[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2010042344A - Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst - Google Patents

Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst Download PDF

Info

Publication number
JP2010042344A
JP2010042344A JP2008207614A JP2008207614A JP2010042344A JP 2010042344 A JP2010042344 A JP 2010042344A JP 2008207614 A JP2008207614 A JP 2008207614A JP 2008207614 A JP2008207614 A JP 2008207614A JP 2010042344 A JP2010042344 A JP 2010042344A
Authority
JP
Japan
Prior art keywords
catalyst
phosphorus
hours
lower olefin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008207614A
Other languages
Japanese (ja)
Inventor
Tomoya Inoue
朋也 井上
Kenichiro Otaki
憲一郎 大瀧
Hiroki Sugiyama
洋貴 杉山
Yoshimichi Kiyozumi
嘉道 清住
Satoshi Hamakawa
聡 濱川
Fujio Mizukami
富士夫 水上
Takuo Furukawa
拓郎 古川
Masao Kawahara
正雄 川原
Goro Sawada
悟郎 澤田
Hiroshi Shoji
宏 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Maruzen Petrochemical Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2008207614A priority Critical patent/JP2010042344A/en
Publication of JP2010042344A publication Critical patent/JP2010042344A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zeolite type catalyst capable of efficiently manufacturing a lower olefin by suppressing the formation of aromatic components and excellent in the lasting properties of catalytic activity, its manufacturing method and a method of manufacturing the lower olefin using the zeolite type catalyst. <P>SOLUTION: The catalyst for manufacturing the lower olefin comprises crystalline aluminosilicate on which an alkaline earth metal, a rare-earth element and phosphorus are supported and is characterized in that phosphorus and the components other than phosphorus are supported on the crystalline aluminosilicate in separate processes. The method of manufacturing the catalyst for manufacturing the lower olefine is characterized in that the alkaline earth metal and the components other than phosphorus are supported on the crystalline aluminosilicate in the separate processes when the catalyst for manufacturing the lower olefin is manufactured by supporting the alkaline earth metal, the rare-earth element and phosphorus on the crystalline aluminosilicate. Further, the method of manufacturing the lower olefin is characterized by using the catalyst for manufacturing the lower olefin. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、低級オレフィン製造用触媒、その製造方法及びこれを用いた低級オレフィンの製造方法に関する。更に詳しくは、芳香族成分の生成を抑制し、低級オレフィンを効率よく製造することができると共に、触媒活性の持続性に優れたゼオライト系触媒、その製造方法及びこれを用いた低級オレフィンの製造方法に関するものである。   The present invention relates to a catalyst for producing a lower olefin, a production method thereof and a production method of a lower olefin using the same. More specifically, a zeolite catalyst capable of efficiently producing a lower olefin while suppressing the formation of aromatic components and having excellent catalytic activity sustainability, a production method thereof, and a production method of a lower olefin using the same It is about.

エチレン、プロピレン等の低級オレフィンは、各種化学品の基礎原料として重要な物質である。従来、これらの低級オレフィンの製造方法としては、エタン、プロパン、ブタン等のガス状炭化水素或いはナフサ等の液状炭化水素を原料とし、外熱式の管状炉内で水蒸気雰囲気下に加熱分解する方法が広く実施されている。しかしながら、この方法では、オレフィン収率を高めるためには800℃以上の高温が必要であり、そのような温度条件では、オレフィンだけではなく芳香族成分も多く生成することが知られている。この芳香族成分は、加熱分解する方法以外の製造方法により容易に製造できることから、低級オレフィン類を選択的に製造する技術が求めてられている。このため、触媒を用いたオレフィンの製造方法が種々検討されてきており、それらの中でも固体酸、特にゼオライト系触媒を用いた場合は、比較的低温(350〜700℃)で上記原料を分解できるため、この方法について数多くの例が報告されている。   Lower olefins such as ethylene and propylene are important substances as basic raw materials for various chemicals. Conventionally, as a method for producing these lower olefins, gas hydrocarbons such as ethane, propane, and butane or liquid hydrocarbons such as naphtha are used as raw materials and thermally decomposed in a steam atmosphere in an externally heated tubular furnace. Is widely implemented. However, this method requires a high temperature of 800 ° C. or higher to increase the olefin yield, and it is known that not only olefin but also aromatic components are produced under such temperature conditions. Since this aromatic component can be easily produced by a production method other than the method of thermally decomposing, a technique for selectively producing lower olefins has been demanded. For this reason, various methods for producing olefins using catalysts have been studied, and among them, when a solid acid, particularly a zeolitic catalyst is used, the above raw materials can be decomposed at a relatively low temperature (350 to 700 ° C.). Therefore, many examples of this method have been reported.

例えば特許文献1では、クラッキング活性の指標であるα値を特定の範囲に制御したZSM−5(結晶性アルミノシリケート)による低級オレフィンの製造方法が開示されており、又、特許文献2では酸量及びZSM−5の結晶サイズを特定の範囲に制御したZSM−5型触媒を用いたナフサの接触分解法が開示されている。しかしながら、これらの方法では芳香族成分(ベンゼン、トルエン、キシレン、以下「BTX」と記載する。)が20〜25質量%程度生成すると共に、エチレン及びプロピレン収率は35〜45質量%程度に留まり、オレフィンを効率的に得ることはできなかった。   For example, Patent Document 1 discloses a method for producing a lower olefin using ZSM-5 (crystalline aluminosilicate) in which the α value that is an index of cracking activity is controlled within a specific range, and Patent Document 2 discloses an acid amount. And a catalytic cracking method of naphtha using a ZSM-5 type catalyst in which the crystal size of ZSM-5 is controlled in a specific range. However, in these methods, aromatic components (benzene, toluene, xylene, hereinafter referred to as “BTX”) are produced in an amount of about 20 to 25% by mass, and the yields of ethylene and propylene remain at about 35 to 45% by mass. The olefin could not be obtained efficiently.

又、特許文献3及び4には、希土類元素及びリンを担持したZSM−5によるパラフィン類及びナフサの接触分解法が開示されている。この技術では希土類元素を添加によりBTX収率を10質量%未満まで低減させ、エチレン及びプロピレン収率を50質量%まで向上させることができ、更にリンを添加することにより触媒の耐久性を向上させることができることが示されているが、BTX生成の低減効果及び触媒寿命は不充分であり、更に改善が望まれていた。   Patent Documents 3 and 4 disclose a catalytic cracking method of paraffins and naphtha using ZSM-5 carrying rare earth elements and phosphorus. In this technology, the addition of rare earth elements can reduce the BTX yield to less than 10% by mass, improve the yield of ethylene and propylene to 50% by mass, and further improve the durability of the catalyst by adding phosphorus. Although it has been shown that the reduction effect of BTX formation and catalyst life are insufficient, further improvement has been desired.

更に、特許文献5では、カルシウム及びリンを担持したZSM−5による、メタノールを原料とした低級オレフィンの製造方法が開示されており、カルシウムとリンを導入することにより低級オレフィンの選択性及び触媒寿命が改善されることが示されている。しかしながら、分子内に酸素原子を含むために比較的温和な条件で接触分解を行うことのできるメタノールを含まない、他の炭化水素原料を用いた場合は、より高い温度で接触分解が行われるため、芳香族及びコーク成分が多く生成し、低級オレフィンの選択性及び触媒寿命改善の効果は充分ではなかった。   Furthermore, Patent Document 5 discloses a method for producing a lower olefin using methanol as a raw material by ZSM-5 carrying calcium and phosphorus, and the selectivity and catalyst life of the lower olefin by introducing calcium and phosphorus. Has been shown to improve. However, when other hydrocarbon raw materials that do not contain methanol that can be catalytically decomposed under relatively mild conditions because of containing oxygen atoms in the molecule, catalytic cracking is performed at a higher temperature. A lot of aromatic and coke components were produced, and the effect of improving the selectivity of the lower olefin and the catalyst life was not sufficient.

同様に、希土類元素及び/又はアルカリ土類金属とリンを担持した触媒を用いる低級オレフィンの製造方法を開示するものとして、特許文献6及び7等が知られている。特許文献6では、酸化マグネシウム、しゅう酸カルシウム、酸化ランタン等の非水溶性金属塩とリン酸化合物を含むZSM−5を触媒としたオレフィンの製造方法が開示されているが、原料転化率が80質量%以下、エチレン及びプロピレン収率が40質量%未満と低く、又、特許文献7では、マグネシウムとリン、又は、マグネシウムとリンとランタンを含む混合溶液をZSM−5に担持した触媒を用いたオレフィンの製造方法が開示されているが、原料転化率が70質量%未満と低く、又、マグネシウムとリンを用いた場合には高い選択性を示すものの、マグネシウムとリンとランタンの三成分を併用した場合には、かえって選択性が低下するなど、各成分の特性を充分に生かすことができないという問題があった。   Similarly, Patent Documents 6 and 7 disclose a method for producing a lower olefin using a catalyst supporting a rare earth element and / or an alkaline earth metal and phosphorus. Patent Document 6 discloses an olefin production method using ZSM-5 containing a water-insoluble metal salt such as magnesium oxide, calcium oxalate, and lanthanum oxide and a phosphoric acid compound as a catalyst. Less than 40% by mass, the yield of ethylene and propylene is as low as less than 40% by mass, and Patent Document 7 uses a catalyst in which a mixed solution containing magnesium and phosphorus or magnesium, phosphorus and lanthanum is supported on ZSM-5. Although a method for producing olefins is disclosed, the raw material conversion is as low as less than 70% by mass, and when magnesium and phosphorus are used, the selectivity is high, but the three components of magnesium, phosphorus and lanthanum are used in combination. In such a case, there is a problem that the characteristics of each component cannot be fully utilized, such as a decrease in selectivity.

上記のように、希土類元素、アルカリ土類金属及びリンで担持されたZSM−5によるオレフィンの製造方法はいくつか開示されているが、その性能はいまだ工業的に満足できるものではなく、更なるオレフィン収率の向上、触媒寿命の延長が望まれていた。
特表平3−504737号公報 特開平6−346062号公報 特開平11−180902号公報 特開平11−253807号公報 特開昭61−15848号公報 米国特許公開2007/0082809A1号公報 中国特許公開1414068号公報
As described above, several methods for producing olefins using ZSM-5 supported by rare earth elements, alkaline earth metals and phosphorus have been disclosed, but their performance is still not industrially satisfactory. Improvement in olefin yield and extension of catalyst life have been desired.
Japanese Patent Publication No. 3-504737 JP-A-6-346062 Japanese Patent Laid-Open No. 11-180902 JP 11-253807 A Japanese Patent Laid-Open No. 61-15848 US Patent Publication No. 2007 / 0082809A1 Chinese Patent Publication No. 14104068

本発明の目的は、芳香族成分の生成を抑制し、低級オレフィンを効率よく製造することができると共に、触媒活性の持続性に優れたゼオライト系触媒、その製造方法及びこれを用いた低級オレフィンの製造方法を提供することにある。   An object of the present invention is to suppress the production of aromatic components and efficiently produce a lower olefin, and also to provide a zeolite catalyst excellent in sustainability of catalytic activity, a production method thereof, and a lower olefin using the same. It is to provide a manufacturing method.

本発明者らは、アルカリ土類金属、希土類元素及びリンを担持した従来の触媒の調製法では、前記成分を担持する際に、全ての成分を含むスラリー状の混合液にゼオライトを含浸するなどして、全ての成分が同時に担持されていたことに注目し、前記課題を解決すべく鋭意検討を重ねた結果、ゼオライトにアルカリ土類金属、希土類元素及びリンを担持する際に、各成分を同時に担持するのではなく、リン成分とそれ以外の成分とを別工程で担持することにより、芳香族成分の生成を抑制し、低級オレフィンを効率よく製造することができると共に、長期に亘って活性を維持することが可能な触媒が得られることを見出し、本発明を完成させた。   In the method for preparing a conventional catalyst supporting alkaline earth metal, rare earth element and phosphorus, the present inventors impregnate a slurry-like mixed liquid containing all components with zeolite when supporting the components. Thus, paying attention to the fact that all the components were supported simultaneously, and as a result of intensive studies to solve the above problems, each component was added when the alkaline earth metal, rare earth element and phosphorus were supported on the zeolite. By supporting the phosphorus component and the other components in separate steps instead of simultaneously supporting them, the production of aromatic components can be suppressed, and lower olefins can be produced efficiently, and they are active over a long period of time. The present inventors have found that a catalyst capable of maintaining the above can be obtained and completed the present invention.

即ち、本発明は、前記課題を解決するために以下の手段を提供するものである。   That is, the present invention provides the following means in order to solve the above problems.

[1] アルカリ土類金属、希土類元素及びリンを担持した結晶性アルミノシリケートであり、リンとリン以外の前記成分とを別工程で担持してなることを特徴とする低級オレフィン製造用触媒。 [1] A catalyst for producing a lower olefin, which is a crystalline aluminosilicate carrying an alkaline earth metal, a rare earth element and phosphorus, and carrying phosphorus and the above-mentioned components other than phosphorus in separate steps.

[2]含浸工程、乾燥工程及び焼成工程を含む工程により、アルカリ土類金属、希土類元素及びリンを結晶性アルミノシリケートに担持してなることを特徴とする[1]に記載の低級オレフィン製造用触媒。 [2] The lower olefin production according to [1], wherein the alkaline earth metal, rare earth element and phosphorus are supported on the crystalline aluminosilicate by the steps including the impregnation step, the drying step and the firing step. catalyst.

[3]リン以外の成分をそれぞれ別工程で担持してなることを特徴とする[1]又は[2]に記載の低級オレフィン製造用触媒。 [3] The catalyst for producing a lower olefin according to [1] or [2], wherein components other than phosphorus are supported in separate steps.

[4]リン以外の成分を同一工程で担持してなることを特徴とする[1]又は[2]に記載の低級オレフィン製造用触媒。 [4] The catalyst for producing a lower olefin according to [1] or [2], wherein components other than phosphorus are supported in the same step.

[5]結晶性アルミノシリケートがZSM−5であることを特徴とする[1]〜[4]のいずれかに記載の低級オレフィン製造用触媒。 [5] The catalyst for producing a lower olefin according to any one of [1] to [4], wherein the crystalline aluminosilicate is ZSM-5.

[6]アルカリ土類金属を0.1〜20質量%含有することを特徴とする[1]〜[5]のいずれかに記載の低級オレフィン製造用触媒。 [6] The catalyst for producing a lower olefin according to any one of [1] to [5], containing 0.1 to 20% by mass of an alkaline earth metal.

[7]希土類元素を1〜20質量%含有することを特徴とする[1]〜[6]のいずれかに記載の低級オレフィン製造用触媒。 [7] The catalyst for producing a lower olefin according to any one of [1] to [6], which contains 1 to 20% by mass of a rare earth element.

[8]リンを0.1〜20質量%含有することを特徴とする[1]〜[7]のいずれかに記載の低級オレフィン製造用触媒。 [8] The catalyst for producing a lower olefin according to any one of [1] to [7], containing 0.1 to 20% by mass of phosphorus.

[9]結晶性アルミノシリケートに、アルカリ土類金属、希土類元素及びリンを担持して低級オレフィン製造用触媒を製造する際、リンとそれ以外の前記成分とを別工程で担持することを特徴とする低級オレフィン製造用触媒の製造方法。 [9] When producing a catalyst for producing a lower olefin by supporting an alkaline earth metal, a rare earth element and phosphorus on a crystalline aluminosilicate, phosphorus and the other components are supported in separate steps. A method for producing a catalyst for producing a lower olefin.

[10]含浸工程、乾燥工程及び焼成工程を含む工程により、アルカリ土類金属、希土類元素及びリンを結晶性アルミノシリケートに担持することを特徴とする[9]に記載の低級オレフィン製造用触媒の製造方法。 [10] The catalyst for producing a lower olefin according to [9], wherein the alkaline earth metal, rare earth element and phosphorus are supported on the crystalline aluminosilicate by the steps including the impregnation step, the drying step and the firing step. Production method.

[11] [1]〜[8]のいずれかに記載の低級オレフィン製造用触媒を用いた低級オレフィンの製造方法。 [11] A method for producing a lower olefin using the catalyst for producing a lower olefin according to any one of [1] to [8].

[12]水蒸気の存在下に行う[11]に記載の低級オレフィンの製造方法。 [12] The method for producing a lower olefin according to [11], which is carried out in the presence of water vapor.

本発明の低級オレフィン製造用触媒は、芳香族成分の生成を抑制し、低級オレフィンを効率よく製造することができ、触媒活性の持続性に優れ、接触分解反応における低級オレフィン製造用触媒として好適に用いることができる。   The catalyst for producing lower olefins of the present invention can suppress the production of aromatic components, can produce lower olefins efficiently, has excellent catalytic activity, and is suitable as a catalyst for producing lower olefins in catalytic cracking reactions. Can be used.

本発明の触媒は、結晶性アルミノシリケートを主成分とし、これにアルカリ土類金属、希土類元素及びリンを担持してなる。主成分の結晶性アルミノシリケートしては、MFI構造を持つもの、中でもZSM−5が特に好ましい。この結晶性アルミノシリケートのSiO/Alモル比は、好ましくは20〜600、更に好ましくは22〜300、特に好ましくは25〜100である。 The catalyst of the present invention comprises a crystalline aluminosilicate as a main component and supports an alkaline earth metal, a rare earth element and phosphorus. As the main component crystalline aluminosilicate, one having an MFI structure, particularly ZSM-5 is particularly preferable. The SiO 2 / Al 2 O 3 molar ratio of this crystalline aluminosilicate is preferably 20 to 600, more preferably 22 to 300, and particularly preferably 25 to 100.

結晶性アルミノシリケートに担持させるアルカリ土類金属としては、マグネシウム、カルシウム、ストロンチウム、バリウム等を何れも好適に使用することができ、これらの中でも特にマグネシウム、カルシウムが好ましい。アルカリ土類金属はそれぞれを単独で使用しても、又、2種以上を混合してもよい。アルカリ土類金属の含有量は、本発明の触媒に対し元素換算で、好ましくは0.1〜20質量%、更に好ましくは0.2〜15質量%、特に好ましくは0.5〜10質量%である。   As the alkaline earth metal supported on the crystalline aluminosilicate, any of magnesium, calcium, strontium, barium and the like can be suitably used, and among these, magnesium and calcium are particularly preferable. The alkaline earth metals may be used alone or in combination of two or more. The content of the alkaline earth metal is preferably 0.1 to 20% by mass, more preferably 0.2 to 15% by mass, and particularly preferably 0.5 to 10% by mass in terms of elements with respect to the catalyst of the present invention. It is.

希土類元素としては、どのようなものでも使用可能であるが、好ましくはランタン、セリウム、プラセオジウム、ネオジム、サマリウム、ガドリニウム、ジスプロジウム等を挙げることができ、これらの中でも特にランタン、セリウム、サマリウムが好ましい。希土類元素はそれぞれを単独で使用しても、又、2種以上を混合してもよい。希土類元素の含有量は、本発明の触媒に対し元素換算で、好ましくは1〜20質量%、更に好ましくは2〜18質量%、特に好ましくは5〜15質量%である。   Any element can be used as the rare earth element, but lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprodium, and the like can be mentioned. Of these, lanthanum, cerium, and samarium are particularly preferable. . The rare earth elements may be used alone or in combination of two or more. The content of the rare earth element is preferably 1 to 20% by mass, more preferably 2 to 18% by mass, and particularly preferably 5 to 15% by mass in terms of element with respect to the catalyst of the present invention.

リンの含有量は、本発明の触媒に対し元素換算で、好ましくは0.1〜20質量%、更に好ましくは1〜15質量%、特に好ましくは1.5〜10質量%である。   The phosphorus content is preferably 0.1 to 20% by mass, more preferably 1 to 15% by mass, and particularly preferably 1.5 to 10% by mass in terms of elements with respect to the catalyst of the present invention.

本発明の触媒は、少なくともリンと、リン以外の成分(アルカリ土類金属、希土類元素)とを、結晶性アルミノシリケートに別工程で担持することにより得られる。ここで、アルカリ土類金属、希土類元素及びリンを担持する順序に特に制限はなく、リン以外の成分を担持した後にリンを担持してもよいし、リンを担持した後にリン以外の成分を担持してもよい。又、リン以外の成分は同一工程で担持してもよいし、それぞれ別工程で担持してもよい。 The catalyst of the present invention can be obtained by supporting at least phosphorus and components other than phosphorus (alkaline earth metal, rare earth element) on crystalline aluminosilicate in a separate step. Here, there is no particular limitation on the order in which the alkaline earth metal, rare earth element and phosphorus are supported. Phosphorus may be supported after supporting components other than phosphorus, or components other than phosphorus may be supported after supporting phosphorus. May be. Further, components other than phosphorus may be supported in the same process, or may be supported in separate processes.

アルカリ土類金属を担持する方法としては、アルカリ土類金属の種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩或いはアルコキシド、アセチルアセトナート等を溶解させた水、エタノール等の溶液に、例えばプロトン型の結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   Examples of the method for supporting the alkaline earth metal include various salts of alkaline earth metal such as acetate, nitrate, halide, sulfate, carbonate or alkoxide, water in which acetylacetonate is dissolved, ethanol and the like. For example, the solution may be impregnated with proton type crystalline aluminosilicate, dried and fired.

希土類元素を担持する方法としては、希土類元素の種々の塩、例えば酢酸塩、硝酸塩、ハロゲン化物、硫酸塩、炭酸塩或いはアルコキシド、アセチルアセトナート等を溶解させた水、エタノール等の溶液に、例えばプロトン型の結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   As a method for supporting rare earth elements, various salts of rare earth elements such as acetates, nitrates, halides, sulfates, carbonates or alkoxides, acetylacetonate, etc. dissolved in water, ethanol, etc., for example, Examples thereof include a method of impregnating proton type crystalline aluminosilicate, drying, and firing.

リンを担持する方法としては、例えばリン酸やリン酸二水素アンモニウム、リン酸水素二アンモニウム等のリン化合物を溶解させた水、エタノール等の溶液に、例えばプロトン型の結晶性アルミノシリケートを含浸し、乾燥、焼成する方法を挙げることができる。   As a method for supporting phosphorus, for example, a solution of a phosphorous compound such as phosphoric acid, ammonium dihydrogen phosphate, or diammonium hydrogen phosphate in water, ethanol, or the like is impregnated with, for example, proton-type crystalline aluminosilicate. The method of drying and baking can be mentioned.

触媒調製の一例を挙げると、まずアルカリ土類金属水溶液に結晶性アルミノシリケートを含浸し、乾燥、焼成した後に、希土類元素水溶液に結晶性アルミノシリケートを含浸し、乾燥、焼成、更にリン化合物の水溶液に結晶性アルミノシリケートを含浸し、乾燥、焼成といった手順で触媒を製造することができる。この際の含浸方法については、蒸発乾固法、インシピエントウェットネス法、pore filling法などの通常の含浸法を用いることができる。含浸時間は通常0.5〜2時間程度、乾燥温度は通常80〜200℃程度、焼成温度は通常400〜800℃程度であり、焼成時間は通常1〜12時間程度である。   As an example of catalyst preparation, first, an alkaline earth metal aqueous solution is impregnated with crystalline aluminosilicate, dried and fired, then a rare earth element aqueous solution is impregnated with crystalline aluminosilicate, dried, fired, and further an aqueous solution of a phosphorus compound. The catalyst can be produced by impregnating with crystalline aluminosilicate and drying and calcining. As the impregnation method at this time, a normal impregnation method such as an evaporation to dryness method, an incipient wetness method, or a pore fill method can be used. The impregnation time is usually about 0.5 to 2 hours, the drying temperature is usually about 80 to 200 ° C., the firing temperature is usually about 400 to 800 ° C., and the firing time is usually about 1 to 12 hours.

又、本発明の触媒は、結晶性アルミノシリケート及びアルカリ土類金属、希土類元素、リンの他、アルカリ金属、遷移金属、貴金属、ハロゲン等を含んでいても良い。更に、本発明の触媒はシリカ、アルミナ、石英砂等で希釈して使用することも可能である。   The catalyst of the present invention may contain alkali metal, transition metal, noble metal, halogen, etc. in addition to crystalline aluminosilicate, alkaline earth metal, rare earth element and phosphorus. Furthermore, the catalyst of the present invention can be diluted with silica, alumina, quartz sand or the like.

このようにして得られた本発明の触媒は、接触分解反応による低級オレフィンの製造において、芳香族成分の生成を抑制し、低級オレフィンを効率よく製造することができると共に、触媒活性の持続性に優れ、種々の炭化水素を原料とする低級オレフィン製造用触媒として好適に用いることができる。リンとそれ以外の成分とを別個に担持することで、芳香族成分の生成が抑制されると共に、オレフィン収率に優れ、触媒活性の持続性に優れたものとなる理由は定かではないが、上記のようにして調製することで、各成分が触媒中に均一に担持されるためだと推測される。逆に、アルカリ土類金属や希土類元素とリンを同時に担持すると、これらの成分を含む混合溶液中で不溶性の複合塩が形成されてスラリー状となり、触媒中に均一に担持されないのではないかと推測される。   The catalyst of the present invention thus obtained can suppress the production of aromatic components in the production of lower olefins by catalytic cracking reaction, can produce lower olefins efficiently, and can maintain the catalytic activity. It is excellent and can be suitably used as a catalyst for producing lower olefins using various hydrocarbons as raw materials. By separately supporting phosphorus and other components, the production of aromatic components is suppressed, and the reason for the excellent olefin yield and the excellent sustainability of the catalytic activity is not clear, By preparing as described above, it is presumed that each component is uniformly supported in the catalyst. Conversely, when alkaline earth metals or rare earth elements and phosphorus are simultaneously supported, an insoluble complex salt is formed in a mixed solution containing these components to form a slurry, which is presumed to be uniformly supported in the catalyst. Is done.

本発明の触媒を用いた接触分解反応による低級オレフィンの製造において、炭化水素原料としては、常温、常圧でガス状又は液状の炭化水素や、メタノールやエタノール、ジメチルエーテルといった含酸素化合物が使用できる。一般的には、炭素数2〜30、好ましくは炭素数4〜10のパラフィン又はこれを主成分とする炭化水素原料が用いられ、このような炭化水素原料としては、例えば、エタン、プロパン、ブタン、ペンタン、ヘキサン等のパラフィン類、或いは、ナフサ、軽油等の軽質炭化水素留分を挙げることができる。又、炭化水素原料は飽和炭化水素に限定されるものではなく、不飽和結合を有する成分を含有するものでも使用でき、更に、芳香族成分が含まれていてもよい。 In the production of the lower olefin by the catalytic cracking reaction using the catalyst of the present invention, as the hydrocarbon raw material, a gaseous or liquid hydrocarbon at normal temperature and normal pressure, or an oxygen-containing compound such as methanol, ethanol or dimethyl ether can be used. In general, paraffins having 2 to 30 carbon atoms, preferably 4 to 10 carbon atoms , or hydrocarbon raw materials based on these are used. Examples of such hydrocarbon raw materials include ethane, propane, Examples thereof include paraffins such as butane, pentane and hexane, and light hydrocarbon fractions such as naphtha and light oil. Further, the hydrocarbon raw material is not limited to saturated hydrocarbons, and those containing components having unsaturated bonds can be used, and further aromatic components may be included.

上記接触分解反応は、固定床、流動床等の形式の反応器を使用し、上記本発明の触媒を充填した触媒層へ炭化水素原料を供給することにより行われる。このとき炭化水素原料は窒素、水素、ヘリウム、或いは水蒸気等で希釈されていてもよい。これらの希釈剤の中でも特に水蒸気は、コーク成分の生成を抑制し、触媒の活性を保つ効果があり好ましい。水蒸気の供給量は原料炭化水素に対して質量比で0.1〜1、好ましくは0.3〜0.7である。反応温度は通常350〜780℃、好ましくは500〜750℃、更に好ましくは600〜700℃の範囲である。780℃を越える温度でも実施はできるが、メタン及びコーク成分の生成が急増し、又、350℃未満では充分な活性が得られないため、1回通過あたりのオレフィン収量が少なくなる。   The catalytic cracking reaction is carried out by supplying a hydrocarbon raw material to a catalyst layer filled with the catalyst of the present invention using a reactor of a fixed bed type, fluidized bed type or the like. At this time, the hydrocarbon raw material may be diluted with nitrogen, hydrogen, helium, water vapor or the like. Among these diluents, water vapor is particularly preferable because it suppresses the production of coke components and maintains the activity of the catalyst. The supply amount of water vapor is 0.1 to 1, preferably 0.3 to 0.7 in terms of mass ratio with respect to the raw material hydrocarbon. The reaction temperature is usually 350 to 780 ° C, preferably 500 to 750 ° C, more preferably 600 to 700 ° C. Although it can be carried out at a temperature exceeding 780 ° C., the production of methane and coke components increases rapidly, and sufficient activity cannot be obtained at a temperature below 350 ° C., so that the olefin yield per pass is reduced.

以下に、本発明について実施例を挙げて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で10.0質量%、1.3質量%、2.3質量%であった。この触媒2.3gを内径10mmのステンレス反応管(SUS316製)に触媒層の長さが40mmとなるように充填した。触媒層の上下には石英砂を充填した。このリアクターに窒素を流しながら触媒層の温度を650℃まで昇温し、炭化水素原料としてn−ヘキサンを8g/hr、窒素を10ml/min、及び、水蒸気を4g/hrの流量で供給し、n−ヘキサンの接触分解反応を行った。反応生成物の分析をガスクロマトグラフィーによって行い、生成物収率及び原料転化率を次式により算出した。
Example 1
10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) was added to a lanthanum acetate solution {3.01 g of lanthanum acetate hemihydrate (purity 99.9%). What was dissolved in 100 g of ion-exchanged water} was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. What shape | molded the obtained white solid into 10-14 mesh (1.2-1.7 mm) was made into the catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 10.0% by mass, 1.3% by mass, and 2.3% by mass, respectively, in terms of elements. 2.3 g of this catalyst was packed in a stainless steel reaction tube (made of SUS316) having an inner diameter of 10 mm so that the length of the catalyst layer was 40 mm. The upper and lower sides of the catalyst layer were filled with quartz sand. While flowing nitrogen into this reactor, the temperature of the catalyst layer was raised to 650 ° C., and n-hexane was supplied as a hydrocarbon raw material at a flow rate of 8 g / hr, nitrogen at 10 ml / min, and water vapor at a flow rate of 4 g / hr, The catalytic decomposition reaction of n-hexane was performed. The reaction product was analyzed by gas chromatography, and the product yield and the raw material conversion were calculated by the following equations.

生成物収率(C-mol%)=(各成分炭素基準mol数/供給原料炭素基準mol数)×100
原料転化率(質量%)=(1−未反応原料質量/供給原料質量)×100
Product yield (C-mol%) = (number of moles of each component carbon / number of moles of feedstock carbon) × 100
Raw material conversion (mass%) = (1-unreacted raw material mass / feed raw material mass) × 100

原料供給開始後14時間後の反応結果を表1に示す。又、芳香族成分(BTX)収率、エチレン及びプロピレン(C2+C3)収率及び原料転化率の経時変化を図1〜3に示す。   Table 1 shows the reaction results after 14 hours from the start of raw material supply. Moreover, the time-dependent change of an aromatic component (BTX) yield, ethylene and propylene (C2 + C3) yield, and raw material conversion is shown in FIGS.

実施例2
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸ランタンと酢酸カルシウムの混合水溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)と0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で9.4質量%、1.1質量%、1.7質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後12時間後の反応結果を表1に示す。又、芳香族成分(BTX)収率、エチレン及びプロピレン(C2+C3)収率及び原料転化率の経時変化を図1〜3に示す。
Example 2
10 g of powdered proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) was mixed with a mixed aqueous solution of lanthanum acetate and calcium acetate {3.01 g of lanthanum acetate hemihydrate (purity 99 9%) and 0.71 g of calcium acetate monohydrate (special grade) dissolved in 100 g of ion-exchanged water} were impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. What shape | molded the obtained white solid into 10-14 mesh (1.2-1.7 mm) was made into the catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 9.4 mass%, 1.1 mass%, and 1.7 mass%, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 1 shows the reaction results 12 hours after the start of raw material supply. Moreover, the time-dependent change of an aromatic component (BTX) yield, ethylene and propylene (C2 + C3) yield, and raw material conversion is shown in FIGS.

実施例3
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、リン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物を酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のLa、Ca、P濃度をICP−MSにより測定したところ、それぞれ元素換算で9.9質量%、1.2質量%、1.9質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後13時間後の反応結果を表1に示す。又、芳香族成分(BTX)収率、エチレン及びプロピレン(C2+C3)収率及び原料転化率の経時変化を図1〜3に示す。
Example 3
10 g of powdered proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40), diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) 100 g of ion-exchanged water Was dissolved in and then stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a lanthanum acetate solution {3.01 g of lanthanum acetate hemihydrate (purity 99.9%) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. What shape | molded the obtained white solid into 10-14 mesh (1.2-1.7 mm) was made into the catalyst. When the La, Ca, and P concentrations in the prepared catalyst were measured by ICP-MS, they were 9.9 mass%, 1.2 mass%, and 1.9 mass%, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 1 shows the reaction results 13 hours after the start of the raw material supply. Moreover, the time-dependent change of an aromatic component (BTX) yield, ethylene and propylene (C2 + C3) yield, and raw material conversion is shown in FIGS.

比較例1
リン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水50gに溶解したもの}と酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水50gに溶解したもの}を混合し、室温で1時間攪拌したスラリー状の混合液に、粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物を酢酸ランタン水溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で10.0質量%、1.3質量%、1.8質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後13時間後の反応結果を表1に示す。又、芳香族成分(BTX)収率、エチレン及びプロピレン(C2+C3)収率及び原料転化率の経時変化を図1〜3に示す。
Comparative Example 1
Ion exchange of diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 50 g of ion exchange water} and calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) Water dissolved in 50 g of water} was mixed and impregnated with 10 g of powdered proton-type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) in a slurry mixture stirred at room temperature for 1 hour And stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with an aqueous lanthanum acetate solution (3.01 g of lanthanum acetate hemihydrate (purity 99.9%) dissolved in 100 g of ion-exchanged water) and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 10.0% by mass, 1.3% by mass, and 1.8% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 1 shows the reaction results 13 hours after the start of the raw material supply. Moreover, the time-dependent change of an aromatic component (BTX) yield, ethylene and propylene (C2 + C3) yield, and raw material conversion is shown in FIGS.

比較例2
リン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水50gに溶解したもの}と酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水50gに溶解したもの}を混合し、室温で1時間攪拌したスラリー状の混合液に、粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物を酢酸カルシウム水溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で10.0質量%、1.3質量%、1.8質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後13時間後の反応結果を表1に示す。又、芳香族成分(BTX)収率、エチレン及びプロピレン(C2+C3)収率及び原料転化率の経時変化を図1〜3に示す。
Comparative Example 2
Diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 50 g of ion-exchanged water} and lanthanum acetate solution {3.01 g of lanthanum acetate hemihydrate (purity 99. 9%) dissolved in 50 g of ion-exchanged water} and mixed with a slurry-like mixture obtained by stirring at room temperature for 1 hour, into a powdery proton-type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio). = 40) 10 g was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with an aqueous calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 10.0% by mass, 1.3% by mass, and 1.8% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 1 shows the reaction results 13 hours after the start of the raw material supply. Moreover, the time-dependent change of an aromatic component (BTX) yield, ethylene and propylene (C2 + C3) yield, and raw material conversion is shown in FIGS.

比較例3
リン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水30gに溶解したもの}と酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水30gに溶解したもの}及び酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水30gに溶解したもの}を混合し、室温で1時間攪拌したスラリー状の混合液に、粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形した物を触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で10.0質量%、1.3質量%、1.9質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後13時間後の反応結果を表1に示す。又、芳香族成分(BTX)収率、エチレン及びプロピレン(C2+C3)収率及び原料転化率の経時変化を図1〜3に示す。
Comparative Example 3
Ion-exchange diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 30 g of ion-exchanged water} and calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) Water dissolved in 30 g of water} and a solution of lanthanum acetate {3.01 g of lanthanum acetate hemihydrate (purity 99.9%) dissolved in 30 g of ion-exchanged water} were mixed and stirred at room temperature for 1 hour The slurry mixture thus obtained was impregnated with 10 g of powdery proton-type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. A product obtained by shaping the obtained white solid into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 10.0% by mass, 1.3% by mass, and 1.9% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 1 shows the reaction results 13 hours after the start of the raw material supply. Moreover, the time-dependent change of an aromatic component (BTX) yield, ethylene and propylene (C2 + C3) yield, and raw material conversion is shown in FIGS.

Figure 2010042344
Figure 2010042344

表1及び図1〜3から分かるように、リンをランタン及びカルシウムと別工程で担持した実施例1〜3では、芳香族成分(BTX)の生成量が小さく、エチレン及びプロピレン(C2+C3)収率が高く、転化率も高いまま維持されている。又、その効果はリン以外の成分を同一工程で担持した場合(実施例2)でも別工程で担持した場合(実施例1)でも変わらず、又、リンを先に担持した場合(実施例3)でもリンを後から担持した場合(実施例1)でも変わらないことがわかる。一方、カルシウム、リンを同時に担持し、その後にランタンを担持した比較例1では、初期の転化率が高いものの芳香族成分収率が高く、エチレン及びプロピレン(C2+C3)収率は低く抑えられている。更に、ランタン、リンを同時に担持し、その後にカルシウムを担持した比較例2、及び、カルシウム、ランタン、リンを同時に担持した比較例3では、BTX収率は低いものの転化率の減少が大きく、エチレン及びプロピレン(C2+C3)収率も低いことが分かる。   As can be seen from Table 1 and FIGS. 1 to 3, in Examples 1 to 3 in which phosphorus was supported in a separate process from lanthanum and calcium, the production amount of aromatic component (BTX) was small, and the yield of ethylene and propylene (C2 + C3) And the conversion rate is kept high. In addition, the effect does not change when components other than phosphorus are supported in the same process (Example 2) or when they are supported in a separate process (Example 1), and when phosphorus is supported first (Example 3). However, it can be seen that there is no change even when phosphorus is supported later (Example 1). On the other hand, in Comparative Example 1 in which calcium and phosphorus were simultaneously supported and lanthanum was subsequently supported, the aromatic component yield was high although the initial conversion rate was high, and the yields of ethylene and propylene (C2 + C3) were kept low. . Furthermore, in Comparative Example 2 in which lanthanum and phosphorus were simultaneously supported and calcium was subsequently supported, and in Comparative Example 3 in which calcium, lanthanum, and phosphorus were simultaneously supported, although the BTX yield was low, the reduction in conversion was large. And the propylene (C2 + C3) yield is also low.

実施例4
10〜14mesh(1.2〜1.7mm)に成形したプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)7.0gとシリカ(富士シリシア製CARiACTQ10)3.0gの混合物を、硝酸ランタンの水溶液{76gの硝酸ランタン六水和物(純度95%以上)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。減圧濾過の後空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物を硝酸カルシウムの水溶液{20gの硝酸カルシウム四水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。減圧濾過の後空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。更にこの焼成物を、リン酸水素二アンモニウムの水溶液{21gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。減圧濾過の後空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成し、触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で9.1質量%、1.5質量%、4.8質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後15時間後の反応結果を表2に示す。
Example 4
Proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) 7.0 g molded into 10 to 14 mesh (1.2 to 1.7 mm) and 3.0 g of silica (CASiACTQ10 manufactured by Fuji Silysia) The mixture was impregnated with an aqueous solution of lanthanum nitrate {76 g of lanthanum nitrate hexahydrate (purity 95% or more) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. After filtration under reduced pressure, it was dried in air at 120 ° C. for 12 hours, heated to 600 ° C. over 4 hours in a muffle furnace, and calcined at 600 ° C. for 5 hours. This calcined product was impregnated with an aqueous solution of calcium nitrate {20 g of calcium nitrate tetrahydrate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. After filtration under reduced pressure, it was dried in air at 120 ° C. for 12 hours, heated to 600 ° C. over 4 hours in a muffle furnace, and calcined at 600 ° C. for 5 hours. Further, the fired product was impregnated with an aqueous solution of diammonium hydrogen phosphate {21 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. After filtration under reduced pressure, it was dried in air at 120 ° C. for 12 hours, heated to 600 ° C. over 4 hours in a muffle furnace, and calcined at 600 ° C. for 5 hours to obtain a catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 9.1 mass%, 1.5 mass%, and 4.8 mass%, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 2 shows the reaction results after 15 hours from the start of raw material supply.

実施例5
ランタンとカルシウムの修飾順を逆にした以外は実施例4と同様に触媒調製を行った。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で13.0質量%、0.44質量%、3.9質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後15時間後の結果を表2に示す。
Example 5
A catalyst was prepared in the same manner as in Example 4 except that the modification order of lanthanum and calcium was reversed. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 13.0% by mass, 0.44% by mass, and 3.9% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 2 shows the results 15 hours after the start of raw material supply.

Figure 2010042344
Figure 2010042344

表2から分かるように、実施例4及び5では、実施例1〜3と同様に、芳香族成分(BTX)の生成量が小さく、エチレン及びプロピレン(C2+C3)収率が高く、転化率も高いまま維持されている。   As can be seen from Table 2, in Examples 4 and 5, as in Examples 1 to 3, the production amount of the aromatic component (BTX) is small, the yield of ethylene and propylene (C2 + C3) is high, and the conversion rate is also high. It is maintained.

実施例6
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸セリウム水溶液{2.94gの酢酸セリウム一水和物をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のセリウム、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で9.3質量%、1.2質量%、1.6質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後6時間後の反応結果を表3に示す。
Example 6
10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) and calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) are dissolved in 100 g of ion-exchanged water. Was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The calcined product was impregnated with an aqueous cerium acetate solution (2.94 g of cerium acetate monohydrate dissolved in 100 g of ion-exchanged water) and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the cerium, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 9.3 mass%, 1.2 mass%, and 1.6 mass%, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the reaction results after 6 hours from the start of raw material supply.

実施例7
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸サマリウム溶液{3.51gの酢酸サマリウム四水和物をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh (1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のサマリウム、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で10.0質量%、1.1質量%、1.7質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後6時間後の反応結果を表3に示す。
Example 7
10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) and calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) are dissolved in 100 g of ion-exchanged water. Was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a samarium acetate solution {3.51 g of samarium acetate tetrahydrate dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the samarium, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 10.0% by mass, 1.1% by mass, and 1.7% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the reaction results after 6 hours from the start of raw material supply.

実施例8
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸マグネシウム溶液{0.86gの酢酸マグネシウム四水和物をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、マグネシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で10.1質量%、0.8質量%、1.8質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後6時間後の反応結果を表3に示す。
Example 8
10 g of powdered proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40), magnesium acetate solution {0.86 g of magnesium acetate tetrahydrate dissolved in 100 g of ion-exchanged water} And stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a lanthanum acetate solution {3.01 g of lanthanum acetate hemihydrate (purity 99.9%) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the lanthanum, magnesium and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 10.1% by mass, 0.8% by mass and 1.8% by mass, respectively, in terms of elements. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the reaction results after 6 hours from the start of raw material supply.

実施例9
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸カルシウム溶液{0.71gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{0.95gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh(1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で9.7質量%、1.2質量%、2.1質量%であった。この触媒を用いて、実施例1と同様の方法で反応評価を行った。原料供給開始後6時間後の反応結果を表3に示す。
Example 9
10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) and calcium acetate solution {0.71 g of calcium acetate monohydrate (special grade) are dissolved in 100 g of ion-exchanged water. Was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a lanthanum acetate solution {3.01 g of lanthanum acetate hemihydrate (purity 99.9%) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {0.95 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 9.7 mass%, 1.2 mass%, and 2.1 mass%, respectively, in terms of element. Using this catalyst, the reaction was evaluated in the same manner as in Example 1. Table 3 shows the reaction results after 6 hours from the start of raw material supply.

Figure 2010042344
Figure 2010042344

表3から分かるように、アルカリ土類金属や希土類元素の種類を変更しても、本発明の触媒では芳香族成分(BTX)の生成量が小さく、エチレン及びプロピレン(C2+C3)収率が高く、転化率も高いまま維持されている。   As can be seen from Table 3, even if the type of alkaline earth metal or rare earth element is changed, the catalyst of the present invention produces a small amount of aromatic component (BTX), and the yield of ethylene and propylene (C2 + C3) is high. The conversion rate remains high.

実施例10
実施例9で調製した触媒を用い、原料をn−ヘキサンから表4で示される組成のモデルナフサに変えた以外は、実施例1と同様の方法で反応評価を行った。反応結果を表5に示す。
Example 10
The reaction was evaluated in the same manner as in Example 1 except that the catalyst prepared in Example 9 was used and the raw material was changed from n-hexane to model naphtha having the composition shown in Table 4. The reaction results are shown in Table 5.

Figure 2010042344
Figure 2010042344

実施例11
実施例1で調製した触媒を用い、原料をn−ヘキサンから1−ヘキセンに変え、温度を600℃に変更した以外は、実施例1と同様の方法で反応評価を行った。反応結果を表5に示す。
Example 11
The reaction was evaluated in the same manner as in Example 1 except that the catalyst prepared in Example 1 was used, the raw material was changed from n-hexane to 1-hexene, and the temperature was changed to 600 ° C. The reaction results are shown in Table 5.

実施例12
粉末状のプロトン型ZSM−5アルミノシリケート(SiO/Alモル比=40)10gを、酢酸カルシウム溶液{2.81gの酢酸カルシウム一水和物(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物に酢酸ランタン溶液{3.01gの酢酸ランタン1.5水和物(純度99.9%)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。この焼成物をリン酸水素二アンモニウム溶液{2.11gのリン酸水素二アンモニウム(特級)をイオン交換水100gに溶解したもの}に含浸し、40℃で1時間攪拌した。生成したスラリーを減圧下40〜60℃で攪拌しながら約1時間かけて水分を蒸発させ、白色の粉末を得た。得られた粉末を空気中、120℃、12時間乾燥した後、マッフル炉で4時間かけて600℃まで昇温し、600℃で5時間焼成した。得られた白色固体を10〜14mesh (1.2〜1.7mm)に成形したものを触媒とした。調製した触媒中のランタン、カルシウム、リン濃度をICP−MSにより測定したところ、それぞれ元素換算で8.7質量%、4.6質量%、3.4質量%であった。この触媒2.3gを内径10mmのステンレス反応管(SUS316製)に触媒層の長さが40mmとなるように充填した。触媒層の上下には石英砂を充填した。このリアクターに窒素を流しながら触媒層の温度を500℃まで昇温した後、原料としてメタノール8g/hr、窒素を10ml/minの流量で供給し、メタノールの接触分解反応を行った。結果を表5に示す。
Example 12
10 g of powdery proton type ZSM-5 aluminosilicate (SiO 2 / Al 2 O 3 molar ratio = 40) and calcium acetate solution {2.81 g of calcium acetate monohydrate (special grade) are dissolved in 100 g of ion-exchanged water. Was impregnated and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This calcined product was impregnated with a lanthanum acetate solution {3.01 g of lanthanum acetate hemihydrate (purity 99.9%) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. This fired product was impregnated with a diammonium hydrogen phosphate solution {2.11 g of diammonium hydrogen phosphate (special grade) dissolved in 100 g of ion-exchanged water} and stirred at 40 ° C. for 1 hour. While stirring the produced slurry at 40 to 60 ° C. under reduced pressure, water was evaporated for about 1 hour to obtain a white powder. The obtained powder was dried in air at 120 ° C. for 12 hours, then heated to 600 ° C. over 4 hours in a muffle furnace, and fired at 600 ° C. for 5 hours. The obtained white solid molded into 10 to 14 mesh (1.2 to 1.7 mm) was used as a catalyst. When the lanthanum, calcium, and phosphorus concentrations in the prepared catalyst were measured by ICP-MS, they were 8.7 mass%, 4.6 mass%, and 3.4 mass%, respectively, in terms of element. 2.3 g of this catalyst was packed in a stainless steel reaction tube (made of SUS316) having an inner diameter of 10 mm so that the length of the catalyst layer was 40 mm. The upper and lower sides of the catalyst layer were filled with quartz sand. The temperature of the catalyst layer was raised to 500 ° C. while flowing nitrogen into the reactor, and then methanol 8 g / hr and nitrogen were supplied at a flow rate of 10 ml / min as a raw material to perform a catalytic cracking reaction of methanol. The results are shown in Table 5.

Figure 2010042344
Figure 2010042344

表5における実施例10及び実施例11の結果から分かるように、炭化水素原料の種類を変更しても、本発明の触媒では芳香族成分(BTX)の生成量が小さく、エチレン及びプロピレン(C2+C3)収率が高く、転化率も高いまま維持されている。又、実施例12の結果から分かるように、本発明の触媒は含酸素化合物を炭化水素原料とする接触分解反応にも使用することができる。   As can be seen from the results of Example 10 and Example 11 in Table 5, even when the type of the hydrocarbon raw material is changed, the catalyst of the present invention produces a small amount of aromatic component (BTX), and ethylene and propylene (C2 + C3). ) The yield is high and the conversion rate is kept high. As can be seen from the results of Example 12, the catalyst of the present invention can also be used in a catalytic cracking reaction using an oxygen-containing compound as a hydrocarbon raw material.

実施例1〜3及び比較例1〜3における芳香族成分(BTX)収率の経過を示すグラフである。It is a graph which shows progress of the aromatic component (BTX) yield in Examples 1-3 and Comparative Examples 1-3.

実施例1〜3及び比較例1〜3におけるエチレン及びプロピレン(C2+C3)収率の経過を示すグラフである。It is a graph which shows progress of the ethylene and propylene (C2 + C3) yield in Examples 1-3 and Comparative Examples 1-3.

実施例1〜3及び比較例1〜3における原料転化率の経過を示すグラフである。It is a graph which shows progress of the raw material conversion rate in Examples 1-3 and Comparative Examples 1-3.

Claims (12)

アルカリ土類金属、希土類元素及びリンを担持した結晶性アルミノシリケートであり、リンとリン以外の前記成分とを別工程で担持してなることを特徴とする低級オレフィン製造用触媒。 A catalyst for producing a lower olefin, which is a crystalline aluminosilicate carrying an alkaline earth metal, a rare earth element and phosphorus, and carrying phosphorus and the components other than phosphorus in separate steps. 含浸工程、乾燥工程及び焼成工程を含む工程により、アルカリ土類金属、希土類元素及びリンを結晶性アルミノシリケートに担持してなることを特徴とする請求項1に記載の低級オレフィン製造用触媒。 2. The catalyst for producing a lower olefin according to claim 1, wherein the alkaline earth metal, rare earth element and phosphorus are supported on the crystalline aluminosilicate by the steps including the impregnation step, the drying step and the firing step. リン以外の成分をそれぞれ別工程で担持してなることを特徴とする請求項1又は2に記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to claim 1 or 2, wherein components other than phosphorus are supported in separate steps. リン以外の成分を同一工程で担持してなることを特徴とする請求項1又は2に記載の低級オレフィン製造用触媒。 The catalyst for lower olefin production according to claim 1 or 2, wherein components other than phosphorus are supported in the same step. 結晶性アルミノシリケートがZSM−5であることを特徴とする請求項1〜4のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for lower olefin production according to any one of claims 1 to 4, wherein the crystalline aluminosilicate is ZSM-5. アルカリ土類金属を0.1〜20質量%含有することを特徴とする請求項1〜5のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to any one of claims 1 to 5, which contains 0.1 to 20% by mass of an alkaline earth metal. 希土類元素を1〜20質量%含有することを特徴とする請求項1〜6のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to any one of claims 1 to 6, comprising 1 to 20% by mass of a rare earth element. リンを0.1〜20質量%含有することを特徴とする請求項1〜7のいずれかに記載の低級オレフィン製造用触媒。 The catalyst for producing a lower olefin according to any one of claims 1 to 7, comprising 0.1 to 20% by mass of phosphorus. 結晶性アルミノシリケートに、アルカリ土類金属、希土類元素及びリンを担持して低級オレフィン製造用触媒を製造する際、リンとそれ以外の前記成分とを別工程で担持することを特徴とする低級オレフィン製造用触媒の製造方法。 A lower olefin, characterized in that, when a catalyst for producing a lower olefin is produced by carrying an alkaline earth metal, a rare earth element and phosphorus on a crystalline aluminosilicate, phosphorus and the other components are carried in separate steps. A method for producing a catalyst for production. 含浸工程、乾燥工程及び焼成工程を含む工程により、アルカリ土類金属、希土類元素及びリンを結晶性アルミノシリケートに担持することを特徴とする請求項9に記載の低級オレフィン製造用触媒の製造方法。 The method for producing a catalyst for producing a lower olefin according to claim 9, wherein the alkaline earth metal, rare earth element and phosphorus are supported on the crystalline aluminosilicate by the steps including the impregnation step, the drying step and the firing step. 請求項1〜8のいずれかに記載の低級オレフィン製造用触媒を用いた低級オレフィンの製造方法。 The manufacturing method of the lower olefin using the catalyst for lower olefin manufacture in any one of Claims 1-8. 水蒸気の存在下に行う請求項11に記載の低級オレフィンの製造方法。 The method for producing a lower olefin according to claim 11, which is carried out in the presence of water vapor.
JP2008207614A 2008-08-12 2008-08-12 Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst Pending JP2010042344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207614A JP2010042344A (en) 2008-08-12 2008-08-12 Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207614A JP2010042344A (en) 2008-08-12 2008-08-12 Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst

Publications (1)

Publication Number Publication Date
JP2010042344A true JP2010042344A (en) 2010-02-25

Family

ID=42014170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207614A Pending JP2010042344A (en) 2008-08-12 2008-08-12 Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst

Country Status (1)

Country Link
JP (1) JP2010042344A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104909A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Catalyst for producing lower olefin
JP2010104878A (en) * 2008-10-29 2010-05-13 National Institute Of Advanced Industrial Science & Technology Catalyst for producing lower olefin, method for manufacturing the same and method for producing lower olefin by using the same
CN102276405A (en) * 2010-06-12 2011-12-14 中国石油化工股份有限公司 Method for preparing propylene as main product from C4 and high carbon olefins
JP2012193127A (en) * 2011-03-15 2012-10-11 National Institute Of Advanced Industrial Science & Technology Method for producing propylene and ethylene
WO2012169651A1 (en) 2011-06-10 2012-12-13 Sumitomo Chemical Company, Limited Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms
CN108927213A (en) * 2018-06-26 2018-12-04 上海绿强新材料有限公司 A kind of catalyst and preparation method thereof for preparing propylene by dehydrogenating propane

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180902A (en) * 1997-12-16 1999-07-06 Agency Of Ind Science & Technol Production of lower olefin
JPH11253807A (en) * 1998-03-09 1999-09-21 Agency Of Ind Science & Technol Catalyst for production of lower olefin
JP2005060355A (en) * 2003-08-20 2005-03-10 Idemitsu Petrochem Co Ltd Method for producing olefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11180902A (en) * 1997-12-16 1999-07-06 Agency Of Ind Science & Technol Production of lower olefin
JPH11253807A (en) * 1998-03-09 1999-09-21 Agency Of Ind Science & Technol Catalyst for production of lower olefin
JP2005060355A (en) * 2003-08-20 2005-03-10 Idemitsu Petrochem Co Ltd Method for producing olefin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012045322; 涌井顕一: 'エチレン・プロピレン製造用接触分解触媒の探索' ゼオライト , Vol. 20, No. 2, Pages 47-54 (2003) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104878A (en) * 2008-10-29 2010-05-13 National Institute Of Advanced Industrial Science & Technology Catalyst for producing lower olefin, method for manufacturing the same and method for producing lower olefin by using the same
JP2010104909A (en) * 2008-10-30 2010-05-13 National Institute Of Advanced Industrial Science & Technology Catalyst for producing lower olefin
CN102276405A (en) * 2010-06-12 2011-12-14 中国石油化工股份有限公司 Method for preparing propylene as main product from C4 and high carbon olefins
CN102276405B (en) * 2010-06-12 2014-03-12 中国石油化工股份有限公司 Method for preparing propylene as main product from C4 and high carbon olefins
JP2012193127A (en) * 2011-03-15 2012-10-11 National Institute Of Advanced Industrial Science & Technology Method for producing propylene and ethylene
WO2012169651A1 (en) 2011-06-10 2012-12-13 Sumitomo Chemical Company, Limited Method for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms and apparatus for producing aromatic hydrocarbon and/or olefin having 4 or less carbon atoms
CN108927213A (en) * 2018-06-26 2018-12-04 上海绿强新材料有限公司 A kind of catalyst and preparation method thereof for preparing propylene by dehydrogenating propane

Similar Documents

Publication Publication Date Title
KR100993452B1 (en) Process for producing olefin by catalytic cracking of hydrocarbon
US20140309470A1 (en) PREPARATION METHOD OF PLATINUM/TIN/ALUMINA CATALYST FOR DIRECT DEHYDROGENATION OF n-BUTANE AND METHOD FOR PRODUCING C4 OLEFINS USING SAID CATALYST
US11123719B2 (en) Metal-loaded zeolite catalysts for the halogen-free conversion of dimethyl ether to methyl acetate
JP2010042344A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP4742371B2 (en) Propylene synthesis catalyst
JP5288255B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
KR101985861B1 (en) Preparation of Metal Oxide Catalyst Supported on Mesoporous HZSM-11 for Direct Dehydroaromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst
JP2010042343A (en) Catalyst for manufacturing lower olefin, method of manufacturing the same and method of manufacturing lower olefin using catalyst
JP2014024007A (en) Zeolite catalyst, process for producing zeolite catalyst and process for producing lower olefin
JP2011127014A (en) Method for producing hydrocarbon
WO2005105710A1 (en) Method for producing lower olefin
JP4823655B2 (en) Method for producing xylenes
JP5288256B2 (en) Catalyst for producing lower olefin, process for producing the same, and process for producing lower olefin using the same
JP5674029B2 (en) Propylene and ethylene production method
JP4414169B2 (en) Olefin production method
JP2011125802A (en) Catalyst composition for manufacturing hydrocarbon
JP2010018556A (en) Method for producing lower olefin from ethanol
JP5229882B2 (en) Method for producing olefins having 3 or more carbon atoms from ethanol
JP2021154239A (en) Catalyst for production of aromatic compound, method for producing catalyst for aromatic compound, and method for producing aromatic compound
JP5818133B2 (en) Olefin production catalyst and olefin production method
JP2008222608A (en) Method for producing propylene
KR101448357B1 (en) Catalyst for production of light olefin and production method of light olefins through catalytic cracking of hydrocarbons using the catalyst
EP2979759B1 (en) Ethanol dehydration catalyst for energy saving and method of manufacturing ethylene using same
JP5949069B2 (en) Process for producing lower hydrocarbon aromatization catalyst
JP2010105974A (en) Method for producing olefin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108