[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010050810A - Noise distortion correction filter for communication line and method of correcting noise distortion for communication line - Google Patents

Noise distortion correction filter for communication line and method of correcting noise distortion for communication line Download PDF

Info

Publication number
JP2010050810A
JP2010050810A JP2008214057A JP2008214057A JP2010050810A JP 2010050810 A JP2010050810 A JP 2010050810A JP 2008214057 A JP2008214057 A JP 2008214057A JP 2008214057 A JP2008214057 A JP 2008214057A JP 2010050810 A JP2010050810 A JP 2010050810A
Authority
JP
Japan
Prior art keywords
signal
detection
signals
communication
communication line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008214057A
Other languages
Japanese (ja)
Inventor
Masao Masugi
正男 馬杉
Norihito Hirasawa
徳仁 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008214057A priority Critical patent/JP2010050810A/en
Publication of JP2010050810A publication Critical patent/JP2010050810A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Noise Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noise distortion correction filter for a communication line for effectively correcting time waveform distortion occurring in a communication signal flowing in the communication line by electromagnetic noise from the outside, and to provide a method of correcting noise distortion for the communication line. <P>SOLUTION: A signal separation section 12 detects the communication signal flowing in the communication line 200 and a detection signal detected by a sensor section 17 as a plurality of detection signals, uses an independent component analysis method to calculate a plurality of estimation signals estimated as an original signal and an electromagnetic noise signal from the plurality of detection signals, and separates the plurality of estimation signals from the plurality of detection signals as the plurality of separation signals. A similarity calculation section 14 calculates similarity between respective detection and separation signals. A signal application section 15 decides separation signals corresponding to the respective detection each based on the similarity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電磁ノイズ信号による歪成分が重畳された通信信号を元信号に補正する通信線用ノイズ歪補正フィルタ及び通信線用ノイズ歪補正方法の技術に関する。   The present invention relates to a communication line noise distortion correction filter and a communication line noise distortion correction method for correcting a communication signal on which a distortion component due to an electromagnetic noise signal is superimposed to an original signal.

近年、無線電波やインバータ機器等から発生する不要電波(電磁ノイズ)が引き起こす電磁障害が問題となっている。不要電波が通信線に誘導された場合、その通信線の先に接続されている通信機器に電磁障害が発生する可能性や通信品質の低下を招く可能があるため、国際的には各種妨害波を規制しようとする傾向にある。このような規制の一例として、国際無線障害特別委員会が定める「IEC/CISPR Pub.22」を挙げることができる。しかしながら、電子的フィルタの高速化や低電力化等に伴う通信機器の電磁耐力の低下に加えて、例えば、電力線を通信線として利用する電力線搬送通信(通称、「PLC(Power Line Communication)」と称されている)といった新しい通信形態が普及しているため、通信線に対する電磁誘導問題は益々複雑化する状況にある。   In recent years, electromagnetic interference caused by unnecessary radio waves (electromagnetic noise) generated from radio waves and inverter devices has become a problem. When unwanted radio waves are guided to a communication line, there is a possibility that electromagnetic interference may occur in the communication equipment connected to the end of the communication line and communication quality may be deteriorated. Tends to regulate. An example of such regulations is “IEC / CISPR Pub.22” established by the International Commission on Radio Interference. However, in addition to the decrease in electromagnetic immunity of communication devices due to the increase in speed and power reduction of electronic filters, for example, power line carrier communication (commonly known as “PLC (Power Line Communication)”) that uses power lines as communication lines. As a new communication form is widely used, the electromagnetic induction problem for communication lines is becoming more and more complicated.

従来、このような通信線への電磁誘導を防止する手段として、通信線用コモンモードノイズフィルタを用いる方法(特許文献1参照)や、雷サージの侵入に際して接続機器の電源回路と通信回路との間に電位差が生じる事態を抑制する方法(特許文献2参照)や、通信回路の出力信号を検知してS/N比を改善する方法(特許文献3参照)等を用いる技術(以降、「第1の技術」と称する)が提案されている。このような技術は、電磁誘導の要因となる不要電波・電磁妨害波源が明確である場合や、特定の周波数帯における電磁誘導信号を除去する場合に有効に電磁誘導を防止することができる。   Conventionally, as a means for preventing electromagnetic induction to such a communication line, a method using a common mode noise filter for a communication line (see Patent Document 1), a power circuit of a connected device and a communication circuit when a lightning surge enters, A technique using a method for suppressing a situation in which a potential difference is generated (see Patent Literature 2), a method for detecting an output signal of a communication circuit and improving an S / N ratio (see Patent Literature 3), etc. 1) ") has been proposed. Such a technique can effectively prevent electromagnetic induction when an unnecessary radio wave / electromagnetic interference source that causes electromagnetic induction is clear or when an electromagnetic induction signal in a specific frequency band is removed.

一方、通信線上で検出された検出信号に複数の信号が重畳している場合には、独立成分分析手法(非特許文献1乃至非特許文献3参照)を用いて重畳前の元信号変動を推定する技術(以降、「第2の技術」と称する)が提案されている。また、この独立成分分析手法を実環境へ適用することを目的とした装置やプログラムが既に開示されている(特許文献4乃至特許文献7参照)。
実開平6−29226号公報 特開平11−225433号公報 特許第3231640号公報 特許第3887247号公報 特開2004−110404号公報 特開2005−258363号公報 特開2006−243664号公報 特開2007−206037号公報 Aapo Hyvarinen、「Survey on Independent Component Analysis」、Neural Computing Surveys 2、1999年、p.94-128 A. Hyvarinen、外1名、「Independent component analysis: algorithms and applications」、Neural Networks 13(4-5)、2000年、p.411-430 Aapo Hyvarinen、外1名、根本 幾,川勝 真喜訳、「独立成分分析」、東京電機大学出版局、2005年、第1版、7〜12章 江原義郎、「ユーザーズ ディジタル信号処理」、東京電機大学出版、1991年、第1版、p.46, p.150 宮本定明、「クラスター分析入門」、森北出版、1999年、第1版、p.5, p.84, p.49
On the other hand, when a plurality of signals are superimposed on the detection signal detected on the communication line, the original signal fluctuation before superposition is estimated using an independent component analysis method (see Non-Patent Document 1 to Non-Patent Document 3). A technique (hereinafter referred to as “second technique”) has been proposed. Also, an apparatus and a program for applying this independent component analysis method to an actual environment have already been disclosed (see Patent Documents 4 to 7).
Japanese Utility Model Publication No. Hei 6-29226 Japanese Patent Laid-Open No. 11-225433 Japanese Patent No. 3321640 Japanese Patent No. 3887247 JP 2004-110404 A JP 2005-258363 A JP 2006-243664 A JP 2007-206037 A Aapo Hyvarinen, “Survey on Independent Component Analysis”, Neural Computing Surveys 2, 1999, p.94-128 A. Hyvarinen, 1 other, "Independent component analysis: algorithms and applications", Neural Networks 13 (4-5), 2000, p.411-430 Aapo Hyvarinen, 1 other, Iku Nemoto, Maki Kawakatsu, “Independent Component Analysis”, Tokyo Denki University Press, 2005, 1st edition, chapters 7-12 Yoshiro Ehara, “Users Digital Signal Processing”, Tokyo Denki University Press, 1991, 1st edition, p.46, p.150 Miyamoto Sadaaki, “Introduction to Cluster Analysis”, Morikita Publishing, 1999, 1st edition, p.5, p.84, p.49

しかしながら、上記第1の技術について言えば、ノイズの種別に応じてフィルタを最適化する処置や、適合するフィルタを適宜選択する処置を要するという問題があった。例えば、従来のLC型ノイズフィルタの場合、回路素子特有の共振周波数を有するため、所望の減衰量を一定の周波数帯域で取得できないという問題や、とりわけ低い周波数帯域をカットするノイズフィルタの場合、インダクタ素子が大型化するという問題もあった。また、ノイズの周波数変動が生じた場合に柔軟に対応できないという問題があった。さらに、電磁誘導の要因となる不要電波や電磁妨害波の周波数帯域が事前に特定できない事象への対応が困難であるという問題もあった。   However, with regard to the first technique, there has been a problem that it is necessary to perform a process of optimizing the filter according to the type of noise or a process of appropriately selecting a suitable filter. For example, in the case of a conventional LC type noise filter, since it has a resonance frequency peculiar to a circuit element, a problem that a desired attenuation cannot be obtained in a certain frequency band, or in the case of a noise filter that cuts a low frequency band in particular, There was also a problem that the element was enlarged. In addition, there is a problem in that it is not possible to flexibly cope with fluctuations in noise frequency. Furthermore, there is a problem that it is difficult to cope with an event in which the frequency band of unnecessary radio waves and electromagnetic interference waves that cause electromagnetic induction cannot be specified in advance.

また、上記第2の技術について言えば、重畳している音声信号や生体信号等を個々の元信号に分離することや、元信号への推定精度の改善や計算処理の効率化を目的とするため、ノイズの影響による歪成分が重畳された信号から元信号を推定するものではなかった。また、仮に元信号を推定し、複数の通信線上で夫々検出された複数の検出信号から該元信号と推定される複数の推定信号を複数の分離信号として分離した場合であっても、上記独立成分分析手法を適用した際には各検出信号と各分離信号との関連性(検出信号の検出順序や、分離信号の推定順序)が保証されない、即ち、何れの分離信号が何れの検出信号に対応するかという「分離信号の順序性」が担保されないという問題があった。   In addition, with regard to the second technique, the purpose is to separate superimposed audio signals, biological signals, and the like into individual original signals, to improve the estimation accuracy of the original signals, and to increase the efficiency of calculation processing. Therefore, the original signal is not estimated from a signal on which a distortion component due to the influence of noise is superimposed. Further, even if the original signal is estimated and a plurality of estimated signals estimated as the original signal are separated from a plurality of detected signals respectively detected on a plurality of communication lines as a plurality of separated signals, When the component analysis method is applied, the relationship (detection order of detection signals and estimation order of separation signals) between each detection signal and each separation signal is not guaranteed, that is, any separation signal is assigned to any detection signal. There was a problem that the “orderedness of the separated signals” as to whether or not it was supported was not ensured.

本発明は、上記に鑑みてなされたものであり、外部からの電磁ノイズによって通信線を流れる通信信号に発生した時間波形歪を効果的に補正する通信線用ノイズ歪補正フィルタ及び通信線用ノイズ歪補正方法を提供することを課題とする。   The present invention has been made in view of the above, and a communication line noise distortion correction filter and a communication line noise that effectively correct a time waveform distortion generated in a communication signal flowing through the communication line due to external electromagnetic noise. It is an object to provide a distortion correction method.

請求項1に記載の本発明は、電磁ノイズ信号による歪成分が重畳された通信信号を元信号に補正する通信線用ノイズ歪補正フィルタにおいて、前記歪成分を作用させる前記電磁ノイズ信号を検知する検知手段と、通信線を流れる前記通信信号と前記検知手段で検知した検知信号とを複数の検出信号として夫々検出し、独立成分分析手法を用いて前記複数の検出信号から前記元信号及び前記電磁ノイズ信号と推定される複数の推定信号を算出し、当該複数の推定信号を複数の分離信号として前記複数の検出信号から分離する信号分離手段と、前記複数の検出信号と前記複数の分離信号とを格納する格納手段と、前記複数の検出信号及び前記複数の分離信号を前記格納手段から読み出して、各検出信号と各分離信号との間の類似度を夫々算出する類似度算出手段と、前記類似度に基づいて各検出信号に対応する分離信号を夫々決定し、前記通信信号に相当する検出信号に対応する分離信号を前記通信線に印加する信号印加手段と、を有することを要旨とする。   The present invention according to claim 1 detects the electromagnetic noise signal that causes the distortion component to act in a noise distortion correction filter for a communication line that corrects the communication signal on which the distortion component due to the electromagnetic noise signal is superimposed to an original signal. Detection means, the communication signal flowing through the communication line, and the detection signal detected by the detection means are detected as a plurality of detection signals, respectively, and the original signal and the electromagnetic wave are detected from the plurality of detection signals using an independent component analysis technique. Calculating a plurality of estimated signals estimated as noise signals, separating the plurality of estimated signals as a plurality of separated signals from the plurality of detection signals, the plurality of detection signals, and the plurality of separated signals; And storing the plurality of detection signals and the plurality of separated signals from the storage unit, and calculating the similarity between each detection signal and each separated signal, respectively. Similarity calculating means; and a signal applying means for determining a separation signal corresponding to each detection signal based on the similarity, and applying a separation signal corresponding to the detection signal corresponding to the communication signal to the communication line; It is summarized as having.

本発明にあっては、信号分離手段が、通信線を流れる通信信号と検知手段で検知した検知信号とを複数の検出信号として夫々検出し、独立成分分析手法を用いて複数の検出信号から元信号及び電磁ノイズ信号と推定される複数の推定信号を算出し、この複数の推定信号を複数の分離信号として複数の検出信号から分離するため、重畳された歪成分を除去して元信号及び電磁ノイズ信号に補正することができる。また、類似度算出手段が、各検出信号と各分離信号との間の類似度を夫々算出し、信号印加手段が、類似度に基づいて各検出信号に対応する分離信号を夫々決定するため、分離信号の順序性を確保することができる。以上から、外部からの電磁ノイズによって通信線を流れる信号に発生した時間波形歪を効果的に補正することができる。   In the present invention, the signal separation means detects the communication signal flowing through the communication line and the detection signal detected by the detection means as a plurality of detection signals, respectively, and uses the independent component analysis technique to obtain the original from the plurality of detection signals. In order to calculate a plurality of estimated signals estimated as signals and electromagnetic noise signals and separate the plurality of estimated signals from a plurality of detection signals as a plurality of separated signals, the superimposed distortion components are removed to remove the original signal and the electromagnetic signal It can be corrected to a noise signal. Further, the similarity calculation means calculates the similarity between each detection signal and each separation signal, and the signal application means determines the separation signal corresponding to each detection signal based on the similarity, respectively. The order of the separated signals can be ensured. From the above, it is possible to effectively correct the time waveform distortion generated in the signal flowing through the communication line due to external electromagnetic noise.

請求項2に記載の本発明は、前記類似度算出手段が、前記検出信号と前記分離信号との間の相互相関係数、前記検出信号と前記分離信号との間の相互相関係数の加工値、前記検出信号と前記分離信号との間のユークリッド距離、前記検出信号と前記分離信号との間のミンコフスキー距離、前記検出信号と前記分離信号との間のマハラノビス距離、前記検出信号と前記分離信号との間のマンハッタン距離、階層的クラスタリングにより算出される前記検出信号と前記分離信号との間の距離、c平均法により算出される前記検出信号と前記分離信号との間の距離、k平均法により算出される前記検出信号と前記分離信号との間の距離、ファジィc平均法により算出される前記検出信号と前記分離信号との間の距離のうちいずれかに基づいて前記類似度を算出することを要旨とする。   According to a second aspect of the present invention, the similarity calculation unit processes the cross-correlation coefficient between the detection signal and the separated signal and the cross-correlation coefficient between the detection signal and the separated signal. Value, Euclidean distance between the detection signal and the separation signal, Minkowski distance between the detection signal and the separation signal, Mahalanobis distance between the detection signal and the separation signal, the detection signal and the separation Manhattan distance between signals, distance between the detection signals calculated by hierarchical clustering and the separated signals, distance between the detection signals calculated by the c-average method, and k average Based on either the distance between the detection signal calculated by the method and the separated signal, or the distance between the detection signal calculated by the fuzzy c-average method and the separated signal. And gist calculating a degree.

請求項3に記載の本発明は、前記検知手段が有する周波数特性と対応補正値とを関連付けて記憶手段に記憶しておき、前記検知信号の周波数に対応する前記対応補正値を前記記憶手段から読み出して、当該検知信号を補正する補正手段を更に有することを要旨とする。   According to a third aspect of the present invention, the frequency characteristic of the detection unit and the corresponding correction value are associated and stored in the storage unit, and the corresponding correction value corresponding to the frequency of the detection signal is stored from the storage unit. The gist of the invention is to further include a correction unit that reads and corrects the detection signal.

請求項4に記載の本発明は、前記信号分離手段が、前記通信線が有する周波数特性と対応補正値とを関連付けて予め記憶部に記憶しておき、当該通信線に流れる通信信号として検出された検出信号の周波数に対応する対応補正値を記憶部から読み出して、当該検出信号を補正した後に、前記元信号と推定される推定信号を算出することを要旨とする。   According to a fourth aspect of the present invention, the signal separation means associates the frequency characteristic of the communication line with the corresponding correction value and stores it in the storage unit in advance, and is detected as a communication signal flowing through the communication line. The gist is to read a corresponding correction value corresponding to the frequency of the detected signal from the storage unit, correct the detected signal, and then calculate an estimated signal estimated as the original signal.

請求項5に記載の本発明は、前記信号印加手段が、前記通信信号に相当する検出信号の振幅の大きさに応じて、前記通信線に印加される前記分離信号の大きさを調整することを要旨とする。   According to a fifth aspect of the present invention, the signal applying means adjusts the magnitude of the separated signal applied to the communication line according to the magnitude of the amplitude of the detection signal corresponding to the communication signal. Is the gist.

請求項6に記載の本発明は、前記通信線は平衡線又は電力線であって、当該複数の通信線の終端には所定の通信機器が配されており、前記通信信号が前記通信機器が配されている順方向に進行する場合には当該通信信号を終端して前記信号分離手段に出力し、逆方向に進行する場合には当該通信信号を終端しない制御手段を更に有することを要旨とする。   In the present invention according to claim 6, the communication line is a balanced line or a power line, a predetermined communication device is arranged at the end of the plurality of communication lines, and the communication signal is arranged by the communication device. The communication signal is terminated and output to the signal separation means when traveling in the forward direction, and further includes control means that does not terminate the communication signal when traveling in the reverse direction. .

請求項7に記載の本発明は、電磁ノイズ信号による歪成分が重畳された通信信号を元信号に補正する通信線用ノイズ歪補正方法において、前記歪成分を作用させる前記電磁ノイズ信号を検知する第1のステップと、通信線を流れる前記通信信号と前記第1のステップで検知した検知信号とを複数の検出信号として夫々検出し、独立成分分析手法を用いて前記複数の検出信号から前記元信号及び前記電磁ノイズ信号と推定される複数の推定信号を算出し、当該複数の推定信号を複数の分離信号として前記複数の検出信号から分離する第2のステップと、前記複数の検出信号と前記複数の分離信号とを格納する第3のステップと、前記複数の検出信号及び前記複数の分離信号を前記格納手段から読み出して、各検出信号と各分離信号との間の類似度を夫々算出する第4のステップと、前記類似度に基づいて各検出信号に対応する分離信号を夫々決定し、前記通信信号に相当する検出信号に対応する分離信号を前記通信線に印加する第5のステップと、を有することを要旨とする。   According to a seventh aspect of the present invention, in the communication line noise distortion correction method for correcting a communication signal on which a distortion component due to an electromagnetic noise signal is superimposed to an original signal, the electromagnetic noise signal that causes the distortion component to act is detected. The first step, the communication signal flowing through the communication line, and the detection signal detected in the first step are detected as a plurality of detection signals, respectively, and the original signal is detected from the plurality of detection signals using an independent component analysis technique. A second step of calculating a plurality of estimation signals estimated as a signal and the electromagnetic noise signal, and separating the plurality of estimation signals as a plurality of separation signals from the plurality of detection signals; the plurality of detection signals; A third step of storing a plurality of separated signals, and reading the plurality of detected signals and the plurality of separated signals from the storage means, and the similarity between each detected signal and each separated signal And a separation signal corresponding to each detection signal is determined based on the similarity, and a separation signal corresponding to the detection signal corresponding to the communication signal is applied to the communication line. And having 5 steps.

本発明によれば、外部からの電磁ノイズによって通信線を流れる通信信号に発生した時間波形歪を効果的に補正する通信線用ノイズ歪補正フィルタ及び通信線用ノイズ歪補正方法を提供することができる。   According to the present invention, it is possible to provide a communication line noise distortion correction filter and a communication line noise distortion correction method for effectively correcting time waveform distortion generated in a communication signal flowing through the communication line due to external electromagnetic noise. it can.

最初に、本発明は、1本以上の通信線として利用する平衡線又は電力線に流れる1つ以上の通信信号に電磁ノイズ信号が誘導されることで各通信信号に歪成分が重畳した場合において、その歪成分を有する各通信信号の時間変動を検出すると共にセンサで検知した検知信号(電磁ノイズ信号)を検出し(以降では、それら検出された信号を「検出信号」と称している)、独立成分分析手法を用いて歪成分を除去する補正を行うと共に、補正後の各信号(以降では、「分離信号」と称している)と各検出信号と間の夫々の類似度を計算し、この類似度に基づいて各検出信号に対応する分離信号を決定する通信線用ノイズ歪補正フィルタ及び通信線用ノイズ歪補正方法を提供することにある。以下、本発明の実施の形態について図面を用いて説明する。   First, in the case where a distortion component is superimposed on each communication signal by inducing an electromagnetic noise signal to one or more communication signals flowing in a balanced line or a power line used as one or more communication lines, Detects the time fluctuation of each communication signal having the distortion component and detects the detection signal (electromagnetic noise signal) detected by the sensor (hereinafter, the detected signal is referred to as “detection signal”) and is independent. While performing correction to remove distortion components using the component analysis method, the respective similarities between each corrected signal (hereinafter referred to as “separated signal”) and each detected signal are calculated, and this An object of the present invention is to provide a communication line noise distortion correction filter and a communication line noise distortion correction method for determining a separation signal corresponding to each detection signal based on the similarity. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<通信線用ノイズ歪補正フィルタの構成について>
図1は、本実施の形態に係る通信線用ノイズ歪補正フィルタの機能ブロックを示す構成図である。この通信線用ノイズ歪補正フィルタ100は、第1のサーキュレータ部11と、信号分離部12と、格納部13と、類似度算出部14と、信号印加部15と、第2のサーキュレータ部16と、センサ部17とを備えている。そして、1本以上の通信線200に接続された通信機器400の直前に配置、換言すれば、1本以上の通信線200と通信機器400との間に挿入されるような状態で設置され、電磁ノイズ源300の作用により歪成分が重畳された通信線200に流れる通信信号を元信号に補正した後に、通信機器400に出力する機能を具備するものである。
<Configuration of noise distortion correction filter for communication line>
FIG. 1 is a block diagram showing functional blocks of a communication line noise distortion correction filter according to the present embodiment. The communication line noise distortion correction filter 100 includes a first circulator unit 11, a signal separation unit 12, a storage unit 13, a similarity calculation unit 14, a signal application unit 15, and a second circulator unit 16. The sensor unit 17 is provided. Then, it is arranged immediately before the communication device 400 connected to one or more communication lines 200, in other words, installed in a state of being inserted between the one or more communication lines 200 and the communication device 400, It has a function of correcting the communication signal flowing through the communication line 200 on which the distortion component is superimposed by the action of the electromagnetic noise source 300 to the original signal and then outputting it to the communication device 400.

第1のサーキュレータ部11は、1本の通信線200を流れる通信信号であって、電磁ノイズ源300で発生する電磁ノイズ信号により歪成分が重畳された通信信号を終端し、終端した通信信号を信号分離部12に送信する信号送信方向を制御する機能を備えている。また、通信信号が通信機器400から送信される場合には、その通信信号を終端することなく、そのまま通信線2に出力する機能を備えている。即ち、通信信号が通信機器400が配されている順方向に進行する場合には該通信信号を終端して信号分離部12に出力し、逆方向に進行する場合には通信信号を終端しない制御機能を備えている。   The first circulator unit 11 terminates a communication signal that flows through one communication line 200 and has a distortion component superimposed by an electromagnetic noise signal generated by the electromagnetic noise source 300, and displays the terminated communication signal. A function of controlling the direction of signal transmission to be transmitted to the signal separation unit 12 is provided. When a communication signal is transmitted from the communication device 400, the communication signal is output to the communication line 2 as it is without terminating the communication signal. That is, when the communication signal proceeds in the forward direction in which the communication device 400 is arranged, the communication signal is terminated and output to the signal separation unit 12, and when the communication signal proceeds in the reverse direction, the communication signal is not terminated. It has a function.

センサ部17は、通信線用ノイズ歪補正フィルタ100の外部に電気的に接続され、通信線200に歪成分の影響を与える可能性のある電磁ノイズ信号を検知する機能を備えている。通信線200に作用したノイズと同じノイズを検知するため、通信線200の近傍に配置することが望ましい。なお、このようなセンサ部17としては、空間に放射される信号を検知する場合にはアンテナ、通信線200のコモンモードノイズを検知する場合は電流プローブ、その他の導体上の信号変動を検出する場合は電圧プローブ等を用いることができる。   The sensor unit 17 is electrically connected to the outside of the communication line noise distortion correction filter 100 and has a function of detecting an electromagnetic noise signal that may have an influence of a distortion component on the communication line 200. In order to detect the same noise that has acted on the communication line 200, it is desirable to arrange it near the communication line 200. In addition, as such a sensor part 17, when detecting the signal radiated | emitted in space, when detecting the common mode noise of the communication line 200, it detects a signal fluctuation on a current probe and other conductors. In this case, a voltage probe or the like can be used.

信号分離部12は、第1のサーキュレータ部11から送信された1つ以上の通信信号とセンサ部17で検知された検知信号とを入力し、N個(Nは通信線200の本数とセンサ部17の個数に相当し、2以上の自然数)の検出信号として検出して、独立成分分析手法を用いてN個の検出信号から元信号及び電磁ノイズ信号と推定されるN個の推定信号を算出し、N個の推定信号をN個の分離信号としてN個の検出信号から分離する機能を備えている。なお、独立成分分析手法については後述する。   The signal separation unit 12 inputs one or more communication signals transmitted from the first circulator unit 11 and the detection signals detected by the sensor unit 17, and N (N is the number of communication lines 200 and the sensor unit). N detection signals corresponding to the number of 17 and a natural number equal to or greater than 2) are calculated as N detection signals that are estimated as original signals and electromagnetic noise signals from the N detection signals using an independent component analysis technique. In addition, it has a function of separating N estimated signals as N separated signals from N detected signals. The independent component analysis method will be described later.

格納部13は、信号分離部12で検出したN個の検出信号と分離したN個の分離信号とを格納する機能を備えている。   The storage unit 13 has a function of storing the N detection signals detected by the signal separation unit 12 and the separated N separation signals.

類似度算出部14は、N個の検出信号及びN個の分離信号を格納部13から読み出して、各検出信号と各分離信号との間の類似度を夫々算出する機能を備えている。なお、類似度の算出手順については後述する。   The similarity calculation unit 14 has a function of reading out N detection signals and N separation signals from the storage unit 13 and calculating the similarity between each detection signal and each separation signal. The similarity calculation procedure will be described later.

信号印加部15は、類似度算出部14で算出された類似度に基づいて各検出信号に対応する分離信号を夫々決定し、通信信号に相当する検出信号に対応する分離信号を通信線200に印加する機能を備えている。なお、分離信号の決定手順については後述する。   The signal application unit 15 determines a separation signal corresponding to each detection signal based on the similarity calculated by the similarity calculation unit 14, and supplies the separation signal corresponding to the detection signal corresponding to the communication signal to the communication line 200. It has a function to apply. The procedure for determining the separation signal will be described later.

<独立成分分析手法について>
独立成分分析手法とは、検出した検出信号から元信号及び電磁ノイズ信号を推定する手法であって、例えば、非ガウス性の最大化に基づく手法、最尤推定に基づく手法、相互情報量に基づく手法、非線形関数無相関に基づく手法、テンソルに基づく手法等のうち1つ以上を選択して計算することが可能となっている(非特許文献1乃至非特許文献3参照)。なお、この<独立成分分析手法について>では、説明する便宜上、「元信号及び電磁ノイズ信号」を「元信号」と総括的に称することとする。
<Independent component analysis method>
The independent component analysis method is a method for estimating an original signal and an electromagnetic noise signal from a detected detection signal. For example, a method based on maximization of non-Gaussianity, a method based on maximum likelihood estimation, and a mutual information amount It is possible to select and calculate at least one of a method, a method based on non-correlation with a nonlinear function, a method based on a tensor, and the like (see Non-Patent Documents 1 to 3). In this <Independent Component Analysis Method>, for convenience of explanation, “original signal and electromagnetic noise signal” are collectively referred to as “original signal”.

具体的には、分離前のN個の元信号sを式(1)とし、N個の検出信号xを式(2)とし、N個の分離信号yを式(3)とした場合に、検出信号xと元信号sとの関係については式(4)、分離信号yと検出信号xとの関係については式(5)で表現することができる。但し、Aは未知の行列であって、Wは推定対象の行列を意味している。   Specifically, when N original signals s before separation are expressed by equation (1), N detection signals x are expressed by equation (2), and N separated signals y are expressed by equation (3), The relationship between the detection signal x and the original signal s can be expressed by Equation (4), and the relationship between the separation signal y and the detection signal x can be expressed by Equation (5). However, A is an unknown matrix and W means a matrix to be estimated.

s=(s,s,…,s ・・・式(1)
但し、s={s1−1,s1−2,…,s1−m},s={s2−1,s2−2,…,s2−m},…,s={sN−1,sN−2,…,sN−m}であり、mは元信号を構成する各データのサンプル数を意味する。
s = (s 1 , s 2 ,..., s N ) T Expression (1)
However, s 1 = {s 1-1, s 1-2, ..., s 1-m}, s 2 = {s 2-1, s 2-2, ..., s 2-m}, ..., s N = {S N−1 , s N−2 ,..., S N−m }, where m represents the number of samples of each data constituting the original signal.

x=(x,x,…,x ・・・式(2)
但し、x={x1−1,x1−2,…,x1−m},x={x2−1,x2−2,…,x2−m},…,x={xN−1,xN−2,…,xN−m}であり、mは検出信号を構成する各データのサンプル数を意味する。
x = (x 1 , x 2 ,..., x N ) T Expression (2)
However, x 1 = {x 1-1, x 1-2, ..., x 1-m}, x 2 = {x 2-1, x 2-2, ..., x 2-m}, ..., x N = {X N−1 , x N−2 ,..., X N−m }, and m means the number of samples of each data constituting the detection signal.

y=(y,y,…,y ・・・式(3)
但し、y={y1−1,y1−2,…,y1−m},y={y2−1,y2−2,…,y2−m},…,y={yN−1,yN−2,…,yN−m}であり、mは分離信号を構成する各データのサンプル数を意味する。
y = (y 1, y 2 , ..., y N) T ··· formula (3)
However, y 1 = {y 1-1, y 1-2, ..., y 1-m}, y 2 = {y 2-1, y 2-2, ..., y 2-m}, ..., y N = {Y N−1 , y N−2 ,..., Y N−m }, where m represents the number of samples of each data constituting the separated signal.

x=As ・・・式(4)
y=Wx ・・・式(5)
なお、式(1)〜式(5)を構成する各変数のうち、s,s,s,…,s,x,x,x,…,x,y,y,y,…,y,A,Wについては、ベクトルである(以降も同様)。
x = As (4)
y = Wx Formula (5)
Among the variables that constitute expressions (1) to (5), s, s 1 , s 2, ..., s N, x, x 1, x 2, ..., x N, y, y 1, y 2 ,..., y N , A, W are vectors (and so on).

そして、独立成分分析手法の具体的な処理は、最初に、N個の検出信号xを検出する(ステップS101)。次に、式(5)を用いて分離信号yとの間の独立性を評価尺度として行列Wを算出する(ステップS102)。その後、W≒A−1とし、算出した行列Wを式(5)に代入して分離信号yを算出する(ステップS103)。なお、分離信号yは元信号sに近似するため、s=A−1x≒Wx=yの関係が成立している。特にステップS102における具体処理アルゴリズムについては、上述した非ガウス性の最大化に基づく手法、最尤推定に基づく手法、相互情報量に基づく手法、非線形関数無相関に基づく手法、テンソルに基づく手法等が用いられることになる。 The specific processing of the independent component analysis method first detects N detection signals x (step S101). Next, the matrix W is calculated using the equation (5) with the independence from the separated signal y as an evaluation measure (step S102). Thereafter, W≈A− 1 is set, and the separation signal y is calculated by substituting the calculated matrix W into the equation (5) (step S103). Since the separated signal y approximates the original signal s, the relationship of s = A −1 x≈Wx = y is established. In particular, for the specific processing algorithm in step S102, the above-described method based on maximization of non-Gaussianity, the method based on maximum likelihood estimation, the method based on mutual information, the method based on non-linear function non-correlation, the method based on tensor, and the like. Will be used.

なお、例えば検出信号xを構成するデータが{x1−1,x1−2,…,x1−m}であると記載しているが、これはx1−1やx1−2等の個々のデータが時間間隔を空けて検出されるのではなく、サンプリング間隔τで検出されたm個のデータがmτ時間に得られた連続する信号を意味している。元信号s及び分離信号yについても同様であり、最終的に通信機器400に出力される信号は連続した信号となっている。 For example, the data constituting the detection signal x 1 is described as {x 1-1 , x 1-2 ,..., X 1-m }, but this is indicated by x 1-1 or x 1-2. This means that the individual data such as are not detected at intervals of time, but m data detected at the sampling interval τ are continuous signals obtained at mτ time. The same applies to the original signal s and the separated signal y, and the signal that is finally output to the communication device 400 is a continuous signal.

<類似度の算出手順について>
類似度の算出方法としては、各検出信号と各分離信号との間の相互相関係数を用いることができる。ここで、N個の検出信号をx={x1−1,x1−2,…,x1−m},x={x2−1,x2−2,…,x2−m},…,x={xN−1,xN−2,…,xN−m}(但し、mは検出信号を構成する各データのサンプル数)とし、N個の分離信号をy={y1−1,y1−2,…,y1−m},y={y2−1,y2−2,…,y2−m},…,y={yN−1,yN−2,…,yN−m}(但し、mは分離信号を構成する各データのサンプル数)とした場合に、相互相関係数ρは式(6)で定義することができる。
<Similarity calculation procedure>
As a method for calculating the similarity, a cross-correlation coefficient between each detection signal and each separation signal can be used. Here, the N detection signals are expressed as x 1 = {x 1-1 , x 1-2 ,..., X 1-m }, x 2 = {x 2-1 , x 2-2 ,. m}, ..., x N = {x N-1, x N-2, ..., x N-m} ( where, m is the number of samples of each data constituting the detection signal), and the N number of separation signals y 1 = {y 1-1, y 1-2, ..., y 1-m}, y 2 = {y 2-1, y 2-2, ..., y 2-m}, ..., y N = { y N−1 , y N−2 ,..., y N−m } (where m is the number of samples of each data constituting the separated signal), the cross-correlation coefficient ρ is defined by equation (6) can do.

ρ(x,y)=E[(x−E[x])(y−E[y])]/σxiσyi ・・・式(6)
但し、i=1,2,…,Nであり、E[]は各データの平均値を示し、σは各データの標準偏差を示す。式(6)を用いることにより、各検出信号xと各分離信号yとの間の類似度を夫々算出することが可能となる。
ρ (x, y) = E [(x i -E [x i]) (y i -E [y i])] / σ xi σ yi ··· formula (6)
However, i = 1, 2,..., N, E [] represents the average value of each data, and σ represents the standard deviation of each data. By using Equation (6), it is possible to calculate the similarity between each detection signal x i and each separation signal y i .

なお、相互相関係数に代えて、検出信号と分離信号との間の相互相関係数の加工値(例えば、所定値を加算した加算値、引算値、乗算値、除算値、二乗値、逆数等)、検出信号と分離信号との間の距離(ユークリッド距離、ミンコフスキー距離、マハラノビス距離、マンハッタン距離)、クラスター型分析手法(階層的クラスタリング、c平均法、k平均法、ファジィc平均法等)により算出される検出信号と分離信号との間の距離、のうちいずれか1つ以上を用いて類似度とすることも可能である。このような相互相関係数を用いる技術については非特許文献4に開示され、検出信号と分離信号との間の距離(ユークリッド距離、ミンコフスキー距離、マハラノビス距離、マンハッタン距離)や、クラスター方分析手法(階層的クラスタリング、c平均法、k平均法、ファジィc平均法等)により算出される検出信号と分離信号との間の距離を用いる技術については特許文献8及び非特許文献5に開示されている。   Note that, instead of the cross-correlation coefficient, a processed value of the cross-correlation coefficient between the detection signal and the separated signal (for example, an addition value obtained by adding a predetermined value, a subtraction value, a multiplication value, a division value, a square value, Reciprocal, etc.), distance between detection signal and separated signal (Euclidean distance, Minkowski distance, Mahalanobis distance, Manhattan distance), cluster type analysis method (hierarchical clustering, c-average method, k-average method, fuzzy c-average method, etc.) It is also possible to set the similarity by using any one or more of the distances between the detection signal and the separation signal calculated by (1). A technique using such a cross-correlation coefficient is disclosed in Non-Patent Document 4, and a distance between a detection signal and a separation signal (Euclidean distance, Minkowski distance, Mahalanobis distance, Manhattan distance) or a cluster method analysis method ( Patent Document 8 and Non-Patent Document 5 disclose a technique using a distance between a detection signal and a separation signal calculated by hierarchical clustering, c-average method, k-average method, fuzzy c-average method, and the like. .

<分離信号の決定手順について>
前述したように、独立成分分析手法を適用した際には各検出信号と各分離信号との関連性(検出信号の検出順序や、分離信号の推定順序)が保証されない、即ち、何れの分離信号が何れの検出信号に対応するかという「分離信号の順序性」が保証されるわけではない。そこで、複数の分離信号を適切にフィルタ出力するため、検出信号xと分離信号yとの間の類似度算出結果を用いて、検出信号xに対応する分離信号yの順序性を決定する。
<Procedure for determining separation signal>
As described above, when the independent component analysis method is applied, the relevance (detection order of detection signals and estimation order of separation signals) between each detection signal and each separation signal is not guaranteed. It is not guaranteed that the “separation signal order” that corresponds to which detection signal corresponds to. Therefore, in order to appropriately filter out a plurality of separated signals, the order of the separated signals y corresponding to the detected signals x is determined using the similarity calculation result between the detected signals x and the separated signals y.

具体的には、N個の検出信号xを前述の式(2)とし、N個の分離信号yを前述の式(3)とした場合に、図2に示すように、各検出信号xと各分離信号yとの間で算出された各類似度を夫々比較する(ステップS201)。より具体的には、1本目の通信線200で検出された検出信号xと分離信号yとの間の類似度1と、検出信号xと分離信号yとの間の類似度2と、…、検出信号xと分離信号yとの間の類似度Nとを比較する。 Specifically, when N detection signals x are set to the above-described equation (2) and N separation signals y are set to the above-described equation (3), as shown in FIG. Each similarity calculated with each separated signal y is compared (step S201). More specifically, the similarity 1 between the detection signals x 1 detected by the communication line 200 of the first run and the separation signals y 1, similarity 2 between the detection signal x 1 and the separation signals y 2 When, ... and compares the similarity N between the detection signal x 1 and the separation signal y N.

次に、ステップS202での比較の結果、検出信号xに対して最も類似度の高い分離信号yを、この検出信号xに対応する分離信号として決定する(ステップS202)。なお、類似度が距離に基づいて算出される場合には、最も距離の短い分離信号が決定されるようにしてもよい。   Next, as a result of the comparison in step S202, the separation signal y having the highest similarity to the detection signal x is determined as the separation signal corresponding to the detection signal x (step S202). When the similarity is calculated based on the distance, the separation signal with the shortest distance may be determined.

続いて、検出信号xの振幅の大きさ(振幅レベル)に応じて、決定後の分離信号yの大きさ(振幅レベル)を調整する(ステップS203)。   Subsequently, the magnitude (amplitude level) of the determined separated signal y is adjusted according to the magnitude (amplitude level) of the detection signal x (step S203).

最後に、検出信号xが検出された通信線200に調整後の分離信号yを印加(フィルタ出力)する(ステップS204)。   Finally, the adjusted separation signal y is applied (filter output) to the communication line 200 where the detection signal x is detected (step S204).

ステップS201〜ステップS204を全ての検出信号について処理することにより、各検出信号に対応する分離信号を夫々決定することが可能となる。   By performing steps S201 to S204 for all the detection signals, it is possible to determine a separation signal corresponding to each detection signal.

本実施の形態によれば、信号分離部12が、通信線200を流れる通信信号とセンサ部17で検知した検知信号とを複数の検出信号として夫々検出し、独立成分分析手法を用いて複数の検出信号から元信号及び電磁ノイズ信号と推定される複数の推定信号を算出し、この複数の推定信号を複数の分離信号として複数の検出信号から分離するため、重畳された歪成分を除去して元信号及び電磁ノイズ信号に補正することができる。また、類似度算出部14が、各検出信号と各分離信号との間の類似度を夫々算出し、信号印加部15が、類似度に基づいて各検出信号に対応する分離信号を夫々決定するため、分離信号の順序性を確保することができる。以上から、外部からの電磁ノイズによって通信線を流れる信号に発生した時間波形歪を効果的に補正することができる。   According to the present embodiment, the signal separation unit 12 detects the communication signal flowing through the communication line 200 and the detection signal detected by the sensor unit 17 as a plurality of detection signals, respectively, and uses the independent component analysis technique to detect the plurality of detection signals. In order to calculate a plurality of estimated signals estimated as the original signal and the electromagnetic noise signal from the detection signal, and to separate the plurality of estimated signals as a plurality of separated signals from the plurality of detected signals, the superimposed distortion component is removed. It can correct | amend to an original signal and an electromagnetic noise signal. The similarity calculation unit 14 calculates the similarity between each detection signal and each separation signal, and the signal application unit 15 determines the separation signal corresponding to each detection signal based on the similarity. Therefore, the order of the separated signals can be ensured. From the above, it is possible to effectively correct the time waveform distortion generated in the signal flowing through the communication line due to external electromagnetic noise.

なお、本実施の形態では、第1のサーキュレータ部11と第2のサーキュレータ部16との2つのサーキュレータを用いる構成について説明したが、サーキュレータの数量は2つに限定されるものではない。また、本実施の形態では、1つのセンサ部17を用いて説明したが、複数のセンサ部17を用いた場合であっても同様の効果を得ることができる。   In the present embodiment, the configuration using the two circulators of the first circulator unit 11 and the second circulator unit 16 has been described. However, the number of circulators is not limited to two. Further, in the present embodiment, the description has been made using one sensor unit 17, but the same effect can be obtained even when a plurality of sensor units 17 are used.

図3は、検出信号と該検出信号に対応する分離信号との波形を関連付けて示すグラフである。すなわち、従来、独立成分分析により得られる複数の分離信号に関しては、検出した検出信号との検出順序が保証されるわけではなかったが、本実施の形態によれば、類似度に基づいて分離信号を検出信号に対応付けるため、通信線200に適切な分離信号を出力することが可能となる。   FIG. 3 is a graph showing the waveforms of the detection signal and the separation signal corresponding to the detection signal in association with each other. That is, conventionally, with respect to a plurality of separated signals obtained by independent component analysis, the detection order with the detected detection signals has not been guaranteed, but according to the present embodiment, the separated signals are based on the similarity. Therefore, it is possible to output an appropriate separation signal to the communication line 200.

図4は、平行配置された通信ケーブル線を流れる通信信号に外部の電磁ノイズによる誘導が発生した場合における、元信号(電磁ノイズ信号を含む)と検出信号と分離信号との波形を関連付けて示す適用結果例のグラフである。sは元信号波形、sは電磁ノイズ信号波形、xは通信信号を検出した検出信号波形、xは検知信号を検出した検出信号波形、yは通信信号に対応する分離信号波形(元信号に相当)、yは検知信号に対応する分離信号波形(電磁ノイズ信号に相当)を示している。図4(b)に示すグラフによれば、外部からの電磁のノイズにより通信ケーブルを流れる通信信号に波形歪が発生しているが、元信号が効率的に復元されると同時に、元信号の検出順序に応じて分離信号が出力されるため、図4(c)に示すように元信号波形の復元(波形歪の改善)を有効に行うことができる。 FIG. 4 shows the waveforms of the original signal (including the electromagnetic noise signal), the detection signal, and the separated signal in the case where induction due to external electromagnetic noise occurs in the communication signal flowing through the communication cable lines arranged in parallel. It is a graph of an example of an application result. s 1 is an original signal waveform, s 2 is an electromagnetic noise signal waveform, x 1 is a detection signal waveform in which a communication signal is detected, x 2 is a detection signal waveform in which a detection signal is detected, and y 1 is a separated signal waveform corresponding to the communication signal. (corresponding to the original signal), y 2 represents the separation signal waveform corresponding to the detection signal (corresponding to the electromagnetic noise signal). According to the graph shown in FIG. 4B, the waveform distortion occurs in the communication signal flowing through the communication cable due to electromagnetic noise from the outside, but at the same time the original signal is restored efficiently, Since the separation signal is output in accordance with the detection order, the original signal waveform can be restored (improvement of waveform distortion) as shown in FIG. 4C.

図5は、本実施の形態に係る通信線用ノイズ歪補正フィルタの他の機能ブロックを示す構成図である。この通信線用ノイズ歪補正フィルタ100は、図1に示す通信線ノイズ歪補正フィルタの第1のサーキュレータ部11と信号分離部12との間にアイソレータ18を挿入した構成である。   FIG. 5 is a configuration diagram showing another functional block of the noise distortion correction filter for communication line according to the present embodiment. The communication line noise distortion correction filter 100 has a configuration in which an isolator 18 is inserted between the first circulator unit 11 and the signal separation unit 12 of the communication line noise distortion correction filter shown in FIG.

このアイソレータ18は、第1のサーキュレータ部11から信号分離部12へ検知した信号が流れる際に発生する可能性のある信号反射を抑制する効果を備えている。これにより、第1のサーキュレータ部11における動作の安定化や破壊を防ぐことが可能となる。   The isolator 18 has an effect of suppressing signal reflection that may occur when a detected signal flows from the first circulator unit 11 to the signal separation unit 12. Thereby, it becomes possible to prevent the operation | movement stabilization and destruction in the 1st circulator part 11. FIG.

図6は、本実施の形態に係る通信線用ノイズ歪補正フィルタの他の機能ブロックを示す構成図である。この通信線用ノイズ歪補正フィルタ100は、図1に示す通信線ノイズ歪補正フィルタのセンサ部17と信号分離部12との間にデータ補正部19を挿入した構成である。   FIG. 6 is a block diagram showing another functional block of the noise distortion correction filter for communication line according to the present embodiment. The communication line noise distortion correction filter 100 has a configuration in which a data correction unit 19 is inserted between the sensor unit 17 and the signal separation unit 12 of the communication line noise distortion correction filter shown in FIG.

電磁波等を検知するセンサ部17は一定の周波数特性を有し、一般的にその周波数特性は、対象とする周波数帯域幅が大きくなるほど安定性が低下することが知られている。その結果、信号分離部12で検出した検出信号には、センサ部17の周波数特性に応じた一定の波形応答歪が含まれる可能性がある。そこで、データ補正部19は、センサ部17が有する周波数特性と対応補正値とを関連付けて予め記憶部(図示せず)に記憶しておき、センサ部17で検知された検知信号の周波数に対応する対応補正値を記憶部から読み出して、この検知信号を補正する機能を備えている。すなわち、時間領域で検知した検知信号を周波数領域へ変換し、変換された周波数領域上の周波数領域データに対して、任意の周波数分解能により、事前に把握しているセンサ部17の周波数特性を用いて補正することができる。例えば、任意の周波数区間においてセンサ部17の感度が低下する場合には、周波数領域データのレベルを上げるなどの処理を一例として挙げることができる。従って、センサ部17の周波数特性の変動幅が大きく、検知信号に歪成分が含まれる場合であっても、検知信号の歪みを効果的し、元の電磁ノイズ信号を精度よく推定することが可能となる。   The sensor unit 17 that detects an electromagnetic wave or the like has a certain frequency characteristic, and it is generally known that the stability of the frequency characteristic decreases as the target frequency bandwidth increases. As a result, the detection signal detected by the signal separation unit 12 may include a certain waveform response distortion corresponding to the frequency characteristic of the sensor unit 17. Therefore, the data correction unit 19 associates the frequency characteristic of the sensor unit 17 with the corresponding correction value and stores it in advance in a storage unit (not shown), and corresponds to the frequency of the detection signal detected by the sensor unit 17. The corresponding correction value is read from the storage unit, and the detection signal is corrected. That is, the detection signal detected in the time domain is converted into the frequency domain, and the frequency characteristic of the sensor unit 17 that is grasped in advance with an arbitrary frequency resolution is used for the frequency domain data on the converted frequency domain. Can be corrected. For example, when the sensitivity of the sensor unit 17 decreases in an arbitrary frequency section, a process such as increasing the level of frequency domain data can be given as an example. Therefore, even if the fluctuation range of the frequency characteristic of the sensor unit 17 is large and a distortion component is included in the detection signal, it is possible to effectively distort the detection signal and accurately estimate the original electromagnetic noise signal. It becomes.

なお、信号分離部12において、通信線200が有する周波数特性と対応補正値とを関連付けて予め記憶部に記憶しておき、通信線200に流れる通信信号として検出された検出信号の周波数に対応する対応補正値を記憶部から読み出して、この検出信号を補正した後に、元信号と推定される推定信号を算出するようにすることでも、同様の効果を得ることができる。   In the signal separation unit 12, the frequency characteristic of the communication line 200 and the corresponding correction value are associated with each other and stored in advance in the storage unit, and correspond to the frequency of the detection signal detected as the communication signal flowing through the communication line 200. The same effect can be obtained by reading the corresponding correction value from the storage unit, correcting the detection signal, and calculating the estimated signal estimated as the original signal.

本実施の形態に係る通信線用ノイズ歪補正フィルタの機能ブロックを示す構成図である。It is a block diagram which shows the functional block of the noise distortion correction filter for communication lines which concerns on this Embodiment. 分離信号の決定手順を示すフローである。It is a flow which shows the determination procedure of a separated signal. 検出信号と該検出信号に対応する分離信号との波形を関連付けて示すグラフである。It is a graph which correlates and shows a waveform of a detection signal and a separation signal corresponding to the detection signal. 平行配置された通信ケーブル線を流れる通信信号に外部の電磁ノイズによる誘導が発生した場合における、元信号(電磁ノイズ信号を含む)と検出信号と分離信号との波形を関連付けて示す適用結果例のグラフである。In the example of the application result shown in association with the waveforms of the original signal (including the electromagnetic noise signal), the detection signal, and the separation signal when induction due to external electromagnetic noise occurs in the communication signal flowing through the communication cable line arranged in parallel It is a graph. 本実施の形態に係る通信線用ノイズ歪補正フィルタの他の機能ブロックを示す構成図である。It is a block diagram which shows the other functional block of the noise distortion correction filter for communication lines which concerns on this Embodiment. 本実施の形態に係る通信線用ノイズ歪補正フィルタの他の機能ブロックを示す構成図である。It is a block diagram which shows the other functional block of the noise distortion correction filter for communication lines which concerns on this Embodiment.

符号の説明Explanation of symbols

11…第1のサーキュレータ部
12…信号分離部
13…格納部
14…類似度算出部
15…信号印加部
16…第2のサーキュレータ部
17…センサ部
18…アイソレータ
19…データ補正部
100…通信線用ノイズ歪補正フィルタ
200…通信線
300…電磁ノイズ源
400…通信機器
S101〜S103,S201〜S204…ステップ
DESCRIPTION OF SYMBOLS 11 ... 1st circulator part 12 ... Signal separation part 13 ... Storage part 14 ... Similarity calculation part 15 ... Signal application part 16 ... 2nd circulator part 17 ... Sensor part 18 ... Isolator 19 ... Data correction part 100 ... Communication line Noise distortion correction filter 200 ... communication line 300 ... electromagnetic noise source 400 ... communication equipment S101-S103, S201-S204 ... step

Claims (7)

電磁ノイズ信号による歪成分が重畳された通信信号を元信号に補正する通信線用ノイズ歪補正フィルタにおいて、
前記歪成分を作用させる前記電磁ノイズ信号を検知する検知手段と、
通信線を流れる前記通信信号と前記検知手段で検知した検知信号とを複数の検出信号として夫々検出し、独立成分分析手法を用いて前記複数の検出信号から前記元信号及び前記電磁ノイズ信号と推定される複数の推定信号を算出し、当該複数の推定信号を複数の分離信号として前記複数の検出信号から分離する信号分離手段と、
前記複数の検出信号と前記複数の分離信号とを格納する格納手段と、
前記複数の検出信号及び前記複数の分離信号を前記格納手段から読み出して、各検出信号と各分離信号との間の類似度を夫々算出する類似度算出手段と、
前記類似度に基づいて各検出信号に対応する分離信号を夫々決定し、前記通信信号に相当する検出信号に対応する分離信号を前記通信線に印加する信号印加手段と、
を有することを特徴とする通信線用ノイズ歪補正フィルタ。
In a communication line noise distortion correction filter that corrects a communication signal in which a distortion component due to an electromagnetic noise signal is superimposed on an original signal,
Detecting means for detecting the electromagnetic noise signal that causes the distortion component to act;
The communication signal flowing through the communication line and the detection signal detected by the detection means are detected as a plurality of detection signals, respectively, and the original signal and the electromagnetic noise signal are estimated from the plurality of detection signals using an independent component analysis technique. Signal separating means for calculating a plurality of estimated signals and separating the plurality of estimated signals as a plurality of separated signals from the plurality of detection signals;
Storage means for storing the plurality of detection signals and the plurality of separated signals;
The similarity calculation means for reading the plurality of detection signals and the plurality of separation signals from the storage means and calculating the similarity between each detection signal and each separation signal,
A signal applying unit that determines a separation signal corresponding to each detection signal based on the similarity, and applies a separation signal corresponding to the detection signal corresponding to the communication signal to the communication line;
A noise distortion correction filter for a communication line, comprising:
前記類似度算出手段は、
前記検出信号と前記分離信号との間の相互相関係数、前記検出信号と前記分離信号との間の相互相関係数の加工値、前記検出信号と前記分離信号との間のユークリッド距離、前記検出信号と前記分離信号との間のミンコフスキー距離、前記検出信号と前記分離信号との間のマハラノビス距離、前記検出信号と前記分離信号との間のマンハッタン距離、階層的クラスタリングにより算出される前記検出信号と前記分離信号との間の距離、c平均法により算出される前記検出信号と前記分離信号との間の距離、k平均法により算出される前記検出信号と前記分離信号との間の距離、ファジィc平均法により算出される前記検出信号と前記分離信号との間の距離のうちいずれかに基づいて前記類似度を算出することを特徴とする請求項1に記載の通信線用ノイズ歪補正フィルタ。
The similarity calculation means includes:
A cross-correlation coefficient between the detection signal and the separated signal, a processed value of a cross-correlation coefficient between the detection signal and the separated signal, a Euclidean distance between the detection signal and the separated signal, The Minkowski distance between the detection signal and the separation signal, the Mahalanobis distance between the detection signal and the separation signal, the Manhattan distance between the detection signal and the separation signal, and the detection calculated by hierarchical clustering The distance between the signal and the separated signal, the distance between the detected signal and the separated signal calculated by the c-average method, and the distance between the detected signal and the separated signal calculated by the k-average method The similarity is calculated based on any one of the distances between the detection signal and the separation signal calculated by a fuzzy c averaging method. Line for noise distortion correction filter.
前記検知手段が有する周波数特性と対応補正値とを関連付けて記憶手段に記憶しておき、前記検知信号の周波数に対応する前記対応補正値を前記記憶手段から読み出して、当該検知信号を補正する補正手段を更に有することを特徴とする請求項1又は2に記載の通信線用ノイズ歪補正フィルタ。   Correction that correlates the frequency characteristic of the detection means and the corresponding correction value in the storage means, reads out the corresponding correction value corresponding to the frequency of the detection signal from the storage means, and corrects the detection signal The communication line noise distortion correction filter according to claim 1 or 2, further comprising means. 前記信号分離手段は、
前記通信線が有する周波数特性と対応補正値とを関連付けて予め記憶部に記憶しておき、当該通信線に流れる通信信号として検出された検出信号の周波数に対応する対応補正値を記憶部から読み出して、当該検出信号を補正した後に、前記元信号と推定される推定信号を算出することを特徴とする請求項1乃至3のいずれか1項に記載の通信線用ノイズ歪補正フィルタ。
The signal separating means includes
The frequency characteristic of the communication line and the corresponding correction value are associated with each other and stored in advance in the storage unit, and the corresponding correction value corresponding to the frequency of the detection signal detected as the communication signal flowing through the communication line is read from the storage unit. 4. The communication line noise distortion correction filter according to claim 1, wherein an estimated signal estimated as the original signal is calculated after correcting the detection signal. 5.
前記信号印加手段は、
前記通信信号に相当する検出信号の振幅の大きさに応じて、前記通信線に印加される前記分離信号の大きさを調整することを特徴とする請求項1乃至4のいずれか1項に記載の通信線用ノイズ歪補正フィルタ。
The signal applying means includes
5. The magnitude of the separation signal applied to the communication line is adjusted according to the magnitude of the amplitude of the detection signal corresponding to the communication signal. 6. Noise distortion correction filter for communication lines.
前記通信線は平衡線又は電力線であって、当該複数の通信線の終端には所定の通信機器が配されており、
前記通信信号が前記通信機器が配されている順方向に進行する場合には当該通信信号を終端して前記信号分離手段に出力し、逆方向に進行する場合には当該通信信号を終端しない制御手段を更に有することを特徴とする請求項1乃至5のいずれか1項に記載の通信線用ノイズ歪補正フィルタ。
The communication line is a balanced line or a power line, and a predetermined communication device is arranged at the end of the plurality of communication lines,
When the communication signal proceeds in the forward direction in which the communication device is arranged, the communication signal is terminated and output to the signal separation unit, and when the communication signal proceeds in the reverse direction, the communication signal is not terminated. The communication line noise distortion correction filter according to any one of claims 1 to 5, further comprising means.
電磁ノイズ信号による歪成分が重畳された通信信号を元信号に補正する通信線用ノイズ歪補正方法において、
前記歪成分を作用させる前記電磁ノイズ信号を検知する第1のステップと、
通信線を流れる前記通信信号と前記第1のステップで検知した検知信号とを複数の検出信号として夫々検出し、独立成分分析手法を用いて前記複数の検出信号から前記元信号及び前記電磁ノイズ信号と推定される複数の推定信号を算出し、当該複数の推定信号を複数の分離信号として前記複数の検出信号から分離する第2のステップと、
前記複数の検出信号と前記複数の分離信号とを格納する第3のステップと、
前記複数の検出信号及び前記複数の分離信号を前記格納手段から読み出して、各検出信号と各分離信号との間の類似度を夫々算出する第4のステップと、
前記類似度に基づいて各検出信号に対応する分離信号を夫々決定し、前記通信信号に相当する検出信号に対応する分離信号を前記通信線に印加する第5のステップと、
を有することを特徴とする通信線用ノイズ歪補正方法。
In a communication line noise distortion correction method for correcting a communication signal in which a distortion component due to an electromagnetic noise signal is superimposed to an original signal,
A first step of detecting the electromagnetic noise signal that causes the distortion component to act;
The communication signal flowing through the communication line and the detection signal detected in the first step are detected as a plurality of detection signals, respectively, and the original signal and the electromagnetic noise signal are detected from the plurality of detection signals using an independent component analysis technique. A second step of calculating a plurality of estimated signals estimated as follows, and separating the plurality of estimated signals as a plurality of separated signals from the plurality of detection signals;
A third step of storing the plurality of detection signals and the plurality of separated signals;
A fourth step of reading the plurality of detection signals and the plurality of separation signals from the storage means, and calculating the similarity between each detection signal and each separation signal;
A fifth step of determining a separation signal corresponding to each detection signal based on the similarity, and applying a separation signal corresponding to the detection signal corresponding to the communication signal to the communication line;
A noise distortion correction method for a communication line, comprising:
JP2008214057A 2008-08-22 2008-08-22 Noise distortion correction filter for communication line and method of correcting noise distortion for communication line Pending JP2010050810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214057A JP2010050810A (en) 2008-08-22 2008-08-22 Noise distortion correction filter for communication line and method of correcting noise distortion for communication line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214057A JP2010050810A (en) 2008-08-22 2008-08-22 Noise distortion correction filter for communication line and method of correcting noise distortion for communication line

Publications (1)

Publication Number Publication Date
JP2010050810A true JP2010050810A (en) 2010-03-04

Family

ID=42067518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214057A Pending JP2010050810A (en) 2008-08-22 2008-08-22 Noise distortion correction filter for communication line and method of correcting noise distortion for communication line

Country Status (1)

Country Link
JP (1) JP2010050810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537442A (en) * 2012-10-17 2015-12-24 イカノス・コミュニケーションズ・インコーポレイテッドIkanos Communications,Inc. Method and apparatus for sensing noise signals in a wireline communication environment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015537442A (en) * 2012-10-17 2015-12-24 イカノス・コミュニケーションズ・インコーポレイテッドIkanos Communications,Inc. Method and apparatus for sensing noise signals in a wireline communication environment

Similar Documents

Publication Publication Date Title
EP3703052A1 (en) Echo cancellation method and apparatus based on time delay estimation
CN109074814B (en) Noise detection method and terminal equipment
JP6729577B2 (en) Signal detecting device, signal detecting method and program
JP4519169B2 (en) Signal processing method and signal processing apparatus
US20150189427A1 (en) Device and method for generating driving signal of loudspeaker
US20100260365A1 (en) Configuration and Method for Detecting Feedback in Hearing Devices
US8886527B2 (en) Speech recognition system to evaluate speech signals, method thereof, and storage medium storing the program for speech recognition to evaluate speech signals
KR20070094680A (en) Method for measuring partial discharge occurring under the operation of a generator, introducing an external noise cancellation manner using differential technique
CN108833315B (en) Channel estimation method and device
US20220301582A1 (en) Method and apparatus for determining speech presence probability and electronic device
JP2010050810A (en) Noise distortion correction filter for communication line and method of correcting noise distortion for communication line
EP3709299A1 (en) Digital audio processing device, method for processing digital audio, and digital audio processing program
JP6151619B2 (en) Sound field measuring device, sound field measuring method, and sound field measuring program
US10340893B1 (en) Systems and methods for providing compensation of analog filter bandedge ripple using LPF
JP2010050811A (en) Signal distortion correction filter for communication line and method of correcting signal distortion for communication line
US20110188641A1 (en) Method and apparatus for removing noise signal from input signal
JP7152112B2 (en) Signal processing device, signal processing method and signal processing program
JP6379709B2 (en) Signal processing apparatus, signal processing method, and program
JP2008275876A (en) Digital sound processing device and program
KR101583618B1 (en) Apparatus and method for eliminating noise of transmission signal based on wavelet filter to detect events which influence power quality index
JP7577485B2 (en) Signal processing method, signal processing device and program
EP4214704B1 (en) Apparatus and method for combining repeated noisy signals
KR101207496B1 (en) Noise disposal method
JP2011030048A (en) Electromagnetic noise canceling filter and electromagnetic noise canceling method
JP2008112056A (en) Audio sigmal processor