の裏面に所定のマスクパターン(図示は省略されている)を用いて、半導体基板101を第一の絶縁層103が露出するまでエッチングして、貫通孔101aを形成する。次に貫通孔101aをマスクとして、半導体基板101と選択比の大きいエッチングを用いて第一の絶縁層103をエッチングすることで開口部103aが形成されている。   In the semiconductor device 100, the diameters of the through hole 101a and the opening 103a of the first insulating layer 103 are substantially the same. The above-described shape is obtained by etching the semiconductor substrate 101 until the first insulating layer 103 is exposed using, for example, a predetermined mask pattern (not shown) on the back surface of the semiconductor substrate 101, thereby forming the through hole 101a. Form. Next, using the through hole 101a as a mask, the opening 103a is formed by etching the first insulating layer 103 using etching having a high selection ratio with the semiconductor substrate 101.

また、特開2007-221080号公報(特許文献1)においては、図1に示すように、第一の配線層4に接続する貫通孔5の形状が第一の面に向かって凸形状を有している。この形状を有することで、半導体基板2を第二の面から見た場合、第一の絶縁層3の開口部3aが貫通孔5の開口部の下に隠れる、いわゆるノッチ形状が防止できる。その結果、第二の絶縁層6や第二の配線層7の形成が容易であるとされている。図1中、1は半導体装置、8は保護膜、9は外部端子を意味する。   In JP 2007-221080 (Patent Document 1), as shown in FIG. 1, the shape of the through hole 5 connected to the first wiring layer 4 has a convex shape toward the first surface. is doing. By having this shape, when the semiconductor substrate 2 is viewed from the second surface, a so-called notch shape in which the opening 3a of the first insulating layer 3 is hidden under the opening of the through hole 5 can be prevented. As a result, the second insulating layer 6 and the second wiring layer 7 are easily formed. In FIG. 1, 1 is a semiconductor device, 8 is a protective film, and 9 is an external terminal.

更に、複数の半導体装置を積層することで実装密度を高める手法が広く行なわれるようになってきている。このような要求に応えるものとして、半導体装置の表面に形成された電極パッドから、半導体基板を貫通し、半導体装置裏面にまで接続された貫通電極の形成技術が注目されている。
この技術として、特開2003-309221号公報(特許文献2)や2004・インターナショナル・カンファレンス・オン・ソリッド・ステイト・デバイスイズ・アンド・マテリアルズ(2004 SSDM; The 2004 International Conference on Solid State Devices and Materials、Tokyo、2004)276-277頁(非特許文献1)が知られている。
Furthermore, a technique for increasing the mounting density by stacking a plurality of semiconductor devices has been widely used. As a response to such a demand, attention is paid to a technique for forming a through electrode that penetrates the semiconductor substrate from the electrode pad formed on the surface of the semiconductor device and is connected to the back surface of the semiconductor device.
Examples of this technology include Japanese Patent Application Laid-Open No. 2003-309221 (Patent Document 2) and 2004 International Conference on Solid State Devices and Materials (2004 SSDM). Tokyo, 2004) pages 276-277 (Non-Patent Document 1) is known.

例えば、上述の特許文献2には、貫通電極を有するBGA(Ball Grid Array)型の半導体装置の製造方法が開示されている。特許文献2では、半導体基板の裏面から半導体基板表面に形成された電極まで達する貫通孔を形成し、この貫通孔内壁及び電極裏面にCVDにて酸化膜を形成した後、異方性エッチングによって電極裏面に付着した酸化膜のみをエッチングし、半導体基板の表裏を接続する貫通電極を形成している。   For example, Patent Document 2 described above discloses a method for manufacturing a BGA (Ball Grid Array) type semiconductor device having a through electrode. In Patent Document 2, a through hole reaching from the back surface of the semiconductor substrate to the electrode formed on the surface of the semiconductor substrate is formed, an oxide film is formed on the inner wall of the through hole and the back surface of the electrode by CVD, and then the electrode is anisotropically etched. Only the oxide film adhering to the back surface is etched to form through electrodes that connect the front and back surfaces of the semiconductor substrate.

更に近年では、携帯電話に代表される小型のカメラモジュールにおいて、更なる小型・薄型化の要求が高まっている。
例えば、上述の非特許文献1には、貫通電極の製造方法を発表すると共に、貫通電極を適用したCCD固体撮像素子をカメラモジュールに組み立て、携帯電話に組み込み、機能を評価した結果を報告している。
Furthermore, in recent years, there is an increasing demand for further reduction in size and thickness in small camera modules typified by mobile phones.
For example, in Non-Patent Document 1 described above, a manufacturing method of a through electrode is announced, and a CCD solid-state imaging device to which the through electrode is applied is assembled into a camera module, incorporated into a mobile phone, and the result of evaluating the function is reported. Yes.

半導体集積回路を利用したメモリデバイスのメモリ容量を高めるため、メモリチップを多段に積層することが提案されている。メモリチップには、貫通孔が形成され、貫通孔内に配線を設けてチップ裏面に金属バンプを配置し、上段のメモリチップの集積回路部分と下段メモリチップの集積回路部分とを電気的に接続することにより実現する。上段チップの金属バンプは下側チップの表面に形成された金属パッドに電気的に接合されている。従来の貫通孔を有する半導体装置として、半導体基板の裏面からエッチングにより貫通孔を形成し、半導体表面と裏面の配線間を電気的に接続したものがある。   In order to increase the memory capacity of a memory device using a semiconductor integrated circuit, it has been proposed to stack memory chips in multiple stages. A through hole is formed in the memory chip, wiring is provided in the through hole, metal bumps are arranged on the back surface of the chip, and the integrated circuit portion of the upper memory chip and the integrated circuit portion of the lower memory chip are electrically connected. It is realized by doing. The metal bumps of the upper chip are electrically bonded to metal pads formed on the surface of the lower chip. As a conventional semiconductor device having a through hole, there is a semiconductor device in which a through hole is formed by etching from the back surface of a semiconductor substrate and the semiconductor surface and the back surface are electrically connected.

非特許文献1によれば、半導体基板の素子が搭載された第1面側にある電極パッドと、電極パッドと半導体基板を電気的に分離するための第1の絶縁膜と、半導体基板に対して、ウェーハ裏面からウェーハ表面の電極パッドに至る貫通孔を形成した後、貫通孔内の導電部材からなる導電配線と半導体基板を電気的に分離するため、貫通孔の内壁と貫通孔底を覆う第2の絶縁膜を形成する。この後、貫通孔内の導電配線と電極パッドの導通を取るためのコンタクトを形成するため、リアクティブ・イオン・エッチ(RIE)による異方性ドライエッチングを用いて、ウェーハ裏面、貫通孔内壁、及び貫通孔底の電極パッド裏面部分を覆う第2の絶縁膜を出来るだけ垂直方向にエッチングして除去し、ウェーハ裏面と貫通孔内壁の第2の絶縁膜を残し、貫通孔底(=電極パッド裏に相当)の第2の絶縁膜を除去して電極パッド裏部分のみ露出させて、コンタクトを形成している。
このように、貫通電極を備えた半導体装置、及び貫通電極形成プロセスは、メモリだけでなく固体撮像素子など幅広いデバイスの小型・薄型化を実現するために注目されている
According to Non-Patent Document 1, an electrode pad on the first surface side on which an element of a semiconductor substrate is mounted, a first insulating film for electrically separating the electrode pad and the semiconductor substrate, and the semiconductor substrate Then, after forming a through hole from the back surface of the wafer to the electrode pad on the front surface of the wafer, the inner wall of the through hole and the bottom of the through hole are covered to electrically separate the conductive wiring made of the conductive member in the through hole and the semiconductor substrate. A second insulating film is formed. Thereafter, in order to form a contact for conducting the conductive wiring in the through hole and the electrode pad, anisotropic dry etching by reactive ion etching (RIE) is used to form the back surface of the wafer, the inner wall of the through hole, Then, the second insulating film covering the back surface of the electrode pad at the bottom of the through hole is removed by etching in the vertical direction as much as possible, leaving the second insulating film on the back surface of the wafer and the inner wall of the through hole, and the bottom of the through hole (= electrode pad) The second insulating film (corresponding to the back side) is removed and only the back side of the electrode pad is exposed to form a contact.
As described above, a semiconductor device having a through electrode and a through electrode forming process are attracting attention in order to realize not only a memory but also a wide range of devices such as a solid-state imaging device in a small size and a thin shape.

特開2007-221080号公報JP 2007-221080 特開2003-309221号公報JP 2003-309221 A 2004 SSDM; The 2004 International Conference on Solid State Devices and Materials、Tokyo、2004、276-277頁2004 SSDM; The 2004 International Conference on Solid State Devices and Materials, Tokyo, 2004, pp. 276-277

特許文献1において、図1の製造方法として示される図2〜図10においては、第二の面から見た第一の配線層4の表面は貫通孔5及び第一の絶縁層の開口部3aの形成時と貫通孔5側の第一の配線層4を覆う第二の絶縁層6を除去する際に2度プラズマに晒されることとなる(特に、図5及び8)。このため一般的に行なわれているプラズマ工程後の洗浄処理により、プラズマに晒され発生したダメージ領域は、後の薬液洗浄でエッチングされ、空隙となり、後のメッキ工程時に接続部にメッキ液の侵食をもたらすことが認められ、電気的信頼性が損なわれるという課題が特許文献1にはある。
以上の様に、半導体基板に貫通孔を形成する際に、貫通孔の底部で絶縁層のノッチや空隙の発生を抑制することで、電気的絶縁性の低下や貫通孔の配線層の接続不良を低減することが望まれている。
In FIG. 2 to FIG. 10 shown as the manufacturing method of FIG. 1 in Patent Document 1, the surface of the first wiring layer 4 viewed from the second surface is the through hole 5 and the opening 3a of the first insulating layer. And when the second insulating layer 6 covering the first wiring layer 4 on the through-hole 5 side is removed, it is exposed to plasma twice (particularly, FIGS. 5 and 8). For this reason, the damage area caused by exposure to the plasma by the cleaning process after the plasma process that is generally performed is etched by the subsequent chemical cleaning to become voids, and the plating solution erodes at the connection part during the subsequent plating process. However, Patent Document 1 has a problem that electrical reliability is impaired.
As described above, when forming a through hole in a semiconductor substrate, by suppressing the generation of notches and voids in the insulating layer at the bottom of the through hole, the electrical insulation is deteriorated and the wiring layer of the through hole is poorly connected. It is desired to reduce the above.

上記の課題を解決するために、本発明の発明者等は、貫通孔底部の第一の絶縁層の開口を貫通孔の底部に存在する第二の絶縁層の除去と同時に行なう工程を含むことで上記課題を解決できることを見出し本発明に至った。
かくして本発明によれば、半導体基板の第一の面に第一の絶縁層を形成する第一の工程と、
前記第一の絶縁層上に第一の配線層を形成する第二の工程と、
前記半導体基板の前記第一の面の反対の第二の面側から、前記第一の絶縁層を露出させるように、前記半導体基板を貫通し、かつ底部に前記第一の絶縁層を厚さ方向に除去した部分的なエッチ部を備えた貫通孔を形成する第三の工程と、
前記貫通孔の内壁部及び前記半導体基板の第二の面を覆う第二の絶縁層を形成する第四の工程と、
前記貫通孔の底部の第一の配線層を覆う第一の絶縁層と第二の絶縁層を除去して前記第一の配線層を露出させることにより第一の絶縁層に開口部を形成する第五の工程と、
前記第一の絶縁層の開口部で前記第一の配線層と接すると共に前記貫通孔の前記第二の絶縁層上から前記半導体基板の第二の面の第二の絶縁層上に亘って第二の配線層を形成する第六の工程と、
を含むことを特徴とする半導体装置の製造方法が提供される。
In order to solve the above-mentioned problems, the inventors of the present invention include a step of performing the opening of the first insulating layer at the bottom of the through hole simultaneously with the removal of the second insulating layer existing at the bottom of the through hole. Thus, the inventors have found that the above-mentioned problems can be solved and have reached the present invention.
Thus, according to the present invention, the first step of forming the first insulating layer on the first surface of the semiconductor substrate;
A second step of forming a first wiring layer on the first insulating layer;
From the second surface side opposite to the first surface of the semiconductor substrate, the first insulating layer is penetrated through the semiconductor substrate so as to expose the first insulating layer, and the first insulating layer is formed at the bottom. A third step of forming a through hole with a partially etched portion removed in the direction;
A fourth step of forming a second insulating layer covering the inner wall of the through hole and the second surface of the semiconductor substrate;
An opening is formed in the first insulating layer by removing the first insulating layer and the second insulating layer covering the first wiring layer at the bottom of the through hole to expose the first wiring layer. The fifth step,
The first insulating layer is in contact with the first wiring layer at the opening, and from the second insulating layer of the through hole to the second insulating layer on the second surface of the semiconductor substrate. A sixth step of forming a second wiring layer;
A method for manufacturing a semiconductor device is provided.

また、本発明によれば、半導体基板の第一の面上の第一の絶縁層と、
前記第一の絶縁層上の第一の配線層と、
前記半導体基板の前記第一の面の反対の第二の面側から前記半導体基板を貫通し、底部に前記第一の絶縁層を厚さ方向に除去した部分的なエッチ部を備えた貫通孔と、
前記貫通孔の部分的なエッチ部の底部を除く内壁部から前記半導体基板の第二の面までを覆う第二の絶縁層と、
前記貫通孔の底部に、前記第二の絶縁層で規定された領域の前記第一の配線層が露出するように前記第一の絶縁層に形成された開口部と、
前記第一の絶縁層の開口部で前記第一の配線層と接すると共に前記貫通孔の前記第二の絶縁層上から前記半導体基板の第二の面の第二の絶縁層上に亘る第二の配線層とを有し、
前記開口部に接する第一の絶縁層が、前記半導体基板に接する第一の絶縁層より小さい厚さを有することを特徴とする半導体装置が提供される。
According to the invention, the first insulating layer on the first surface of the semiconductor substrate;
A first wiring layer on the first insulating layer;
A through hole provided with a partially etched portion that penetrates the semiconductor substrate from the second surface side opposite to the first surface of the semiconductor substrate and has the first insulating layer removed in the thickness direction at the bottom. When,
A second insulating layer covering from the inner wall portion excluding the bottom of the partially etched portion of the through hole to the second surface of the semiconductor substrate;
An opening formed in the first insulating layer so that the first wiring layer in a region defined by the second insulating layer is exposed at the bottom of the through hole;
The second insulating layer is in contact with the first wiring layer at the opening of the first insulating layer and extends from the second insulating layer of the through hole to the second insulating layer of the second surface of the semiconductor substrate. And a wiring layer of
A semiconductor device is provided, wherein the first insulating layer in contact with the opening has a smaller thickness than the first insulating layer in contact with the semiconductor substrate.

本発明の半導体装置及びその製造方法によれば、半導体基板を第二の面から見た場合、第一の絶縁層の開口部が貫通孔の開口部の下に隠れる、いわゆるノッチ形状が無いため、第二の絶縁層や第二の配線層の形成が容易となり、歩留まりが向上するとともに、電気的・機械的信頼性が良好となる。   According to the semiconductor device and the manufacturing method thereof of the present invention, when the semiconductor substrate is viewed from the second surface, there is no so-called notch shape in which the opening of the first insulating layer is hidden under the opening of the through hole. The second insulating layer and the second wiring layer can be easily formed, the yield is improved, and the electrical and mechanical reliability is improved.

以下、図11〜19を用いて本発明を説明する。
図11は、本発明の実施の形態における半導体装置の概略断面図である。
図11において、半導体装置200の半導体基板201には、第一の絶縁層を厚さ方向に除去した部分的なエッチ部を備えた貫通孔201aが形成されており、半導体基板201の第一の面は開口部203aをもつ第一の絶縁層203で覆われており、更にその上には第一の配線層204が形成されている。貫通孔201aの側面と第二の面は第二の絶縁層206で覆われている。また、第一の配線層204と内接し、貫通孔201aと第二の面に亘って第二の配線層202が形成されている。更に、第二の配線層202には外部端子205が設けられ、この外部端子205を除いて保護層207が第二の絶縁層206と第二の配線層202上に被覆されている。
図11の半導体装置の製造方法を、図12〜19の概略工程断面図を用いて説明する。なお、図11〜19中、同一符号は、同一又は相当部分を示す。
Hereinafter, the present invention will be described with reference to FIGS.
FIG. 11 is a schematic cross-sectional view of the semiconductor device in the embodiment of the present invention.
In FIG. 11, the semiconductor substrate 201 of the semiconductor device 200 is formed with a through hole 201a having a partially etched portion obtained by removing the first insulating layer in the thickness direction. The surface is covered with a first insulating layer 203 having an opening 203a, and a first wiring layer 204 is formed thereon. The side surface and the second surface of the through hole 201a are covered with a second insulating layer 206. In addition, a second wiring layer 202 is formed in contact with the first wiring layer 204 and extending through the through hole 201a and the second surface. Furthermore, the second wiring layer 202 is provided with an external terminal 205, and a protective layer 207 is covered on the second insulating layer 206 and the second wiring layer 202 except for the external terminal 205.
A method for manufacturing the semiconductor device of FIG. 11 will be described with reference to schematic process cross-sectional views of FIGS. In addition, in FIGS. 11-19, the same code | symbol shows the same or an equivalent part.

図12に示す第一の工程では、半導体基板201の第一の面に第一の絶縁層203がCVD(Chemical Vapor Deposition)法、スピンコート法、スプレーコート法等により形成される。
半導体基板201としては、半導体装置に使用されるものであれば特に限定されるものではなく、例えば、シリコン、ゲルマニウム等の元素半導体、シリコンゲルマニウム、GaAs、InGaAs、ZnSe、GaN等の化合物半導体によるバルク基板が挙げられる。また、表面に半導体層を有するものとして、SOI(Silicon on Insulator)基板、SOS基板又は多層SOI基板等の種々の基板、ガラスやプラスチック基板上に半導体層を有するものを用いてもよい。半導体基板又は半導体層は、内部を流れる電流量に多少が生ずるが、単結晶(例えば、エピタキシャル成長による)、多結晶又はアモルファスのいずれであってもよい。
In the first step shown in FIG. 12, the first insulating layer 203 is formed on the first surface of the semiconductor substrate 201 by a CVD (Chemical Vapor Deposition) method, a spin coat method, a spray coat method, or the like.
The semiconductor substrate 201 is not particularly limited as long as it is used in a semiconductor device. For example, a bulk of an elemental semiconductor such as silicon or germanium, or a compound semiconductor such as silicon germanium, GaAs, InGaAs, ZnSe, or GaN. A substrate is mentioned. In addition, as a substrate having a semiconductor layer on the surface, various substrates such as an SOI (Silicon on Insulator) substrate, an SOS substrate or a multilayer SOI substrate, or a substrate having a semiconductor layer on a glass or plastic substrate may be used. The semiconductor substrate or semiconductor layer has some amount of current flowing through it, but may be single crystal (for example, by epitaxial growth), polycrystalline, or amorphous.

第一の絶縁層203は、例えば、シリコン酸化膜(SiO2)、シリコン窒化膜(SiNx)、SiOF(Fluorine-deped SiO2)膜、ポーラスSiOC(Carbon-deped SiO2)膜等で形成される。半導体基板201の厚さは、通常10〜200μmであり、第一の絶縁層203の厚さは、通常0.5〜1μmである。
図13に示す第二の工程では、第一の絶縁層203上に、第一の配線層204がスパッタ法、CVD法、蒸着法、めっき法等により形成される。第一の配線層204は、例えば高抵抗金属材料(Ti、TiN、TiW、Ni、Cr、TaN、CoWP等)や低抵抗金属材料(Al、Al-Cu、Al-Si-Cu、Cu、Au、Ag等)が単一もしくは複数層積み重なった状態で構成される。第一の配線層204の厚さは、通常0.2〜0.5μmである。続いて絶縁層(図示は省略されている)を第一の配線層204上に形成した後、その上に支持体(図示は省略されている)を貼り付けてもよい。
The first insulating layer 203 is formed of, for example, a silicon oxide film (SiO 2 ), a silicon nitride film (SiNx), a SiOF (Fluorine-deped SiO 2 ) film, a porous SiOC (Carbon-deped SiO 2 ) film, or the like. . The thickness of the semiconductor substrate 201 is usually 10 to 200 μm, and the thickness of the first insulating layer 203 is usually 0.5 to 1 μm.
In the second step shown in FIG. 13, the first wiring layer 204 is formed on the first insulating layer 203 by sputtering, CVD, vapor deposition, plating, or the like. The first wiring layer 204 is made of, for example, a high resistance metal material (Ti, TiN, TiW, Ni, Cr, TaN, CoWP, etc.) or a low resistance metal material (Al, Al-Cu, Al-Si-Cu, Cu, Au). , Ag, etc.) are stacked in a single or multiple layers. The thickness of the first wiring layer 204 is usually 0.2 to 0.5 μm. Subsequently, after an insulating layer (not shown) is formed on the first wiring layer 204, a support (not shown) may be attached thereon.

図14に示す第三の工程では、第一の面に向かって貫通孔201aを半導体基板201の第二の面側から半導体基板201に所定のパターンのマスクを用いて(図示は省略されている)、プラズマエッチング法により形成し、第一の絶縁層203を露出させる。通常、半導体基板201が第一の絶縁層203に比較して相対的に大きくエッチングされるように、プラズマ中にエッチング用のガス(例えば半導体基板201がシリコンで第一の絶縁層203がシリコン酸化膜の場合はSF6、O2、Arの混合ガス)を導入する。このエッチングでは、第一の絶縁層203もオーバーエッチされ、貫通孔201aには第一の絶縁層を厚さ方向に除去した部分的なエッチ部も含まれることになる。オーバーエッチは第一の絶縁層203の厚さの100%未満〜0%より大きく行うことが好ましい。また、50%以下を残すようにすることが好ましい。貫通孔201aの形状は特に限定されない。また、貫通孔201aの幅は、通常5〜50μmである。 In the third step shown in FIG. 14, a through-hole 201a is formed on the semiconductor substrate 201 from the second surface side of the semiconductor substrate 201 toward the first surface using a mask having a predetermined pattern (not shown). And the first insulating layer 203 is exposed by plasma etching. Usually, an etching gas (eg, the semiconductor substrate 201 is silicon and the first insulating layer 203 is silicon oxide) is etched in the plasma so that the semiconductor substrate 201 is etched relatively larger than the first insulating layer 203. In the case of a film, a mixed gas of SF 6 , O 2 and Ar) is introduced. In this etching, the first insulating layer 203 is also over-etched, and the through-hole 201a includes a partially etched portion in which the first insulating layer is removed in the thickness direction. The overetching is preferably performed less than 100% to more than 0% of the thickness of the first insulating layer 203. Moreover, it is preferable to leave 50% or less. The shape of the through hole 201a is not particularly limited. Further, the width of the through hole 201a is usually 5 to 50 μm.

図15に示す第四の工程では、貫通孔201aの内壁部から半導体基板201の第二の面を覆って第二の絶縁層206をCVD法やスプレーコート法により形成する。第二の絶縁層206は、例えばシリコン酸化膜、シリコン窒化膜、ポリイミド膜、BCB(ベンゾシクロブテン)膜等で構成される。第二の絶縁層206の厚さは、貫通孔201a底部で通常0.2〜2μm、貫通孔201a内壁で通常0.1〜1μm、第二の面上で通常0.3〜3μmである。   In the fourth step shown in FIG. 15, the second insulating layer 206 is formed by the CVD method or the spray coating method so as to cover the second surface of the semiconductor substrate 201 from the inner wall portion of the through hole 201a. The second insulating layer 206 is composed of, for example, a silicon oxide film, a silicon nitride film, a polyimide film, a BCB (benzocyclobutene) film, or the like. The thickness of the second insulating layer 206 is usually 0.2 to 2 μm at the bottom of the through hole 201a, usually 0.1 to 1 μm at the inner wall of the through hole 201a, and usually 0.3 to 3 μm on the second surface.

図16に示す第五の工程では、貫通孔201a底部の第一の配線層204を覆う第一の絶縁層203及び第二の絶縁層206をプラズマエッチングにより除去し、第一の配線層204を露出させる。通常、第一の絶縁層203及び第二の絶縁層206が第一の配線層204に比較して相対的に大きくエッチングされるように、プラズマ中にエッチング用のガス(例えば第二の絶縁層206がシリコン酸化膜で第一の配線層204がTiN、Alで構成される場合はC5F8、O2、Arの混合ガス)を導入する。この工程により、貫通孔201a底部の第一の絶縁層203には、底部に第一の配線層204が露出する開口部203aが形成される。この開口部203aに接する第一の絶縁層203は、半導体基板201に接する第一の絶縁層203より、エッチ部の深さ(オーバーエッチ分)だけ小さい厚さを有することになる。ここで、貫通孔201aと開口部203aの側壁は、同一の平面から構成されている(即ち、面一である)ことが好ましい。 In the fifth step shown in FIG. 16, the first insulating layer 203 and the second insulating layer 206 covering the first wiring layer 204 at the bottom of the through-hole 201a are removed by plasma etching, and the first wiring layer 204 is removed. Expose. Usually, an etching gas (for example, the second insulating layer) is included in the plasma so that the first insulating layer 203 and the second insulating layer 206 are etched relatively larger than the first wiring layer 204. When 206 is a silicon oxide film and the first wiring layer 204 is composed of TiN and Al, a mixed gas of C 5 F 8 , O 2 , and Ar) is introduced. By this step, an opening 203a in which the first wiring layer 204 is exposed at the bottom is formed in the first insulating layer 203 at the bottom of the through hole 201a. The first insulating layer 203 in contact with the opening 203a has a smaller thickness than the first insulating layer 203 in contact with the semiconductor substrate 201 by the depth of the etched portion (overetched portion). Here, the side walls of the through-hole 201a and the opening 203a are preferably configured from the same plane (that is, flush with each other).

図17及び図18に示す第六の工程では、第一の絶縁層203の開口部203aを介し第一の配線層204と接すると共に貫通孔201aの第二の絶縁層206上から半導体基板201の第二の面の第二の絶縁層206上に亘って第二の配線層202を、所定のパターンのマスク(図示は省略されている)を用いて、スパッタ法、CVD法、蒸着法、めっき法、印刷法等により形成する。第二の配線層202は、例えば高抵抗金属材料(Ti、TiN、TiW、Ni、Cr、TaN、CoWP等)や低抵抗金属材料(Al、Al-Cu、Al-Si-Cu、Cu、Au、Ag、半田材等)や導電性樹脂が単一もしくは複数層状で構成される。第二の配線層202の第二の面上の厚さは、通常1〜10μmである。
以上の工程を経ることで本発明の半導体装置が得られる。
In the sixth step shown in FIGS. 17 and 18, the semiconductor substrate 201 is contacted with the first wiring layer 204 through the opening 203a of the first insulating layer 203 and from above the second insulating layer 206 of the through hole 201a. The second wiring layer 202 is formed on the second insulating layer 206 on the second surface by using a mask having a predetermined pattern (not shown), sputtering, CVD, vapor deposition, plating It is formed by a method or a printing method. The second wiring layer 202 is made of, for example, a high resistance metal material (Ti, TiN, TiW, Ni, Cr, TaN, CoWP, etc.) or a low resistance metal material (Al, Al-Cu, Al-Si-Cu, Cu, Au). , Ag, solder material, etc.) and conductive resin are formed in a single or multiple layers. The thickness of the second wiring layer 202 on the second surface is usually 1 to 10 μm.
The semiconductor device of the present invention is obtained through the above steps.

その後、図19に示すように、保護層207が第二の絶縁層206と第二の配線層202上に形成される。
更に、第二の配線層202上の所定部の保護層207に開口を形成し、開口に第二の配線層202と接続する外部端子205が設けられることで、図11の半導体装置が得られる。外部端子205は、例えば、半田材で形成され、保護層207は、ポリイミドやエポキシ樹脂やソルダーレジスト材で形成される。
Thereafter, as shown in FIG. 19, the protective layer 207 is formed on the second insulating layer 206 and the second wiring layer 202.
Furthermore, an opening is formed in a predetermined portion of the protective layer 207 on the second wiring layer 202, and the external terminal 205 connected to the second wiring layer 202 is provided in the opening, whereby the semiconductor device of FIG. 11 is obtained. . The external terminal 205 is formed of, for example, a solder material, and the protective layer 207 is formed of polyimide, an epoxy resin, or a solder resist material.

上記の実施の形態に係る半導体装置200によれば、貫通孔201a及び開口部203a部分に第一の絶縁層の開口部が貫通孔の開口部の下に隠れる、いわゆるノッチ形状が無いため、第二の絶縁層や第二の配線層の形成が容易となり、歩留まりが向上するとともに、電気的・機械的信頼性が良好となる。
以上の実施の形態で説明された構成、形状、大きさ及び配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値及び各構成の組成(材質)については例示にすぎない。従って、本発明は、上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
According to the semiconductor device 200 according to the above embodiment, the through hole 201a and the opening 203a have no so-called notch shape in which the opening of the first insulating layer is hidden under the opening of the through hole. Formation of the second insulating layer and the second wiring layer is facilitated, yield is improved, and electrical and mechanical reliability is improved.
The configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely schematically shown to the extent that the present invention can be understood and implemented, and the numerical values and the compositions (materials) of the respective configurations. Is just an example. Therefore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the technical idea of the present invention.

従来の半導体装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device. 従来の半導体装置の製造方法の概略工程断面図である。It is a general | schematic process sectional drawing of the manufacturing method of the conventional semiconductor device.

従来の半導体装置を示す概略断面図である。It is a schematic sectional drawing which shows the conventional semiconductor device. 実施の形態の半導体装置の概略断面図である。It is a schematic sectional drawing of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment. 実施の形態の半導体装置の製造方法の概略工程断面図である。It is a schematic process sectional drawing of the manufacturing method of the semiconductor device of embodiment.

符号の説明Explanation of symbols

1、100、200半導体装置
2、101、201半導体基板
3、103、203第一の絶縁層
3a、103a、203a開口部
4、204第一の配線層
5、101a、201a貫通孔
6、106、206第二の絶縁層
7、202第二の配線層
8、107、207保護層
9、105、205外部端子
102貫通配線
104配線層
1, 100, 200 semiconductor devices
2, 101, 201 semiconductor substrate
3, 103, 203 First insulation layer
3a, 103a, 203a opening
4, 204 1st wiring layer
5, 101a, 201a through hole
6, 106, 206 Second insulation layer
7, 202 Second wiring layer
8, 107, 207 protective layer
9, 105, 205 External terminal
102 through wiring
104 wiring layer

Claims (4)

半導体基板の第一の面に第一の絶縁層を形成する第一の工程と、
前記第一の絶縁層上に第一の配線層を形成する第二の工程と、
前記半導体基板の前記第一の面の反対の第二の面側から、前記第一の絶縁層を露出させるように、前記半導体基板を貫通し、かつ底部に前記第一の絶縁層を厚さ方向に除去した部分的なエッチ部を備えた貫通孔を形成する第三の工程と、
前記貫通孔の内壁部及び前記半導体基板の第二の面を覆う第二の絶縁層を形成する第四の工程と、
前記貫通孔の底部の第一の配線層を覆う第一の絶縁層と第二の絶縁層を除去して前記第一の配線層を露出させることにより第一の絶縁層に開口部を形成する第五の工程と、
前記第一の絶縁層の開口部で前記第一の配線層と接すると共に前記貫通孔の前記第二の絶縁層上から前記半導体基板の第二の面の第二の絶縁層上に亘って第二の配線層を形成する第六の工程と、
を含むことを特徴とする半導体装置の製造方法。
A first step of forming a first insulating layer on a first surface of a semiconductor substrate;
A second step of forming a first wiring layer on the first insulating layer;
From the second surface side opposite to the first surface of the semiconductor substrate, the first insulating layer is penetrated through the semiconductor substrate so as to expose the first insulating layer, and the first insulating layer is formed at the bottom. A third step of forming a through hole with a partially etched portion removed in the direction;
A fourth step of forming a second insulating layer covering the inner wall of the through hole and the second surface of the semiconductor substrate;
An opening is formed in the first insulating layer by removing the first insulating layer and the second insulating layer covering the first wiring layer at the bottom of the through hole to expose the first wiring layer. The fifth step,
The first insulating layer is in contact with the first wiring layer at the opening, and from the second insulating layer of the through hole to the second insulating layer on the second surface of the semiconductor substrate. A sixth step of forming a second wiring layer;
A method for manufacturing a semiconductor device, comprising:
前記エッチ部が、第一の絶縁層の厚さの100%未満〜0%より大きい深さを有する請求項1に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the etched portion has a depth of less than 100% to greater than 0% of the thickness of the first insulating layer. 前記貫通孔と開口部が、同一の平面から構成される側壁を有する請求項1又は2に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 1, wherein the through hole and the opening have side walls configured from the same plane. 半導体基板の第一の面上の第一の絶縁層と、
前記第一の絶縁層上の第一の配線層と、
前記半導体基板の前記第一の面の反対の第二の面側から前記半導体基板を貫通し、底部に前記第一の絶縁層を厚さ方向に除去した部分的なエッチ部を備えた貫通孔と、
前記貫通孔の部分的なエッチ部の底部を除く内壁部から前記半導体基板の第二の面までを覆う第二の絶縁層と、
前記貫通孔の底部に、前記第二の絶縁層で規定された領域の前記第一の配線層が露出するように前記第一の絶縁層に形成された開口部と、
前記第一の絶縁層の開口部で前記第一の配線層と接すると共に前記貫通孔の前記第二の絶縁層上から前記半導体基板の第二の面の第二の絶縁層上に亘る第二の配線層とを有し、
前記開口部に接する第一の絶縁層が、前記半導体基板に接する第一の絶縁層より小さい厚さを有することを特徴とする半導体装置。
A first insulating layer on a first surface of a semiconductor substrate;
A first wiring layer on the first insulating layer;
A through hole provided with a partially etched portion that penetrates the semiconductor substrate from the second surface side opposite to the first surface of the semiconductor substrate and has the first insulating layer removed in the thickness direction at the bottom. When,
A second insulating layer covering from the inner wall portion excluding the bottom of the partially etched portion of the through hole to the second surface of the semiconductor substrate;
An opening formed in the first insulating layer so that the first wiring layer in a region defined by the second insulating layer is exposed at the bottom of the through hole;
The second insulating layer is in contact with the first wiring layer at the opening of the first insulating layer and extends from the second insulating layer of the through hole to the second insulating layer of the second surface of the semiconductor substrate. And a wiring layer of
The semiconductor device, wherein the first insulating layer in contact with the opening has a smaller thickness than the first insulating layer in contact with the semiconductor substrate.
JP2008239659A 2008-09-18 2008-09-18 Semiconductor device and method of manufacturing the same Pending JP2010073889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239659A JP2010073889A (en) 2008-09-18 2008-09-18 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239659A JP2010073889A (en) 2008-09-18 2008-09-18 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010073889A true JP2010073889A (en) 2010-04-02

Family

ID=42205407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239659A Pending JP2010073889A (en) 2008-09-18 2008-09-18 Semiconductor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010073889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214411B2 (en) 2013-10-15 2015-12-15 Samsung Electronics Co., Ltd. Integrated circuit devices including a through-silicon via structure and methods of fabricating the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214411B2 (en) 2013-10-15 2015-12-15 Samsung Electronics Co., Ltd. Integrated circuit devices including a through-silicon via structure and methods of fabricating the same

Similar Documents

Publication Publication Date Title
JP4850392B2 (en) Manufacturing method of semiconductor device
KR100647760B1 (en) Semiconductor device and manufacturing method thereof
CN102332435B (en) Electronic component and manufacturing method of same
JP4307284B2 (en) Manufacturing method of semiconductor device
KR100658547B1 (en) Semiconductor device and manufacturing method thereof
KR100679573B1 (en) Semiconductor device manufacturing method
JP4775007B2 (en) Semiconductor device and manufacturing method thereof
US7919835B2 (en) Semiconductor device and method for manufacturing the same
KR100709662B1 (en) Semiconductor device and manufacturing method thereof
JP5537016B2 (en) Semiconductor device and manufacturing method of semiconductor device
US20130234341A1 (en) Interposer substrate manufacturing method and interposer substrate
US8232202B2 (en) Image sensor package and fabrication method thereof
KR100646722B1 (en) Semiconductor device and manufacturing method thereof
WO2010035375A1 (en) Semiconductor device and method for manufacturing the same
JP2008300718A (en) Semiconductor device, and manufacturing method of semiconductor device
JP2008053430A (en) Semiconductor device and manufacturing method thereof
JP2007221080A (en) Semiconductor device, and method for manufacturing same
JP2010205921A (en) Semiconductor apparatus, and method of manufacturing semiconductor apparatus
CN103367243B (en) Shallow through hole is formed by oxidation
JP2010073889A (en) Semiconductor device and method of manufacturing the same
JP4845986B2 (en) Semiconductor device
JP2009049336A (en) Semiconductor device and its manufacturing method
JP2006049593A (en) Method of manufacturing semiconductor device