[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010054145A - ヒートポンプ給湯機 - Google Patents

ヒートポンプ給湯機 Download PDF

Info

Publication number
JP2010054145A
JP2010054145A JP2008220687A JP2008220687A JP2010054145A JP 2010054145 A JP2010054145 A JP 2010054145A JP 2008220687 A JP2008220687 A JP 2008220687A JP 2008220687 A JP2008220687 A JP 2008220687A JP 2010054145 A JP2010054145 A JP 2010054145A
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat exchanger
heat pump
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008220687A
Other languages
English (en)
Inventor
Koichi Sakamoto
浩一 坂本
Masami Murayama
昌巳 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008220687A priority Critical patent/JP2010054145A/ja
Publication of JP2010054145A publication Critical patent/JP2010054145A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

【課題】
着霜による加熱効率の低下を抑制するヒートポンプ給湯機を提供することを課題とする。
【解決手段】
本発明に係るヒートポンプ給湯機は、圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器,膨張弁,空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、水冷媒熱交換器,給湯混合弁,水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク,機内循環ポンプを、水配管を介して接続した貯湯回路と、給水金具,貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁,出湯金具を、水配管を介して接続したタンク給湯回路と、圧縮機,膨張弁,給湯混合弁,機内循環ポンプ,湯水混合弁,流量調整弁を制御する運転制御手段とを備え、検知された空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、判定された着霜レベルに対応して膨張弁の開度を制御する。
【選択図】図2

Description

本発明は、ヒートポンプ給湯機に係り、特に空気冷媒熱交換器(蒸発器)の除霜手段に関する。
従来のヒートポンプ給湯機として、電気温水器と同様に大容量の貯湯タンクを設け、夜間割引料金の安価な電力を使ってヒートポンプ運転を行い、夜中のうちに湯を沸かして貯湯タンクに貯湯し、貯湯した湯を昼間に使う貯湯式ヒートポンプ給湯機がある(例えば特許文献1参照)。特許文献1は、大容量貯湯タンクを有する貯湯式ヒートポンプ給湯機であり、1日1回夜間にヒートポンプ運転を行って貯湯タンクに貯湯する。冬期低温時には、室外熱交換器(蒸発器)に着霜して加熱能力が低下するため、室外熱交換器が−5℃以下に達した場合、ヒートポンプは運転した状態で送風用ファンのみ停止し、膨張弁を全開して除霜する。
これに対し、近年、主に給湯使用する昼間にもヒートポンプ運転を行って加熱した温水を直接給湯することにより、貯湯タンクの大幅な小形化を図った瞬間式ヒートポンプ給湯機が開発されている(例えば特許文献2参照)。特許文献2では、予め貯湯運転を行って60〜100Lの小形貯湯タンクに高温水(約60℃)を貯湯しておく。湯水使用時において、ヒートポンプの加熱温度が適温(約40℃)に到達しない運転当初は、ヒートポンプの加熱水に貯湯タンクからの高温水を混ぜて適温として給湯する。その後、ヒートポンプ運転による加熱温度が適温に達すると、貯湯タンクからの給湯を止め、ヒートポンプ運転で加熱した適温水(約40℃)を直接給湯する。冬期低温時には、圧縮機から吐出された高温高圧の冷媒を凝縮器(水冷媒熱交換器)及び減圧装置(膨張弁)を介さず、直接、蒸発器(空気冷媒熱交換器)へ循環させるためのバイパス弁を開放することにより除霜する。
従来のヒートポンプ給湯機は、空気冷媒熱交換器(蒸発器)の除霜に関して、貯湯式ヒートポンプ給湯機及び瞬間式ヒートポンプ給湯機の何れの方式においても、周囲温度または空気冷媒熱交換器の温度のみによって着霜量を想定していた。また、多量に着霜してヒートポンプの加熱性能が大幅に低下してから、ヒートポンプ運転によって除霜を行うものであった。しかし、周囲温度や空気冷媒熱交換器の温度が低くてもヒートポンプ運転開始後短時間の間は着霜量が少なく、着霜量の検知方法として最良ではなかった。従って、運転時間が短く着霜量が少ないのに除霜運転を行う場合や、逆に長時間運転して着霜量が多くなり加熱能力が低下してから除霜運転に入る場合があり、加熱運転における効率向上の改善余地があった。また、除霜時は給湯しないのにヒートポンプ運転を行うため、余分に圧縮機の運転電力を消費し、省エネ上のマイナス要因となっていた。
特開2003−90653号公報 特開2003−279133号公報
本発明は、着霜による加熱効率の低下を抑制するヒートポンプ給湯機を提供することを課題とする。
上記課題を解決するために、本発明に係るヒートポンプ給湯機は、圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器,膨張弁,空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、水冷媒熱交換器,給湯混合弁、水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク,機内循環ポンプを、水配管を介して接続した貯湯回路と、給水金具,貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁,出湯金具を、水配管を介して接続したタンク給湯回路と、圧縮機,膨張弁,給湯混合弁,機内循環ポンプ,湯水混合弁,流量調整弁を制御する運転制御手段とを備え、検知された空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、判定された着霜レベルに対応して膨張弁の開度を制御する。
本発明によれば、除霜による加熱効率の低下を抑制するヒートポンプ給湯機を提供することができる。
以下、図面を用いて、本発明に係る実施例について説明する。
本発明の実施例を図1〜図4を用いて説明する。図1は本実施例に係るヒートポンプ給湯機の構成図である。一例として、本発明を瞬間式ヒートポンプ給湯機に適用している。
ヒートポンプ給湯機はヒートポンプ冷媒回路30,給湯回路40、及び運転制御手段50を備える。ヒートポンプ冷媒回路30は、第一冷媒回路30a及び第二冷媒回路30bの2サイクル方式で構成される。第一冷媒回路30a及び第二冷媒回路30bにおいては、それぞれ、圧縮機1a,1b,水冷媒熱交換器2に配置される冷媒側伝熱管2a,2b,膨張弁3a,3b,空気冷媒熱交換器4a,4bが冷媒配管を介して順次接続されており、冷媒配管内には冷媒が封入されている。
圧縮機1a,1bは容量制御が可能で、多量に給湯する場合には大きな容量で運転される。圧縮機1a,1bはPWM制御,電圧制御(例えばPAM制御)及びこれらの組み合せ制御により、低速(例えば700回転/分)から高速(例えば7000回転/分)まで回転数を制御することができる。
水冷媒熱交換器2は冷媒側伝熱管2a,2b及び給水側伝熱管2c,2dを備えており、冷媒側伝熱管2a,2bと給水側伝熱管2c,2dとの間で熱交換を行う。
膨張弁3a,3bは開度調整時の応答性が速い電動膨張弁を使用する。膨張弁3a,3bは、水冷媒熱交換器2を経て送られる中温高圧冷媒を減圧し、蒸発し易い低圧冷媒として空気冷媒熱交換器4a,4bへ送る。また、膨張弁3a,3bは、冷媒通路の開度を変えてヒートポンプ冷媒回路内の冷媒循環量を調節するとともに、開度を大きくして中温冷媒を空気冷媒熱交換器4a,4bに多量に送って霜を溶かすための除霜装置としても機能する。
空気冷媒熱交換器4a,4bは送風ファン5a,5bの回転により外気を取り入れ空気と冷媒との熱交換を行い、外気から熱を吸収する。
給湯回路40は貯湯,直接給湯,タンク給湯,風呂湯張り,風呂追焚きを行うための水循環回路を備える。貯湯回路はタンク沸上げ運転によって貯湯タンク16に高温水を貯めるための水回路である。貯湯回路は、貯湯タンク16,機内循環ポンプ17,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,貯湯タンク16が、水配管を介して順次接続され構成される。
直接給湯回路は、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14が、水配管を介して順次接続され構成される。尚、給水金具6は水道などの給水源に接続される。また、台所出湯金具14は台所蛇口15などに接続されている。
タンク給湯回路は、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,貯湯タンク16,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14が、水配管を介して順次接続され構成される。
風呂湯張り回路は、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,湯水混合弁12,流量調整弁13,風呂注湯弁18,フロースイッチ19,風呂循環ポンプ20,水位センサ21,風呂入出湯金具22,風呂循環アダプター23,浴槽24が、水配管を介して順次接続され構成される。また、風呂入出湯金具22からは浴槽24と共に風呂蛇口25やシャワー(図示せず)にも給湯できるよう接続されている。尚、風呂湯張り時には、風呂湯張り回路による直接給湯と共に、貯湯タンク16内の湯量が最低必要量以下にならない範囲において貯湯タンク16から浴槽24へのタンク給湯も行う。
風呂追焚回路は、浴槽24,風呂循環アダプター23,風呂入出湯金具22,水位センサ21,風呂循環ポンプ20,フロースイッチ19,風呂用熱交換器27の風呂水伝熱管23b,風呂出湯金具26,風呂循環アダプター23,浴槽24が、水配管を介して順次接続され構成される。尚、風呂追焚き時には、風呂追焚回路による浴槽水の水循環と共に、ヒートポンプ運転及び機内循環ポンプ17を運転し、かつ温水開閉弁28を開放して水冷媒熱交換器2で加熱された温水を風呂用熱交換器27に設けられた温水伝熱管27aに循環させ、温水伝熱管27aと風呂水伝熱管27bとの間で熱交換し、風呂追焚きを行う。
次に、運転制御手段50は、台所リモコン51または風呂リモコン52の操作設定により、ヒートポンプ冷媒回路30の運転・停止、及び圧縮機1a,1bの回転数制御を行うとともに、膨張弁3a,3bの冷媒開度調整,機内循環ポンプ17,風呂循環ポンプ20の運転・停止及び給湯混合弁11,湯水混合弁12,流量調整弁13,風呂注湯弁18,温水開閉弁28を制御することにより、貯湯運転,直接給湯運転,タンク給湯運転,風呂湯張り運転,風呂追焚運転を行う。ここで、運転開始時は徐々に圧縮機1a,1bの回転数を増大し、加熱立上げ時間を早めるため所定の高速回転数で運転し、運転安定後は中速運転に戻すとともに、比較的熱負荷の軽い風呂追焚運転等の時は加熱温度に見合った低速回転数で運転するよう制御する。
また、運転制御手段50は除霜運転制御手段を有し、除霜運転制御手段はヒートポンプ運転における着霜条件を検知し、着霜条件の検知結果により着霜レベルを判定し、判定した着霜レベルに基づいて膨張弁の開度を制御するとともに、ヒートポンプ運転の組み合せを制御する。
更に、ヒートポンプ給湯機には、貯湯タンク16の貯湯温度や貯湯量を検知するためのタンクサーミスタ15a〜16e,空気冷媒熱交換器の周囲温度を検知する周囲温度サーミスタ(図示せず),空気冷媒熱交換器の温度を検知する空気熱交サーミスタ,各部の温度を検知するサーミスタ(図示せず),圧縮機1a,1bの吐出圧力を検知する圧力センサ(図示せず),浴槽24内の水位を検出する水位センサ21等が設けられる。これらの検出信号は運転制御手段50に入力され、運転制御手段50はこれらの検出信号に基づいて各機器を制御する。
尚、給湯混合弁11は、給湯運転開始当初においては、水冷媒熱交換器2側と湯水混合弁12側間及び貯湯タンク16側と湯水混合弁12側間が共に開となって、水冷媒熱交換器2及び貯湯タンク16の両方から給湯する。その後、ヒートポンプによる水冷媒熱交換器2での加熱温度が給湯温度(約42℃)に達すると、貯湯タンク16側と湯水混合弁12側間を閉じて、水冷媒熱交換器2からのみ給湯する。
また、温水開閉弁28は、水冷媒熱交換器2と風呂用熱交換器27の間に設けられ、風呂追焚き時は開いて風呂追い焚き運転を行い、それ以外の時は水回路を閉じて水冷媒熱交換器2から風呂用熱交換器27への熱の漏洩を防ぐものである。
また、給水側逆止弁9は、一方向にのみに水を流し、逆流を防止する。
次に、本実施例に係るヒートポンプ給湯機の運転動作について、図1ヒートポンプ冷媒回路30及び給湯回路40を参照しながら、図2の除霜運転フローチャート、図3の着霜レベル判定基準表、及び図4の除霜運転手段に基づいて説明する。
図2は本実施例に係る除霜運転のフローチャートであり、台所蛇口15を開けて湯水を使用した場合の給湯運転及びその後の除霜運転を示している。台所蛇口15を開けて湯水使用が始まる(ステップ61)と、運転制御手段50は、圧縮機1a,1bを運転させてヒートポンプの冷媒回路30の運転を開始するとともに、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,水熱交流量センサ10,給水側伝熱管2c,2d,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14,台所蛇口15の直接給湯回路により直接給湯運転を開始する(ステップ62)。また、ステップ62と同時に、給水金具6,減圧弁7,給水水量センサ8,給水側逆止弁9,貯湯タンク16,給湯混合弁11,湯水混合弁12,流量調整弁13,台所出湯金具14,台所蛇口15のタンク給湯回路によりタンク給湯運転を開始する(ステップ63)。
ここで、ヒートポンプ冷媒回路30は、圧縮機1a,1bで圧縮された高温高圧冷媒を水冷媒熱交換器2の冷媒側伝熱管2a,2bへ送り、給水側伝熱管2c,2d内を流れる水を加熱して給湯混合弁11側へ循環させる。しかし、運転直後の立上がり時は水冷媒熱交換器2へ送り込まれる冷媒が十分に高温高圧となりきらず温度が低く、かつ水冷媒熱交換器2全体が冷えているため、水を加熱する加熱能力が十分でない。従って、貯湯タンク16からの高温水を供給するタンク給湯が必要となる(ステップ63)。つまり、ヒートポンプ運転の加熱能力が適温状態に達するまでには数分かかるので、運転制御手段50は、台所蛇口15から適温水を給湯するために、運転開始から適温状態に達するまでは、圧縮機1a,1bの回転数を通常より高速にすると共に、貯湯タンク16から高温水を供給する(ステップ63)。
その後、ヒートポンプ運転による加熱温度判定(ステップ64)を行い、規定値未満であれば直接給湯とタンク給湯の並行運転を継続し、規定値以上であればタンク給湯を停止(ステップ65)して、直接給湯の単独運転により給湯する(ステップ66)。
尚、運転制御手段50は、給湯混合弁11後の混合湯温が適温よりかなり低い場合はタンク給湯量を増やし、適温にほぼ近くなるに従ってタンク給湯量を減らすように給湯混合弁11を作動させ、流量比率を調整して適温とする。給湯混合弁11通過後の混合湯温が適温より高い場合には、湯水混合弁12からの給水量を調整することによっても使用端末への給湯温度を調整することができる。
従って、貯湯タンク16の役割は、ヒートポンプ運転の加熱能力が、給湯温度に十分な温度に達するまでの立上がり時の補助的なものであり、ヒートポンプ冷媒回路30の能力、特に圧縮機1a,1bの出力が大きいほど、立上げ時間を短くでき、貯湯タンク16を小さくできる。
また、台所給湯と同時に風呂湯張りを行う等のように複数箇所の同時使用に直接給湯のみで対応するには、圧縮機1a,1bの容量は、従来の貯湯式で一般に用いられている5kW程度に対し20kW程度まで大きくすることが望ましい。しかしながら、新規圧縮機の開発が必要であるばかりでなく、ヒートポンプ冷媒回路30の各部品についても新規検討が必要となり、極めて困難である。そこで本実施例においては、従来圧縮機の2倍程度の圧縮機を2個使用した2サイクルヒートポンプ方式30a,30bとし、従来技術の活用と、実績による信頼性を確保したものである。尚、圧縮機の容量が十分であれば、1サイクルヒートポンプ方式においても本発明を適用することができる。
次に、蛇口が閉じられ湯水使用が終了すると(ステップ67)、直接給湯運転のみの場合であれば直接給湯運転を停止し、タンク給湯運転と直接給湯運転が併用されている場合は直接給湯運転及びタンク給湯運転の両方を停止する(ステップ68)。
更に、運転制御手段50は、着霜条件である空気冷媒熱交換器4a,4bの周囲温度,空気冷媒熱交換器4a,4bの温度、及びヒートポンプの運転時間を検知し(ステップ69)、これらの検知結果に基づき着霜レベルを判定する(ステップ70)。その後、判定された3段階の着霜レベルに対応した除霜運転を行う(ステップ71〜ステップ73)。
ここで図3及び図4により、着霜レベル判定基準及び除霜運転手段の一例について説明する。発明者による試験結果によれば、ヒートポンプ運転による着霜には、着霜に十分な絶対湿度があり、かつ、空気冷媒熱交換器温度が0℃以下となる周囲温度が約−7℃〜+7℃の間で顕著となる。即ち、周囲温度が+7℃以上の場合は、空気冷媒熱交換器4a,4bの温度が約0℃以上となるため水滴となって着霜には至らない。また、周囲温度が−7℃以下の場合は、絶対湿度が低下し空気中の水分が少ないため着霜量も僅かなものとなる。
図3は、着霜レベル判定条件と着霜レベル判定基準との関係を示す図である。周囲温度,空気冷媒熱交換器4a,4bの温度、及びヒートポンプ運転時間をそれぞれ3段階に区分し、これらの組み合せによって、着霜レベルを着霜量の少ない順にA,B,Cの3段階に区分する。例えば、周囲温度が+7℃以上または空気冷媒熱交換器温度が0℃以上のいずれかの場合は、ヒートポンプ運転時間が30分以上であっても着霜量の少ないレベルAと判断する。また、周囲温度が−7℃以下または空気冷媒熱交換器温度が0〜−5℃のいずれかの場合は、ヒートポンプ運転時間によってレベルA,B,Cに区分する。最も着霜し易い周囲温度が−7〜+7℃または空気冷媒熱交換器温度が−5℃以下のいずれかの場合は、ヒートポンプ運転時間が10分以下であればレベルB、10分を越えればレベルCと判断する。
尚、本実施例においては、着霜レベル判定基準として、周囲温度,空気冷媒熱交換器温度,ヒートポンプ運転時間の組み合せにより3段階に区分したが、更に細かく区分してもよい。例えば、ヒートポンプ運転時間を10分以下,10〜30分,30〜50分,50分以上とすることもできる。
次に、着霜レベルに対応した除霜運転(ステップ71〜ステップ73)を行うことにより、ヒートポンプ運転による余熱を有効活用し(ステップ74)、次回湯水使用時(ステップ75)には、ほとんど着霜しないレベルAの場合は水冷媒熱交換器が保温され、着霜量の比較的少ないレベルBや着霜量の多いCの場合は、除霜により着霜がないので、加熱立上がり性能の向上を図ることができる。(ステップ76)。
図4は着霜レベルと除霜運転手段との関係を示す図である。ほとんど着霜しないレベルAの場合は、ヒートポンプは運転せず、膨張弁3a,3bを全閉として水冷媒熱交換器2内の高温乃至中温冷媒を循環させず、水冷媒熱交換器2内の高温状態を少しでも長く保持することにより、次回運転開始時における加熱立上がりを早くする効果を得るものである。
着霜量の比較的少ないレベルBの場合は、ヒートポンプは運転せず、膨張弁3a,3bを半開として水冷媒熱交換器2内の高温余熱冷媒を空気冷媒熱交換器4a,4bに循環させて除霜し、次回運転開始時における空気冷媒熱交換器4a,4bの熱交換性能を良くすることにより、加熱効率の向上を図る。
着霜量の多いレベルCの場合は、着霜にとどまらず凍結に到る恐れがあるため確実に除霜する必要がある。従って、膨張弁3a,3bを全開とし、かつ、ヒートポンプ運転を行って空気冷媒熱交換器4a,4bを確実に除霜して、次回運転開始時には空気冷媒熱交換器4a,4bを初期に近い状態とし熱交換性能を良くすることにより、加熱効率の向上を図る。また、従来のヒートポンプ給湯機においては、除霜開始を温度のみで判断していたため、ヒートポンプ運転時間が1時間近くまでも除霜しない場合もあったが、本実施例においては30分以下でレベルCと判断してヒートポンプ除霜を行うように設定しており、着霜による加熱性能の低下状態を早期に解消することができる。
尚、膨張弁3a,3bの開度は膨張弁3a,3bの弁口径によっても異なる。従って、本実施例においては、膨張弁3a,3bの開度を3段階に区分したが、これに限るものではない。例えば、膨張弁3a,3bの開度をほぼ全閉,約1/4開,約1/2,約3/4開,ほぼ全開の5段階に区分してもよい。
以上のように、本実施例においては、検知された空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、判定された着霜レベルに対応して膨張弁の開度を制御するので、着霜レベルに応じた除霜を行うことができるので、着霜による加熱効率の低下を抑制することができる。具体的には、着霜レベルが低い場合には膨張弁の開度を全閉または半開として余熱除霜を行い、着霜レベルが高い場合には膨張弁の開度を全開として余熱除霜を早期に除霜することにより、着霜による加熱効率の低下を抑制する。また、着霜レベルを少なくとも3段階とし、判定された着霜レベルに対応して膨張弁の開度を少なくとも全閉,半開,全開の3段階に制御することもできる。また、判定された着霜レベルに対応して膨張弁の開度のみならずヒートポンプの運転/停止も合わせて制御する。ヒートポンプ運転の断続ごとに空気冷媒熱交換器4a,4bの除霜を行うことにより、次の加熱立上がり時の性能を向上させて、加熱効率の向上及び省エネを達成することができる。
以上、本実施例によれば、着霜レベル判断基準に対応して膨張弁開度及びヒートポンプ運転可否の除霜手段を組み合せることにより、ヒートポンプ余熱による自然除霜を活用し、かつ、除霜のためのヒートポンプ運転を必要最小限に抑制すると共に、ヒートポンプ運転の断続毎に余熱除霜を行って、次の加熱運転時の空気冷媒熱交換器を最善の状態とし加熱効率向上及び省エネを図ることができる。
尚、本実施例においては、周囲温度,空気冷媒熱交換器,ヒートポンプ運転時間に基づいて少なくとも三段階の着霜レベル判断基準を設け、判断基準による着霜レベルに対応して膨張弁開度及びヒートポンプ運転の組み合せによる少なくとも3段階の除霜運転手段を設定する。このような本発明に係る実施例は、特に、ヒートポンプの断続回数の多い、瞬間式ヒートポンプ給湯機において大きな効果を有する。しかしながら、本発明は、瞬間式ヒートポンプ給湯機に限定されるものではなく、貯湯式ヒートポンプ給湯機においても、貯湯タンクの小形化や省エネ化のために夜間以外にも貯湯運転する場合があり、瞬間式ヒートポンプ給湯機に適用した場合と同様の効果を得ることができる。
ヒートポンプ給湯機の構成図。 除霜運転を示すフローチャート。 着霜レベル判定条件と着霜レベル判定基準との関係を示す図。 着霜レベルと除霜運転手段との関係を示す図。
符号の説明
1a,1b 圧縮機
2 水冷媒熱交換器
3a,3b 膨張弁
4a,4b 空気冷媒熱交換器
6 給水金具
7 減圧弁
8 給水水量センサ
11 給湯混合弁
12 湯水混合弁
13 流量調整弁
14 台所出湯金具
15 台所蛇口
16 貯湯タンク
17 機内循環ポンプ
20 風呂循環ポンプ
24 浴槽
25 風呂蛇口
27 風呂用熱交換器
28 温水開閉弁
30 ヒートポンプ冷媒回路
40 給湯回路
50 運転制御手段

Claims (8)

  1. 圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器、及び膨張弁、空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、
    前記水冷媒熱交換器,給湯混合弁,前記水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク、及び機内循環ポンプを、水配管を介して接続した貯湯回路と、
    給水金具,前記貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁、及び出湯金具を、水配管を介して接続したタンク給湯回路と、
    前記圧縮機,前記膨張弁,前記給湯混合弁,前記機内循環ポンプ,前記湯水混合弁、及び前記流量調整弁を制御する運転制御手段とを備え、
    検知された前記空気冷媒熱交換器の着霜条件に基づいて着霜レベルを判定し、前記判定された着霜レベルに対応して前記膨張弁の開度を制御するヒートポンプ給湯機。
  2. 圧縮機,水と冷媒との熱交換を行う水冷媒熱交換器、及び膨張弁、空気と冷媒との熱交換を行う空気冷媒熱交換器を、冷媒配管を介して接続したヒートポンプ冷媒回路と、
    前記水冷媒熱交換器,給湯混合弁,前記水冷媒熱交換器で加熱した温水を貯湯する貯湯タンク、及び機内循環ポンプを、水配管を介して接続した貯湯回路と、
    給水金具,前記貯湯タンク,給湯混合弁,湯水混合弁,流量調整弁、及び出湯金具を、水配管を介して接続したタンク給湯回路と、
    前記圧縮機,前記膨張弁,前記給湯混合弁,前記機内循環ポンプ,前記湯水混合弁、及び前記流量調整弁を制御する運転制御手段とを備え、
    前記空気冷媒熱交換器の着霜条件を検知し、前記着霜条件の検知結果と着霜レベル判定基準とから着霜レベルを判定し、前記判定された着霜レベルに対応して膨張弁の開度を制御するヒートポンプ給湯機。
  3. 請求項1又は2において、前記着霜レベルを少なくとも3段階に判定し、前記判定された着霜レベルに対応して前記膨張弁の開度を少なくとも全閉,半開,全開の3段階に制御するヒートポンプ給湯機。
  4. 請求項1乃至3の何れかにおいて、前記判定された着霜レベルに対応して前記膨張弁の開度を全開に制御する場合はヒートポンプを運転し、前記判定された着霜レベルに対応して前記膨張弁の開度を全閉又は半開に制御する場合はヒートポンプを停止するヒートポンプ給湯機。
  5. 請求項1乃至4の何れかにおいて、前記着霜条件が前記空気冷媒熱交換器の周囲温度,空気冷媒熱交換器の温度、及びヒートポンプの連続運転時間であるヒートポンプ給湯機。
  6. 請求項5において、前記着霜条件である前記空気冷媒熱交換器の周囲温度を、少なくとも7℃以上,7℃〜−7℃,−7℃以下の3段階に区分して、前記着霜レベルを判定するヒートポンプ給湯機。
  7. 請求項5又は6において、前記着霜条件である前記空気冷媒熱交換器の温度を、少なくとも0℃以上,0℃〜−5℃,−5℃以下の3段階に区分して、前記着霜レベルを判定するヒートポンプ給湯機。
  8. 請求項5乃至7の何れかにおいて、前記着霜条件である前記ヒートポンプの連続運転時間を、少なくとも10分以下,10分〜30分,30分以上の3段階に区分して、前記着霜レベルを判定するヒートポンプ給湯機。
JP2008220687A 2008-08-29 2008-08-29 ヒートポンプ給湯機 Pending JP2010054145A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008220687A JP2010054145A (ja) 2008-08-29 2008-08-29 ヒートポンプ給湯機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008220687A JP2010054145A (ja) 2008-08-29 2008-08-29 ヒートポンプ給湯機

Publications (1)

Publication Number Publication Date
JP2010054145A true JP2010054145A (ja) 2010-03-11

Family

ID=42070267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008220687A Pending JP2010054145A (ja) 2008-08-29 2008-08-29 ヒートポンプ給湯機

Country Status (1)

Country Link
JP (1) JP2010054145A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026636A (ja) * 2010-07-22 2012-02-09 Corona Corp ヒートポンプ給湯機
JP2016080201A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 電子制御装置
US20170321939A1 (en) * 2014-12-26 2017-11-09 Daikin Industries, Ltd. Air conditioner
CN115789963A (zh) * 2022-12-05 2023-03-14 珠海格力电器股份有限公司 热泵热水机组及其漏水检测方法和检测装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186169A (ja) * 1989-12-14 1991-08-14 Daikin Ind Ltd 空気調和機のデフロスト運転制御装置
JPH10332231A (ja) * 1997-06-02 1998-12-15 Mitsubishi Heavy Ind Ltd 空気調和機及び空調方法
JP2000035266A (ja) * 1998-07-15 2000-02-02 Fujitsu General Ltd 空気調和機の制御方法
JP2005121283A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2007263517A (ja) * 2006-03-29 2007-10-11 Hitachi Appliances Inc ヒートポンプ給湯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186169A (ja) * 1989-12-14 1991-08-14 Daikin Ind Ltd 空気調和機のデフロスト運転制御装置
JPH10332231A (ja) * 1997-06-02 1998-12-15 Mitsubishi Heavy Ind Ltd 空気調和機及び空調方法
JP2000035266A (ja) * 1998-07-15 2000-02-02 Fujitsu General Ltd 空気調和機の制御方法
JP2005121283A (ja) * 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
JP2007263517A (ja) * 2006-03-29 2007-10-11 Hitachi Appliances Inc ヒートポンプ給湯機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012026636A (ja) * 2010-07-22 2012-02-09 Corona Corp ヒートポンプ給湯機
JP2016080201A (ja) * 2014-10-10 2016-05-16 株式会社デンソー 電子制御装置
US20170321939A1 (en) * 2014-12-26 2017-11-09 Daikin Industries, Ltd. Air conditioner
US10544958B2 (en) * 2014-12-26 2020-01-28 Daikin Industries, Ltd. Air conditioner with defrost control
CN115789963A (zh) * 2022-12-05 2023-03-14 珠海格力电器股份有限公司 热泵热水机组及其漏水检测方法和检测装置

Similar Documents

Publication Publication Date Title
JP5073970B2 (ja) ヒートポンプ給湯床暖房装置
JP4958460B2 (ja) ヒートポンプ給湯機
EP3163176B1 (en) Heating and hot water supply system
JP5082536B2 (ja) ヒートポンプ給湯装置
JP2008275271A (ja) ヒートポンプ給湯床暖房装置
JP4215735B2 (ja) ヒートポンプ給湯機
JP2009063246A (ja) ヒートポンプ給湯機
JP5095488B2 (ja) ヒートポンプ給湯機
JP3887781B2 (ja) ヒートポンプ給湯装置
JP2010054145A (ja) ヒートポンプ給湯機
JP2009264718A (ja) ヒートポンプ温水システム
JP5176474B2 (ja) ヒートポンプ給湯装置
JP4726573B2 (ja) ヒートポンプ給湯床暖房装置
JP2008224070A (ja) ヒートポンプ給湯機
JP4231863B2 (ja) ヒートポンプ給湯浴室暖房乾燥装置
JP2007322084A (ja) ヒートポンプ給湯機
JP5081050B2 (ja) ヒートポンプ給湯機
JP5021385B2 (ja) ヒートポンプ給湯機およびその運転方法
JP2006003077A (ja) ヒートポンプ式給湯装置
JP4078673B2 (ja) ヒートポンプ給湯機
JP2011252675A (ja) ヒートポンプ給湯機
JP5741256B2 (ja) 貯湯式給湯機
JP4988521B2 (ja) ヒートポンプ給湯装置
JP4284291B2 (ja) ヒートポンプ給湯装置
JP5094217B2 (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130122