JP2010059363A - Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board - Google Patents
Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board Download PDFInfo
- Publication number
- JP2010059363A JP2010059363A JP2008228759A JP2008228759A JP2010059363A JP 2010059363 A JP2010059363 A JP 2010059363A JP 2008228759 A JP2008228759 A JP 2008228759A JP 2008228759 A JP2008228759 A JP 2008228759A JP 2010059363 A JP2010059363 A JP 2010059363A
- Authority
- JP
- Japan
- Prior art keywords
- polyphenylene ether
- resin composition
- prepreg
- compound
- epoxy compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Manufacturing Of Printed Circuit Boards (AREA)
Abstract
Description
本発明は、プリント配線板の絶縁材料として好ましく用いられるポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板、及びプリント配線板に関する。 The present invention relates to a polyphenylene ether resin composition, a prepreg, a metal-clad laminate, and a printed wiring board that are preferably used as an insulating material for a printed wiring board.
近年の情報通信分野で用いられる電子機器においては、信号の大容量化や高速化が進展している。そのために、高周波特性が良く、配線数を増加するための高多層化に対応できるようなプリント配線板が要求されている。 In electronic devices used in the field of information communication in recent years, signal capacity and speed have been increased. Therefore, there is a demand for a printed wiring board that has good high-frequency characteristics and can cope with a higher number of layers for increasing the number of wirings.
このような電子機器に用いられるプリント配線板においては、MHz帯からGHz帯という高周波領域における信頼性を維持するために、低誘電率(ε)及び低誘電正接(tanδ)が要求される。従来から、このような電気特性を有するプリント配線板として、その絶縁層に、ポリフェニレンエーテル(PPE)にエポキシ樹脂やシアネート化合物を必須成分として含むPPE樹脂組成物が開示されている(例えば、特許文献1、2)。このようなPPE樹脂組成物は、耐熱性が高く、優れた誘電特性も備えている。
しかしながら、エポキシ化合物とシアネート化合物とが配合されたPPE樹脂組成物を繊維基材に含浸させて、プリント配線板の製造に用いるためのプリプレグを製造した場合、プリプレグの表面にタック性(粘着性)が残るという問題があった。このようなプリプレグの表面タック性は、プリプレグ表面にほこりの付着を引き起こす原因になる。そして、プリプレグ表面にほこりが付着した状態で多層の積層体を製造した場合には、プリント配線板の短絡やマイグレーションにより信頼性を損なう原因になる。特に信号の大容量化や高速化に伴って回路幅や回路間隔が狭くなるにつれて、このようなプリプレグ表面に付着したほこりによる信頼性の低下は大きな問題になる。 However, when a fiber substrate is impregnated with a PPE resin composition containing an epoxy compound and a cyanate compound to produce a prepreg for use in the production of a printed wiring board, the surface of the prepreg is tacky (adhesive). There was a problem that remained. Such surface tackiness of the prepreg causes dust to adhere to the prepreg surface. And when a multilayer laminated body is manufactured in a state where dust adheres to the surface of the prepreg, reliability is impaired due to short circuit or migration of the printed wiring board. In particular, as the circuit width and circuit interval become narrower as the signal capacity increases and the speed increases, such a decrease in reliability due to dust adhering to the prepreg surface becomes a serious problem.
本発明は、上記問題に鑑み、得られる硬化物の表面にタックが少ない、エポキシ化合物とシアネート化合物とが配合されたPPE樹脂組成物を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide a PPE resin composition in which an epoxy compound and a cyanate compound are blended with less tack on the surface of the obtained cured product.
本発明のポリフェニレンエーテル樹脂組成物は、(A)数平均分子量1000〜5000のポリフェニレンエーテル、(B)分子構造内にナフタレン環を有するエポキシ化合物、(C)シアネートエステル化合物、(D)リン系難燃剤、(E)硬化触媒が配合されたことを特徴とする。エポキシ化合物とシアネート化合物とが配合されたPPE樹脂組成物において、分子構造内にナフタレン環を有するエポキシ化合物を用いることにより、得られる硬化物のタック性が抑制される、従って、このようなPPE樹脂組成物を用いて得られるプリプレグは表面性が抑制されたものであるために、ほこりの付着を抑制することができる。これにより、信頼性の高い多層のプリント配線板を製造しうる。 The polyphenylene ether resin composition of the present invention comprises (A) a polyphenylene ether having a number average molecular weight of 1000 to 5000, (B) an epoxy compound having a naphthalene ring in the molecular structure, (C) a cyanate ester compound, (D) a phosphorus-based difficulty. A flame retardant and (E) a curing catalyst are blended. In a PPE resin composition in which an epoxy compound and a cyanate compound are blended, the use of an epoxy compound having a naphthalene ring in the molecular structure suppresses the tackiness of the resulting cured product. Therefore, such a PPE resin Since the prepreg obtained using the composition has a suppressed surface property, adhesion of dust can be suppressed. Thereby, a highly reliable multilayer printed wiring board can be manufactured.
また、前記分子構造内にナフタレン環を有するエポキシ化合物(B)としては、下記式(I):
で表されるエポキシ化合物またはその誘導体であることが、タック性を充分に抑制できる点から好ましい。
Moreover, as an epoxy compound (B) which has a naphthalene ring in the said molecular structure, following formula (I):
It is preferable from the point which can fully suppress tackiness.
また、前記リン系難燃剤が、フォスファゼン系化合物又はホスフィン酸塩系化合物である場合には、耐熱性を維持しながらハロゲン化エポキシ樹脂等を用いるのと同等の難燃性を維持することができる点から好ましい。 Further, when the phosphorus flame retardant is a phosphazene compound or a phosphinate compound, it is possible to maintain the same flame resistance as when using a halogenated epoxy resin or the like while maintaining heat resistance. It is preferable from the point.
また、本発明のプリプレグは上記いずれかのポリフェニレンエーテル樹脂組成物を繊維質基材に含浸及び乾燥させて得られることを特徴とするものである。 The prepreg of the present invention is obtained by impregnating and drying a fibrous base material with any of the above polyphenylene ether resin compositions.
また、本発明の金属張積層板は上記プリプレグに金属箔を積層して、加熱加圧成形して得られることを特徴とする。 In addition, the metal-clad laminate of the present invention is obtained by laminating a metal foil on the prepreg and molding by heating and pressing.
また、本発明のプリント配線板は、上記金属張積層板の表面の金属箔を部分的に除去することにより回路形成して得られたことを特徴とする。 The printed wiring board of the present invention is obtained by forming a circuit by partially removing the metal foil on the surface of the metal-clad laminate.
本発明によれば、得られるプリプレグの表面にタックが残らない、エポキシ化合物とシアネート化合物とが配合されたPPE樹脂組成物を提供することができる。 According to the present invention, it is possible to provide a PPE resin composition in which an epoxy compound and a cyanate compound are blended so that no tack remains on the surface of the obtained prepreg.
本発明のポリフェニレンエーテル樹脂組成物は、(A)数平均分子量1000〜5000のポリフェニレンエーテル(PPE)、(B)分子構造内にナフタレン環を有するエポキシ化合物、(C)シアネートエステル化合物、(D)リン系難燃剤、(E)硬化触媒が配合されたものである。 The polyphenylene ether resin composition of the present invention comprises (A) a polyphenylene ether (PPE) having a number average molecular weight of 1000 to 5000, (B) an epoxy compound having a naphthalene ring in the molecular structure, (C) a cyanate ester compound, (D) A phosphorus-based flame retardant and (E) a curing catalyst are blended.
本発明における(A)数平均分子量1000〜5000のPPEとしては、数平均分子量が10000〜30000のようなPPEを、溶媒中でフェノール種とラジカル開始剤との存在下で再分配反応させて得られたものや、重合反応により直接得られたものが特に限定なく用いられうる。PPEの具体例としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレンオキサイド)またはその誘導体等が挙げられる。 In the present invention, (A) PPE having a number average molecular weight of 1000 to 5000 is obtained by redistributing PPE having a number average molecular weight of 10,000 to 30,000 in a solvent in the presence of a phenol species and a radical initiator. And those obtained directly by polymerization reaction can be used without particular limitation. Specific examples of PPE include poly (2,6-dimethyl-1,4-phenylene oxide) or derivatives thereof.
また、前記再分配反応に用いられるフェノール種としては、特に限定されないが、例えばビスフェノールA、フェノールノボラック、クレゾールノボラック等のように、フェノール性水酸基を分子内に2個以上有する多官能フェノール系化合物や2,6−キシレノール等の単官能フェノール系化合物が好ましく用いられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。 Further, the phenol species used in the redistribution reaction are not particularly limited. For example, polyfunctional phenolic compounds having two or more phenolic hydroxyl groups in the molecule such as bisphenol A, phenol novolak, cresol novolak, and the like Monofunctional phenolic compounds such as 2,6-xylenol are preferably used. These may be used alone or in combination of two or more.
上記再分配反応により得られるPPEとしては、例えば、下記一般式(II)で示されるような分子鎖の両末端に硬化に寄与する水酸基を有するものが、高い耐熱性を維持することができる点から好ましい。 As PPE obtained by the above redistribution reaction, for example, those having hydroxyl groups contributing to curing at both ends of the molecular chain as shown by the following general formula (II) can maintain high heat resistance. To preferred.
上記Xとしては、炭素数1〜3のアルキレン基、または、下記一般式(III)又は(IV)で示されるような基であることが好ましい。 X is preferably an alkylene group having 1 to 3 carbon atoms or a group represented by the following general formula (III) or (IV).
ポリフェニレンエーテル(A)の数平均分子量は、1000〜5000であり、好ましくは1500〜3000である。数平均分子量がこのような範囲である場合には流動性及び硬化反応性に優れ、また、エポキシ化合物及びシアネートエステル化合物との相溶性も低下しないために優れた耐熱性と誘電特性を維持しうる。 The number average molecular weight of the polyphenylene ether (A) is 1000 to 5000, preferably 1500 to 3000. When the number average molecular weight is within such a range, the fluidity and the curing reactivity are excellent, and the compatibility with the epoxy compound and the cyanate ester compound is not lowered, so that excellent heat resistance and dielectric properties can be maintained. .
ポリフェニレンエーテル(A)の配合割合としては、(A)成分と(B)成分と(C)成分との合計量中に、20〜60質量%、さらには30〜50質量%配合することが、充分な耐熱性と優れた誘電特性を維持することができる点から好ましい。 As a blending ratio of the polyphenylene ether (A), 20 to 60% by mass, and further 30 to 50% by mass in the total amount of the (A) component, the (B) component, and the (C) component, This is preferable because sufficient heat resistance and excellent dielectric properties can be maintained.
本発明におけるエポキシ化合物(B)は、分子構造内にナフタレン環を有し、一分子内に2個以上のエポキシ基を有するものであれば特に限定なく用いられうる。このようなエポキシ化合物を用いることにより、プリプレグ表面のタック性を抑制することができる。 The epoxy compound (B) in the present invention can be used without particular limitation as long as it has a naphthalene ring in the molecular structure and two or more epoxy groups in one molecule. By using such an epoxy compound, tackiness of the prepreg surface can be suppressed.
前記分子構造内にナフタレン環を有するエポキシ化合物(B)としては下記式(I):
で表されるエポキシ化合物等のナフタレン含有ノボラック型エポキシ化合物またはその誘導体が特に好ましく用いられる。
The epoxy compound (B) having a naphthalene ring in the molecular structure has the following formula (I):
A naphthalene-containing novolak type epoxy compound such as an epoxy compound represented by the formula (1) or a derivative thereof is particularly preferably used.
エポキシ化合物(B)の配合割合としては、(A)成分と(B)成分と(C)成分との合計量中に、20〜60質量%配合することが、充分な耐熱性と優れた誘電特性を維持することができる点から好ましい。 As a compounding ratio of the epoxy compound (B), it is sufficient to mix 20 to 60% by mass in the total amount of the component (A), the component (B) and the component (C). This is preferable because the characteristics can be maintained.
本発明のポリフェニレンエーテル樹脂組成物には、本発明の効果を損なわない範囲でその他のエポキシ化合物を配合してもよい。このようなエポキシ化合物の具体例としては、例えば、ジシクロペンタジエン型エポキシ化合物、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物等が挙げられる。 You may mix | blend another epoxy compound with the polyphenylene ether resin composition of this invention in the range which does not impair the effect of this invention. Specific examples of such an epoxy compound include a dicyclopentadiene type epoxy compound, a bisphenol A type epoxy compound, a bisphenol F type epoxy compound, a phenol novolac type epoxy compound, and a biphenyl type epoxy compound.
本発明におけるシアネートエステル化合物(C)としては、1分子中に2個以上のシアネート基を有する化合物が好ましく用いられる。その具体例としては、例えば、2,2−ビス(4−シアナートフェニル)プロパン、ビス(3,5−ジメチル−4−シアナートフェニル)メタン、2,2−ビス(4−シアナートフェニル)エタン等またはこれらの誘導体等の芳香族系シアネートエステル化合物等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。 As the cyanate ester compound (C) in the present invention, a compound having two or more cyanate groups in one molecule is preferably used. Specific examples thereof include 2,2-bis (4-cyanatophenyl) propane, bis (3,5-dimethyl-4-cyanatophenyl) methane, and 2,2-bis (4-cyanatophenyl). And aromatic cyanate ester compounds such as ethane and derivatives thereof. These may be used alone or in combination of two or more.
シアネートエステル化合物(C)の配合割合としては、(A)成分と(B)成分と(C)成分との合計量中に、20〜60質量%配合することが、充分な耐熱性と優れた誘電特性を維持することができる点から好ましい。 As a blending ratio of the cyanate ester compound (C), 20 to 60% by mass is blended in the total amount of the component (A), the component (B) and the component (C). It is preferable from the viewpoint that the dielectric characteristics can be maintained.
なお、エポキシ化合物(B)及びシアネートエステル化合物(C)は、ポリフェニレンエーテル(A)成分と架橋構造またはIPN(Interpenetrating Polymer Network)構造を形成することにより耐熱性等を付与する成分として機能する。 The epoxy compound (B) and the cyanate ester compound (C) function as a component that imparts heat resistance and the like by forming a crosslinked structure or an IPN (Interpenetrating Polymer Network) structure with the polyphenylene ether (A) component.
本発明に用いられるリン系難燃剤(D)は、リン原子を含有する公知のリン系難燃剤であれば、特に限定されず用いられうる。本発明において、リン系難燃剤を用いることにより、得られるプリプレグのタック性を抑制しながら、高い難燃効果を発現することができる。 The phosphorus flame retardant (D) used in the present invention is not particularly limited as long as it is a known phosphorus flame retardant containing a phosphorus atom. In the present invention, by using a phosphorus-based flame retardant, a high flame retardant effect can be exhibited while suppressing the tackiness of the obtained prepreg.
このようなリン系難燃剤(D)の具体例としては、例えば、ホスフィン酸塩系化合物、シクロフォスファゼンオリゴマー等のフォスファゼン系化合物、トリフェニルフォスフェイト,トリクレジルフォスフェイト,キシレニルジフェニルフォスフェイト,クレジルジフェニルフォスフェイト等のフォスフェイト系化合物、縮合リン酸エステル系化合物、環状リン酸エステル系化合物及び、これらの誘導体等が挙げられる。これらは単独で用いても、2種以上を組み合わせて用いてもよい。これらの中では、フォスファゼン系化合物が電気的特性及び耐熱性に優れている点から好ましく用いられる。 Specific examples of such phosphorus flame retardants (D) include, for example, phosphazene compounds such as phosphinate compounds, cyclophosphazene oligomers, triphenyl phosphate, tricresyl phosphate, xylenyl diphenyl. Examples thereof include phosphate compounds such as phosphate and cresyl diphenyl phosphate, condensed phosphate ester compounds, cyclic phosphate ester compounds, and derivatives thereof. These may be used alone or in combination of two or more. Among these, phosphazene compounds are preferably used because they are excellent in electrical characteristics and heat resistance.
前記リン系難燃剤(D)の配合量としては、(A)成分と(B)成分と(C)成分との合計量100質量部に対して、2〜30質量部配合することが耐熱性や誘電特性を低下させずに充分な難燃効果を付与しうる点から好ましい。 As a compounding quantity of the said phosphorus flame retardant (D), it is heat resistance to mix | blend 2-30 mass parts with respect to 100 mass parts of total amounts of (A) component, (B) component, and (C) component. And from the viewpoint of providing a sufficient flame retardant effect without deteriorating the dielectric properties.
本発明におけるポリフェニレンエーテル樹脂組成物には、硬化反応を促進させるための硬化触媒が配合される。このような硬化触媒の具体例としては、例えば、オクタン酸,ステアリン酸,アセチルアセトネート,ナフテン酸,サリチル酸等の有機酸のZn,Cu,Fe等の有機金属塩、トリエチルアミン,トリエタノールアミン等の3級アミン、2−エチル−4−イミダゾール,4−メチルイミダゾール等のイミダゾール類等が挙げられる。これらは、単独でも、2種以上を組み合わせて用いてもよい。これらの中では、有機金属塩、特にオクタン酸亜鉛が高い耐熱性が得られる点から、特に好ましく用いられる。 The polyphenylene ether resin composition in the present invention is blended with a curing catalyst for promoting the curing reaction. Specific examples of such a curing catalyst include, for example, organic metal salts of organic acids such as octanoic acid, stearic acid, acetylacetonate, naphthenic acid, and salicylic acid, such as Zn, Cu, and Fe, triethylamine, and triethanolamine. Examples thereof include tertiary amines, imidazoles such as 2-ethyl-4-imidazole and 4-methylimidazole. These may be used alone or in combination of two or more. Among these, an organic metal salt, particularly zinc octoate, is particularly preferably used because high heat resistance can be obtained.
硬化触媒の配合割合は特に限定されないが、例えば、有機金属塩を用いる場合には、(A)成分と(B)成分と(C)成分との合計量100質量部に対して0.005〜5質量部程度であることが好ましく、イミダゾール類を用いる場合には、0.01〜5質量部程度であることが好ましい。 The blending ratio of the curing catalyst is not particularly limited. For example, when an organic metal salt is used, 0.005 to 0.005 parts by mass of the total amount of the component (A), the component (B), and the component (C). The amount is preferably about 5 parts by mass. When imidazoles are used, the amount is preferably about 0.01 to 5 parts by mass.
本発明のポリフェニレンエーテル樹脂組成物には、加熱時における寸法安定性を高めたり、難燃性を高める等の目的で、必要に応じてさらに無機充填材を配合してもよい。 The polyphenylene ether resin composition of the present invention may further contain an inorganic filler as necessary for the purpose of enhancing dimensional stability during heating or enhancing flame retardancy.
無機充填材の具体例としては、例えば、シリカ、アルミナ、タルク、水酸化アルミニウム、水酸化マグネシウム、酸化チタン、マイカ、ホウ酸アルミニウム、硫酸バリウム、炭酸カルシウム等が挙げられる。 Specific examples of the inorganic filler include silica, alumina, talc, aluminum hydroxide, magnesium hydroxide, titanium oxide, mica, aluminum borate, barium sulfate, calcium carbonate, and the like.
また、無機充填材としては、エポキシシランタイプ、または、アミノシランタイプのシランカップリング剤で表面処理されたものが特に好ましい。前記のようなシランカップリング剤で表面処理された無機充填材が配合されたポリフェニレンエーテル樹脂組成物を用いて得られる金属張積層板は、吸湿時における耐熱性が高く、また、層間ピール強度も高くなる傾向がある。 Further, as the inorganic filler, those which are surface-treated with an epoxy silane type or amino silane type silane coupling agent are particularly preferable. A metal-clad laminate obtained by using a polyphenylene ether resin composition containing an inorganic filler surface-treated with a silane coupling agent as described above has high heat resistance during moisture absorption and also has an interlayer peel strength. Tend to be higher.
また、本発明のポリフェニレンエーテル樹脂組成物には、本発明の効果を損なわない範囲で、必要に応じて、例えば熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤等の添加剤を配合してもよい。 In addition, the polyphenylene ether resin composition of the present invention may contain additives such as, for example, heat stabilizers, antistatic agents, ultraviolet absorbers, dyes, pigments, and lubricants, as long as the effects of the present invention are not impaired. May be blended.
本発明のポリフェニレンエーテル樹脂組成物は、ワニス状に調製されたものである。このようなワニスは、例えば、以下のようにして調製される。 The polyphenylene ether resin composition of the present invention is prepared in a varnish form. Such a varnish is prepared as follows, for example.
はじめに、数平均分子量1000〜5000のポリフェニレンエーテル(A)の樹脂溶液に、エポキシ化合物(B)及びシアネートエステル化合物(C)を配合して溶解させる。この際、必要に応じて、加熱してもよい。 First, an epoxy compound (B) and a cyanate ester compound (C) are blended and dissolved in a resin solution of a polyphenylene ether (A) having a number average molecular weight of 1000 to 5000. At this time, heating may be performed as necessary.
そして、リン系難燃剤(D)、硬化触媒(E)及び必要に応じて用いられるその他の成分を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状熱硬化性樹脂組成物が調製される。 Then, a phosphorus-based flame retardant (D), a curing catalyst (E) and other components used as necessary are added, and a predetermined dispersion state is obtained using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like. The varnish-like thermosetting resin composition is prepared.
得られたポリフェニレンエーテル樹脂組成物を用いてプリプレグを製造する方法としては、例えば、ポリフェニレンエーテル樹脂組成物を繊維質基材に含浸させた後、乾燥する方法が挙げられる。 Examples of a method for producing a prepreg using the obtained polyphenylene ether resin composition include a method in which a fibrous base material is impregnated with a polyphenylene ether resin composition and then dried.
繊維質基材としては、例えばガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、リンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。偏平加工としては例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮することにより行うことができる。なお、基材の厚みとしては0.04〜0.3mmのものを一般的に使用できる。 Examples of the fibrous base material include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, linter paper and the like. When a glass cloth is used, a laminate having excellent mechanical strength can be obtained, and a flat glass processed glass cloth is particularly preferable. The flattening can be performed, for example, by continuously pressing the glass cloth with a press roll at an appropriate pressure and compressing the yarn flatly. In addition, as a thickness of a base material, the thing of 0.04-0.3 mm can generally be used.
含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能である。またこの際組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする組成及び樹脂量に調整することも可能である。 Impregnation is performed by dipping or coating. The impregnation can be repeated a plurality of times as necessary. In this case, it is also possible to repeat the impregnation using a plurality of solutions having different compositions and concentrations, and finally adjust to a desired composition and resin amount.
ポリフェニレンエーテル樹脂組成物が含浸された基材は、所望の加熱条件、例えば、80〜170℃で1〜10分間加熱されることにより半硬化状態(Bステージ)のプリプレグが得られる。 The base material impregnated with the polyphenylene ether resin composition is heated at a desired heating condition, for example, at 80 to 170 ° C. for 1 to 10 minutes, whereby a semi-cured (B stage) prepreg is obtained.
このようにして得られた、本発明のポリフェニレンエーテル樹脂組成物を用いたプリプレグは、表面のタック性が抑制されたものである。従って、以下に説明する金属張積層板を積層する際に、ほこり等が表面に付着しにくいものである。そのために、信頼性に優れた電気回路基板が得られる。 The thus obtained prepreg using the polyphenylene ether resin composition of the present invention has a suppressed surface tackiness. Therefore, when laminating the metal-clad laminate described below, dust or the like is difficult to adhere to the surface. Therefore, an electric circuit board having excellent reliability can be obtained.
このようにして得られたプリプレグを用いて金属張積層板を作製する方法としては、前記プリプレグを一枚または複数枚重ね、さらにその上下の両面又は片面に銅箔等の金属箔を重ね、これを加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層体を作製することができるものである。加熱加圧条件は、製造する積層板の厚みやプリプレグの樹脂組成物の種類等により適宜設定することができるが、例えば、温度を170〜210℃、圧力を3.5〜4.0Pa、時間を60〜150分間とすることができる。 As a method for producing a metal-clad laminate using the prepreg thus obtained, one or a plurality of the prepregs are stacked, and a metal foil such as a copper foil is stacked on both upper and lower surfaces or one surface thereof. By heating and pressing to laminate and integrate, a double-sided metal foil-clad laminate or a single-sided metal foil-clad laminate can be produced. The heating and pressing conditions can be appropriately set depending on the thickness of the laminate to be manufactured, the type of the resin composition of the prepreg, etc. For example, the temperature is 170 to 210 ° C., the pressure is 3.5 to 4.0 Pa, and the time For 60 to 150 minutes.
そして、作製された積層体の表面の金属箔をエッチング加工等して回路形成をすることによって、積層体の表面に回路として導体パターンを設けたプリント配線板を得ることができる。 And the printed wiring board which provided the conductor pattern as a circuit on the surface of a laminated body can be obtained by carrying out the etching process etc. on the metal foil of the surface of the produced laminated body.
以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 The present invention will be described more specifically with reference to the following examples. However, the scope of the present invention is not limited to these examples.
(製造例1:再分配反応による、数平均分子量2500のポリフェニレンエーテル(PPE1)の溶液の製造)
トルエン250質量部を攪拌装置及び攪拌羽根を装備したフラスコに入れた。前記フラスコを内温90℃に制御しながら、数平均分子量25000のPPE(SABICジャパン社製の「ノリル640―111」)90質量部、ビスフェノールA 7質量部、過酸化ベンゾイル7質量部を入れ、2時間撹拌を続けて反応させることにより、数平均分子量2500のポリフェニレンエーテル(PPE1)の溶液(固形分濃度29%)を調製した。なお、数平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)で測定したスチレン換算の値である。
(Production Example 1: Production of a solution of polyphenylene ether (PPE1) having a number average molecular weight of 2500 by redistribution reaction)
250 parts by mass of toluene was placed in a flask equipped with a stirrer and a stirring blade. While controlling the flask at an internal temperature of 90 ° C., 90 parts by mass of PPE having a number average molecular weight of 25000 (“Noryl 640-111” manufactured by SABIC Japan), 7 parts by mass of bisphenol A, and 7 parts by mass of benzoyl peroxide were added. By continuing the reaction for 2 hours, a solution of polyphenylene ether (PPE1) having a number average molecular weight of 2500 (solid content concentration 29%) was prepared. The number average molecular weight is a value in terms of styrene measured by gel permeation chromatograph (GPC).
(製造例2:再分配反応による、数平均分子量4000のポリフェニレンエーテル(PPE2)の溶液の製造)
ビスフェノールA 7質量部、過酸化ベンゾイル7質量部を用いた代わりに、ビスフェノールA 3.6質量部、過酸化ベンゾイル3.6質量部用いた以外は、製造例1と同様にして反応させることにより、数平均分子量4000のポリフェニレンエーテル(PPE2)の溶液を調製した。
(Production Example 2: Production of a solution of polyphenylene ether (PPE2) having a number average molecular weight of 4000 by redistribution reaction)
By reacting in the same manner as in Production Example 1 except that 7 parts by mass of bisphenol A and 7 parts by mass of benzoyl peroxide were used, 3.6 parts by mass of bisphenol A and 3.6 parts by mass of benzoyl peroxide were used. A solution of polyphenylene ether (PPE2) having a number average molecular weight of 4000 was prepared.
(実施例1〜8、比較例1〜4)
はじめに、本実施例で用いた原材料をまとめて示す。
〈エポキシ化合物〉
・上記式(I)で示される構造を有する、平均エポキシ基数2〜3個の縮合多環型エポキシ化合物であるエピクロンHP5000(DIC(株)製)
・上記式(I)で示される構造を有する、平均エポキシ基数4〜6個の縮合多環型エポキシ化合物であるエピクロンEXA9900(DIC(株)製)
・ジシクロペンタジエン型エポキシ化合物であるエピクロンHP7200(DIC(株)製)
・ビスフェノールA型エポキシ化合物であるエピクロン840(DIC(株)製)
・フェノールノボラック型エポキシ化合物であるエピクロンN−740(DIC(株)製)
〈シアネートエステル化合物〉
・2,2−ビス(4−シアナートフェニル)プロパン(ロンザジャパン社製のBADCy)
〈難燃剤〉
・リン系難燃剤(大塚製薬(株)製のSPB−100、フォスファゼン系化合物)
・リン系難燃剤(クラリアントジャパン社製OP935、ホスフィン酸塩系化合物)
〈硬化触媒〉
・オクタン酸亜鉛(DIC(株)製、亜鉛濃度18%)
[樹脂ワニスの調製]
ポリフェニレンエーテルのトルエン溶液を90℃にまで加熱し、表1に記載の配合割合になるように、エポキシ化合物及びシアネートエステル化合物を添加した後、30分間撹拌して完全に溶解させた。そして、さらに硬化触媒、難燃剤、無機フィラーを添加して、ボールミルで分散させることによりワニスを得た。
(Examples 1-8, Comparative Examples 1-4)
First, the raw materials used in this example are shown together.
<Epoxy compound>
Epicon HP5000 (manufactured by DIC Corporation), which is a condensed polycyclic epoxy compound having a structure represented by the above formula (I) and having an average number of epoxy groups of 2 to 3
Epicon EXA9900 (manufactured by DIC Corporation), which is a condensed polycyclic epoxy compound having a structure represented by the above formula (I) and having an average number of epoxy groups of 4 to 6
・ Epicron HP7200 (manufactured by DIC Corporation), which is a dicyclopentadiene type epoxy compound
・ Epicron 840 (made by DIC Corporation) which is a bisphenol A type epoxy compound
-Epicron N-740 (manufactured by DIC Corporation), which is a phenol novolac type epoxy compound
<Cyanate ester compound>
2,2-bis (4-cyanatophenyl) propane (BADCy manufactured by Lonza Japan)
<Flame retardants>
Phosphorus flame retardant (SPB-100 manufactured by Otsuka Pharmaceutical Co., Ltd., phosphazene compound)
・ Phosphorus flame retardant (OP935 manufactured by Clariant Japan, phosphinate compound)
<Curing catalyst>
・ Zinc octanoate (DIC Corporation, zinc concentration 18%)
[Preparation of resin varnish]
The toluene solution of polyphenylene ether was heated to 90 ° C., and the epoxy compound and the cyanate ester compound were added so as to have the blending ratio shown in Table 1, followed by stirring for 30 minutes for complete dissolution. Further, a curing catalyst, a flame retardant, and an inorganic filler were added and dispersed with a ball mill to obtain a varnish.
次に得られた樹脂ワニスをガラスクロス(日東紡績(株)製の「WEA116E」)に含浸させた後、150℃で3〜5分間加熱乾燥することによりプリプレグを得た。 Next, the obtained resin varnish was impregnated into glass cloth (“WEA116E” manufactured by Nitto Boseki Co., Ltd.), and then heated and dried at 150 ° C. for 3 to 5 minutes to obtain a prepreg.
次に、得られた各プリプレグを6枚重ねて積層し、さらに、その両外層にそれぞれ銅箔(古河サーキットフォイル社製のF2−WS 18μm)を配し、温度220℃、圧力3MPaの条件で加熱加圧することにより、厚み0.75mmの銅張積層板を得た。 Next, 6 sheets of the obtained prepregs were stacked and laminated, and copper foils (F2-WS 18 μm manufactured by Furukawa Circuit Foil Co., Ltd.) were disposed on both outer layers, respectively, under conditions of a temperature of 220 ° C. and a pressure of 3 MPa. By heating and pressing, a copper-clad laminate having a thickness of 0.75 mm was obtained.
得られたプリプレグ及び銅張積層板を用いて、下記評価を行った。 The following evaluation was performed using the obtained prepreg and copper clad laminate.
〈指触タック性〉
10×10cmのプリプレグの試験片を作成し、その表面に人差し指を押し当て、その触感を以下の基準で判定した。
<Finger touch tackiness>
A test piece of 10 × 10 cm prepreg was prepared, an index finger was pressed against the surface, and the tactile sensation was determined according to the following criteria.
タック「無」:タック感を感じない。
タック「有」:タック感を感じる。
Tack "No": I do not feel a tuck.
Tack “Yes”: Feels tacky.
〈ボールタック性〉
JIS−Z−0237に準拠される傾斜式ボールタック法(J.Dow法)に基づきボールタックテスター(安田精機製作所製)を用いて試験を実施した。試験は温度23℃、相対湿度50%の雰囲気下で実施し、JISB 1501に準拠される”ボールの呼び”の32倍の数値から表記される32種のボールを用いた。試験結果は見いだした最大のボールナンバーをもって表し、三回の試験回数の平均値より求めた。タックが無いサンプルについては0と表記した。
<Ball tackiness>
The test was carried out using a ball tack tester (manufactured by Yasuda Seiki Seisakusho) based on the tilting ball tack method (J. Dow method) based on JIS-Z-0237. The test was carried out in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%, and 32 types of balls represented by 32 times the value of “Nominal Ball” in accordance with JISB 1501 were used. The test result was expressed by the maximum ball number found and obtained from the average value of the three test times. Samples with no tack were written as 0.
〈回路充填性〉
穴直径0.3mmの連通穴が2mmピッチ間隔で1000個形成された、縦150mm、横100mm、厚み0.8mmの寸法のコア材を用意した。そして、前記コア材の片面に、得られたプリプレグと銅箔とをその順に積層し、他の片面には銅箔のみを積層した。そして、前記積層体を220℃×2時間、圧力3MPaの条件で加熱プレスにより成形した。そして、1000個の穴のうち完充填された穴の個数を数え、その割合を求めた。
<Circuit fillability>
A core material having a length of 150 mm, a width of 100 mm, and a thickness of 0.8 mm, in which 1000 communication holes having a hole diameter of 0.3 mm were formed at a pitch of 2 mm, was prepared. And the obtained prepreg and copper foil were laminated | stacked in that order on the single side | surface of the said core material, and only copper foil was laminated | stacked on the other single side | surface. And the said laminated body was shape | molded with the hot press on the conditions of 220 degreeC x 2 hours, and the pressure of 3 MPa. Then, the number of holes that were completely filled out of 1000 holes was counted, and the ratio was determined.
〈ガラス転移温度〉
セイコーインスツルメンツ(株)製の粘弾性スペクトロメータ「DMS100」を用いて銅張積層板のガラス転移温度(Tg)を測定した。このとき、曲げモジュールで周波数を10Hzとして測定を行い、昇温速度5℃/minの条件で室温から280℃まで昇温した際にtanδが極大を示す温度をガラス転移温度(Tg)とした。
<Glass-transition temperature>
The glass transition temperature (Tg) of the copper-clad laminate was measured using a viscoelastic spectrometer “DMS100” manufactured by Seiko Instruments Inc. At this time, measurement was performed with a bending module at a frequency of 10 Hz, and the temperature at which tan δ reached a maximum when the temperature was raised from room temperature to 280 ° C. under a temperature rising rate of 5 ° C./min was defined as the glass transition temperature (Tg).
〈誘電特性〉
JIS C 6481 の規格に準じて、1MHzにおける銅張積層板の誘電率及び誘電正接を求めた。
<Dielectric properties>
In accordance with the standard of JIS C 6481, the dielectric constant and dielectric loss tangent of the copper-clad laminate at 1 MHz were determined.
〈難燃性〉
所定の大きさに切り出した銅張積層板の難燃性を、UL 94の燃焼試験法に準じて燃焼試験を行い、判定した。
<Flame retardance>
The flame retardancy of the copper clad laminate cut out to a predetermined size was determined by performing a combustion test according to the UL 94 combustion test method.
〈オーブン耐熱性〉
JIS C 6481 の規格に準じて、所定の大きさに切り出した銅張積層板を所定の温度に設定した恒温槽に1時間放置した後、取り出した。そして、処理された試験片を目視で観察してフクレが発生しなかったときの最高温度を求めた。
<Oven heat resistance>
In accordance with the standard of JIS C 6481, the copper-clad laminate cut out to a predetermined size was left in a thermostat set at a predetermined temperature for 1 hour and then taken out. And the processed test piece was observed visually and the highest temperature when the swelling did not generate | occur | produce was calculated | required.
実施例1〜8の分子構造内にナフタレン環を有するエポキシ化合物を含有するPPE樹脂組成物から得られたBステージのプリプレグにはタックが全くなかった。一方、比較例1〜4に示すように、ナフタレン環を有するエポキシ化合物以外のエポキシ化合物を配合した場合には、表面に明らかなタックが見られた。 The B stage prepreg obtained from the PPE resin composition containing an epoxy compound having a naphthalene ring in the molecular structure of Examples 1 to 8 had no tack. On the other hand, as shown in Comparative Examples 1 to 4, when an epoxy compound other than an epoxy compound having a naphthalene ring was blended, a clear tack was observed on the surface.
Claims (6)
で表されるエポキシ化合物またはその誘導体である請求項1に記載のポリフェニレンエーテル樹脂組成物。 The epoxy compound (B) having a naphthalene ring in the molecular structure is represented by the following formula (I):
The polyphenylene ether resin composition according to claim 1, which is an epoxy compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008228759A JP5276389B2 (en) | 2008-09-05 | 2008-09-05 | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008228759A JP5276389B2 (en) | 2008-09-05 | 2008-09-05 | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010059363A true JP2010059363A (en) | 2010-03-18 |
JP5276389B2 JP5276389B2 (en) | 2013-08-28 |
Family
ID=42186532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008228759A Active JP5276389B2 (en) | 2008-09-05 | 2008-09-05 | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5276389B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010138364A (en) * | 2008-02-12 | 2010-06-24 | Mitsubishi Gas Chemical Co Inc | Resin composition, prepreg and metal foil laminated plate |
JP2010229311A (en) * | 2009-03-27 | 2010-10-14 | Dic Corp | Curable resin composition, cured product thereof, and resin material for electronic part |
JP2011246516A (en) * | 2010-05-24 | 2011-12-08 | Panasonic Electric Works Co Ltd | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board |
WO2012081691A1 (en) | 2010-12-17 | 2012-06-21 | 日本ゼオン株式会社 | Crosslinkable resin molded body, crosslinked resin molded body, and laminate |
JP2013185080A (en) * | 2012-03-08 | 2013-09-19 | Dic Corp | Curable resin composition, cured product of the same, and printed wiring board |
JP2013245287A (en) * | 2012-05-25 | 2013-12-09 | Dic Corp | Curable composition, cured product and printed wiring board |
KR20140015496A (en) * | 2011-03-24 | 2014-02-06 | 미츠비시 가스 가가쿠 가부시키가이샤 | Resin composition, prepreg and resin sheet, and metal foil-clad laminate |
JP2014198778A (en) * | 2013-03-29 | 2014-10-23 | 旭化成イーマテリアルズ株式会社 | Polyphenylene ether composition |
JP2014198780A (en) * | 2013-03-29 | 2014-10-23 | 旭化成イーマテリアルズ株式会社 | Polyphenylene ether resin composition |
CN104271671A (en) * | 2012-03-29 | 2015-01-07 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, and metal foil-clad laminate |
JP2015086329A (en) * | 2013-10-31 | 2015-05-07 | パナソニックIpマネジメント株式会社 | Resin composition, prepreg, metal-clad laminate, and printed wiring board |
WO2015064064A1 (en) * | 2013-10-31 | 2015-05-07 | パナソニックIpマネジメント株式会社 | Thermosetting resin composition, prepreg, metal clad laminate plate, and printed wiring board |
US9051465B1 (en) | 2012-02-21 | 2015-06-09 | Park Electrochemical Corporation | Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound |
US9243164B1 (en) | 2012-02-21 | 2016-01-26 | Park Electrochemical Corporation | Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound |
DE102014019207A1 (en) | 2014-12-19 | 2016-06-23 | Airbus Defence and Space GmbH | High-temperature-resistant thermosets based on naphthalene-based epoxy resins and cyanate esters, as well as improving impact resistance |
EP3112419A1 (en) | 2015-06-30 | 2017-01-04 | Airbus Defence and Space GmbH | Flame-resistant and high temperature resistant duromers on the basis of naphthalene-based epoxy resins and cyanate esters |
KR20200117884A (en) | 2019-04-05 | 2020-10-14 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Slurry composition, cured product of the slurry composition, and substrate, film and prepreg using the cured product |
KR20200119741A (en) | 2019-04-10 | 2020-10-20 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Composition for low dielectric heat dissipation film and low dielectric heat dissipation film |
WO2023008524A1 (en) | 2021-07-28 | 2023-02-02 | 三菱ケミカル株式会社 | Resin composition, resin sheet, multilayer body, sheet cured product, and circuit board material |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107234851B (en) * | 2017-06-23 | 2019-03-26 | 重庆德凯实业股份有限公司 | High-frequency high-speed method for manufacturing cover clad laminate and its copper-clad plate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091748A (en) * | 2002-09-04 | 2004-03-25 | Asahi Kasei Chemicals Corp | Flame retardant curing resin composition |
JP2005105099A (en) * | 2003-09-30 | 2005-04-21 | Hitachi Chem Co Ltd | Flame-retardant resin composition, and prepreg, metal-clad laminated board and printed wiring board each using the same |
WO2008044766A1 (en) * | 2006-10-13 | 2008-04-17 | Ajinomoto Co., Inc. | Resin composition |
JP2010138364A (en) * | 2008-02-12 | 2010-06-24 | Mitsubishi Gas Chemical Co Inc | Resin composition, prepreg and metal foil laminated plate |
-
2008
- 2008-09-05 JP JP2008228759A patent/JP5276389B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091748A (en) * | 2002-09-04 | 2004-03-25 | Asahi Kasei Chemicals Corp | Flame retardant curing resin composition |
JP2005105099A (en) * | 2003-09-30 | 2005-04-21 | Hitachi Chem Co Ltd | Flame-retardant resin composition, and prepreg, metal-clad laminated board and printed wiring board each using the same |
WO2008044766A1 (en) * | 2006-10-13 | 2008-04-17 | Ajinomoto Co., Inc. | Resin composition |
JP2010138364A (en) * | 2008-02-12 | 2010-06-24 | Mitsubishi Gas Chemical Co Inc | Resin composition, prepreg and metal foil laminated plate |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010138364A (en) * | 2008-02-12 | 2010-06-24 | Mitsubishi Gas Chemical Co Inc | Resin composition, prepreg and metal foil laminated plate |
JP2010229311A (en) * | 2009-03-27 | 2010-10-14 | Dic Corp | Curable resin composition, cured product thereof, and resin material for electronic part |
JP2011246516A (en) * | 2010-05-24 | 2011-12-08 | Panasonic Electric Works Co Ltd | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board |
WO2012081691A1 (en) | 2010-12-17 | 2012-06-21 | 日本ゼオン株式会社 | Crosslinkable resin molded body, crosslinked resin molded body, and laminate |
US8759463B2 (en) | 2010-12-17 | 2014-06-24 | Zeon Corporation | Cross-linkable resin shaped article, cross-linked resin shaped article and laminate |
KR20140015496A (en) * | 2011-03-24 | 2014-02-06 | 미츠비시 가스 가가쿠 가부시키가이샤 | Resin composition, prepreg and resin sheet, and metal foil-clad laminate |
US20140073721A1 (en) * | 2011-03-24 | 2014-03-13 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg and resin sheet and metal foil-clad laminate |
US9318402B2 (en) * | 2011-03-24 | 2016-04-19 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg and resin sheet and metal foil-clad laminate |
US9051465B1 (en) | 2012-02-21 | 2015-06-09 | Park Electrochemical Corporation | Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound |
US9243164B1 (en) | 2012-02-21 | 2016-01-26 | Park Electrochemical Corporation | Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound |
JP2013185080A (en) * | 2012-03-08 | 2013-09-19 | Dic Corp | Curable resin composition, cured product of the same, and printed wiring board |
US9394439B2 (en) * | 2012-03-29 | 2016-07-19 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, resin sheet, and metal foil-clad laminate |
CN104271671A (en) * | 2012-03-29 | 2015-01-07 | 三菱瓦斯化学株式会社 | Resin composition, prepreg, resin sheet, and metal foil-clad laminate |
EP2832797A4 (en) * | 2012-03-29 | 2016-01-13 | Mitsubishi Gas Chemical Co | Resin composition, prepreg, resin sheet, and metal foil-clad laminate |
US20150017449A1 (en) * | 2012-03-29 | 2015-01-15 | Mitsubishi Gas Chemical Company, Inc. | Resin composition, prepreg, resin sheet, and metal foil-clad laminate |
JP2013245287A (en) * | 2012-05-25 | 2013-12-09 | Dic Corp | Curable composition, cured product and printed wiring board |
JP2014198780A (en) * | 2013-03-29 | 2014-10-23 | 旭化成イーマテリアルズ株式会社 | Polyphenylene ether resin composition |
JP2014198778A (en) * | 2013-03-29 | 2014-10-23 | 旭化成イーマテリアルズ株式会社 | Polyphenylene ether composition |
JP2015086329A (en) * | 2013-10-31 | 2015-05-07 | パナソニックIpマネジメント株式会社 | Resin composition, prepreg, metal-clad laminate, and printed wiring board |
WO2015064064A1 (en) * | 2013-10-31 | 2015-05-07 | パナソニックIpマネジメント株式会社 | Thermosetting resin composition, prepreg, metal clad laminate plate, and printed wiring board |
US9708468B2 (en) | 2013-10-31 | 2017-07-18 | Panasonic Intellectual Property Management Co., Ltd. | Thermosetting resin composition, prepreg, metal clad laminate plate, and printed wiring board |
WO2016095903A1 (en) | 2014-12-19 | 2016-06-23 | Airbus Defence and Space GmbH | High-temperature resistant duromers on the basis of naphthalene-based epoxy resins and cyanate esters, and improvement of the impact strength |
DE102014019207A1 (en) | 2014-12-19 | 2016-06-23 | Airbus Defence and Space GmbH | High-temperature-resistant thermosets based on naphthalene-based epoxy resins and cyanate esters, as well as improving impact resistance |
EP3112419A1 (en) | 2015-06-30 | 2017-01-04 | Airbus Defence and Space GmbH | Flame-resistant and high temperature resistant duromers on the basis of naphthalene-based epoxy resins and cyanate esters |
US10077359B2 (en) | 2015-06-30 | 2018-09-18 | Airbus Defence and Space GmbH | Flame-retardant, high temperature resistant thermosets on the basis of naphthalene-based epoxy resins and cyanate esters |
KR20200117884A (en) | 2019-04-05 | 2020-10-14 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Slurry composition, cured product of the slurry composition, and substrate, film and prepreg using the cured product |
US11530324B2 (en) | 2019-04-05 | 2022-12-20 | Shin-Etsu Chemical Co., Ltd. | Slurry composition, cured product of the slurry composition, and substrate, film and prepreg using the cured product |
KR20200119741A (en) | 2019-04-10 | 2020-10-20 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Composition for low dielectric heat dissipation film and low dielectric heat dissipation film |
US11608438B2 (en) | 2019-04-10 | 2023-03-21 | Shin-Etsu Chemical Co., Ltd. | Low-dielectric heat dissipation film composition and low-dielectric heat dissipation film |
WO2023008524A1 (en) | 2021-07-28 | 2023-02-02 | 三菱ケミカル株式会社 | Resin composition, resin sheet, multilayer body, sheet cured product, and circuit board material |
KR20240040735A (en) | 2021-07-28 | 2024-03-28 | 미쯔비시 케미컬 주식회사 | Resin compositions, resin sheets, laminates, cured sheets, and circuit board materials |
Also Published As
Publication number | Publication date |
---|---|
JP5276389B2 (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5276389B2 (en) | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board | |
JP5264133B2 (en) | Epoxy resin composition, prepreg and metal-clad laminate using the epoxy resin composition | |
JP7316572B2 (en) | Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board using the same | |
JP5899496B2 (en) | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board | |
JP2010053178A (en) | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board | |
TWI803529B (en) | Polyphenylene ether resin composition, and prepreg using it, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board | |
JP5265449B2 (en) | Resin composition, method for producing resin composition, prepreg, metal-clad laminate, and printed wiring board | |
WO2020262089A1 (en) | Resin composition, prepreg, resin-attached film, resin-attached metal foil, metal-cladded laminate sheet, and wiring board | |
JP2014019740A (en) | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board | |
JP5469320B2 (en) | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board | |
WO2021157249A1 (en) | Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board | |
JP5165639B2 (en) | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board | |
KR102546848B1 (en) | Metal-clad laminate, metal member having resin, and wiring board | |
JP5756922B2 (en) | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board | |
KR20220038379A (en) | Resin composition, prepreg, resin-added film, resin-added metal foil, metal clad laminate, and wiring board | |
JP5186456B2 (en) | Resin composition, prepreg, metal-clad laminate, and printed wiring board | |
JP2011246516A (en) | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board | |
JP5681951B2 (en) | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board | |
WO2017134716A1 (en) | Metal-clad laminated board, method for producing metal-clad laminated board, resin-attached metal member, method for producing resin-attached metal member, wiring board and method for producing wiring board | |
JP5793640B2 (en) | Epoxy resin composition for printed wiring board, prepreg for printed wiring board using the epoxy resin composition for printed wiring board, and metal-clad laminate for printed wiring board | |
JP2012197361A (en) | Resin composition, resin varnish, prepreg, metal-clad laminate, and printed wiring board | |
JP5919576B2 (en) | Epoxy resin composition for printed wiring board, prepreg for printed wiring board using the epoxy resin composition for printed wiring board, and metal-clad laminate for printed wiring board | |
WO2019188185A1 (en) | Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition | |
JP5793641B2 (en) | Polyphenylene ether resin composition, prepreg, metal-clad laminate, and printed wiring board | |
WO2018012445A1 (en) | Metal-clad laminate and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110121 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20120111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120612 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120808 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130514 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130517 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5276389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |