[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010066083A - Method for measuring flow of fluid - Google Patents

Method for measuring flow of fluid Download PDF

Info

Publication number
JP2010066083A
JP2010066083A JP2008231713A JP2008231713A JP2010066083A JP 2010066083 A JP2010066083 A JP 2010066083A JP 2008231713 A JP2008231713 A JP 2008231713A JP 2008231713 A JP2008231713 A JP 2008231713A JP 2010066083 A JP2010066083 A JP 2010066083A
Authority
JP
Japan
Prior art keywords
reception
ultrasonic
receiver
propagation time
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008231713A
Other languages
Japanese (ja)
Other versions
JP5233532B2 (en
Inventor
Koichi Takemura
晃一 竹村
Bunichi Shiba
文一 芝
Yuji Nakabayashi
裕治 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008231713A priority Critical patent/JP5233532B2/en
Publication of JP2010066083A publication Critical patent/JP2010066083A/en
Application granted granted Critical
Publication of JP5233532B2 publication Critical patent/JP5233532B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make the power-on timing of an amplification means approach the receiving timing of an ultrasonic signal in order to save power. <P>SOLUTION: At first set time immediately before the end of a propagation time of an ultrasonic signal estimated by a propagation time estimation means 14, power supply by a power source 7 is started when a high-resistance resistor is selected as a connecting resistor between a receiving-side ultrasonic transmitter 2 or a receiver 3 and the amplification means 9. and vibration noise generated on that occasion between terminals of the receiving-side ultrasonic transmitter and the receiver is rapidly attenuated. After that, at a second set time, the connecting resistor between the receiving-side ultrasonic transmitter and the receiver and the amplification means 9 is switched to a low-resistance resistor to receive the ultrasonic signal. Consequently, the start timing of the power supply to the amplification means is made to approach the receiving timing. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、超音波信号の伝搬時間を計測することにより、流体の流速および/または流量等の物理量を計測する流れの計測装置に関するものである。   The present invention relates to a flow measurement device that measures a physical quantity such as a flow velocity and / or a flow rate of a fluid by measuring a propagation time of an ultrasonic signal.

従来、この種の流量計において、逆数差法という手法が広く知られている。これは、流体の流れ方向の上流側と下流側にそれぞれ超音波送受信器を配置し、ふたつの超音波送受信器間を超音波が伝搬する時間、すなわち伝播時間を計測するもので、流れの順方向の伝搬時間と逆方向の伝搬時間が異なることを利用したものである。   Conventionally, in this type of flow meter, a technique called the reciprocal difference method is widely known. In this method, ultrasonic transmitters / receivers are arranged on the upstream and downstream sides of the fluid flow direction, respectively, and the time during which the ultrasonic waves propagate between the two ultrasonic transmitters / receivers, that is, the propagation time is measured. This is based on the fact that the propagation time in the direction is different from the propagation time in the reverse direction.

より具体的に言えば、相互の伝搬時間の逆数差が流量に比例する性質に基づいて計測を行う。   More specifically, the measurement is performed based on the property that the reciprocal difference of the mutual propagation time is proportional to the flow rate.

図3は、逆数差法を用いた流れ計測装置を示し、流体流路101を流れる流体を超音波が斜めに横切るように一対の超音波送受信器102,103を上下流側に配置するとともに、これら超音波送受信器102,103の受、発信条件などを制御部104で制御するようにし、また、これら超音波送受信器102,103間の超音波伝搬時間差を計測部105で計測して、それにもとづき流体の流速および流量を演算部106で演算するようにしていた。   FIG. 3 shows a flow measurement device using the reciprocal difference method, and a pair of ultrasonic transceivers 102 and 103 are arranged on the upstream and downstream sides so that the ultrasonic wave obliquely crosses the fluid flowing through the fluid flow path 101. The reception and transmission conditions of these ultrasonic transceivers 102 and 103 are controlled by the control unit 104, and the ultrasonic propagation time difference between the ultrasonic transceivers 102 and 103 is measured by the measurement unit 105, Originally, the flow velocity and flow rate of the fluid are calculated by the calculation unit 106.

ここで、音速をC、流速をv、超音波送受信器102,103間の距離をL、超音波の伝搬方向と流体の流れの方向とがなす角度をθとし、上流側の超音波送受信器102から超音波を送信して、下流側の超音波送受信器103にで受信した場合の伝搬時間をt1、逆方向の伝搬時間をt2とした場合、t1およびt2は次式で求めることができる。   Here, the sound velocity is C, the flow velocity is v, the distance between the ultrasonic transmitters / receivers 102 and 103 is L, the angle formed by the ultrasonic wave propagation direction and the fluid flow direction is θ, and the upstream ultrasonic transmitter / receiver. When t1 is the propagation time when the ultrasonic wave is transmitted from 102 and received by the ultrasonic wave transmitter / receiver 103 on the downstream side, and t2 is the propagation time in the reverse direction, t1 and t2 can be obtained by the following equations. .

t1=L/(C+vcosθ) (1)
t2=L/(C−vcosθ) (2)
式1および式2を変形し、下記の式3で流速vが求まる。
t1 = L / (C + v cos θ) (1)
t2 = L / (C−v cos θ) (2)
Equation 1 and Equation 2 are modified, and the flow velocity v is obtained by Equation 3 below.

v=L・(1/t1−1/t2)/2cosθ (3)
前記式3で求めた値に流体流路101の断面積を掛ければ流体の流量を求めることができる。
v = L · (1 / t1-1 / t2) / 2 cos θ (3)
The flow rate of the fluid can be obtained by multiplying the value obtained by Equation 3 by the cross-sectional area of the fluid flow path 101.

超音波式の流れ測定装置は、先に述べた計測原理から明らかなように機械的な稼動部を有しない構成であるため、現在、国内外のガスメータで広く使われている機械式のいわゆる膜式ガスメータを代替するものとして期待されている。   As is apparent from the above-described measurement principle, the ultrasonic flow measuring device has a structure that does not have a mechanical moving part, so that it is a mechanical so-called membrane that is currently widely used in domestic and overseas gas meters. It is expected to replace the gas meter.

ガスメータは、商用電源が確保できない屋外に設置されることがほとんどであり、また、民生器具と違って、メンテナンスフリーであることが要求される。   Most gas meters are installed outdoors where commercial power cannot be secured, and, unlike consumer appliances, are required to be maintenance-free.

したがって、電池駆動で10年間の動作保証が必要である。そのため、消費電力の極めて小さい構成であることが望まれている。   Therefore, it is necessary to guarantee operation for 10 years by battery operation. Therefore, it is desired that the power consumption be extremely small.

一方、超音波送受信器から出力される超音波信号は、一般に、気体中では減衰が極めて激しい。例えば、送信波のレベルを5vとした場合、受信波のレベルはμvオーダーまで減衰することがある。   On the other hand, the ultrasonic signal output from the ultrasonic transmitter / receiver is generally extremely attenuated in gas. For example, when the level of the transmission wave is 5v, the level of the reception wave may be attenuated to the μv order.

このように極めて微小な受信信号は、増幅器を用いて大きく増幅する必要があり、消費電力の増加が避けられないという事情がある。   As described above, it is necessary to amplify a very small reception signal by using an amplifier, and there is a situation in which an increase in power consumption cannot be avoided.

以上より、長寿命を満足するためには、増幅器を始めとする受信回路の動作時間をできるだけ短くすることが不可欠である。   From the above, in order to satisfy the long life, it is essential to shorten the operation time of the receiving circuit including the amplifier as much as possible.

動作時間を短縮する方法として、超音波信号の受信点近傍でのみ電力を供給する実行する方法が考えられる。このような構成を取った場合、回路電源投入時に、超音波送受信器の両端に過渡的に大きな電圧変動が発生し、それが原因となって、超音波送受信器に不要振動が発生し、本来の受信信号にこの不要振動が重畳されるため、計測精度を悪化させるという課題が生じる。   As a method of shortening the operation time, a method of executing power supply only near the reception point of the ultrasonic signal can be considered. In such a configuration, when the circuit power is turned on, a transient large voltage fluctuation occurs at both ends of the ultrasonic transmitter / receiver, which causes unnecessary vibration in the ultrasonic transmitter / receiver. Since this unnecessary vibration is superimposed on the received signal, there is a problem that the measurement accuracy is deteriorated.

この課題を解決する手段として、受信回路の電力供給の開始時点では、受信側の超音波送受信器を受信回路と切り離しておき、電源電圧が安定した後、同送受信器と受信回路とを接続するものが考えられている(例えば、特許文献1参照)。
特開平11−173880号公報
As means for solving this problem, at the start of power supply to the receiving circuit, the receiving-side ultrasonic transmitter / receiver is disconnected from the receiving circuit, and after the power supply voltage is stabilized, the transmitter / receiver is connected to the receiving circuit. The thing is considered (for example, refer patent document 1).
Japanese Patent Laid-Open No. 11-173880

しかしながら、上記のような構成においても、受信側超音波送受信器と受信回路を接続した瞬間の送受信器両端に加わる過渡的な変化が完全に解消されるわけではなく、僅かではあるが不要振動を招くことは避けられない。   However, even in the configuration as described above, the transient change applied to both ends of the transmitter / receiver at the moment when the receiving-side ultrasonic transmitter / receiver is connected to the receiver circuit is not completely eliminated, and a slight but unnecessary vibration is not generated. Inviting is inevitable.

一方、先に述べたように、特に、気体中を伝搬する超音波信号の減衰は激しいため、増幅回路の増幅率を相当に高める必要がある。   On the other hand, as described above, since the attenuation of the ultrasonic signal propagating in the gas is particularly severe, it is necessary to considerably increase the amplification factor of the amplifier circuit.

そのため、受信側超音波送受信器の接続時に発生する僅かな不要振動も最終的には大きく増幅される結果となる。   Therefore, the slight unnecessary vibration that occurs when the receiving-side ultrasonic transmitter / receiver is connected finally results in a large amplification.

よって、受信信号が到達する前に、電源電圧の安定待ち時間に加えて、受信側超音波送受信器と受信回路を接続した時点で発生する不要振動が収まるまで待ち時間が必要となるところから、受信回路に対する電力供給時間を思った程は短縮できず、意図した様に消費電力を低減できないという課題があった。   Therefore, before the received signal arrives, in addition to the power supply voltage stabilization wait time, a wait time is required until the unnecessary vibration that occurs at the time of connecting the receiving side ultrasonic transceiver and the receiving circuit is settled, There was a problem that the power supply time for the receiving circuit could not be shortened as much as expected, and the power consumption could not be reduced as intended.

本発明はこのような従来の課題を解消したもので、受信回路に対する電力供給時間を可及的に短縮化することを目的とする。   The present invention solves such a conventional problem and aims to shorten the power supply time to the receiving circuit as much as possible.

前記従来の課題を解決するために、本発明の流体の流れ流量計測装置は、流体流路の上流側と下流側に配置された少なくとも一対の超音波送受信器と、受信側に設定されている前記一方の超音波送受信器に負荷抵抗を介して接続された増幅手段と、前記増幅手段に対する電力の供給/停止を切り換える電源スイッチと、前記受信側に設定されている前記一方の超音波送受信器と前記増幅手段の接続抵抗値を切り換える抵抗値切換手段と、前記増幅手段の出力に基づいて超音波信号の受信を判断する受信判定手段と、前記超音波信号の送信から受信までの伝搬時間を計測するタイマーと、前記タイマーで計測した過去の伝搬時間を元に次の予測伝搬時間を決定する伝搬時間予測手段と、前記電源スイッチおよび抵抗切換手段を制御する受信制御手段とを備え、前記受信制御手段は、前記予測伝搬時間より前の第1の設定時間で前記電源スイッチにより前記増幅手段へ電力供給を開始し、前記第1の設定時間と前記予測伝搬時間の間の第2の設定時間で前記抵抗値切換手段により前記振超音波送受信器と前記増幅手段との接続抵抗を受受信側に設定されている前記一方の
超音波送受信器のインピーダンスと同等の高抵抗値からほぼゼロとみなせる低抵抗値に切り換えるようにして、増幅手段の電力供給開始タイミングを受信タイミングに近づけるものである。
In order to solve the above-described conventional problems, the fluid flow rate measuring device of the present invention is set to at least a pair of ultrasonic transmitters / receivers disposed on the upstream side and the downstream side of the fluid flow path, and to the reception side. Amplifying means connected to the one ultrasonic transceiver via a load resistor, a power switch for switching supply / stop of power to the amplifying means, and the one ultrasonic transceiver set on the receiving side And a resistance value switching means for switching the connection resistance value of the amplification means, a reception determination means for judging reception of the ultrasonic signal based on the output of the amplification means, and a propagation time from transmission to reception of the ultrasonic signal. Timer to measure, propagation time prediction means for determining the next predicted propagation time based on the past propagation time measured by the timer, and reception control for controlling the power switch and resistance switching means And the reception control means starts supplying power to the amplification means by the power switch at a first set time before the predicted propagation time, and the first set time and the predicted propagation time The connection resistance between the ultrasonic transducer / amplifier and the amplifying unit is set to the reception / reception side by the resistance value switching unit at a second set time in between. By switching the resistance value to a low resistance value that can be regarded as almost zero, the power supply start timing of the amplifying means is brought close to the reception timing.

本発明の流体の流れ計測装置は、増幅手段の電力供給開始タイミングを受信タイミングに近づけることが可能になるため、省電力性能を保ちながら高精度の計測が可能である。   Since the fluid flow measuring device of the present invention can make the power supply start timing of the amplifying means closer to the reception timing, highly accurate measurement is possible while maintaining power saving performance.

第1の発明は、流体流路の上流側と下流側に配置された少なくとも一対の超音波送受信器と、受信側に設定されている前記一方の超音波送受信器に負荷抵抗を介して接続された増幅手段と、前記増幅手段に対する電力の供給/停止を切り換える電源スイッチと、前記受信側に設定されている前記一方の超音波送受信器と前記増幅手段の接続抵抗値を切り換える抵抗値切換手段と、前記増幅手段の出力に基づいて超音波信号の受信を判断する受信判定手段と、前記超音波信号の送信から受信までの伝搬時間を計測するタイマーと、前記タイマーで計測した過去の伝搬時間を元に次の予測伝搬時間を決定する伝搬時間予測手段と、前記電源スイッチおよび抵抗切換手段を制御する受信制御手段とを備え、前記受信制御手段は、前記予測伝搬時間より前の第1の設定時間で前記電源スイッチにより前記増幅手段へ電力供給を開始し、前記第1の設定時間と前記予測伝搬時間の間の第2の設定時間で前記抵抗値切換手段により前記振超音波送受信器と前記増幅手段との接続抵抗を受受信側に設定されている前記一方の超音波送受信器のインピーダンスと同等の高抵抗値からほぼゼロとみなせる低抵抗値に切り換えるようにした。   According to a first aspect of the present invention, at least a pair of ultrasonic transmitters / receivers arranged on the upstream side and downstream side of the fluid flow path and the one ultrasonic transmitter / receiver set on the receiving side are connected via a load resistor. Amplifying means, a power switch for switching supply / stop of power to the amplifying means, and a resistance value switching means for switching the connection resistance value of the one ultrasonic transceiver set on the receiving side and the amplifying means A reception determination unit that determines reception of an ultrasonic signal based on an output of the amplification unit, a timer that measures a propagation time from transmission to reception of the ultrasonic signal, and a past propagation time measured by the timer. Propagation time prediction means for determining the next predicted propagation time based on the original, and reception control means for controlling the power switch and resistance switching means, the reception control means is based on the predicted propagation time. Power supply to the amplifying means is started by the power switch at a previous first set time, and the resistance value switching means at the second set time between the first set time and the predicted propagation time. The connection resistance between the ultrasonic transmitter / receiver and the amplification means is switched from a high resistance value equivalent to the impedance of the one ultrasonic transmitter / receiver set on the receiving / receiving side to a low resistance value that can be regarded as almost zero.

したがって、予測伝搬時間の寸前に、まず、受信側超音波送受信器と増幅手段の接続抵抗を高抵抗にした状態で増幅手段の電源を投入して、電力供給の際に発生する受信側超音波送受信器端子間の振動ノイズを急速に減衰させた後に増幅手段との接続抵抗を低抵抗に切り換えて、超音波信号を受信しているので、増幅手段の電力供給開始タイミングを受信タイミングに近づけることが可能となり、省電力性能を保ちながら高精度の計測が可能である。   Therefore, just before the predicted propagation time, first, the receiving-side ultrasonic wave generated when the power is supplied by turning on the power of the amplifying unit with the connection resistance between the receiving-side ultrasonic transmitter / receiver and the amplifying unit being high resistance. After attenuating vibration noise between the transmitter and receiver terminals rapidly, the connection resistance with the amplification means is switched to a low resistance and the ultrasonic signal is received, so the power supply start timing of the amplification means is brought close to the reception timing. Therefore, it is possible to measure with high accuracy while maintaining power saving performance.

第2の発明は、特に第1の発明において、送信側超音波送受信器と受信側超音波送受信器の役割を切り換えることにより、流れの順方向と逆方向の双方の計測を可能とした送受信切換手段と、タイマーで計測した伝搬時間に基づいて流体流速および/または流量を算出する演算手段とを備え、受信制御手段は、流れの順方向と逆方向で個別の予測伝搬時間に基づいて第1、および第2の設定時間を定める構成としているので、流れの順方向と逆方向でそれぞれ別に電源投入タイミングを設定することで、流量変動にかかわらず最適な制御タイミングが設定可能となり、省電力性能を保ちつつ、より高精度の流れ計測が可能となる。   In the second invention, particularly in the first invention, the transmission / reception switching which enables measurement in both the forward direction and the reverse direction of the flow by switching the roles of the transmission side ultrasonic transmission / reception unit and the reception side ultrasonic transmission / reception unit. Means and a computing means for calculating a fluid flow velocity and / or flow rate based on a propagation time measured by a timer, and the reception control means includes a first based on the individual estimated propagation time in the forward direction and the reverse direction of the flow. And the second set time are set, so by setting the power-on timing separately in the forward and reverse directions of the flow, the optimal control timing can be set regardless of the flow rate fluctuation, and power saving performance The flow can be measured with higher accuracy while maintaining

第3の発明は、特に第1または第2の発明において、計測した伝搬時間を基に装置の雰囲気温度を推定する温度推定手段と、前記温度推定手段の推定温度に従って受信側超音波送受信器のインピーダンスを推定するインピーダンス推定手段とを備え、受信制御手段は、前記インピーダンス推定手段の出力に応じて受信側超音波送受信器と増幅手段の接続抵抗の高抵抗側の値を制御する構成としているので、超音波送受信器の温度特性に応じて、受信側超音波送受信器と増幅手段の接続抵抗の最適化が可能となる。   According to a third aspect of the invention, particularly in the first or second aspect of the invention, the temperature estimation means for estimating the ambient temperature of the apparatus based on the measured propagation time, and the reception-side ultrasonic transceiver according to the estimated temperature of the temperature estimation means Impedance estimation means for estimating impedance, and the reception control means is configured to control the value on the high resistance side of the connection resistance of the reception-side ultrasonic transceiver and amplification means according to the output of the impedance estimation means. The connection resistance between the receiving-side ultrasonic transmitter / receiver and the amplification means can be optimized according to the temperature characteristics of the ultrasonic transmitter / receiver.

以下本発明の実施の形態を図面を参照して説明する。なお、実施の形態が本発明を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The embodiments do not limit the present invention.

(実施の形態1)
図1において、流体流路1を流れる流体を超音波が斜めに横切るように一対の超音波送受信器2,3が上下流側に配置してある。
(Embodiment 1)
In FIG. 1, a pair of ultrasonic transmitters / receivers 2, 3 are arranged on the upstream / downstream side so that the ultrasonic wave obliquely crosses the fluid flowing through the fluid flow path 1.

これら超音波送受信器2,3は、送受信の役割を反転する送受信切換手段4を介して後段の処理ブロックに繋がれている。   These ultrasonic transmitters / receivers 2 and 3 are connected to a subsequent processing block via transmission / reception switching means 4 that reverses the role of transmission / reception.

送受信切換手段4は4連のスイッチで構成されていて、接点aが閉じると超音波送受信器2が送信側、超音波送受信器3が受信側となり、接点bが閉じられると超音波送受信器3が送信側、超音波送受信器2が受信側となる。   The transmission / reception switching means 4 is composed of four switches. When the contact a is closed, the ultrasonic transmitter / receiver 2 is on the transmission side, the ultrasonic transmitter / receiver 3 is on the reception side, and when the contact b is closed, the ultrasonic transmitter / receiver 3 is closed. Is the transmitting side, and the ultrasonic transceiver 2 is the receiving side.

送信側超音波送受信器は送信手段5と、受信側超音波送受信器は2連の可変抵抗6を介して後段の受信回路と接続される。   The transmission-side ultrasonic transceiver is connected to the transmission means 5, and the reception-side ultrasonic transceiver is connected to the subsequent reception circuit via two variable resistors 6.

受信回路は回路駆動電力を供給する電池電源7、この電源7の電力供給と停止を切り換える電源スイッチ8、受信側超音波送受信器の出力を増幅する増幅手段9、この増幅手段9の出力から超音波信号の受信を検知する受信判定手段10とで構成される。   The receiving circuit includes a battery power supply 7 for supplying circuit driving power, a power switch 8 for switching power supply and stop of the power supply 7, an amplifying means 9 for amplifying the output of the receiving side ultrasonic transceiver, and an output from the amplifying means 9 It is comprised with the reception determination means 10 which detects reception of a sound wave signal.

なお、可変抵抗6は2連構成のボリウム抵抗であり、双方が連動して同じ値となるように構成されている。   The variable resistor 6 is a volume resistor having a double structure, and is configured so that both have the same value in conjunction with each other.

トリガ手段11は一連の計測動作の開始を指示するトリガ信号を出力し、このトリガ信号と同期して、タイマー12が超音波計測開始後の経過時間の計測を開始する。   The trigger unit 11 outputs a trigger signal instructing the start of a series of measurement operations, and the timer 12 starts measuring the elapsed time after starting the ultrasonic measurement in synchronization with the trigger signal.

受信判定手段10で受信波の伝搬が判定された時のタイマー12の計測値がこの回の計測の伝搬時間である。   The measurement value of the timer 12 when the reception determination means 10 determines the propagation of the received wave is the propagation time of this measurement.

この伝搬時間は演算手段13に出力され、ここでは、流速、流量値などの流れの計測にかかわる種々の値が演算される。   This propagation time is output to the calculation means 13, where various values related to flow measurement such as flow velocity and flow rate value are calculated.

ここで、算出される値のひとつが、予め定められた回数(例えば8回)の伝搬時間の平均値である。この値は、伝搬時間予測手段14に記憶される。   Here, one of the calculated values is an average value of propagation times for a predetermined number of times (for example, 8 times). This value is stored in the propagation time prediction means 14.

受信制御手段15は、電源スイッチの切り換えタイミングの制御や、可変抵抗6の抵抗値の制御を行うが、この時の制御タイミングは、伝搬時間予測手段14に記憶されている過去の計測結果を基に決定される。   The reception control means 15 controls the switching timing of the power switch and the resistance value of the variable resistor 6. The control timing at this time is based on the past measurement results stored in the propagation time prediction means 14. To be determined.

以上のように構成された流体の流れ計測装置の動作を説明する。   The operation of the fluid flow measuring apparatus configured as described above will be described.

まず、超音波送受信器2を送信側とした場合の動作について説明する。最初にトリガ手段11から、計測開始を指示するトリガ信号が出力されるが、この時点で送受信切換手段4の接点aが閉じており、その結果、超音波送受信器2と送信手段5が接続され、超音波送受信器3と可変抵抗6を介して後段の受信回路が接続されることになる。   First, the operation when the ultrasonic transmitter / receiver 2 is set as the transmission side will be described. First, a trigger signal instructing the start of measurement is output from the trigger means 11. At this time, the contact a of the transmission / reception switching means 4 is closed, and as a result, the ultrasonic transceiver 2 and the transmission means 5 are connected. The subsequent receiving circuit is connected via the ultrasonic transmitter / receiver 3 and the variable resistor 6.

そして、この時点の可変抵抗値は、受信側超音波送受信器のインピーダンスとほぼ同一の値(例えば、300Ω)に設定されている。   The variable resistance value at this time is set to a value (for example, 300Ω) that is substantially the same as the impedance of the reception-side ultrasonic transceiver.

さらに、電源スイッチ8の接点は開いており、受信回路への電力供給が停止されている。   Furthermore, the contact of the power switch 8 is open, and the power supply to the receiving circuit is stopped.

トリガ手段11から出力されるトリガ信号の出力と同期して、送信手段5から駆動信号
(例えば500kHzの交流信号)が出力され、振動超音波送受信器2から超音波信号が出力される。
In synchronization with the output of the trigger signal output from the trigger unit 11, a drive signal (for example, an AC signal of 500 kHz) is output from the transmission unit 5, and an ultrasonic signal is output from the vibration ultrasonic transmitter / receiver 2.

また、これと同期して、タイマー12がスタートし、超音波信号出力後の経過時間の計測が始まる。   In synchronization with this, the timer 12 starts and measurement of the elapsed time after the output of the ultrasonic signal starts.

振動超音波送受信器2から出力された超音波信号は、やがて受信回路に到達するが、その伝搬時間は、環境条件や流量が大きく変化しない限りはほとんど変化しないので、直近の計測値を利用して予測可能である。   The ultrasonic signal output from the vibration ultrasonic transmitter / receiver 2 eventually reaches the receiving circuit, but its propagation time hardly changes unless the environmental conditions and flow rate change greatly. Therefore, the latest measured value is used. Predictable.

この予測データを元に伝搬時間の寸前で電力供給を開始する構成を実現すれば、常時通電する場合に比べて大幅な消費電力低減が可能になる。   By realizing a configuration in which power supply is started immediately before the propagation time based on the prediction data, it is possible to significantly reduce power consumption compared to the case where power is always supplied.

受信制御手段15では、伝搬時間予測手段14の記憶データを元に電源スイッチ8の切り換えタイミングである第1の設定時間と、可変抵抗6の抵抗値切り換えタイミングである第2の設定時間を求めて、それらの時間で切り換え信号を出力する。   The reception control means 15 obtains the first set time that is the switching timing of the power switch 8 and the second set time that is the resistance value switching timing of the variable resistor 6 based on the data stored in the propagation time prediction means 14. The switching signal is output at those times.

これら設定時間の最適化方法については後述することとして、まず、第1および第2の設定時間における動作を先に説明する。   As these setting time optimization methods will be described later, first, operations in the first and second setting times will be described first.

トリガ信号出力からスタートしたタイマー12の計測値が第1の設定時間に達すると、受信制御手段15から制御信号が出力され、電源スイッチ8の接点が閉じられて、電源7から増幅手段9および受信判定手段10に駆動電力が供給される。   When the measured value of the timer 12 started from the trigger signal output reaches the first set time, a control signal is output from the reception control means 15, the contact of the power switch 8 is closed, and the amplification means 9 and the reception from the power supply 7 are closed. Driving power is supplied to the determination means 10.

この時、発生する不連続な電圧変化によって、受信側の超音波送受信器3の両端子間に過渡的に僅かな電位差が発生する。この電位差が受信側超音波送受信器3の不要振動のエネルギー源となる。   At this time, due to the discontinuous voltage change that occurs, a slight potential difference is transiently generated between both terminals of the ultrasonic transceiver 3 on the receiving side. This potential difference becomes an energy source of unnecessary vibration of the reception-side ultrasonic transceiver 3.

ただし、このエネルギーは継続的に供給されるわけではないので、受信回路の負荷抵抗で消費され、やがて消滅する。   However, since this energy is not continuously supplied, it is consumed by the load resistance of the receiving circuit and eventually disappears.

この時、受信回路の抵抗値が大きい方が振動エネルギーの消費も早い。電源投入の瞬間、受信側の超音波送受信器3と増幅手段9の接続抵抗値は同送受信器3のインピーダンスと同程じ値に設定されているので、送受信器と負荷抵抗の整合が取られているため、最も効率的に振動エネルギーを消費させることが可能となる。   At this time, the consumption of vibration energy is faster when the resistance value of the receiving circuit is larger. At the moment when the power is turned on, since the connection resistance value of the ultrasonic transmitter / receiver 3 on the receiving side and the amplifying means 9 is set to the same value as the impedance of the transmitter / receiver 3, the transmitter / receiver and the load resistance are matched. Therefore, vibration energy can be consumed most efficiently.

また、可変抵抗6を用いているため、個体間ばらつきにより受信振動子毎にインピーダンスが異なる場合や、機種毎に特性の全くことなる振超音波送受信器を用いた場合であっても、受信側振超音波送受信器と増幅手段の接続抵抗値をその都度、最適な値を設定することができる。   In addition, since the variable resistor 6 is used, even if the impedance differs for each receiving transducer due to individual variations, or even when using an ultrasonic transducer that has completely different characteristics for each model, the receiving side An optimum value can be set for the connection resistance value between the ultrasonic transceiver and the amplification means each time.

振動エネルギーが消費された後、タイマー12の計測値が第2の設定時間に達すると、受信制御手段10から制御信号が出力され、可変抵抗6の抵抗値をゼロに切り換える。   When the measured value of the timer 12 reaches the second set time after the vibration energy is consumed, a control signal is output from the reception control means 10 to switch the resistance value of the variable resistor 6 to zero.

第2の設定時間の後、流路内を伝搬した超音波信号が超音波送受信器3に伝搬到すると、その信号出力は、可変抵抗6を介して増幅手段9に出力される。接続抵抗がゼロに切り換っているので、超音波送受信器3の両端の受信信号電圧を高い効率で増幅手段9に伝送することが可能である。   After the second set time, when the ultrasonic signal propagated in the flow path reaches the ultrasonic transmitter / receiver 3, the signal output is output to the amplifying means 9 via the variable resistor 6. Since the connection resistance is switched to zero, the received signal voltage at both ends of the ultrasonic transceiver 3 can be transmitted to the amplifying means 9 with high efficiency.

増幅手段9で増幅された受信信号は、受信判定手段10へ出力され、ここで受信判定処
理が行われる。受信判定手段10の詳細は省略するが、ここでは、受信波形の特定部位を受信点と判断する構成とし、具体的には受信波形の3周期目のゼロクロス点の立ち下がりを受信ポイント判断するものとする。
The reception signal amplified by the amplifying unit 9 is output to the reception determining unit 10 where reception determination processing is performed. Although details of the reception determination means 10 are omitted, here, a specific part of the reception waveform is determined as a reception point, and specifically, a reception point determination is made on the falling edge of the zero-cross point in the third period of the reception waveform. And

受信判定手段10で受信判定がなされると、超音波送受信器2を送信側、超音波送受信器3を受信側とした流れの順方向の超音波伝搬の時間計測が終了する。   When reception determination is made by the reception determination means 10, the time measurement of ultrasonic propagation in the forward direction of the flow with the ultrasonic transmitter / receiver 2 as the transmission side and the ultrasonic transmitter / receiver 3 as the reception side ends.

順方向の計測終了時に、タイマー12の計測値は、流れの順方向の伝搬時間として、演算手段13に出力される。同時に、受信制御手段15から送受信を切り換えるための制御信号が出力される。   At the end of measurement in the forward direction, the measurement value of the timer 12 is output to the computing means 13 as the propagation time in the forward direction of the flow. At the same time, a control signal for switching transmission / reception is output from the reception control means 15.

この制御信号を受けて、送受信切換手段4の接点bが閉じられて、超音波送受信器3と送信手段5とが接続され、超音波送受信器2と受信回路が接続され、送受信の関係が逆転する。また、電源スイッチ8の接点が開いて、電源7から増幅手段9および受信判定手段10への電力供給が停止される。   Upon receiving this control signal, the contact b of the transmission / reception switching means 4 is closed, the ultrasonic transmitter / receiver 3 and the transmitting means 5 are connected, the ultrasonic transmitter / receiver 2 and the receiving circuit are connected, and the transmission / reception relationship is reversed. To do. Further, the contact of the power switch 8 is opened, and the power supply from the power source 7 to the amplifying unit 9 and the reception determining unit 10 is stopped.

受信制御手段15は定められた遅延の後、トリガ手段11にリセット信号を出力する。トリガ手段11はリセット信号を受けて、計測開始のトリガ信号を、タイマー12および送信手段5に出力する。   The reception control unit 15 outputs a reset signal to the trigger unit 11 after a predetermined delay. The trigger unit 11 receives the reset signal and outputs a trigger signal for starting measurement to the timer 12 and the transmission unit 5.

ここから、超音波送受信器3を送信側とした計測が開始される。その後の動作は、ふたつの送受信器間の送受の関係が入れ替わるだけで先に述べた手順と同様に、受信判定手段10における受信判定のまでの一連の処理が実行される。   From here, measurement with the ultrasonic transmitter / receiver 3 as the transmission side is started. In the subsequent operation, a series of processes up to the reception determination in the reception determination means 10 is executed in the same manner as the procedure described above only by changing the transmission / reception relationship between the two transceivers.

受信判定手段10で受信判定がなされると、超音波送受信器3を送信側、超音波送受信器2を受信側とした、流れと逆方向の超音波伝搬の時間計測が終了する。   When reception determination is performed by the reception determination means 10, the time measurement of ultrasonic propagation in the direction opposite to the flow is completed with the ultrasonic transmitter / receiver 3 as the transmission side and the ultrasonic transmitter / receiver 2 as the reception side.

流れの逆方向の計測終了時に、タイマー12の計測値は、流れの逆方向の伝搬時間として、演算手段13に出力される。同時に、受信制御手段15から送受信を切り換えるための制御信号が出力される。   At the end of the measurement in the reverse direction of the flow, the measurement value of the timer 12 is output to the calculation means 13 as the propagation time in the reverse direction of the flow. At the same time, a control signal for switching transmission / reception is output from the reception control means 15.

この制御信号を受けて、送受信切換手段4の接点aが閉じられて、超音波送受信器2と送信手段5とが接続され、超音波送受信器3と受信回路が接続され、両送受信器の送受信の関係が再度逆転する。また、第1スイッチ12の接点が開いて、電源7から増幅手段9および受信判定手段10への電力供給が停止される。   In response to this control signal, the contact a of the transmission / reception switching means 4 is closed, the ultrasonic transceiver 2 and the transmission means 5 are connected, the ultrasonic transceiver 3 and the reception circuit are connected, and the transmission / reception of both transceivers is performed. The relationship is reversed again. Further, the contact of the first switch 12 is opened, and the power supply from the power source 7 to the amplifying unit 9 and the reception determining unit 10 is stopped.

受信制御手段15は定められた遅延の後、トリガ手段11にリセット信号を出力し、今度は、超音波送受信器2を送信側とした計測が開始される。   The reception control unit 15 outputs a reset signal to the trigger unit 11 after a predetermined delay, and this time, measurement using the ultrasonic transceiver 2 as a transmission side is started.

以上のように、1回計測する毎に、一定の遅延時間を置きながら、ふたつの超音波送受信器の送受信関係を切り換えながら計測が続けられる。   As described above, every time measurement is performed, the measurement is continued while switching the transmission / reception relationship between the two ultrasonic transmitters / receivers while setting a certain delay time.

そして、予め定められた回数(例えば、順方向、逆方向それぞれ8回)の計測が完了した時点で、演算手段13では、8回の計測結果を順方向、逆方向それぞれ別個に伝搬時間平均値を算出し、その値は伝搬時間予測手段14に記憶される。更に、伝搬時間平均値を元に流量値が求められる。   When the predetermined number of times (e.g., 8 times in the forward direction and 8 times in the reverse direction) is completed, the calculation means 13 determines the average value of the propagation times separately for each of the forward direction and the reverse direction. , And the value is stored in the propagation time prediction means 14. Further, a flow rate value is obtained based on the average propagation time value.

次に、伝搬時間予測手段14に記憶された伝搬時間平均値を用いて、第1の設定時間および第2の設定時間を最適化する方法について説明する。   Next, a method for optimizing the first set time and the second set time using the propagation time average value stored in the propagation time predicting means 14 will be described.

流路内に異質のガスが混入したり、意図的にガスの置換を行ったりしない限り、伝搬時間の値はわずかな時間で急激に変化することがないので、前の8回の計測平均値が次の8回の計測のおおよその期待値と考えることができる。   The value of the propagation time does not change abruptly in a short time unless a foreign gas is mixed in the flow path or the gas is intentionally replaced. Can be considered as an approximate expected value for the next eight measurements.

流れの順方向の伝搬時間平均値をTaとすると、次の8回の順方向の計測においては、第1の設定時間、第2の設定時間に係る振動子両端に発生する振動ノイズが、計測開始後の経過時間Taの近傍で充分小さくなるように適当なマージンを見込んで、各制御タイミングを設定すれば良い。   Assuming that the forward propagation time average value of the flow is Ta, in the next eight forward measurements, vibration noise generated at both ends of the vibrator related to the first set time and the second set time is measured. Each control timing may be set in anticipation of an appropriate margin so as to be sufficiently small in the vicinity of the elapsed time Ta after the start.

電源スイッチ8を閉じた後、振動レベルが収束するまでの時間をα、可変抵抗6の抵抗値をゼロに切り換えた後、振動レベルが収束するまでの時間をβとすれば、タイマー12の値が示す計測開始からの経過時間がTa−(α+β)となる時間を第1の設定時間T1、経過時間がTa−βとなる時間を第2の設定時間T2として電源スイッチ8、およびの可変抵抗6の抵抗値の切り換えを行えば良い。   If the time until the vibration level converges after closing the power switch 8 is α, and the resistance value of the variable resistor 6 is switched to zero and the time until the vibration level converges is β, the value of the timer 12 The time when the elapsed time from the start of measurement shown in FIG. 4 becomes Ta− (α + β) is the first set time T1, and the time when the elapsed time becomes Ta−β is the second set time T2, and the variable resistance of the power switch 8 6 may be switched.

以上説明してきたように本実施の形態の流体の流れ計測装置においては、伝搬時間予測手段14に記憶された予測伝搬時間に基づいて、その時間の寸前に受信側超音波送受信器と増幅手段9の接続抵抗を同送受信器と等しくした状態で増幅手段9の電源を投入して、電力供給の際に発生する受信側超音波送受信器間の振動ノイズを急速に減衰させている。その後、受信側超音波送受信器と増幅手段9との接続抵抗をゼロに切り換えた後に、超音波信号を受信しているので、増幅手段9の電力供給開始タイミングを受信波形により近づけることが可能になり、省電力性能を保ちながら高精度の計測が可能である。   As described above, in the fluid flow measurement device according to the present embodiment, based on the predicted propagation time stored in the propagation time prediction unit 14, the reception-side ultrasonic transceiver and the amplification unit 9 immediately before that time. The power of the amplifying means 9 is turned on in the state where the connection resistance is equal to that of the transmitter / receiver, and the vibration noise between the reception side ultrasonic transmitter / receiver generated at the time of power supply is rapidly attenuated. After that, since the ultrasonic signal is received after switching the connection resistance between the receiving-side ultrasonic transceiver and the amplifying unit 9 to zero, the power supply start timing of the amplifying unit 9 can be made closer to the received waveform. Therefore, high-precision measurement is possible while maintaining power saving performance.

また、流れの順方向と逆方向でそれぞれ別に電源投入タイミングを設定することで、流量変動に関わらず、最適な制御タイミングが設定可能となり省電力性能を保ちつつ、より高精度の流量計測が可能となる。   In addition, by setting the power-on timing separately in the forward and reverse directions of the flow, it is possible to set the optimal control timing regardless of flow rate fluctuations, enabling more accurate flow measurement while maintaining power saving performance. It becomes.

(実施の形態2)
図2は実施の形態2を示し、図1のものと同作用を行う構成部分については同一符号を付し、詳細な説明は実施の形態1のものを援用する。
(Embodiment 2)
FIG. 2 shows the second embodiment, and the same reference numerals are given to the components that perform the same operations as those in FIG. 1, and the details of the first embodiment are used.

温度検知手段16は演算手段13で求めた順方向の伝搬時間と逆方向の伝搬時間から流体の温度を推定している。そして、ここで推定した温度に応じて、受信制御手段15は第1の設定時間および第2の設定時間を変化させている。   The temperature detecting means 16 estimates the temperature of the fluid from the forward propagation time and the reverse propagation time obtained by the computing means 13. The reception control means 15 changes the first set time and the second set time according to the temperature estimated here.

気体の温度と、その気体中を伝搬する音速は一次の近似式で与えられることはよく知られている。   It is well known that the temperature of a gas and the speed of sound propagating in the gas are given by a first-order approximation.

したがって、超音波送受信器間の距離とガス種が既知であれば、計測した伝搬時間を用いて音速を容易に求めることが可能である。   Therefore, if the distance between the ultrasonic transceivers and the gas type are known, it is possible to easily obtain the sound speed using the measured propagation time.

これには、流速が変化した場合であっても、順方向の伝搬時間と逆方向の伝搬時間の和がほとんど変化しないことを利用する。   This utilizes the fact that the sum of forward propagation time and reverse propagation time hardly changes even when the flow velocity changes.

この性質によれば、同一温度条件であれば、ふたつの伝搬時間の平均値は変わらないと結論づけられる。逆に言えば、伝搬時間の平均値から温度を知ることができると言える。   According to this property, it can be concluded that the average value of the two propagation times does not change under the same temperature condition. In other words, it can be said that the temperature can be known from the average value of the propagation time.

一般に、受信側超音波送受信器のインピーダンスは、温度により若干変化するので、上記のように温度がわかっていれば、温度特性分を補正して、可変抵抗6の高抵抗側の抵抗値を変更すれば良い。   In general, the impedance of the receiving-side ultrasonic transmitter / receiver changes slightly depending on the temperature. If the temperature is known as described above, the temperature characteristic is corrected and the resistance value on the high resistance side of the variable resistor 6 is changed. Just do it.

以上、説明してきたように本発明の実施の形態においては、温度推定手段16で推定した装置内の推定温度に従って、増幅手段9の電力供給開始時の抵抗値を制御しているので、の温度特性に応じて、受信側超音波送受信器と増幅手段の接続抵抗の最適化が可能となる。   As described above, in the embodiment of the present invention, the resistance value at the start of power supply of the amplifying unit 9 is controlled according to the estimated temperature in the apparatus estimated by the temperature estimating unit 16. Depending on the characteristics, it is possible to optimize the connection resistance between the reception-side ultrasonic transceiver and the amplification means.

以上のように、本発明の流体の流れ計測装置は、増幅手段の電源投入タイミングを超音波信号の受信タイミングに近づけることができ、省電力化が可能となるので、電池駆動で長寿命を要求されるガスメータ、水道メータなどに適用可能である。   As described above, the fluid flow measuring device according to the present invention can bring the power-on timing of the amplifying means closer to the reception timing of the ultrasonic signal, and can save power. It can be applied to gas meters, water meters and the like.

本発明の実施の形態1における流体の流れ計測装置のブロック図1 is a block diagram of a fluid flow measurement device according to Embodiment 1 of the present invention. 本発明の実施の形態2における流体の流れ計測装置のブロック図Block diagram of fluid flow measurement apparatus in embodiment 2 of the present invention 従来の流体の流れ計測装置のブロック図Block diagram of a conventional fluid flow measurement device

符号の説明Explanation of symbols

1 流体流路
2,3 超音波送受信器
4 送受信切換手段
6 可変抵抗
7 電源
8 電源スイッチ
9 増幅手段
10 受信判定手段
12 タイマー
13 演算手段
14 伝搬時間予測手段
15 受信制御手段
16 温度推定手段
17 インピーダンス推定手段
DESCRIPTION OF SYMBOLS 1 Fluid flow path 2,3 Ultrasonic transmitter / receiver 4 Transmission / reception switching means 6 Variable resistance 7 Power supply 8 Power switch 9 Amplification means 10 Reception determination means 12 Timer 13 Calculation means 14 Propagation time prediction means 15 Reception control means 16 Temperature estimation means 17 Impedance Estimating means

Claims (3)

流体流路の上流側と下流側に配置された少なくとも一対の超音波送受信器と、受信側に設定されている前記一方の超音波送受信器に負荷抵抗を介して接続された増幅手段と、前記増幅手段に対する電力の供給/停止を切り換える電源スイッチと、前記受信側に設定されている前記一方の超音波送受信器と前記増幅手段の接続抵抗値を切り換える抵抗値切換手段と、前記増幅手段の出力に基づいて超音波信号の受信を判断する受信判定手段と、前記超音波信号の送信から受信までの伝搬時間を計測するタイマーと、前記タイマーで計測した過去の伝搬時間を元に次の予測伝搬時間を決定する伝搬時間予測手段と、前記電源スイッチおよび抵抗切換手段を制御する受信制御手段とを備え、前記受信制御手段は、前記予測伝搬時間より前の第1の設定時間で前記電源スイッチにより前記増幅手段へ電力供給を開始し、前記第1の設定時間と前記予測伝搬時間の間の第2の設定時間で前記抵抗値切換手段により前記振超音波送受信器と前記増幅手段との接続抵抗を受受信側に設定されている前記一方の超音波送受信器のインピーダンスと同等の高抵抗値からほぼゼロとみなせる低抵抗値に切り換えることを特徴とする流体の流れ計測装置。 At least a pair of ultrasonic transmitters / receivers disposed on the upstream side and downstream side of the fluid flow path, amplification means connected to the one ultrasonic transmitter / receiver set on the receiving side via a load resistor, and A power switch for switching the supply / stop of power to the amplification means, a resistance value switching means for switching the connection resistance value of the one ultrasonic transmitter / receiver set on the receiving side and the amplification means, and an output of the amplification means A reception determination means for determining reception of an ultrasonic signal based on the above, a timer for measuring a propagation time from transmission to reception of the ultrasonic signal, and a next predicted propagation based on a past propagation time measured by the timer A propagation time predicting means for determining a time; and a reception control means for controlling the power switch and the resistance switching means. The reception control means includes a first setting prior to the predicted propagation time. Power supply to the amplifying means is started by the power switch at a time, and the ultrasonic wave transceiver and the ultrasonic transmitter / receiver by the resistance value switching means at a second set time between the first set time and the predicted propagation time A fluid flow measuring device characterized in that the connection resistance with the amplifying means is switched from a high resistance value equivalent to the impedance of the one ultrasonic transmitter / receiver set on the receiving / receiving side to a low resistance value which can be regarded as almost zero. . 送信側超音波送受信器と受信側超音波送受信器の役割を切り換えることにより、流れの順方向と逆方向の双方の計測を可能とした送受信切換手段と、タイマーで計測した伝搬時間に基づいて流体流速および/または流量を算出する演算手段とを備え、受信制御手段は、流れの順方向と逆方向で個別の予測伝搬時間に基づいて第1、および第2の設定時間を定めることを特徴とする請求項1に記載の流体の流れ計測装置。 By switching the roles of the transmitting-side ultrasonic transmitter / receiver and the receiving-side ultrasonic transmitter / receiver, transmission / reception switching means that enables measurement in both the forward and reverse directions of the flow, and the fluid based on the propagation time measured by the timer Calculating means for calculating the flow velocity and / or flow rate, wherein the reception control means determines the first and second set times based on the individual predicted propagation times in the forward direction and the reverse direction of the flow. The fluid flow measuring device according to claim 1. 計測した伝搬時間を基に装置の雰囲気温度を推定する温度推定手段と、前記温度推定手段の推定温度に従って受信側超音波送受信器のインピーダンスを推定するインピーダンス推定手段とを備え、受信制御手段は、前記インピーダンス推定手段の出力に応じて受信側超音波送受信器と増幅手段の接続抵抗の高抵抗側の値を制御することを特徴とする請求項1または2に記載の流体の流れ計測装置。 Temperature estimation means for estimating the ambient temperature of the apparatus based on the measured propagation time, and impedance estimation means for estimating the impedance of the reception-side ultrasonic transceiver according to the estimated temperature of the temperature estimation means, the reception control means, 3. The fluid flow measuring device according to claim 1, wherein a value on a high resistance side of a connection resistance between the reception-side ultrasonic transceiver and the amplification unit is controlled in accordance with an output of the impedance estimation unit.
JP2008231713A 2008-09-10 2008-09-10 Fluid flow measuring device Expired - Fee Related JP5233532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008231713A JP5233532B2 (en) 2008-09-10 2008-09-10 Fluid flow measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008231713A JP5233532B2 (en) 2008-09-10 2008-09-10 Fluid flow measuring device

Publications (2)

Publication Number Publication Date
JP2010066083A true JP2010066083A (en) 2010-03-25
JP5233532B2 JP5233532B2 (en) 2013-07-10

Family

ID=42191794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008231713A Expired - Fee Related JP5233532B2 (en) 2008-09-10 2008-09-10 Fluid flow measuring device

Country Status (1)

Country Link
JP (1) JP5233532B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043838A4 (en) * 2019-11-15 2022-11-02 Shenzhen Goodix Technology Co., Ltd. Flow velocity measurement circuit, related chip, and flow meter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173880A (en) * 1997-12-10 1999-07-02 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2004085420A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Flow measurement device
JP2004286762A (en) * 2004-07-12 2004-10-14 Matsushita Electric Ind Co Ltd Flow measurement device
JP2005345148A (en) * 2004-05-31 2005-12-15 Toshiba Corp Ultrasound flow meter
JP2006275814A (en) * 2005-03-29 2006-10-12 Tokyo Gas Co Ltd Ultrasonic flow meter
JP2010066082A (en) * 2008-09-10 2010-03-25 Panasonic Corp Device for measuring flow of fluid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173880A (en) * 1997-12-10 1999-07-02 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2004085420A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Flow measurement device
JP2005345148A (en) * 2004-05-31 2005-12-15 Toshiba Corp Ultrasound flow meter
JP2004286762A (en) * 2004-07-12 2004-10-14 Matsushita Electric Ind Co Ltd Flow measurement device
JP2006275814A (en) * 2005-03-29 2006-10-12 Tokyo Gas Co Ltd Ultrasonic flow meter
JP2010066082A (en) * 2008-09-10 2010-03-25 Panasonic Corp Device for measuring flow of fluid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4043838A4 (en) * 2019-11-15 2022-11-02 Shenzhen Goodix Technology Co., Ltd. Flow velocity measurement circuit, related chip, and flow meter
US11512996B2 (en) 2019-11-15 2022-11-29 Shenzhen GOODIX Technology Co., Ltd. Flow speed detection circuit and associated chip and flow meter

Also Published As

Publication number Publication date
JP5233532B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP2011158470A (en) Ultrasonic flowmeter
CN104797908B (en) Flow measurement device and its method of calculating flux
US9239256B2 (en) Flow-rate measurement device
JP5076524B2 (en) Flow velocity or flow rate measuring device and its program
JP5233532B2 (en) Fluid flow measuring device
JP4992872B2 (en) Fluid flow measuring device
JP5177063B2 (en) Fluid flow measuring device
JP4973638B2 (en) Fluid flow measuring device
JP5176844B2 (en) Fluid flow measuring device
JP2008190971A (en) Flow velocity or flow rate measuring device and its program
JP4572546B2 (en) Fluid flow measuring device
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP4992890B2 (en) Flow velocity or flow rate measuring device
JP2008180566A (en) Flow velocity or flow rate measuring device and its program
JP6064160B2 (en) Flow measuring device
JP5845432B2 (en) Ultrasonic flow meter
JP4409838B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP7675579B2 (en) Ultrasonic flowmeter and flow rate calculation method
JP4415661B2 (en) Gas shut-off device
JP2004085420A (en) Flow measurement device
JP4863330B2 (en) Ultrasonic flow meter
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP4836176B2 (en) Ultrasonic flow meter
CN206725023U (en) A kind of device for being used to reduce measuring ultrasonic wave flow power consumption
JP2007322442A (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees