JP2009532531A - Carbon nanotube reinforced nanocomposite - Google Patents
Carbon nanotube reinforced nanocomposite Download PDFInfo
- Publication number
- JP2009532531A JP2009532531A JP2009503306A JP2009503306A JP2009532531A JP 2009532531 A JP2009532531 A JP 2009532531A JP 2009503306 A JP2009503306 A JP 2009503306A JP 2009503306 A JP2009503306 A JP 2009503306A JP 2009532531 A JP2009532531 A JP 2009532531A
- Authority
- JP
- Japan
- Prior art keywords
- dwnt
- mwnt
- epoxy
- composite
- carbon nanotube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002041 carbon nanotube Substances 0.000 title claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims description 20
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims description 12
- 239000002114 nanocomposite Substances 0.000 title abstract description 22
- 239000004593 Epoxy Substances 0.000 claims abstract description 33
- 238000005452 bending Methods 0.000 claims abstract description 13
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 6
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000002131 composite material Substances 0.000 claims 15
- 239000011347 resin Substances 0.000 claims 4
- 229920005989 resin Polymers 0.000 claims 4
- 239000002079 double walled nanotube Substances 0.000 claims 3
- 239000002048 multi walled nanotube Substances 0.000 claims 2
- 239000012212 insulator Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 claims 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract description 4
- 230000002787 reinforcement Effects 0.000 abstract description 4
- 229920000647 polyepoxide Polymers 0.000 abstract description 3
- 125000003700 epoxy group Chemical group 0.000 abstract description 2
- 229920000642 polymer Polymers 0.000 abstract description 2
- 239000004634 thermosetting polymer Substances 0.000 abstract description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 3
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000000527 sonication Methods 0.000 description 2
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- 102000029749 Microtubule Human genes 0.000 description 1
- 108091022875 Microtubule Proteins 0.000 description 1
- 239000004959 Rilsan Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical class O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- -1 ethylene butylene Chemical group 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000004688 microtubule Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/22—Expanded, porous or hollow particles
- C08K7/24—Expanded, porous or hollow particles inorganic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2202/00—Structure or properties of carbon nanotubes
- C01B2202/06—Multi-walled nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/014—Additives containing two or more different additives of the same subgroup in C08K
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Reinforced Plastic Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
MWNT(ここでMWNTは2層よりも多くの層を有する)及びDWNTの組み合わせが、ポリマーナノコンポジットの機械的性質を顕著に改善する。少量のDWNTによる強化(<1wt%)がエポキシマトリクスナノコンポジットの曲げ強度を顕著に改善する。同量または同じ様な量のMWNTによる強化がエポキシマトリクスナノコンポジットの曲げ弾性率(剛性)を顕著に改善する。MWNT及びDWNTで共に強化したエポキシナノコンポジットの曲げ強度及び曲げ弾性率の両方は、同量のDWNTまたはMWNTのどちらかで強化したエポキシナノコンポジットと比較して、はるかに改善される。このエポキシ/DWNT/MWNTナノコンポジットシステムにおいては、DWNTの代わりにSWMTも機能し得る。エポキシに加えて、他の熱硬化性ポリマーも機能し得る。 The combination of MWNT (where MWNT has more than two layers) and DWNT significantly improves the mechanical properties of the polymer nanocomposites. Reinforcement with a small amount of DWNT (<1 wt%) significantly improves the bending strength of epoxy matrix nanocomposites. Reinforcement with the same or similar amount of MWNT significantly improves the flexural modulus (stiffness) of the epoxy matrix nanocomposite. Both the flexural strength and the flexural modulus of epoxy nanocomposites reinforced with MWNT and DWNT are much improved compared to epoxy nanocomposites reinforced with the same amount of DWNT or MWNT. In this epoxy / DWNT / MWNT nanocomposite system, SWMT can also function instead of DWNT. In addition to epoxies, other thermosetting polymers can also function.
Description
本願は、2006年3月31日出願の米国仮出願第60/788234号、及び、2006年6月2日出願の米国仮出願第60/810394号の優先権を主張する。 This application claims priority to US Provisional Application No. 60/788234, filed March 31, 2006, and US Provisional Application No. 60 / 810,394, filed June 2, 2006.
飯島(Iijima)によって1991年に最初に発見されて以来、カーボンナノチューブ(CNT,carbon nanotube)は重要な研究対象となっている(非特許文献1)。多くの研究者がこの新形状の炭素の顕著な物理的及び機械的性質について報告している。CNTの直径は典型的に、単層CNT(SWNT,single wall CNT)に対して0.5〜1.5nmであり、二層CNT(DWNT,double wall CNT)に対して1〜3nmであり、多層CNT(MWNT,multi wall CNT)に対して5nmから100nmである。その固有の電子的特性及びダイヤモンドよりも高い熱伝導性に始まり、その剛性、強度及び弾性が現存する如何なる物質よりも優れているという機械的性質に至り、CNTは、全く新しい材料システムの開発に対する非常に大きな機会を提供する。特に、CNTの並外れた機械的性質(E>1.0TPa、また、50GPaの引張強度)が低密度(1〜2.0g/cm3)と組み合わさっていることによって、CNT強化材料の開発が魅力的なものとなる(非特許文献2)。CNTは地球上の既知の物質の中で最も強固である。MWNTと比較すると、SWNT及びDWNTは、それらのより大きな表面積及びより高いアスペクト比によって、強化材料としてより有力である。表1に、SWNT、DWNT及びMWNTの表面積及びアスペクト比を挙げる。 Since being first discovered in 1991 by Iijima, carbon nanotubes (CNT, carbon nanotube) have been an important research subject (Non-Patent Document 1). Many researchers have reported the remarkable physical and mechanical properties of this new form of carbon. The diameter of the CNT is typically 0.5 to 1.5 nm for a single-walled CNT (SWNT, single wall CNT), 1 to 3 nm for a double-walled CNT (DWNT, double wall CNT), The thickness is 5 nm to 100 nm for multi-wall CNT (MWNT, multi-wall CNT). Starting with its inherent electronic properties and higher thermal conductivity than diamond, it leads to the mechanical properties that its stiffness, strength and elasticity are superior to any existing material, and CNTs are for the development of completely new material systems. Provides a huge opportunity. In particular, the exceptional mechanical properties of CNTs (E> 1.0 TPa, and 50 GPa tensile strength) combined with low density (1 to 2.0 g / cm 3 ) have allowed the development of CNT reinforced materials. It will be attractive (Non-Patent Document 2). CNT is the strongest of the known materials on the earth. Compared to MWNT, SWNT and DWNT are more potent as reinforcing materials due to their larger surface area and higher aspect ratio. Table 1 lists the surface area and aspect ratio of SWNT, DWNT and MWNT.
問題は、SWNT及びDWNTはどちらもMWNTよりも高価であるという点である。精製されたMWNTの価格が1〜10ドル/gである一方で、精製されたSWNT及びDWNTの価格はどちらも500ドル/gもの高さになり得る。従って、MWNT強化ナノコンポジットはSWNTまたはDWNT強化ナノコンポジットよりもずっと安価である。 The problem is that both SWNT and DWNT are more expensive than MWNT. While the price of purified MWNT is 1-10 dollars / g, the price of both purified SWNT and DWNT can be as high as $ 500 / g. Thus, MWNT reinforced nanocomposites are much cheaper than SWNT or DWNT reinforced nanocomposites.
MWNT(ここでMWNTは2層よりも多くの層を有する)及びDWNTの組み合わせが、ポリマーナノコンポジットの機械的性質を顕著に改善する。少量のDWNTによる強化(<1wt%)がエポキシマトリクスナノコンポジットの曲げ強度を顕著に改善する。同量または同じ様な量のMWNTによる強化がエポキシマトリクスナノコンポジットの曲げ弾性率(剛性)を顕著に改善する。MWNT及びDWNTで共に強化したエポキシナノコンポジットの曲げ強度及び曲げ弾性率の両方は、同量のDWNTまたはMWNTのどちらかで強化したエポキシナノコンポジットと比較して、はるかに改善される。このエポキシ/DWNT/MWNTナノコンポジットシステムにおいては、DWNTの代わりにSWMTも機能し得る。エポキシに加えて、他の熱硬化性ポリマーも機能し得る。 The combination of MWNT (where MWNT has more than two layers) and DWNT significantly improves the mechanical properties of the polymer nanocomposites. Reinforcement with a small amount of DWNT (<1 wt%) significantly improves the bending strength of epoxy matrix nanocomposites. Reinforcement with the same or similar amount of MWNT significantly improves the flexural modulus (stiffness) of the epoxy matrix nanocomposite. Both the flexural strength and the flexural modulus of epoxy nanocomposites reinforced with MWNT and DWNT are much improved compared to epoxy nanocomposites reinforced with the same amount of DWNT or MWNT. In this epoxy / DWNT / MWNT nanocomposite system, SWMT can also function instead of DWNT. In addition to epoxies, other thermosetting polymers can also function.
本発明の一実施形態に対して、本発明をより良く例示するためにこの実施形態の詳細な例を与える。 For one embodiment of the present invention, a detailed example of this embodiment is given to better illustrate the present invention.
エポキシ樹脂(ビスフェノールA)を日本のアリサワ(Arisawa)社から入手した。同社から、エポキシナノコンポジットを硬化させるために用いられる硬化剤(ジシアンジアミド)を入手した。DWNT及びMWNTを、ベルギーのNanocyl社から入手した。これらのCNTはアミノ(‐NH2)官能基で官能化されていた。アミノ官能基CNTは、CNTとエポキシ分子チェアとの間の結合を改善するのに役立ち、ナノコンポジットの機械的性質を更に改善することができる。しかしながら、元の状態のCNTまたは、他の方法(カルボキシル官能基等)によって官能化させたCNTも機能し得る(例えば、日本のアルケマ(Arkema)社製のペレット(製品名:RILSAN BMV−P20 PA11))。粘土は、米国のSouthern Clay社製であった(製品名:Cloisite(登録商標)シリーズ93A)。これは、三元アンモニウム塩で修飾された天然のモンモリロナイト(montmorillonite)である。エラストマーは、米国のKraton社から購入したスチレン/エチレンブチレン/スチレン(SEBS)であった(製品名:G1657)。 Epoxy resin (bisphenol A) was obtained from Arisawa, Japan. The company obtained a curing agent (dicyandiamide) used to cure epoxy nanocomposites. DWNT and MWNT were obtained from Nanocyl, Belgium. These CNTs were functionalized with amino (—NH 2 ) functional groups. The amino functional group CNT helps to improve the bond between the CNT and the epoxy molecular chair and can further improve the mechanical properties of the nanocomposite. However, original CNTs or CNTs functionalized by other methods (carboxyl functional groups, etc.) can also function (for example, pellets manufactured by Arkema, Japan (product name: RILSAN BMV-P20 PA11). )). The clay was manufactured by Southern Clay, USA (product name: Cloisite® series 93A). This is a natural montmorillonite modified with a ternary ammonium salt. The elastomer was styrene / ethylene butylene / styrene (SEBS) purchased from Kraton, USA (product name: G1657).
図1は、エポキシ/CNTナノコンポジットを製造するプロセスフローの概略図を示す。全ての原料を真空オーブン内で70℃で少なくも16時間乾燥させて、湿気を完全に取り除いた。CNTをアセトン101中に入れて、マイクロ流体マシーン(micro−fluidic machine)(Microfluidics社から購入可能)によって、拡散させた(ステップ102)。マイクロ流体マシーンは、正確に定められたミクロンサイズのチャネル内に超高速で衝突する高圧流を用いる。そのせん断及び衝撃の組み合わさった力が製品に作用して、一様な分散を生じさせる。CNT/アセトンはゲル103とされ、アセトン溶媒中に良く分散したCNTがもたらされる。しかしながら、超音波処理プロセス等の他の方法も機能し得る。溶液中にCNTを分散させるために、界面活性剤を使用してもよい。その後、ステップ104でCNT/アセトンゲルにエポキシを加えて、エポキシ/CNT/アセトン溶液105を生成した。これに、バス内で70℃で1時間にわたる超音波処理プロセス(ステップ106)が続いて、エポキシ/CNT/アセトン懸濁液107を生成した。ステップ108において、ステップ108において、70℃で三十分間にわたる1400回転/分の速度での撹拌器による混合プロセスを用いて、CNTをエポキシ中に更に分散させて、エポキシ/CNT/アセトンゲル109を生成した。その後、ステップ110で硬化剤を、4.5wt%の比率でエポキシ/CNT/アセトンゲル109に加えて、これに続いて、70℃で1時間撹拌した。ステップ112において、真空オーブン内で70℃で少なくとも48時間にわたって、結果物であるゲル111のガス抜きを行った。その後、材料113をテフロン(登録商標)のモールド内に注いで、160℃で2時間にわたって硬化させた。この見本の機械的性質(曲げ強度及び曲げ弾性率)を、研磨プロセス115の後に特性評価した。
FIG. 1 shows a schematic diagram of a process flow for producing an epoxy / CNT nanocomposite. All ingredients were dried in a vacuum oven at 70 ° C. for at least 16 hours to completely remove moisture. CNTs were placed in acetone 101 and diffused by a micro-fluidic machine (available from Microfluidics) (step 102). Microfluidic machines use high-pressure flows that impinge at very high speeds in precisely defined micron-sized channels. The combined force of the shear and impact acts on the product to produce a uniform dispersion. CNT / acetone is gel 103, resulting in CNTs well dispersed in acetone solvent. However, other methods such as sonication processes may also work. A surfactant may be used to disperse the CNTs in the solution. Thereafter, in step 104, epoxy was added to the CNT / acetone gel to produce an epoxy / CNT /
表2は、エポキシ/CNTナノコンポジットを製造するための図1のプロセスフローを用いて製造したエポキシの機械的性質(曲げ強度及び曲げ弾性率)を示す。図2に示されるように、同じ積載量のCNTにおいて、エポキシ/DWNTの曲げ強度は、エポキシ/MWNTの曲げ強度よりも高い。一方、図3に示されるように、同じ積載量のCNTにおいて、エポキシ/DWNTの曲げ弾性率は、エポキシ/MWNTの曲げ弾性率よりも低い。エポキシ/DWNT(0.5wt%)/MWNT(0.5wt%)の曲げ強度及び曲げ弾性率は両方とも、エポキシ/DWNT(1wt%)のものよりも高い。 Table 2 shows the mechanical properties (bending strength and flexural modulus) of the epoxy produced using the process flow of FIG. 1 for producing an epoxy / CNT nanocomposite. As shown in FIG. 2, the bending strength of epoxy / DWNT is higher than the bending strength of epoxy / MWNT in the CNTs with the same loading capacity. On the other hand, as shown in FIG. 3, the bending elastic modulus of epoxy / DWNT is lower than the bending elastic modulus of epoxy / MWNT in the CNTs having the same loading capacity. The flexural strength and flexural modulus of epoxy / DWNT (0.5 wt%) / MWNT (0.5 wt%) are both higher than that of epoxy / DWNT (1 wt%).
Claims (13)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78823406P | 2006-03-31 | 2006-03-31 | |
US81039406P | 2006-06-02 | 2006-06-02 | |
US81931906P | 2006-07-07 | 2006-07-07 | |
US11/693,454 US8129463B2 (en) | 2006-03-31 | 2007-03-29 | Carbon nanotube-reinforced nanocomposites |
PCT/US2007/065630 WO2007115162A2 (en) | 2006-03-31 | 2007-03-30 | Carbon nanotube-reinforced nanocomposites |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009532531A true JP2009532531A (en) | 2009-09-10 |
Family
ID=40149864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009503306A Pending JP2009532531A (en) | 2006-03-31 | 2007-03-30 | Carbon nanotube reinforced nanocomposite |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2019750A4 (en) |
JP (1) | JP2009532531A (en) |
KR (1) | KR20090025194A (en) |
CA (1) | CA2647727A1 (en) |
WO (1) | WO2007115162A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010083722A (en) * | 2008-09-30 | 2010-04-15 | Nippon Chemicon Corp | High density carbon nanotube aggregate and method of manufacturing the same |
JP2013533892A (en) * | 2010-03-26 | 2013-08-29 | ユニバーシティ オブ ハワイ | Resin reinforced with nanomaterials and related materials |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2228406A1 (en) | 2009-03-13 | 2010-09-15 | Bayer MaterialScience AG | Improved mechanical properties of epoxy filled with functionalized carbon nanotubes |
IT1396918B1 (en) | 2009-11-03 | 2012-12-20 | Polimeri Europa Spa | PROCEDURE FOR THE PREPARATION OF GRAPHENIC NANOPIASTRINES WITH HIGH LEVELABILITY IN LOW POLARITY POLYMER MATRICES AND THEIR POLYMERIC COMPOSITIONS |
DE102010040040A1 (en) * | 2010-08-31 | 2012-03-01 | Sgl Carbon Se | Reinforced epoxy resin |
WO2013133941A1 (en) * | 2012-03-06 | 2013-09-12 | Applied Nanotech Holdings, Inc. | Carbon nanotube reinforced nanocomposites |
US20160160001A1 (en) * | 2014-11-06 | 2016-06-09 | Northrop Grumman Systems Corporation | Ultrahigh loading of carbon nanotubes in structural resins |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003238816A (en) * | 2002-02-14 | 2003-08-27 | Toray Ind Inc | Carbon fiber reinforced resin composition, molding material and its molded article |
JP2003306607A (en) * | 2002-02-12 | 2003-10-31 | Toray Ind Inc | Resin composition and method for producing the same |
JP2006188389A (en) * | 2005-01-06 | 2006-07-20 | Univ Nagoya | Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same |
JP2006527786A (en) * | 2003-06-16 | 2006-12-07 | ウィリアム・マーシュ・ライス・ユニバーシティ | Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes |
JP2007502246A (en) * | 2003-07-28 | 2007-02-08 | ウィリアム・マーシュ・ライス・ユニバーシティ | Side wall functionalization of carbon nanotubes with organosilanes to obtain polymer composites |
-
2007
- 2007-03-30 KR KR1020087026669A patent/KR20090025194A/en not_active Application Discontinuation
- 2007-03-30 EP EP07759819A patent/EP2019750A4/en not_active Withdrawn
- 2007-03-30 CA CA002647727A patent/CA2647727A1/en not_active Abandoned
- 2007-03-30 WO PCT/US2007/065630 patent/WO2007115162A2/en active Application Filing
- 2007-03-30 JP JP2009503306A patent/JP2009532531A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003306607A (en) * | 2002-02-12 | 2003-10-31 | Toray Ind Inc | Resin composition and method for producing the same |
JP2003238816A (en) * | 2002-02-14 | 2003-08-27 | Toray Ind Inc | Carbon fiber reinforced resin composition, molding material and its molded article |
JP2006527786A (en) * | 2003-06-16 | 2006-12-07 | ウィリアム・マーシュ・ライス・ユニバーシティ | Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes |
JP2007502246A (en) * | 2003-07-28 | 2007-02-08 | ウィリアム・マーシュ・ライス・ユニバーシティ | Side wall functionalization of carbon nanotubes with organosilanes to obtain polymer composites |
JP2006188389A (en) * | 2005-01-06 | 2006-07-20 | Univ Nagoya | Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010083722A (en) * | 2008-09-30 | 2010-04-15 | Nippon Chemicon Corp | High density carbon nanotube aggregate and method of manufacturing the same |
JP2013533892A (en) * | 2010-03-26 | 2013-08-29 | ユニバーシティ オブ ハワイ | Resin reinforced with nanomaterials and related materials |
Also Published As
Publication number | Publication date |
---|---|
CA2647727A1 (en) | 2007-10-11 |
KR20090025194A (en) | 2009-03-10 |
WO2007115162A2 (en) | 2007-10-11 |
EP2019750A2 (en) | 2009-02-04 |
EP2019750A4 (en) | 2009-09-02 |
WO2007115162A3 (en) | 2008-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568553B2 (en) | Carbon nanotube reinforced nanocomposite | |
JP4231916B2 (en) | Method for producing carbon fiber composite resin material | |
Puglia et al. | Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’and ‘nano’scale | |
Shen et al. | The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites | |
JP4703450B2 (en) | Method for producing thermosetting resin composition, cured resin composition and method for producing the same | |
JP2009532531A (en) | Carbon nanotube reinforced nanocomposite | |
Domun et al. | Improving the fracture toughness and the strength of epoxy using nanomaterials–a review of the current status | |
Hadavand et al. | Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite | |
Wang et al. | Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites | |
Sun et al. | Mechanical properties of surface-functionalized SWCNT/epoxy composites | |
Norhakim et al. | Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites | |
US8129463B2 (en) | Carbon nanotube-reinforced nanocomposites | |
JP2007154157A (en) | Thermoplastic resin composition and its manufacturing method | |
Wei et al. | Enhancement in mechanical properties of epoxy nanocomposites by Styrene-ethylene-butadiene-styrene grafted graphene oxide | |
CN101432137A (en) | Carbon nanotube-reinforced nanocomposites | |
Anand et al. | Structural composites hybridized with nanofillers: An overview | |
US20120220695A1 (en) | Carbon Nanotube Reinforced Nanocomposites | |
Pal et al. | Rubber blend nanocomposites | |
Chow et al. | Epoxy/multiwall carbon nanotube nanocomposites prepared by sonication and planetary mixing technique | |
JP4883724B2 (en) | Carbon fiber composite resin material | |
Zavrazhin et al. | Nanomodified epoxy materials with improved operating characteristics | |
Albadrany et al. | Preparation of novel nanocomposites using the Ultra-sonication technique | |
Kayalar et al. | Experimental Investigation on the Tensile Behavior of MWCNT–Nano Silica Epoxy Hybrid Nanocomposites | |
Wang et al. | Thiokol oligomer functionalized MWCNTs for epoxy nanocomposites | |
WO2013133941A1 (en) | Carbon nanotube reinforced nanocomposites |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120228 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120528 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120604 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120814 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20130604 |