JP2010043351A - Thermal barrier coating and method for production thereof - Google Patents
Thermal barrier coating and method for production thereof Download PDFInfo
- Publication number
- JP2010043351A JP2010043351A JP2009129739A JP2009129739A JP2010043351A JP 2010043351 A JP2010043351 A JP 2010043351A JP 2009129739 A JP2009129739 A JP 2009129739A JP 2009129739 A JP2009129739 A JP 2009129739A JP 2010043351 A JP2010043351 A JP 2010043351A
- Authority
- JP
- Japan
- Prior art keywords
- thermal barrier
- barrier coating
- coating
- ceramic
- shock wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/325—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0463—Cobalt
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05C—INDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
- F05C2201/00—Metals
- F05C2201/04—Heavy metals
- F05C2201/0433—Iron group; Ferrous alloys, e.g. steel
- F05C2201/0466—Nickel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/11—Iron
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/134—Zirconium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12535—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
- Y10T428/12542—More than one such component
- Y10T428/12549—Adjacent to each other
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
Description
本発明は、広義には、発電用ガスタービンエンジンの作動部品のような高温ガス環境及び過酷な作動条件に暴露される合金部品のための保護皮膜に関する。具体的には、本発明は、ガスタービンエンジンに使用する遮熱コーティング(TBC)及びTBCの製造方法に関する。 The present invention broadly relates to protective coatings for alloy parts that are exposed to hot gas environments and harsh operating conditions, such as the working parts of a power generating gas turbine engine. Specifically, the present invention relates to a thermal barrier coating (TBC) for use in a gas turbine engine and a method for manufacturing a TBC.
ガスタービンハードウェア部品が暴露される作動条件は熱的・化学的に過酷となるおそれがある。タービン、燃焼器及びオグメンタ部品に使用される金属基材の表面は非常に過酷な高温ガス環境で平均以上の機械的強度、耐久性及びエロージョン耐性を示すべきである。「エロージョン」とは一般に、表面から他の粒子を放出させる(壊食)のに十分な高エネルギーの汚染粒子が表面(特に金属)に衝突して、基材の劣化及び割れを招くプロセスをいう。 The operating conditions to which the gas turbine hardware components are exposed can be severely thermally and chemically. Metal substrate surfaces used in turbines, combustors and augmentor parts should exhibit above average mechanical strength, durability and erosion resistance in very harsh hot gas environments. “Erosion” generally refers to a process in which contaminating particles of high energy sufficient to release other particles from the surface (erosion) collide with the surface (especially metal), leading to degradation and cracking of the substrate. .
最近、重要なタービン部品の基材に施工される皮膜に鉄、ニッケル及びコバルト基超合金を導入することによってガスタービン系に耐熱合金を利用することにより多大な進歩が達成されている。有効な表面皮膜の目的は概して二つある。第一に、皮膜は、その下の基材を酸化、腐食及び劣化から保護する保護性及び接着性の層を形成すべきである。第二に、皮膜は基材に対して低い熱伝導性を有するべきである。超合金の組成の複雑化に伴って、(特に高いガスタービン作動温度で)必要とされる高レベルの強度と十分な耐腐食性及び耐酸化性を同時に達成するのは難しくなっている。ガスタービン燃焼温度の高温化という趨勢のため、酸化、腐食及び劣化の問題はさらに難しさを増している。そのため、近年の遮熱コーティングの改良にも関わらず、多くの合金部品は典型的なガスタービン環境でみられる長期供用暴露及び繰返サイクルに耐えることができないので、経済的で有効性に優れ、しかも劣化しにくい耐熱皮膜に対する大きなニーズが依然として存在している。 Recently, great progress has been achieved by utilizing heat resistant alloys in gas turbine systems by introducing iron, nickel and cobalt based superalloys into the coatings applied to the bases of critical turbine components. There are generally two purposes for effective surface coatings. First, the coating should form a protective and adhesive layer that protects the underlying substrate from oxidation, corrosion and degradation. Second, the coating should have a low thermal conductivity with respect to the substrate. As superalloy compositions become more complex, it is difficult to achieve the required high level of strength and sufficient corrosion and oxidation resistance simultaneously (especially at high gas turbine operating temperatures). Due to the trend of higher gas turbine combustion temperatures, the problems of oxidation, corrosion and degradation are becoming more difficult. Therefore, despite recent improvements in thermal barrier coatings, many alloy components are not economical and effective because they cannot withstand long-term service exposure and repeated cycles found in typical gas turbine environments, In addition, there remains a great need for heat resistant coatings that are less prone to degradation.
ガスタービン部品用の公知の従来技術の皮膜の多くはアルミナイド及びセラミック成分を含んでいる。通例、セラミック皮膜は、MCrAlY(式中、Mは鉄、コバルト及び/又はニッケルである)のような耐酸化性合金から或いは耐酸化性金属間化合物を形成する拡散アルミナイド又は白金アルミナイドから形成されたボンドコートと共に使用される。高温用途では、これらのボンドコートは、セラミック層に化学的に結合して最終ボンドコートを形成する酸化物層(「スケール」ともいう。)を形成する。 Many of the known prior art coatings for gas turbine components contain aluminide and ceramic components. Typically, the ceramic coating was formed from an oxidation resistant alloy such as MCrAlY (where M is iron, cobalt and / or nickel) or from a diffusion aluminide or platinum aluminide that forms an oxidation resistant intermetallic compound. Used with bond coats. In high temperature applications, these bond coats form an oxide layer (also referred to as “scale”) that chemically bonds to the ceramic layer to form the final bond coat.
また、イットリア(Y2O3)、マグネシア(MgO)その他の酸化物で部分的又は全体的に安定化されたジルコニア(ZrO2)をセラミック層の主成分として使用することも公知である。イットリア安定化ジルコニア(YSZ)は、好ましい熱サイクル疲労特性を示すので、遮熱コーティング用のセラミック層として多様される。すなわち、YSZは、ガスタービンの始動から停止まで温度上昇又は下降の際の応力及び疲労に耐える能力が、他の公知の皮膜に比べて格段に優れている。通例、金属基材へのYSZの堆積は、大気プラズマ溶射(「APS」)や低圧プラズマ溶射(「LPPS」)のような公知の方法、並びに電子ビーム物理気相堆積(「EBPVD」)のような物理気相堆積(「PVD」)法で行われる。特に、EBPVDで堆積したYSZは、スポーリング(剥落)を招くような有害な応力を起こさずに基材の膨張・収縮を可能にする応力耐性柱状結晶粒組織で特徴付けられる。かかる系の応力耐性は公知である。例えば、公知の遮熱コーティング系に関しては、米国特許第6730413号を参照されたい。 It is also known to use zirconia (ZrO 2 ) partially or wholly stabilized with yttria (Y 2 O 3 ), magnesia (MgO) or other oxides as the main component of the ceramic layer. Yttria-stabilized zirconia (YSZ) exhibits a favorable thermal cycle fatigue property and is therefore diverse as a ceramic layer for thermal barrier coatings. That is, YSZ is far superior to other known coatings in the ability to withstand stress and fatigue when the temperature rises or falls from the start to the stop of the gas turbine. Typically, the deposition of YSZ on a metal substrate is a known method such as atmospheric plasma spray (“APS”) or low pressure plasma spray (“LPPS”), as well as electron beam physical vapor deposition (“EBPVD”). By physical vapor deposition (“PVD”). In particular, YSZ deposited by EBPVD is characterized by a stress-resistant columnar grain structure that allows the substrate to expand and contract without causing harmful stresses that cause spalling. The stress resistance of such systems is known. For example, see US Pat. No. 6,730,413 for a known thermal barrier coating system.
製造環境における縦亀裂の形成は難しいか、問題がある。ある態様では、本発明は一般に、皮膜堆積後に亀裂又は微小亀裂を誘起することを含む方法に関する。これによって、遮熱コーティングを稠密に施工することができるが、その方が施工が容易である。施工後に、皮膜は、例えば衝撃波暴露を用いて選択的に亀裂を生じさせることができる。 The formation of longitudinal cracks in the manufacturing environment is difficult or problematic. In one aspect, the present invention generally relates to a method that includes inducing cracks or microcracks after film deposition. As a result, the thermal barrier coating can be densely applied, but it is easier to apply. After application, the coating can be selectively cracked using, for example, shock wave exposure.
レーザーピーニングは周知である。例えば、レーザーピーニングは、被加工物の外面に圧縮応力保護層を生じさせるのに使われており、かかる処理は、米国特許第4937421号に開示されているように、疲労破壊に対する被加工物の耐性を大幅に増大させることが知られている。レーザーショックピーニングも、米国特許第5591009号に開示されているように、タービンブレードに深い圧縮残留応力を生じさせるのに使用されている。 Laser peening is well known. For example, laser peening has been used to create a compressive stress protection layer on the outer surface of the workpiece, and such a process can be applied to the workpiece against fatigue failure as disclosed in US Pat. No. 4,937,421. It is known to greatly increase resistance. Laser shock peening has also been used to create deep compressive residual stresses in turbine blades, as disclosed in US Pat.
一態様では、本発明は、ガスタービン部品に施工された遮熱コーティングに亀裂を形成させる方法に関する。本方法は、ガスタービン部品をなす金属基材上にMCrAlY(式中、Mは鉄、コバルト及び/又はニッケルである)を含むボンドコートを堆積する段階、ボンドコート上にイットリア安定化ジルコニアを含む遮熱コーティングを堆積する段階、遮熱コーティングの少なくとも一部を衝撃波に付して、金属基材を実質的に変形させずに遮熱コーティングに微小亀裂を形成させる段階を含む。 In one aspect, the invention relates to a method for cracking a thermal barrier coating applied to a gas turbine component. The method includes depositing a bond coat comprising MCrAlY (wherein M is iron, cobalt, and / or nickel) on a metal substrate forming a gas turbine component, and including yttria stabilized zirconia on the bond coat. Depositing a thermal barrier coating, subjecting at least a portion of the thermal barrier coating to a shock wave to form microcracks in the thermal barrier coating without substantially deforming the metal substrate.
一態様では、本発明は、セラミック系コーティングに亀裂を形成させる方法に関する。本方法は、金属系基材上に、遮熱コーティングを含むセラミック系コーティングを堆積する段階、セラミック系コーティングの少なくとも一部を衝撃波に付して、金属系基材を実質的に変形させずにセラミック系コーティングに微小亀裂を形成させる段階を含む。 In one aspect, the present invention relates to a method for forming a crack in a ceramic-based coating. The method includes depositing a ceramic-based coating including a thermal barrier coating on a metal-based substrate, subjecting at least a portion of the ceramic-based coating to a shock wave, and without substantially deforming the metal-based substrate. Forming a microcrack in the ceramic coating.
上述の通り、本発明の遮熱コーティングは、熱的及び化学的に過酷な環境から保護しなければならない様々な合金部品(いわゆる「超合金」)に施工できる。かかる部品の例としては、ほとんどのガスタービンエンジンにみられるノズル、バケット、シュラウド、翼形部その他のハードウェアがある。 As mentioned above, the thermal barrier coating of the present invention can be applied to a variety of alloy parts (so-called “superalloys”) that must be protected from thermally and chemically harsh environments. Examples of such components include nozzles, buckets, shrouds, airfoils and other hardware found in most gas turbine engines.
コーティングは公知のTBC組成物であればよく、例えば、堆積したときに、従来のコーティングと同等以上のスポーリング耐性を維持しつつタービン部品のエロージョン耐性を大幅に高める組成をもつ遮熱セラミック層からなるものでよい。コーティング組成物を堆積し、堆積後に亀裂を生じさせればよい。 The coating may be any known TBC composition, for example from a thermal barrier ceramic layer having a composition that when deposited increases the erosion resistance of turbine components significantly while maintaining a spalling resistance equal to or better than conventional coatings. It may be. A coating composition may be deposited and cracked after deposition.
高圧タービンブレードは、本発明のコーティングを施工し得る基材の主な例である。通例、タービンブレードは翼形部とプラットフォームを有しており、ガスタービンの作動時にはこれらに向かって高温燃焼ガスが流れる。そのため、翼形部の表面は酸化、腐食及びエロージョンによる作用を受ける。翼形部は通常ブレードの根元部に形成されたダブテールでタービンディスクに植え込まれる。 High pressure turbine blades are a prime example of a substrate on which the coating of the present invention can be applied. Typically, turbine blades have airfoils and platforms, and hot combustion gases flow toward them during gas turbine operation. Therefore, the airfoil surface is subject to oxidation, corrosion, and erosion. The airfoil is typically implanted in the turbine disk with a dovetail formed at the root of the blade.
図1に、基材に設けられた本発明に従う遮熱コーティングを示す。コーティング10はボンドコート14上の遮熱セラミック層12を含んでおり、ボンドコート14は、タービンブレードの母材を形成する合金基材16の上に設けられている。基材に適した材料としては、鉄基、ニッケル基及び/又はコバルト基超合金がある。ボンドコートは耐酸化性であり、被覆したブレードの高温暴露時にボンドコートの表面にアルミナ層18を形成する。アルミナ層は、その下の超合金基材16を酸化から保護するとともに、セラミック層が接着する表面を与える。
FIG. 1 shows a thermal barrier coating according to the present invention provided on a substrate. The
層12には、応力耐性を増大及び/又は惹起するように形成された縦亀裂が存在する。衝撃波暴露による亀裂の誘起によって、亀裂を材料、特に材料の所望の領域に所望の密度で導入することができる。亀裂の形成には、結合アブレーション(coupled ablation)を用いて材料内に衝撃波を誘起してもよい。結合アブレーションは、レーザーパルスをカップリング材料に通してアブレーション材料中に照射することによって衝撃波を発生させるレーザーショックピーニング法と同様の方法でパルスレーザーを用いることによって達成できる。
従来技術では、レーザーショックピーニングは材料の緻密化に使用される。しかし、TBCの場合には、得られる衝撃波によってコーティングに微小亀裂を誘起して応力耐性を与えることができる。その他の衝撃波暴露手段を用いてもよい。また、その他の結合アブレーション手段も可能である。 In the prior art, laser shock peening is used for densification of materials. However, in the case of TBC, the resulting shock wave can induce microcracks in the coating to provide stress resistance. Other shock wave exposure means may be used. Other coupled ablation means are also possible.
例示的な実施形態では、応力耐性TBCはレーザーショックピーニング法を用いて形成できる。遮熱コーティングは大気プラズマ溶射を用いて金属基材に施工できる。ボンドコートはMCrAlYであり(式中、Mは鉄、コバルト及び/又はニッケルである)、TBCは8%イットリア安定化ジルコニアその他のタービン部品の遮熱コーティングとして用いられるセラミック系コーティングであればよい。基材に施工した後、TBCをレーザーショックピーニングすればよい。 In an exemplary embodiment, the stress resistant TBC can be formed using a laser shock peening method. Thermal barrier coatings can be applied to metal substrates using atmospheric plasma spraying. The bond coat is MCrAlY (where M is iron, cobalt and / or nickel) and the TBC may be a ceramic based coating used as a thermal barrier coating for 8% yttria stabilized zirconia and other turbine components. What is necessary is just to laser-shock-peen TBC after constructing to a base material.
TBCに微小亀裂を誘起するのに用いられるエネルギーは好ましくは基材を実質的に変形させないものとすべきである。例えば、コーティングが非常に薄いことがあるので、エネルギーは比較的低くすべきである。基材を実質的に変形させるには、衝撃波のエネルギーが基材の塑性降伏点以上の応力を付与するのに十分であるがその圧縮強さ未満である必要がある。これとは対照的に、TBCに微小亀裂を誘起するのに用いられるエネルギーはTBCの圧縮強度を超える応力を付与するのに十分であるべきである。金属基材は延性であり、セラミックTBCは脆性であるので、選択又は決定できる特定のレベルのエネルギーが存在するであろう。 The energy used to induce microcracks in the TBC should preferably not substantially deform the substrate. For example, the energy should be relatively low since the coating can be very thin. In order to substantially deform the base material, it is necessary that the energy of the shock wave is sufficient to apply a stress equal to or higher than the plastic yield point of the base material, but less than its compressive strength. In contrast, the energy used to induce microcracks in the TBC should be sufficient to apply a stress that exceeds the compressive strength of the TBC. Since metal substrates are ductile and ceramic TBCs are brittle, there will be a certain level of energy that can be selected or determined.
図2に、TBCに亀裂を誘起するのに必要なエネルギーの量の概要を示す。材料を破壊するための(単位面積当たり)エネルギーの量は応力/歪み曲線の下の面積で表される。図2は典型的な多孔質TBCコーティングを示す。多孔質のため「有効」断面積が低減し、そのため破壊に必要な力は下がる(エネルギーは圧力又は応力ではなく力の関数であるため)。こうして、曲線の下の面積はかなり減少する。 FIG. 2 outlines the amount of energy required to induce cracks in the TBC. The amount of energy (per unit area) to break the material is expressed as the area under the stress / strain curve. FIG. 2 shows a typical porous TBC coating. The porosity reduces the “effective” cross-sectional area, thus reducing the force required for failure (since energy is a function of force rather than pressure or stress). Thus, the area under the curve is significantly reduced.
好ましい実施形態では、遮熱コーティングは(例えば、レーザーアブレーションによる)衝撃波を受け、破断する。必要とされるエネルギーは衝撃波源(レーザーアブレーションなど)及び/又は亀裂を生じさせる材料の特性に依存し得る。 In a preferred embodiment, the thermal barrier coating receives a shock wave (eg, by laser ablation) and breaks. The energy required may depend on the shock wave source (such as laser ablation) and / or the properties of the material causing the crack.
こうして、実施形態では、プロセス(例えば、レーザーアブレーション又はレーザーショックピーニング)によって微細構造的特徴(例えば、縦亀裂)を生じさせることができる。これによって、タービン部品の耐久性の向上及び/又は製造コストの低減が達成される。例えば、単なる緻密なコーティングを部品に施工し、縦亀裂が必要とされる領域に縦亀裂を誘起させればよい。すなわち、プロセスパラメーターによってコーティング全体に亀裂を導入する必要はない。 Thus, in an embodiment, the process (eg, laser ablation or laser shock peening) can produce microstructural features (eg, longitudinal cracks). This achieves improved durability of the turbine components and / or reduced manufacturing costs. For example, a simple dense coating may be applied to a part to induce a vertical crack in an area where a vertical crack is required. That is, it is not necessary to introduce cracks throughout the coating depending on the process parameters.
現時点で最も実用的で好ましいと思料される実施形態に関して本発明を説明してきたが、本発明は開示した実施形態に限定されるものではなく、特許請求の範囲に記載された技術的思想及び技術的範囲に属する様々な変更及び均等を包含する。 Although the present invention has been described with respect to the most practical and preferred embodiments at the present time, the present invention is not limited to the disclosed embodiments, and the technical ideas and techniques described in the claims. Various modifications and equivalents belonging to the scope are included.
Claims (9)
ガスタービン部品をなす金属基材上に、MCrAlY(式中、Mは鉄、コバルト及び/又はニッケルである)を含むボンドコートを堆積する段階と、
上記ボンドコート上に、イットリア安定化ジルコニアを含む遮熱コーティングを堆積する段階と、
上記遮熱コーティングの少なくとも一部を衝撃波に付して、金属基材を実質的に変形させずに遮熱コーティングに微小亀裂を形成させる段階と
を含んでなる方法。 A method of forming a crack in a thermal barrier coating applied to a gas turbine component,
Depositing a bond coat comprising MCrAlY (wherein M is iron, cobalt and / or nickel) on a metal substrate forming a gas turbine component;
Depositing a thermal barrier coating comprising yttria stabilized zirconia on the bond coat;
Subjecting at least a portion of the thermal barrier coating to a shock wave to form microcracks in the thermal barrier coating without substantially deforming the metal substrate.
金属系基材上に、遮熱コーティングを含むセラミック系コーティングを堆積する段階と、
前記セラミック系コーティングの少なくとも一部を衝撃波に付して、金属系基材を実質的に変形させずにセラミック系コーティングに微小亀裂を形成させる段階と
を含んでなる方法。 A method of forming cracks in a ceramic coating,
Depositing a ceramic-based coating including a thermal barrier coating on a metal-based substrate;
Subjecting at least a portion of the ceramic coating to a shock wave to form microcracks in the ceramic coating without substantially deforming the metal substrate.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/181,422 US20100028711A1 (en) | 2008-07-29 | 2008-07-29 | Thermal barrier coatings and methods of producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010043351A true JP2010043351A (en) | 2010-02-25 |
Family
ID=40957720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009129739A Pending JP2010043351A (en) | 2008-07-29 | 2009-05-29 | Thermal barrier coating and method for production thereof |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100028711A1 (en) |
EP (1) | EP2149623A3 (en) |
JP (1) | JP2010043351A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012180549A (en) * | 2011-02-28 | 2012-09-20 | Mitsubishi Heavy Ind Ltd | Method for partially repairing thermal barrier coating |
JP2015110839A (en) * | 2014-12-15 | 2015-06-18 | 三菱重工業株式会社 | Method for partially repairing heat-shield coating |
JP2016508202A (en) * | 2012-11-28 | 2016-03-17 | ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. | Seal system for use in a turbomachine and method of making the same |
US10174412B2 (en) * | 2016-12-02 | 2019-01-08 | General Electric Company | Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings |
JP2019532174A (en) * | 2016-08-25 | 2019-11-07 | サフラン | Method for generating a thermal barrier system on a metal substrate of a turbine engine component |
JP2021535314A (en) * | 2018-08-21 | 2021-12-16 | クロマロイ ガス タービン エルエルシー | Improved 1st stage turbine nozzle |
US12025425B2 (en) | 2018-12-06 | 2024-07-02 | Ge Infrastructure Technology Llc | Non-invasive quantitative multilayer assessment method and resulting multilayer component |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100136296A1 (en) * | 2006-11-30 | 2010-06-03 | United Technologies Corporation | Densification of coating using laser peening |
US8906181B2 (en) | 2011-06-30 | 2014-12-09 | United Technologies Corporation | Fan blade finishing |
US9581032B2 (en) * | 2013-03-15 | 2017-02-28 | United Technologies Corporation | Coated articles and manufacture methods |
US20150125681A1 (en) | 2013-11-06 | 2015-05-07 | United Technologies Corporation | High Temperature Imaging Media for Digital Image Correlation |
FR3013360B1 (en) | 2013-11-19 | 2015-12-04 | Snecma | INTEGRATED SINTERING PROCESS FOR MICROFILERATION AND EROSION PROTECTION OF THERMAL BARRIERS |
EP3239467A1 (en) * | 2016-04-27 | 2017-11-01 | Siemens Aktiengesellschaft | Flow machine, rotor blade and housing |
US10662891B2 (en) * | 2017-04-04 | 2020-05-26 | GM Global Technology Operations LLC | Laser remelting to enhance cylinder bore mechanical properties |
CN113930710B (en) * | 2021-10-14 | 2023-09-26 | 广东省科学院新材料研究所 | Thermal barrier coating material, preparation method and application thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62274062A (en) * | 1986-05-23 | 1987-11-28 | Toyota Motor Corp | Production of ceramic coated member |
JPH09327779A (en) * | 1996-06-07 | 1997-12-22 | Mitsubishi Heavy Ind Ltd | Method for forming crack in ceramic film, and ceramic film parts formed by the method |
US20030207079A1 (en) * | 2001-08-02 | 2003-11-06 | Siemens Westinghouse Power Corporation | Segmented thermal barrier coating and method of manufacturing the same |
JP2004149915A (en) * | 2002-09-06 | 2004-05-27 | Kansai Electric Power Co Inc:The | Heat-shielding ceramic coating parts and manufacturing method thereof |
JP2007182631A (en) * | 2006-01-06 | 2007-07-19 | General Electric Co <Ge> | Laminated thermal barrier coating containing lanthanide series oxide with improved resistance to degradation by cmas |
JP2009041059A (en) * | 2007-08-08 | 2009-02-26 | Hitachi Ltd | High-temperature wear-resistant member and its manufacturing method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4457948A (en) * | 1982-07-26 | 1984-07-03 | United Technologies Corporation | Quench-cracked ceramic thermal barrier coatings |
US4937421A (en) | 1989-07-03 | 1990-06-26 | General Electric Company | Laser peening system and method |
US5352540A (en) * | 1992-08-26 | 1994-10-04 | Alliedsignal Inc. | Strain-tolerant ceramic coated seal |
US5591009A (en) | 1995-01-17 | 1997-01-07 | General Electric Company | Laser shock peened gas turbine engine fan blade edges |
US6224963B1 (en) * | 1997-05-14 | 2001-05-01 | Alliedsignal Inc. | Laser segmented thick thermal barrier coatings for turbine shrouds |
US6544346B1 (en) * | 1997-07-01 | 2003-04-08 | General Electric Company | Method for repairing a thermal barrier coating |
US6120624A (en) * | 1998-06-30 | 2000-09-19 | Howmet Research Corporation | Nickel base superalloy preweld heat treatment |
WO2002103074A1 (en) * | 2001-06-15 | 2002-12-27 | Mitsubishi Heavy Industries, Ltd. | Thermal barrier coating material and method for production thereof, gas turbine member using the thermal barrier coating material, and gas turbine |
US6730413B2 (en) | 2001-07-31 | 2004-05-04 | General Electric Company | Thermal barrier coating |
US7842402B2 (en) * | 2006-03-31 | 2010-11-30 | General Electric Company | Machine components and methods of fabricating |
US20100224602A1 (en) * | 2009-03-06 | 2010-09-09 | General Electric Company | Method and system for removing thermal barrier coating |
-
2008
- 2008-07-29 US US12/181,422 patent/US20100028711A1/en not_active Abandoned
-
2009
- 2009-05-28 EP EP09161428A patent/EP2149623A3/en not_active Withdrawn
- 2009-05-29 JP JP2009129739A patent/JP2010043351A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62274062A (en) * | 1986-05-23 | 1987-11-28 | Toyota Motor Corp | Production of ceramic coated member |
JPH09327779A (en) * | 1996-06-07 | 1997-12-22 | Mitsubishi Heavy Ind Ltd | Method for forming crack in ceramic film, and ceramic film parts formed by the method |
US20030207079A1 (en) * | 2001-08-02 | 2003-11-06 | Siemens Westinghouse Power Corporation | Segmented thermal barrier coating and method of manufacturing the same |
JP2004149915A (en) * | 2002-09-06 | 2004-05-27 | Kansai Electric Power Co Inc:The | Heat-shielding ceramic coating parts and manufacturing method thereof |
JP4434667B2 (en) * | 2002-09-06 | 2010-03-17 | 関西電力株式会社 | Manufacturing method of heat shielding ceramic coating parts |
JP2007182631A (en) * | 2006-01-06 | 2007-07-19 | General Electric Co <Ge> | Laminated thermal barrier coating containing lanthanide series oxide with improved resistance to degradation by cmas |
JP2009041059A (en) * | 2007-08-08 | 2009-02-26 | Hitachi Ltd | High-temperature wear-resistant member and its manufacturing method |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012180549A (en) * | 2011-02-28 | 2012-09-20 | Mitsubishi Heavy Ind Ltd | Method for partially repairing thermal barrier coating |
JP2016508202A (en) * | 2012-11-28 | 2016-03-17 | ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. | Seal system for use in a turbomachine and method of making the same |
JP2015110839A (en) * | 2014-12-15 | 2015-06-18 | 三菱重工業株式会社 | Method for partially repairing heat-shield coating |
JP2019532174A (en) * | 2016-08-25 | 2019-11-07 | サフラン | Method for generating a thermal barrier system on a metal substrate of a turbine engine component |
JP7030106B2 (en) | 2016-08-25 | 2022-03-04 | サフラン | Methods for creating thermal barrier systems on metal substrates for turbine engine components |
US10174412B2 (en) * | 2016-12-02 | 2019-01-08 | General Electric Company | Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings |
US11525179B2 (en) | 2016-12-02 | 2022-12-13 | General Electric Company | Methods for forming vertically cracked thermal barrier coatings and articles including vertically cracked thermal barrier coatings |
JP2021535314A (en) * | 2018-08-21 | 2021-12-16 | クロマロイ ガス タービン エルエルシー | Improved 1st stage turbine nozzle |
JP7332683B2 (en) | 2018-08-21 | 2023-08-23 | クロマロイ ガス タービン エルエルシー | Improved first stage turbine nozzle |
US12025425B2 (en) | 2018-12-06 | 2024-07-02 | Ge Infrastructure Technology Llc | Non-invasive quantitative multilayer assessment method and resulting multilayer component |
Also Published As
Publication number | Publication date |
---|---|
US20100028711A1 (en) | 2010-02-04 |
EP2149623A2 (en) | 2010-02-03 |
EP2149623A3 (en) | 2010-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010043351A (en) | Thermal barrier coating and method for production thereof | |
US7666528B2 (en) | Protection of thermal barrier coating by a sacrificial coating | |
JP5225551B2 (en) | Turbine component and manufacturing method thereof | |
US6730413B2 (en) | Thermal barrier coating | |
JP4942926B2 (en) | Method of repairing a part using an environmental bond film and the resulting repaired part | |
JP2008045211A (en) | Turbine engine component, and coating method thereof | |
JP2007231422A (en) | Coating process and coated article | |
JP2007187152A (en) | Corrosion inhibiting ceramic coating and method of application | |
JP2007211342A (en) | Coating method and coated article | |
EP1889948A2 (en) | Dual layer ceramic coating | |
EP3748031B1 (en) | Reflective coating and coating process therefor | |
WO2009059859A2 (en) | Coating system | |
JPS63118059A (en) | Adiabatic coating method and gas turbine combustor | |
EP1627862A1 (en) | Ceramic compositions for thermal barrier coatings with improved mechanical properties | |
EP3002348B1 (en) | Process for coating gas turbine engine components comprising multi-phase pre-reacted thermal barrier coatings and coated gas turbine engine components | |
US20100224602A1 (en) | Method and system for removing thermal barrier coating | |
JP2007239101A (en) | Bond coating process for thermal barrier coating | |
US20100326971A1 (en) | Thermal barrier coating removal via shockwave stresses | |
Stolle | Conventional and advanced coatings for turbine airfoils | |
EP2423347A1 (en) | Method for forming a thermal barrier coating and a turbine component with the thermal barrier coating | |
CN114585769B (en) | Aircraft component made of a superalloy containing rhenium and/or ruthenium and method for producing the same | |
EP3144408B1 (en) | Treatment process, treatment composition | |
US10514170B2 (en) | Treatment process, rejuvenation process, treatment composition, and treated component | |
Lee et al. | Effects of microstructure design and feedstock species in the bond coat on thermal stability of thermal barrier coatings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140624 |