[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009532531A - Carbon nanotube reinforced nanocomposite - Google Patents

Carbon nanotube reinforced nanocomposite Download PDF

Info

Publication number
JP2009532531A
JP2009532531A JP2009503306A JP2009503306A JP2009532531A JP 2009532531 A JP2009532531 A JP 2009532531A JP 2009503306 A JP2009503306 A JP 2009503306A JP 2009503306 A JP2009503306 A JP 2009503306A JP 2009532531 A JP2009532531 A JP 2009532531A
Authority
JP
Japan
Prior art keywords
dwnt
mwnt
epoxy
composite
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009503306A
Other languages
Japanese (ja)
Inventor
ドンシェン・マオ
ズヴィ・ヤニフ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Nanotech Holdings Inc
Original Assignee
Applied Nanotech Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/693,454 external-priority patent/US8129463B2/en
Application filed by Applied Nanotech Holdings Inc filed Critical Applied Nanotech Holdings Inc
Publication of JP2009532531A publication Critical patent/JP2009532531A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

MWNT(ここでMWNTは2層よりも多くの層を有する)及びDWNTの組み合わせが、ポリマーナノコンポジットの機械的性質を顕著に改善する。少量のDWNTによる強化(<1wt%)がエポキシマトリクスナノコンポジットの曲げ強度を顕著に改善する。同量または同じ様な量のMWNTによる強化がエポキシマトリクスナノコンポジットの曲げ弾性率(剛性)を顕著に改善する。MWNT及びDWNTで共に強化したエポキシナノコンポジットの曲げ強度及び曲げ弾性率の両方は、同量のDWNTまたはMWNTのどちらかで強化したエポキシナノコンポジットと比較して、はるかに改善される。このエポキシ/DWNT/MWNTナノコンポジットシステムにおいては、DWNTの代わりにSWMTも機能し得る。エポキシに加えて、他の熱硬化性ポリマーも機能し得る。  The combination of MWNT (where MWNT has more than two layers) and DWNT significantly improves the mechanical properties of the polymer nanocomposites. Reinforcement with a small amount of DWNT (<1 wt%) significantly improves the bending strength of epoxy matrix nanocomposites. Reinforcement with the same or similar amount of MWNT significantly improves the flexural modulus (stiffness) of the epoxy matrix nanocomposite. Both the flexural strength and the flexural modulus of epoxy nanocomposites reinforced with MWNT and DWNT are much improved compared to epoxy nanocomposites reinforced with the same amount of DWNT or MWNT. In this epoxy / DWNT / MWNT nanocomposite system, SWMT can also function instead of DWNT. In addition to epoxies, other thermosetting polymers can also function.

Description

本願は、2006年3月31日出願の米国仮出願第60/788234号、及び、2006年6月2日出願の米国仮出願第60/810394号の優先権を主張する。   This application claims priority to US Provisional Application No. 60/788234, filed March 31, 2006, and US Provisional Application No. 60 / 810,394, filed June 2, 2006.

飯島(Iijima)によって1991年に最初に発見されて以来、カーボンナノチューブ(CNT,carbon nanotube)は重要な研究対象となっている(非特許文献1)。多くの研究者がこの新形状の炭素の顕著な物理的及び機械的性質について報告している。CNTの直径は典型的に、単層CNT(SWNT,single wall CNT)に対して0.5〜1.5nmであり、二層CNT(DWNT,double wall CNT)に対して1〜3nmであり、多層CNT(MWNT,multi wall CNT)に対して5nmから100nmである。その固有の電子的特性及びダイヤモンドよりも高い熱伝導性に始まり、その剛性、強度及び弾性が現存する如何なる物質よりも優れているという機械的性質に至り、CNTは、全く新しい材料システムの開発に対する非常に大きな機会を提供する。特に、CNTの並外れた機械的性質(E>1.0TPa、また、50GPaの引張強度)が低密度(1〜2.0g/cm)と組み合わさっていることによって、CNT強化材料の開発が魅力的なものとなる(非特許文献2)。CNTは地球上の既知の物質の中で最も強固である。MWNTと比較すると、SWNT及びDWNTは、それらのより大きな表面積及びより高いアスペクト比によって、強化材料としてより有力である。表1に、SWNT、DWNT及びMWNTの表面積及びアスペクト比を挙げる。 Since being first discovered in 1991 by Iijima, carbon nanotubes (CNT, carbon nanotube) have been an important research subject (Non-Patent Document 1). Many researchers have reported the remarkable physical and mechanical properties of this new form of carbon. The diameter of the CNT is typically 0.5 to 1.5 nm for a single-walled CNT (SWNT, single wall CNT), 1 to 3 nm for a double-walled CNT (DWNT, double wall CNT), The thickness is 5 nm to 100 nm for multi-wall CNT (MWNT, multi-wall CNT). Starting with its inherent electronic properties and higher thermal conductivity than diamond, it leads to the mechanical properties that its stiffness, strength and elasticity are superior to any existing material, and CNTs are for the development of completely new material systems. Provides a huge opportunity. In particular, the exceptional mechanical properties of CNTs (E> 1.0 TPa, and 50 GPa tensile strength) combined with low density (1 to 2.0 g / cm 3 ) have allowed the development of CNT reinforced materials. It will be attractive (Non-Patent Document 2). CNT is the strongest of the known materials on the earth. Compared to MWNT, SWNT and DWNT are more potent as reinforcing materials due to their larger surface area and higher aspect ratio. Table 1 lists the surface area and aspect ratio of SWNT, DWNT and MWNT.

Figure 2009532531
Figure 2009532531

S.Iijima、“Helical microtubules of graphitic carbon”、Nature、1991年、第354巻、p.56S. Iijima, “Helicic microtubules of graphic carbon”, Nature, 1991, 354, p. 56 Eric W.Wong、Paul E.Sheehan、Charles M.Lieber、“Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”、Science、1997年、第277巻、p.1971Eric W. Wong, Paul E.W. Sheehan, Charles M .; Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanords and Nanotubes”, Science, 1997, 277, p. 1971

問題は、SWNT及びDWNTはどちらもMWNTよりも高価であるという点である。精製されたMWNTの価格が1〜10ドル/gである一方で、精製されたSWNT及びDWNTの価格はどちらも500ドル/gもの高さになり得る。従って、MWNT強化ナノコンポジットはSWNTまたはDWNT強化ナノコンポジットよりもずっと安価である。   The problem is that both SWNT and DWNT are more expensive than MWNT. While the price of purified MWNT is 1-10 dollars / g, the price of both purified SWNT and DWNT can be as high as $ 500 / g. Thus, MWNT reinforced nanocomposites are much cheaper than SWNT or DWNT reinforced nanocomposites.

MWNT(ここでMWNTは2層よりも多くの層を有する)及びDWNTの組み合わせが、ポリマーナノコンポジットの機械的性質を顕著に改善する。少量のDWNTによる強化(<1wt%)がエポキシマトリクスナノコンポジットの曲げ強度を顕著に改善する。同量または同じ様な量のMWNTによる強化がエポキシマトリクスナノコンポジットの曲げ弾性率(剛性)を顕著に改善する。MWNT及びDWNTで共に強化したエポキシナノコンポジットの曲げ強度及び曲げ弾性率の両方は、同量のDWNTまたはMWNTのどちらかで強化したエポキシナノコンポジットと比較して、はるかに改善される。このエポキシ/DWNT/MWNTナノコンポジットシステムにおいては、DWNTの代わりにSWMTも機能し得る。エポキシに加えて、他の熱硬化性ポリマーも機能し得る。   The combination of MWNT (where MWNT has more than two layers) and DWNT significantly improves the mechanical properties of the polymer nanocomposites. Reinforcement with a small amount of DWNT (<1 wt%) significantly improves the bending strength of epoxy matrix nanocomposites. Reinforcement with the same or similar amount of MWNT significantly improves the flexural modulus (stiffness) of the epoxy matrix nanocomposite. Both the flexural strength and the flexural modulus of epoxy nanocomposites reinforced with MWNT and DWNT are much improved compared to epoxy nanocomposites reinforced with the same amount of DWNT or MWNT. In this epoxy / DWNT / MWNT nanocomposite system, SWMT can also function instead of DWNT. In addition to epoxies, other thermosetting polymers can also function.

本発明の一実施形態に対して、本発明をより良く例示するためにこの実施形態の詳細な例を与える。   For one embodiment of the present invention, a detailed example of this embodiment is given to better illustrate the present invention.

エポキシ樹脂(ビスフェノールA)を日本のアリサワ(Arisawa)社から入手した。同社から、エポキシナノコンポジットを硬化させるために用いられる硬化剤(ジシアンジアミド)を入手した。DWNT及びMWNTを、ベルギーのNanocyl社から入手した。これらのCNTはアミノ(‐NH)官能基で官能化されていた。アミノ官能基CNTは、CNTとエポキシ分子チェアとの間の結合を改善するのに役立ち、ナノコンポジットの機械的性質を更に改善することができる。しかしながら、元の状態のCNTまたは、他の方法(カルボキシル官能基等)によって官能化させたCNTも機能し得る(例えば、日本のアルケマ(Arkema)社製のペレット(製品名:RILSAN BMV−P20 PA11))。粘土は、米国のSouthern Clay社製であった(製品名:Cloisite(登録商標)シリーズ93A)。これは、三元アンモニウム塩で修飾された天然のモンモリロナイト(montmorillonite)である。エラストマーは、米国のKraton社から購入したスチレン/エチレンブチレン/スチレン(SEBS)であった(製品名:G1657)。 Epoxy resin (bisphenol A) was obtained from Arisawa, Japan. The company obtained a curing agent (dicyandiamide) used to cure epoxy nanocomposites. DWNT and MWNT were obtained from Nanocyl, Belgium. These CNTs were functionalized with amino (—NH 2 ) functional groups. The amino functional group CNT helps to improve the bond between the CNT and the epoxy molecular chair and can further improve the mechanical properties of the nanocomposite. However, original CNTs or CNTs functionalized by other methods (carboxyl functional groups, etc.) can also function (for example, pellets manufactured by Arkema, Japan (product name: RILSAN BMV-P20 PA11). )). The clay was manufactured by Southern Clay, USA (product name: Cloisite® series 93A). This is a natural montmorillonite modified with a ternary ammonium salt. The elastomer was styrene / ethylene butylene / styrene (SEBS) purchased from Kraton, USA (product name: G1657).

図1は、エポキシ/CNTナノコンポジットを製造するプロセスフローの概略図を示す。全ての原料を真空オーブン内で70℃で少なくも16時間乾燥させて、湿気を完全に取り除いた。CNTをアセトン101中に入れて、マイクロ流体マシーン(micro−fluidic machine)(Microfluidics社から購入可能)によって、拡散させた(ステップ102)。マイクロ流体マシーンは、正確に定められたミクロンサイズのチャネル内に超高速で衝突する高圧流を用いる。そのせん断及び衝撃の組み合わさった力が製品に作用して、一様な分散を生じさせる。CNT/アセトンはゲル103とされ、アセトン溶媒中に良く分散したCNTがもたらされる。しかしながら、超音波処理プロセス等の他の方法も機能し得る。溶液中にCNTを分散させるために、界面活性剤を使用してもよい。その後、ステップ104でCNT/アセトンゲルにエポキシを加えて、エポキシ/CNT/アセトン溶液105を生成した。これに、バス内で70℃で1時間にわたる超音波処理プロセス(ステップ106)が続いて、エポキシ/CNT/アセトン懸濁液107を生成した。ステップ108において、ステップ108において、70℃で三十分間にわたる1400回転/分の速度での撹拌器による混合プロセスを用いて、CNTをエポキシ中に更に分散させて、エポキシ/CNT/アセトンゲル109を生成した。その後、ステップ110で硬化剤を、4.5wt%の比率でエポキシ/CNT/アセトンゲル109に加えて、これに続いて、70℃で1時間撹拌した。ステップ112において、真空オーブン内で70℃で少なくとも48時間にわたって、結果物であるゲル111のガス抜きを行った。その後、材料113をテフロン(登録商標)のモールド内に注いで、160℃で2時間にわたって硬化させた。この見本の機械的性質(曲げ強度及び曲げ弾性率)を、研磨プロセス115の後に特性評価した。   FIG. 1 shows a schematic diagram of a process flow for producing an epoxy / CNT nanocomposite. All ingredients were dried in a vacuum oven at 70 ° C. for at least 16 hours to completely remove moisture. CNTs were placed in acetone 101 and diffused by a micro-fluidic machine (available from Microfluidics) (step 102). Microfluidic machines use high-pressure flows that impinge at very high speeds in precisely defined micron-sized channels. The combined force of the shear and impact acts on the product to produce a uniform dispersion. CNT / acetone is gel 103, resulting in CNTs well dispersed in acetone solvent. However, other methods such as sonication processes may also work. A surfactant may be used to disperse the CNTs in the solution. Thereafter, in step 104, epoxy was added to the CNT / acetone gel to produce an epoxy / CNT / acetone solution 105. This was followed by a sonication process (step 106) for 1 hour at 70 ° C. in a bath to produce an epoxy / CNT / acetone suspension 107. In step 108, in step 108, the CNTs were further dispersed in the epoxy using a mixing process with a stirrer at a speed of 1400 revolutions per minute for 30 minutes at 70 ° C. Was generated. Thereafter, in step 110, the curing agent was added to the epoxy / CNT / acetone gel 109 at a ratio of 4.5 wt%, followed by stirring at 70 ° C. for 1 hour. In step 112, the resulting gel 111 was degassed in a vacuum oven at 70 ° C. for at least 48 hours. The material 113 was then poured into a Teflon mold and cured at 160 ° C. for 2 hours. The mechanical properties (bending strength and flexural modulus) of this sample were characterized after the polishing process 115.

表2は、エポキシ/CNTナノコンポジットを製造するための図1のプロセスフローを用いて製造したエポキシの機械的性質(曲げ強度及び曲げ弾性率)を示す。図2に示されるように、同じ積載量のCNTにおいて、エポキシ/DWNTの曲げ強度は、エポキシ/MWNTの曲げ強度よりも高い。一方、図3に示されるように、同じ積載量のCNTにおいて、エポキシ/DWNTの曲げ弾性率は、エポキシ/MWNTの曲げ弾性率よりも低い。エポキシ/DWNT(0.5wt%)/MWNT(0.5wt%)の曲げ強度及び曲げ弾性率は両方とも、エポキシ/DWNT(1wt%)のものよりも高い。   Table 2 shows the mechanical properties (bending strength and flexural modulus) of the epoxy produced using the process flow of FIG. 1 for producing an epoxy / CNT nanocomposite. As shown in FIG. 2, the bending strength of epoxy / DWNT is higher than the bending strength of epoxy / MWNT in the CNTs with the same loading capacity. On the other hand, as shown in FIG. 3, the bending elastic modulus of epoxy / DWNT is lower than the bending elastic modulus of epoxy / MWNT in the CNTs having the same loading capacity. The flexural strength and flexural modulus of epoxy / DWNT (0.5 wt%) / MWNT (0.5 wt%) are both higher than that of epoxy / DWNT (1 wt%).

Figure 2009532531
Figure 2009532531

エポキシ/CNTナノコンポジットの製造方法を例示する。The manufacturing method of an epoxy / CNT nanocomposite is illustrated. エポキシナノコンポジットの曲げ強度を示すグラフを例示する。The graph which shows the bending strength of an epoxy nanocomposite is illustrated. エポキシナノコンポジットの曲げ弾性率を示すグラフを例示する。The graph which shows the bending elastic modulus of an epoxy nanocomposite is illustrated.

Claims (13)

熱硬化性樹脂を含むコンポジット材料であって、該コンポジット材料の曲げ強度及び曲げ弾性率の両方が増大する濃度で二層カーボンナノチューブ(CNT)及び多層CNTを備えたコンポジット材料の製造方法。   A method for producing a composite material comprising a thermosetting resin, the composite material comprising double-walled carbon nanotubes (CNT) and multi-walled CNTs at a concentration that increases both the bending strength and the flexural modulus of the composite material. 二層CNT及び多層CNTの前記濃度が前記コンポジット材料の曲げ強度及び曲げ弾性率の両方を増大させるように最適化されている、請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the concentration of double-walled CNTs and multi-walled CNTs is optimized to increase both the bending strength and the bending elastic modulus of the composite material. 前記コンポジット材料が、0.01〜40wt%の二層CNT含有量を有する、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the composite material has a double-walled CNT content of 0.01 to 40 wt%. 前記コンポジット材料が。0.01〜20wt%の二層CNT含有量を有する、請求項2に記載の製造方法。   The composite material. The manufacturing method of Claim 2 which has 0.01-20 wt% of bilayer CNT content. 60〜99.98wt%の熱硬化性樹脂含有量と、0.01〜20wt%のMWNT含有量と、0.01〜20wt%のDWNT含有量とを有するコンポジット。   A composite having a thermosetting resin content of 60 to 99.98 wt%, a MWNT content of 0.01 to 20 wt%, and a DWNT content of 0.01 to 20 wt%. 前記熱硬化性樹脂がエポキシを含む、請求項5に記載のコンポジット。   The composite of claim 5, wherein the thermosetting resin comprises an epoxy. 前記MWNT及び前記DWNTが、精製されているかまたは精製されておらず、金属、半導体または絶縁体である、請求項5に記載のコンポジット。   6. The composite of claim 5, wherein the MWNT and the DWNT are purified or unpurified and are a metal, a semiconductor or an insulator. 特定の組の性質を備えたカーボンナノチューブコンポジットを製造するために、カーボンナノチューブの直径の関数として、該コンポジットに加えるカーボンナノチューブの量を変化させる、カーボンナノチューブコンポジットの製造方法。   A method for producing a carbon nanotube composite, wherein the amount of carbon nanotubes added to the composite is varied as a function of the carbon nanotube diameter to produce a carbon nanotube composite with a particular set of properties. 前記カーボンナノチューブが二層カーボンナノチューブである、請求項8に記載の製造方法。   The manufacturing method according to claim 8, wherein the carbon nanotube is a double-walled carbon nanotube. 前記カーボンナノチューブが多層カーボンナノチューブである、請求項8に記載の製造方法。   The manufacturing method of Claim 8 whose said carbon nanotube is a multi-walled carbon nanotube. 前記コンポジット内の二層カーボンナノチューブと多層カーボンナノチューブとの比率を、特定の組の性質を得るために変化させる、請求項8に記載の製造方法。   The manufacturing method according to claim 8, wherein a ratio between the double-walled carbon nanotube and the multi-walled carbon nanotube in the composite is changed to obtain a specific set of properties. 前記コンポジットが熱硬化性樹脂を更に含む、請求項11に記載の製造方法。   The manufacturing method according to claim 11, wherein the composite further includes a thermosetting resin. 前記コンポジットがエポキシを更に含む、請求項11に記載の製造方法。   The manufacturing method according to claim 11, wherein the composite further includes an epoxy.
JP2009503306A 2006-03-31 2007-03-30 Carbon nanotube reinforced nanocomposite Pending JP2009532531A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US78823406P 2006-03-31 2006-03-31
US81039406P 2006-06-02 2006-06-02
US81931906P 2006-07-07 2006-07-07
US11/693,454 US8129463B2 (en) 2006-03-31 2007-03-29 Carbon nanotube-reinforced nanocomposites
PCT/US2007/065630 WO2007115162A2 (en) 2006-03-31 2007-03-30 Carbon nanotube-reinforced nanocomposites

Publications (1)

Publication Number Publication Date
JP2009532531A true JP2009532531A (en) 2009-09-10

Family

ID=40149864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009503306A Pending JP2009532531A (en) 2006-03-31 2007-03-30 Carbon nanotube reinforced nanocomposite

Country Status (5)

Country Link
EP (1) EP2019750A4 (en)
JP (1) JP2009532531A (en)
KR (1) KR20090025194A (en)
CA (1) CA2647727A1 (en)
WO (1) WO2007115162A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083722A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp High density carbon nanotube aggregate and method of manufacturing the same
JP2013533892A (en) * 2010-03-26 2013-08-29 ユニバーシティ オブ ハワイ Resin reinforced with nanomaterials and related materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228406A1 (en) 2009-03-13 2010-09-15 Bayer MaterialScience AG Improved mechanical properties of epoxy filled with functionalized carbon nanotubes
IT1396918B1 (en) 2009-11-03 2012-12-20 Polimeri Europa Spa PROCEDURE FOR THE PREPARATION OF GRAPHENIC NANOPIASTRINES WITH HIGH LEVELABILITY IN LOW POLARITY POLYMER MATRICES AND THEIR POLYMERIC COMPOSITIONS
DE102010040040A1 (en) * 2010-08-31 2012-03-01 Sgl Carbon Se Reinforced epoxy resin
WO2013133941A1 (en) * 2012-03-06 2013-09-12 Applied Nanotech Holdings, Inc. Carbon nanotube reinforced nanocomposites
US20160160001A1 (en) * 2014-11-06 2016-06-09 Northrop Grumman Systems Corporation Ultrahigh loading of carbon nanotubes in structural resins

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238816A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber reinforced resin composition, molding material and its molded article
JP2003306607A (en) * 2002-02-12 2003-10-31 Toray Ind Inc Resin composition and method for producing the same
JP2006188389A (en) * 2005-01-06 2006-07-20 Univ Nagoya Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same
JP2006527786A (en) * 2003-06-16 2006-12-07 ウィリアム・マーシュ・ライス・ユニバーシティ Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes
JP2007502246A (en) * 2003-07-28 2007-02-08 ウィリアム・マーシュ・ライス・ユニバーシティ Side wall functionalization of carbon nanotubes with organosilanes to obtain polymer composites

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306607A (en) * 2002-02-12 2003-10-31 Toray Ind Inc Resin composition and method for producing the same
JP2003238816A (en) * 2002-02-14 2003-08-27 Toray Ind Inc Carbon fiber reinforced resin composition, molding material and its molded article
JP2006527786A (en) * 2003-06-16 2006-12-07 ウィリアム・マーシュ・ライス・ユニバーシティ Fabrication of carbon nanotube reinforced epoxy polymer composites using functionalized carbon nanotubes
JP2007502246A (en) * 2003-07-28 2007-02-08 ウィリアム・マーシュ・ライス・ユニバーシティ Side wall functionalization of carbon nanotubes with organosilanes to obtain polymer composites
JP2006188389A (en) * 2005-01-06 2006-07-20 Univ Nagoya Method for production of high-purity two- to five-walled carbon nanotube, and composition containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010083722A (en) * 2008-09-30 2010-04-15 Nippon Chemicon Corp High density carbon nanotube aggregate and method of manufacturing the same
JP2013533892A (en) * 2010-03-26 2013-08-29 ユニバーシティ オブ ハワイ Resin reinforced with nanomaterials and related materials

Also Published As

Publication number Publication date
CA2647727A1 (en) 2007-10-11
KR20090025194A (en) 2009-03-10
WO2007115162A2 (en) 2007-10-11
EP2019750A2 (en) 2009-02-04
EP2019750A4 (en) 2009-09-02
WO2007115162A3 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5568553B2 (en) Carbon nanotube reinforced nanocomposite
JP4231916B2 (en) Method for producing carbon fiber composite resin material
Puglia et al. Elastomer/thermoplastic modified epoxy nanocomposites: The hybrid effect of ‘micro’and ‘nano’scale
Shen et al. The reinforcement role of different amino-functionalized multi-walled carbon nanotubes in epoxy nanocomposites
JP4703450B2 (en) Method for producing thermosetting resin composition, cured resin composition and method for producing the same
JP2009532531A (en) Carbon nanotube reinforced nanocomposite
Domun et al. Improving the fracture toughness and the strength of epoxy using nanomaterials–a review of the current status
Hadavand et al. Mechanical properties of multi-walled carbon nanotube/epoxy polysulfide nanocomposite
Wang et al. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites
Sun et al. Mechanical properties of surface-functionalized SWCNT/epoxy composites
Norhakim et al. Mechanical and thermal properties of graphene oxide filled epoxy nanocomposites
US8129463B2 (en) Carbon nanotube-reinforced nanocomposites
JP2007154157A (en) Thermoplastic resin composition and its manufacturing method
Wei et al. Enhancement in mechanical properties of epoxy nanocomposites by Styrene-ethylene-butadiene-styrene grafted graphene oxide
CN101432137A (en) Carbon nanotube-reinforced nanocomposites
Anand et al. Structural composites hybridized with nanofillers: An overview
US20120220695A1 (en) Carbon Nanotube Reinforced Nanocomposites
Pal et al. Rubber blend nanocomposites
Chow et al. Epoxy/multiwall carbon nanotube nanocomposites prepared by sonication and planetary mixing technique
JP4883724B2 (en) Carbon fiber composite resin material
Zavrazhin et al. Nanomodified epoxy materials with improved operating characteristics
Albadrany et al. Preparation of novel nanocomposites using the Ultra-sonication technique
Kayalar et al. Experimental Investigation on the Tensile Behavior of MWCNT–Nano Silica Epoxy Hybrid Nanocomposites
Wang et al. Thiokol oligomer functionalized MWCNTs for epoxy nanocomposites
WO2013133941A1 (en) Carbon nanotube reinforced nanocomposites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120528

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604