[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009543894A - Method and apparatus for liquefying a hydrocarbon stream - Google Patents

Method and apparatus for liquefying a hydrocarbon stream Download PDF

Info

Publication number
JP2009543894A
JP2009543894A JP2009518889A JP2009518889A JP2009543894A JP 2009543894 A JP2009543894 A JP 2009543894A JP 2009518889 A JP2009518889 A JP 2009518889A JP 2009518889 A JP2009518889 A JP 2009518889A JP 2009543894 A JP2009543894 A JP 2009543894A
Authority
JP
Japan
Prior art keywords
stream
refrigerant
heat exchanger
liquid
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2009518889A
Other languages
Japanese (ja)
Inventor
マルコ・ディック・ジャガー
サンダー・カールト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of JP2009543894A publication Critical patent/JP2009543894A/en
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0254Operation; Control and regulation; Instrumentation controlling particular process parameter, e.g. pressure, temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0291Refrigerant compression by combined gas compression and liquid pumping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

供給原料流(10)から天然ガスなどの炭化水素流を液化する方法であって、(a)熱交換器(12)において循環する混合冷媒に対して供給原料流(10)を通過させて、−100℃未満の温度を有する少なくとも部分的に液化した炭化水素流(20)を得る工程;(b)前記混合冷媒を液体及び蒸気の冷媒流出流(80)として前記熱交換器(12)から流出させる工程;(c)前記液体及び蒸気の冷媒流出流(80)を第1の分離器(18)に通して蒸気冷媒流(90)と液体冷媒流(110)とを得る工程;(d)実質的な熱交換なしで工程(c)の前記液体冷媒流(110)を工程(a)の前記熱交換器(12)に循環させる工程;(e)前記蒸気冷媒流(90)を圧縮して圧縮冷媒流(95)を得る工程;(f)前記圧縮冷媒流(95)を冷却して温度が0℃未満の冷却された圧縮流(100)を得る工程;及び(g)前記冷却された圧縮流(100)を工程(a)の前記熱交換器(12)に循環させる工程;を少なくとも含む前記方法。  A method of liquefying a hydrocarbon stream, such as natural gas, from a feed stream (10), wherein (a) the feed stream (10) is passed through a mixed refrigerant circulating in a heat exchanger (12), Obtaining an at least partially liquefied hydrocarbon stream (20) having a temperature of less than −100 ° C .; (b) from the heat exchanger (12) with the mixed refrigerant as a liquid and vapor refrigerant effluent stream (80). (C) passing the liquid and vapor refrigerant outflow (80) through the first separator (18) to obtain a vapor refrigerant stream (90) and a liquid refrigerant stream (110); ) Circulating the liquid refrigerant stream (110) of step (c) to the heat exchanger (12) of step (a) without substantial heat exchange; (e) compressing the vapor refrigerant stream (90) And obtaining a compressed refrigerant stream (95); (f) the compressed refrigerant stream 95) cooling to obtain a cooled compressed stream (100) having a temperature below 0 ° C .; and (g) the cooled compressed stream (100) being converted into the heat exchanger (12) of step (a). Circulating to the method.

Description

本発明は、特に液化天然ガスの製造プロセスにおいて天然ガスなどの炭化水素流を液化するための方法及び装置に関する。   The present invention relates to a method and apparatus for liquefying a hydrocarbon stream, such as natural gas, particularly in a liquefied natural gas production process.

天然ガス流を液化して液化天然ガス(LNG)を得る方法が複数知られている。いくつかの理由により、天然ガス流は液化するのが望ましい。例として、天然ガスを貯蔵したり長距離輸送する場合、ガスの状態よりも液体とする方が容易に行うことができる。液体の方が、占有する体積が小さく、高圧で貯蔵する必要もないからである。   Several methods are known for liquefying a natural gas stream to obtain liquefied natural gas (LNG). It is desirable for the natural gas stream to liquefy for several reasons. As an example, when natural gas is stored or transported over a long distance, it is easier to use liquid than gas. This is because the liquid occupies a smaller volume and does not need to be stored at high pressure.

EP1008823B1は、加圧供給ガスを液化する方法に関するものであり、供給原料流と種々の冷媒流が熱交換器に送られる。混合冷媒の出口流が熱交換器から蒸気として収集され、圧縮され、冷却され、放出されて蒸気冷媒と液体冷媒とが得られ、それらが混合され又は別々に熱交換器に再導入される。EP1008823B1に示されている全ての構成の問題は、冷媒出口流が完全に蒸気である場合、熱交換器がその長さに沿って蒸発冷却の高い熱伝達率特性にて供給原料流を冷却していないことである。よって、熱交換器の冷却能力が最大化されていないという問題がある。   EP1008823B1 relates to a method for liquefying a pressurized feed gas, wherein a feed stream and various refrigerant streams are sent to a heat exchanger. The exit stream of the mixed refrigerant is collected as steam from the heat exchanger, compressed, cooled, and discharged to obtain the vapor refrigerant and liquid refrigerant, which are mixed or separately reintroduced into the heat exchanger. The problem with all configurations shown in EP 1008823B1 is that when the refrigerant outlet stream is completely steam, the heat exchanger cools the feed stream along its length with a high heat transfer coefficient characteristic of evaporative cooling. That is not. Therefore, there is a problem that the cooling capacity of the heat exchanger is not maximized.

DE19937623A1は炭化水素に富んだ流れを液化する方法に関する。この方法では、クーラントとの間接熱交換が実行され、流出する各クーラント混合物は圧縮前には二相流として存在する。熱交換の各段階では、流出する蒸発クーラントの2つの相が分離された後、再循環の前に液相が再圧縮された気相と混合される。図1の第2の熱交換器E2及び第3の熱交換器E3では、再混合されたクーラントが、先行する熱交換器E1及びE1+E2によりそれぞれ冷却される。   DE 199 76 623 A1 relates to a process for liquefying a hydrocarbon-rich stream. In this method, indirect heat exchange with the coolant is performed, and each coolant mixture that exits exists as a two-phase flow before compression. In each stage of the heat exchange, after the two phases of the evaporating coolant flowing out are separated, the liquid phase is mixed with the recompressed gas phase before recirculation. In the second heat exchanger E2 and the third heat exchanger E3 in FIG. 1, the remixed coolant is cooled by the preceding heat exchangers E1 and E1 + E2, respectively.

DE19937623A1では、図1の第1ステージのクーラント流13及び14についてこれら2つの相が混合されるとき二相が同じ温度、例えば+40℃である場合には、このシステムは非効率ではない。再混合された第1のクーラント流10は、熱交換器E1を通るクーラント流として使用される前に熱交換器E1により十分に冷却される。   In DE 19937623 A1, the system is not inefficient if the two phases are at the same temperature, for example + 40 ° C., when these two phases are mixed for the first stage coolant streams 13 and 14 of FIG. The remixed first coolant stream 10 is sufficiently cooled by the heat exchanger E1 before being used as a coolant stream through the heat exchanger E1.

DE19937623A1に示された構成での問題は、分離器D3の後の流れ24及び25と、分離器D4の後の第3ステージのクーラント流35及び36との再混合が生じることである。2つの相の流れ23及び34から分離された液体クーラント流24及び35は、2つの相の流れ23及び34とそれぞれ同じ温度、例えば約−40℃及び約−100℃となるであろう。しかしながら、分離されたガス流25及び36は、圧縮機C3及びC4により再圧縮された後は相対的に高温になり、水冷装置E6及びE7を用いてさえ、C3及びC4の後の流れの温度は通常は例えば+40℃よりさらに高くなる。流れ24(−40℃)と流れ25(約+40℃)とを再混合すると、中間温度の流れ20が生成される。著しく異なった(ずれた)温度の流れ24及び25についてのこのような混合は非効率である。   The problem with the configuration shown in DE 199 762 623 A1 is that remixing of the streams 24 and 25 after the separator D3 and the third stage coolant streams 35 and 36 after the separator D4 occurs. The liquid coolant streams 24 and 35 separated from the two phase streams 23 and 34 will be at the same temperature as the two phase streams 23 and 34, respectively, for example about -40 ° C and about -100 ° C. However, the separated gas streams 25 and 36 become relatively hot after being recompressed by the compressors C3 and C4, and even with the water cooling devices E6 and E7, the temperature of the stream after C3 and C4. Is usually higher than + 40 ° C., for example. Remixing stream 24 (−40 ° C.) and stream 25 (about + 40 ° C.) produces an intermediate temperature stream 20. Such mixing for significantly different (offset) temperature streams 24 and 25 is inefficient.

また、混合されたクーラント流20は、熱交換器E2に入る前に流れ21に対して望ましい−40℃近くに冷却する必要がある。この冷却は熱交換器E1により行われ、したがって、流れ10及び1だけでなく流れ20に対しても更なる仕事(すなわち余分な熱の除去)を行わなければならない。   Also, the mixed coolant stream 20 needs to be cooled close to the desired −40 ° C. for stream 21 before entering heat exchanger E2. This cooling is performed by the heat exchanger E1, and therefore further work (ie removal of excess heat) must be performed not only on the streams 10 and 1, but also on the stream 20.

この非効率な状況は、流れ35及び36の再混合ではさらに拡大する。混合の際のこれらの温度のずれは、流れ24及び25の場合よりも大きく、流れ30は熱交換器E1及びE2の両方による予冷を必要とし、これら両方の熱交換器が余分な仕事をしなければならない。   This inefficient situation is further magnified with remixing of streams 35 and 36. These temperature shifts during mixing are greater than in streams 24 and 25, stream 30 requires pre-cooling by both heat exchangers E1 and E2, and both these heat exchangers do extra work. There must be.

本発明の目的は、液化熱交換器、特に、限定するものではないが液化装置を含む液化プラントにおいて熱伝達領域での熱伝達を最大化することである。   It is an object of the present invention to maximize heat transfer in a heat transfer region in a liquefaction heat exchanger, particularly a liquefaction plant that includes, but is not limited to, a liquefaction device.

本発明の別の目的は、分離されたクーラント流を使用及び/又は再混合する際の温度のずれにより生じるエネルギーの非効率性を低減することである。   Another object of the present invention is to reduce energy inefficiencies caused by temperature shifts when using and / or remixing separated coolant streams.

別の目的は、天然ガスを液化するための更に効率的な別の方法及び装置を提供することである。   Another object is to provide another more efficient method and apparatus for liquefying natural gas.

上記の目的又はその他の目的のうち1つ又はそれより多くが、
供給原料流から天然ガスなどの炭化水素流を液化する方法であって、
(a)熱交換器において循環する混合冷媒に対して供給原料流を通過させて、−100℃未満の温度を有する少なくとも部分的に液化した炭化水素流を得る工程;
(b)前記混合冷媒を液体及び蒸気の冷媒流出流として前記熱交換器から流出させる工程;
(c)前記液体及び蒸気の冷媒流出流を第1の分離器に通して蒸気冷媒流と液体冷媒流とを得る工程;
(d)実質的な熱交換なしで工程(c)の前記液体冷媒流を工程(a)の前記熱交換器に循環させる工程;
(e)工程(c)の前記蒸気冷媒流を圧縮して圧縮冷媒流を得る工程;
(f)前記圧縮冷媒流を冷却して温度が0℃未満の冷却された圧縮流を得る工程;及び
(g)前記冷却された圧縮流を工程(a)の前記熱交換器に循環させる工程;
を少なくとも含む前記方法
を提供する本発明により達成できる。
One or more of the above or other purposes,
A method for liquefying a hydrocarbon stream, such as natural gas, from a feed stream,
(A) passing the feed stream through a mixed refrigerant circulating in a heat exchanger to obtain an at least partially liquefied hydrocarbon stream having a temperature of less than -100 ° C;
(B) causing the mixed refrigerant to flow out of the heat exchanger as a liquid and vapor refrigerant outflow;
(C) passing the liquid and vapor refrigerant outflow through a first separator to obtain a vapor refrigerant stream and a liquid refrigerant stream;
(D) circulating the liquid refrigerant stream of step (c) to the heat exchanger of step (a) without substantial heat exchange;
(E) compressing the vapor refrigerant stream of step (c) to obtain a compressed refrigerant stream;
(F) cooling the compressed refrigerant stream to obtain a cooled compressed stream having a temperature below 0 ° C .; and (g) circulating the cooled compressed stream to the heat exchanger of step (a). ;
Can be achieved by the present invention which provides said method comprising at least:

流出する混合冷媒は液体と蒸気との組合せである。すなわち、混合冷媒は、液化熱交換器から流出する際に完全には気化されていない。よって、冷却は、熱交換器を通って流出するまでの混合冷媒の冷却通路の全長又は全範囲において、混合冷媒の気化によって依然として影響を受けている。これにより、冷却のための熱伝達面積又は体積の最終的な範囲における熱伝達率が増大する、すなわち熱交換器中の混合冷媒に利用可能な熱伝達表面が増大する。   The mixed refrigerant flowing out is a combination of liquid and vapor. That is, the mixed refrigerant is not completely vaporized when it flows out of the liquefied heat exchanger. Therefore, the cooling is still affected by the vaporization of the mixed refrigerant in the entire length or the entire range of the mixed refrigerant cooling passage until it flows out through the heat exchanger. This increases the heat transfer coefficient in the final range of heat transfer area or volume for cooling, i.e. the heat transfer surface available to the mixed refrigerant in the heat exchanger.

熱交換器により実行される冷却により、少なくとも部分的に、好ましくは全体的に液化炭化水素流を−100℃未満にして例えば液化天然ガスを得る。このような冷却は、天然ガスなどの炭化水素流の主要な低温冷却技術において公知である。   The cooling carried out by the heat exchanger at least partially, preferably entirely, brings the liquefied hydrocarbon stream below -100 ° C., for example to obtain liquefied natural gas. Such cooling is well known in the main cryogenic cooling techniques for hydrocarbon streams such as natural gas.

本発明では、液体及び蒸気の冷媒流出流から分離された液体冷媒流は、別の熱交換器又は冷却装置を通過させることによる熱交換の必要なく、熱交換器に直接戻され再循環させられるが、通常はいくらかの最小限の熱交換が生じて液体冷媒流の温度をわずかに低下させるか又は維持するのを助け得る。このような熱交換はごく軽微であり、液体冷媒流の温度を著しく変化させるものではない。すなわち、液体及び蒸気の冷媒流出流からの液体冷媒流の分離と、直接的又は間接的な(例えば別の流れと組み合わせての)熱交換器へのその再循環との間での液体冷媒流の温度変化は、40℃未満、好ましくは30℃未満又は20℃未満又はさらに言えば10℃未満にすべきである。液体冷媒流の位置又は配置(例えば液体冷媒流を熱交換器に送り込む配管の長さ又は位置)、及び/又は他の流れとの近さ又は他の冷媒流との組合せに起因して、液体冷媒流においていくらかの最小限の熱交換がやはり尚生じ得る。このような最小限の熱交換も、40℃未満、好ましくは30℃未満又は20℃未満又はさらに言えば10℃未満(熱交換がまったく無い場合)にすべきである。   In the present invention, the liquid refrigerant stream separated from the liquid and vapor refrigerant effluent is directly returned to the heat exchanger and recirculated without the need for heat exchange by passing through another heat exchanger or cooling device. However, usually some minimal heat exchange may occur to help reduce or maintain the temperature of the liquid refrigerant stream slightly. Such heat exchange is negligible and does not significantly change the temperature of the liquid refrigerant stream. That is, the liquid refrigerant flow between the separation of the liquid refrigerant stream from the liquid and vapor refrigerant effluent and its recirculation directly or indirectly (eg, in combination with another flow) to the heat exchanger. The temperature change should be less than 40 ° C, preferably less than 30 ° C or less than 20 ° C or even less than 10 ° C. Due to the location or arrangement of the liquid refrigerant stream (e.g. the length or position of the piping that feeds the liquid refrigerant stream into the heat exchanger) and / or proximity to other flows or combinations with other refrigerant streams Some minimal heat exchange may still occur in the refrigerant stream. Such minimal heat exchange should also be below 40 ° C., preferably below 30 ° C. or below 20 ° C. or even below 10 ° C. (if there is no heat exchange at all).

実質的な熱交換を少しでも避けることにより、又は最小限の熱交換のみを有することにより、本発明の利点は、ミスマッチの「低温」冷媒流と「高温」冷媒流を一緒に混合又は組合せ又は再組合せすることなく、炭化水素流の液化方法をさらに効率的にすることである。かなり異なる温度を有するミスマッチの流れのこのような再組合せでは、DE1993762A1に示されるように炭化水素流の液化に使用するために余分な冷却を必要とする。   By avoiding any substantial heat exchange or having only minimal heat exchange, the advantages of the present invention are that the mismatched “cold” and “hot” refrigerant streams are mixed or combined together or It is to make the hydrocarbon stream liquefaction process more efficient without recombination. Such recombination of mismatched streams with significantly different temperatures requires extra cooling to be used for liquefaction of the hydrocarbon stream as shown in DE 1993762A1.

WO2006/007278A2は、プレートフィン型熱交換器の構成において一般的な冷媒流の構成を示す。この文献の図4は2つの熱交換器の使用を示しており、分離器510A及び520Bからの液体流が収集されポンプで送られて同じ分離器からの圧縮蒸気流と混合され、(再循環される混合流402を形成し、これだけが第1の熱交換器200内で完全に凝縮して液体流404になる)。しかしながら、このことは、(分離器からの)低温の液体流と(その圧縮後の)十分に高温の蒸気流とを混合することでその温度のミスマッチに起因してエクセルギー、すなわち1組の基準周囲条件に関して仕事に変換できる全エネルギーを損なうことにより、蒸気冷却器を設けているにも関わらず効率が低下するという問題を有する。それでも、再循環する混合流402は液体及び蒸気の混合流である。   WO 2006/007278 A2 shows a general refrigerant flow configuration in a plate fin heat exchanger configuration. FIG. 4 of this document shows the use of two heat exchangers, where the liquid stream from separators 510A and 520B is collected and pumped and mixed with the compressed vapor stream from the same separator (recirculation). To form a liquid stream 404 that is completely condensed in the first heat exchanger 200). However, this is due to the temperature mismatch by mixing the cold liquid stream (from the separator) with the sufficiently hot vapor stream (after its compression), ie a set of By compromising the total energy that can be converted into work with respect to the reference ambient conditions, there is the problem that the efficiency is reduced despite the provision of a steam cooler. Nevertheless, the recirculating mixed stream 402 is a mixed liquid and vapor stream.

US4,112,700は天然ガスの4熱交換器予冷を伴う構成を示しており、第1の多成分混合物が第4の予冷熱交換器を液体及び蒸気の混合相にて出て行くが、同じ予冷熱交換器へのその液相の直接的な再循環はない。また、低温主熱交換器中への0℃未満の液体冷媒流の温度のミスマッチを最小にすることのエクセルギー上の利益について考慮されていない。   US 4,112,700 shows a configuration with natural gas four heat exchanger precooling, where the first multi-component mixture exits the fourth precooling heat exchanger in a liquid and vapor mixed phase, There is no direct recirculation of that liquid phase to the same precooling heat exchanger. Also, no consideration is given to the exergy benefits of minimizing the temperature mismatch of the liquid refrigerant flow below 0 ° C. into the low temperature main heat exchanger.

US4,180,123は、混合した二相の流れが熱交換器を出て行くが、液相のみが2つの冷却器の関与後にこの熱交換器に再循環される構成を示す。ここでも、低温主熱交換器中への0℃未満の液体冷媒流の温度のミスマッチを最小にすることのエクセルギー上の利益について考慮されていない。本発明の別の利点は、混合冷媒流出から分離された第1の液体冷媒流が混合冷媒全体の少なくとも一部として熱交換器に再循環されることで、熱交換器の冷却を行うのに必要なパワー入力が削減されるので、液化プロセスをさらに効率的にできることである。   US 4,180,123 shows a configuration in which a mixed two-phase stream leaves the heat exchanger, but only the liquid phase is recycled to this heat exchanger after the involvement of two coolers. Again, no consideration is given to the exergy benefits of minimizing the temperature mismatch of the liquid refrigerant flow below 0 ° C. into the low temperature main heat exchanger. Another advantage of the present invention is that the first liquid refrigerant stream separated from the mixed refrigerant effluent is recirculated to the heat exchanger as at least a portion of the total mixed refrigerant for cooling the heat exchanger. The liquefaction process can be made more efficient since the required power input is reduced.

本発明の方法は種々の炭化水素供給原料流に適用できるが、特に液化される天然ガス流に適している。   The process of the present invention can be applied to various hydrocarbon feed streams, but is particularly suitable for natural gas streams to be liquefied.

また、当業者ならば液化後に必要なら液化天然ガスをさらに処理してもよいことが容易に分かるであろう。例として、得られたLNGはジュール・トムソン弁か又は低温ターボ膨張器により減圧してもよい。また、気体/液体分離容器における気体/液体の分離と冷却との間に更なる中間処理工程を実施してもよい。   One skilled in the art will also readily appreciate that the liquefied natural gas may be further processed if necessary after liquefaction. As an example, the resulting LNG may be depressurized by a Joule-Thomson valve or a cold turboexpander. Further, further intermediate processing steps may be performed between gas / liquid separation and cooling in the gas / liquid separation container.

炭化水素流は処理されるべき任意の適当なガス流とし得るが、通常は天然ガス又は石油の貯蔵所から得られる天然ガス流である。代案として、天然ガス流を、フィッシャー・トロプシュ法などの合成源をも含めて別の供給源から得ることもできる。   The hydrocarbon stream can be any suitable gas stream to be treated, but is usually a natural gas stream obtained from a natural gas or oil reservoir. Alternatively, the natural gas stream can be obtained from other sources, including synthetic sources such as the Fischer-Tropsch process.

通常は天然ガス流は実質的にメタンから成る。好ましくは供給原料流は少なくとも60モル%のメタン、より好ましくは少なくとも80モル%のメタンを含む。   Usually the natural gas stream consists essentially of methane. Preferably the feed stream comprises at least 60 mol% methane, more preferably at least 80 mol% methane.

供給源に依存して、天然ガスは、芳香族炭化水素だけでなくエタン、プロパン、ブタン及びペンタンなどのメタンより重い炭化水素についても種々の量にて含有し得る。天然ガス流はまた、HO、N、CO、HSなどの非炭化水素や他の硫黄化合物などを含有し得る。 Depending on the source, natural gas may contain not only aromatic hydrocarbons but also hydrocarbons heavier than methane such as ethane, propane, butane and pentane. Natural gas streams may also contain non-hydrocarbons such as H 2 O, N 2 , CO 2 , H 2 S, other sulfur compounds, and the like.

必要なら、天然ガスを含有した供給原料流は、(低温)主熱交換器に供給する前に前処理してもよい。この前処理は、COやHSなどの不要な成分の削減及び/又は除去、又は予冷、予備加圧などの他の工程を含み得る。これらの工程は当業者には周知であるので、ここでは更なる説明はしない。 If necessary, the feed stream containing natural gas may be pre-treated before being fed to the (cold) main heat exchanger. This pretreatment may include reduction and / or removal of unwanted components such as CO 2 and H 2 S, or other steps such as pre-cooling, pre-pressurization. These steps are well known to those skilled in the art and will not be further described here.

ここで用いられる「天然ガス」なる用語は、少なくとも実質的にはメタンである任意の炭化水素含有組成物に関する。これには、洗浄やスクラビングを含めて処理前の組成物が含まれるだけでなく、限定するものではないが硫黄、二酸化炭素、水、及びC 炭化水素を含めて1種以上の化合物又は物質の削減及び/又は除去のために部分的、実質的、又は完全に処理された組成物が含まれる。 The term “natural gas” as used herein relates to any hydrocarbon-containing composition that is at least substantially methane. This includes not only includes the composition of the pretreatment including cleaning and scrubbing, but are not limited to sulfur, carbon dioxide, water, and C 2 + 1 or more, including hydrocarbon compounds or Compositions that have been partially, substantially, or fully processed to reduce and / or remove substances are included.

分離器は、混合冷媒を蒸気冷媒流と液体冷媒流とに分離できる任意の容器、装置、塔又は構成とし得る。このような分離器は当該技術において公知であるので、ここでは更なる説明はしない。   The separator can be any vessel, apparatus, tower or configuration that can separate the mixed refrigerant into a vapor refrigerant stream and a liquid refrigerant stream. Such separators are well known in the art and will not be further described here.

熱交換器は、複数の流れを通過させることができ且つ1以上の冷媒管路と1以上の供給原料流との間での直接又は間接熱交換に影響を与えることができるものならばどんな塔、タワー、装置又は構成でもよい。例として、チューブ・イン・シェル型熱交換器やスプール巻型熱交換器が挙げられる。好ましくは、熱交換器は低温スプール巻型熱交換器である。   A heat exchanger is any tower that can pass multiple streams and can affect direct or indirect heat exchange between one or more refrigerant lines and one or more feed streams. , Tower, device or configuration. Examples include a tube-in-shell type heat exchanger and a spool type heat exchanger. Preferably, the heat exchanger is a cold spool wound heat exchanger.

本発明はまた、
(a)熱交換器において循環する混合冷媒に対して供給原料流を通過させて、冷却された炭化水素流を得る工程;
(b)混合冷媒を液体及び蒸気の冷媒流出流として熱交換器から流出させる工程;
(c)液体及び蒸気の冷媒流出流を第1の分離器に通して、蒸気冷媒流と液体冷媒流とを得る工程;及び
(d)工程(c)の液体冷媒流を熱交換器に直接再循環させる工程;
を少なくとも含んだ、供給原料流から天然ガスなどの炭化水素流を処理する方法を提供する。
本発明は上述した方法のうち任意のものの組合せや全ての組合せを含む。
The present invention also provides
(A) passing the feed stream through the mixed refrigerant circulating in the heat exchanger to obtain a cooled hydrocarbon stream;
(B) allowing the mixed refrigerant to flow out of the heat exchanger as a liquid and vapor refrigerant outflow;
(C) passing the refrigerant and liquid refrigerant outflow streams through a first separator to obtain a vapor refrigerant stream and a liquid refrigerant stream; and (d) directing the liquid refrigerant stream of step (c) directly to the heat exchanger. Recirculating;
A process for treating a hydrocarbon stream, such as natural gas, from a feed stream comprising at least
The present invention includes any combination or all combinations of the methods described above.

本発明は更に、供給原料流から天然ガスなどの炭化水素流を液化する装置であって、
混合冷媒流に対して前記炭化水素流を液化するための熱交換器であって、前記供給原料流のための供給原料入口と、前記供給原料流を少なくとも部分的に液化した流れのための供給原料出口と、1以上の混合冷媒入口と、蒸気及び液体の冷媒流出流のための混合冷媒出口とを有する前記熱交換器;
前記液体及び蒸気の冷媒流出流を蒸気と液体とに分離するためのものであり、蒸気冷媒流を得るための第1の出口と液体冷媒流を得るための第2の出口とを有する第1の分離器;
前記液体冷媒流を前記熱交換器に流入させるための前記熱交換器の冷媒入口;
前記蒸気冷媒流を圧縮して圧縮冷媒流を得るための圧縮機;
前記圧縮冷媒流を冷却して温度が0℃未満の冷却された圧縮流を得るための1以上の冷却装置;及び
前記冷却された圧縮流を前記熱交換器に循環させるための通路;
を少なくとも備えた前記装置を提供する。
以下、限定するものではないが単なる例として添付図面に関して本発明の態様を説明する
説明のため、1つの管路とその管路で運ばれる流れとに1つの参照番号を割り当てる。同じ参照番号は同種の構成要素を示す。
The present invention is further an apparatus for liquefying a hydrocarbon stream such as natural gas from a feed stream,
A heat exchanger for liquefying the hydrocarbon stream relative to a mixed refrigerant stream, the feed inlet for the feed stream and a supply for a stream at least partially liquefied the feed stream Said heat exchanger having a raw material outlet, one or more mixed refrigerant inlets, and a mixed refrigerant outlet for vapor and liquid refrigerant outflow;
A first outlet for obtaining a vapor refrigerant flow and a second outlet for obtaining a liquid refrigerant flow are for separating the liquid and vapor refrigerant outflow into vapor and liquid. Separators;
A refrigerant inlet of the heat exchanger for flowing the liquid refrigerant stream into the heat exchanger;
A compressor for compressing the vapor refrigerant stream to obtain a compressed refrigerant stream;
One or more cooling devices for cooling the compressed refrigerant stream to obtain a cooled compressed stream having a temperature below 0 ° C .; and a passage for circulating the cooled compressed stream to the heat exchanger;
A device comprising at least the above is provided.
In the following, aspects of the present invention will be described, by way of example and not limitation, with reference to the accompanying drawings, for purposes of explanation, one reference number is assigned to one conduit and the flow carried in that conduit. The same reference numbers indicate similar components.

本発明の一実施態様による処理方法の略図である。1 is a schematic diagram of a processing method according to an embodiment of the present invention.

図面を参照すると、図1は炭化水素供給原料流10の液化方法を示す。供給原料流10は、前処理した天然ガス流でもよく、前処理では、当該技術において公知のように、1種以上の物質又は化合物(例えば硫黄、硫黄化合物、二酸化炭素、及び水分又は水など)が削減され、好ましくは完全に又は実質的に除去される。   Referring to the drawings, FIG. 1 illustrates a method for liquefying a hydrocarbon feed stream 10. The feed stream 10 may be a pretreated natural gas stream in which one or more substances or compounds (such as sulfur, sulfur compounds, carbon dioxide, and moisture or water) are known, as is known in the art. Are preferably removed, preferably completely or substantially.

随意に、供給原料流10は当該技術において公知の1以上の予冷ステージを経ていてもよい。このような予冷ステージのうち1以上が、1以上の冷却回路を含んでいてもよい。例として、一般に天然ガス供給原料流は初期温度30〜50℃(例えば40℃)から処理される。1以上の予冷ステージに続いて、天然ガス供給原料流の温度を−30〜−70℃(例えば−40℃〜−50℃)に下げることができる。   Optionally, feed stream 10 may go through one or more precooling stages known in the art. One or more of such precooling stages may include one or more cooling circuits. As an example, a natural gas feed stream is generally processed from an initial temperature of 30-50 ° C (eg, 40 ° C). Following one or more precooling stages, the temperature of the natural gas feed stream can be lowered to -30 to -70 ° C (eg, -40 ° C to -50 ° C).

図1において、好ましくは熱交換器12は、3つの管路が熱交換器中を完全に又は部分的に通っているスプール巻型低温熱交換器である。低温熱交換器は当該技術において公知であり、供給原料流と冷媒流とからなる種々の構成を有し得る。さらに、このような熱交換器はまた、(例えば他の冷却ステージ又は処理の一部、好ましくは液化プラントのための冷媒流などの)他の流体を送るために熱交換器中に延びる1以上の管路を有することもできる。簡単にするため、図1にはこのような他の管路又は流れを示していない。   In FIG. 1, the heat exchanger 12 is preferably a spool-wound cryogenic heat exchanger with three lines passing completely or partially through the heat exchanger. Low temperature heat exchangers are known in the art and can have various configurations consisting of a feed stream and a refrigerant stream. In addition, such a heat exchanger may also include one or more extending into the heat exchanger to route other fluids (eg, other cooling stages or portions of the process, preferably a refrigerant stream for a liquefaction plant). It is also possible to have For simplicity, FIG. 1 does not show such other lines or flows.

供給原料流10は供給原料入口52から熱交換器12に入り、管路150を通って熱交換器を通り抜け、供給原料出口54から流出して少なくとも部分的に液化された炭化水素流20を与える。この液化流20は好ましくは完全に液化され、以下で説明するように更に処理されてもよい。液化流20が液化天然ガスである場合、温度は例えば約−150℃になり得る。   Feedstock stream 10 enters heat exchanger 12 from feedstock inlet 52, passes through heat exchanger 12 through line 150, and exits from feedstock outlet 54 to provide at least partially liquefied hydrocarbon stream 20. . This liquefied stream 20 is preferably fully liquefied and may be further processed as described below. If the liquefied stream 20 is liquefied natural gas, the temperature can be, for example, about −150 ° C.

供給原料流10の液化は冷媒回路160により規定される。冷媒回路160は混合冷媒を循環させ、この混合冷媒は好ましくはガスの混合物であり、より好ましくは窒素、メタン、エタン、エチレン、プロパン、プロピレン、ブタン、ペンタンなどからなる群から選択される。当該技術において公知のように、この混合冷媒の組成は、熱交換器12に対して望ましい条件及びパラメータに従って変わり得る。   The liquefaction of the feed stream 10 is defined by the refrigerant circuit 160. The refrigerant circuit 160 circulates a mixed refrigerant, which is preferably a gas mixture, more preferably selected from the group consisting of nitrogen, methane, ethane, ethylene, propane, propylene, butane, pentane, and the like. As is known in the art, the composition of this mixed refrigerant can vary according to the conditions and parameters desired for the heat exchanger 12.

冷媒の入口、出口及び熱交換器を通る冷媒の流れについて、供給原料流の冷却に影響を与える多くの構成が知られている。熱交換器を通る冷媒の1以上の管路はまた、別の管路又は流れでの冷却に影響を与えるよりもむしろ、熱交換器により自身が冷却され得る。   Many configurations are known for refrigerant flow through the refrigerant inlet, outlet, and heat exchanger that affect the cooling of the feed stream. One or more lines of refrigerant through the heat exchanger can also be cooled by the heat exchanger rather than affecting cooling in another line or stream.

図1に示される構成では、蒸気冷媒流入流30が第1の入口66から管路130に沿って熱交換器12を通り抜けて第1の冷媒出口68から流出する。管路130を通り抜ける際、第1の冷媒流出流45が液体流となるように蒸気冷媒流入流30が冷却され且つ/又は液化される。蒸気と液体の両方となっている第1の減圧冷媒流50を得るために、第1の冷媒流出流45が1以上の減圧装置(絞り弁14など)を通る。この第1の減圧冷媒流50は入口72から熱交換器12に再び入り、当該技術において公知の方法にて第1の分配マニホールド34から下向きに熱交換器12を通過させることができる。冷媒流が第1の分配マニホールド34から下向きに熱交換器12を通り抜ける際、液体冷媒が部分的に液体から蒸気に変わることで、供給原料流の管路150と蒸気冷媒流の管路130とを高い熱伝達率で冷却する。   In the configuration shown in FIG. 1, the vapor refrigerant inflow 30 passes from the first inlet 66 along the conduit 130 through the heat exchanger 12 and flows out from the first refrigerant outlet 68. When passing through the conduit 130, the vapor refrigerant inflow 30 is cooled and / or liquefied so that the first refrigerant outflow 45 is a liquid stream. In order to obtain a first reduced pressure refrigerant stream 50 that is both vapor and liquid, the first refrigerant outlet stream 45 passes through one or more pressure reducing devices (such as the throttle valve 14). This first reduced pressure refrigerant stream 50 can reenter the heat exchanger 12 through the inlet 72 and pass through the heat exchanger 12 downwardly from the first distribution manifold 34 in a manner known in the art. When the refrigerant flow passes through the heat exchanger 12 downwardly from the first distribution manifold 34, the liquid refrigerant partially changes from liquid to vapor, so that the feed flow line 150 and the vapor refrigerant flow line 130 Is cooled with a high heat transfer coefficient.

熱交換器12はまた、液体冷媒流入流40を有し、これは入口64から熱交換器に入り、熱交換器12内を管路140に沿って進む。これは、頂部と底部との間の中間レベルにある出口74にて熱交換器12から流出して第2の冷媒流出流60を与え、これが膨張器16を通ってその圧力を減じて第2の減圧冷媒流70を形成し、この流れは液体と蒸気の両方であり、入口76から熱交換器12に戻り、第2の分配マニホールド36から下方向に熱交換器12を通過する。   The heat exchanger 12 also has a liquid refrigerant inflow 40 that enters the heat exchanger from the inlet 64 and travels along the conduit 140 through the heat exchanger 12. This exits the heat exchanger 12 at an outlet 74 at an intermediate level between the top and bottom to provide a second refrigerant effluent 60 that reduces its pressure through the expander 16 to a second. , Which are both liquid and vapor, return from the inlet 76 to the heat exchanger 12 and pass through the heat exchanger 12 downwardly from the second distribution manifold 36.

好ましくは、第1及び第2の減圧冷媒流50及び70の圧力は基本的に同じである。すなわち、圧力の違いがあったとしても大きくはなく、熱交換器12の動作に影響を与えない。   Preferably, the pressures of the first and second reduced pressure refrigerant streams 50 and 70 are essentially the same. That is, even if there is a difference in pressure, it is not large and does not affect the operation of the heat exchanger 12.

これまでは、従来技術の熱交換器におけるリサイクル用の液相変化冷媒流は、蒸気に完全に相変化することができるので、蒸気出口流として収集できる。このことは、従来技術の熱交換器内に2つの主要な領域又はゾーンを作っていた。第1のゾーンでは、液体及び蒸気の冷媒流中の液体が蒸気に相変化することで、供給原料流を冷却でき、冷媒流も冷却される。このゾーンにおいては、熱交換器を「ウエット・モード」動作中であると定義できる。   So far, the liquid phase change refrigerant stream for recycling in prior art heat exchangers can be completely phase changed to steam and can be collected as a steam outlet stream. This created two main areas or zones within the prior art heat exchanger. In the first zone, the liquid in the refrigerant stream of liquid and vapor changes phase to vapor so that the feedstock stream can be cooled and the refrigerant stream is also cooled. In this zone, the heat exchanger can be defined as operating in “wet mode”.

相変化が終わると、第2のゾーンが存在し、これは熱交換器内のエリア又は領域であり(一般に第1のゾーンより下にあり)、このゾーンでは冷媒が完全に蒸気である。第2のゾーン中ではどんな相変化ももはや生じないので、すなわち単一の気相であるので、熱交換器中にかなり低い熱伝達率で冷却しているだけの熱伝達領域が存在する。蒸気の温度変化の際になおいくらかの冷却が行われ得るが、蒸気からの熱伝達率は、蒸気に変化する液体の熱伝達率よりもかなり小さい。このように、従来技術の熱交換器の第2のゾーンは、供給原料流などを冷却する上で著しく効率が低い。   At the end of the phase change, there is a second zone, which is an area or region within the heat exchanger (generally below the first zone) in which the refrigerant is completely vapor. Since no phase change occurs anymore in the second zone, i.e. a single gas phase, there is a heat transfer region in the heat exchanger that is only cooled with a rather low heat transfer rate. Although some cooling can still occur during the temperature change of the steam, the heat transfer coefficient from the steam is much smaller than the heat transfer coefficient of the liquid changing to steam. Thus, the second zone of the prior art heat exchanger is significantly less efficient in cooling feed streams and the like.

本発明の図1では、熱交換器12中で下方に流れる冷媒流は、出口62にて液体及び蒸気の冷媒流出流80として熱交換器12から流出する。この流出流80はまだ液体冷媒を含んでいるので、熱交換器12内で第1及び第2の分配マニホールド24、26から出口62までの間にて液相変化が生じる。よって、熱交換器12中に冷媒が蒸気だけであるような熱伝達のない又は熱伝達が最小のエリア又は領域が存在する。すなわち、下方に流れる冷媒流が(高い熱伝達率にて)最も効率的な熱伝達を提供していないようなエリア又は領域は無いか又は最小であり、よって最も効率的な冷却が供給原料流管路150(及び他の管路)に行われる。このように、供給原料流10との熱交換のための熱交換器12中における熱伝達エリア又は領域が最大化される。これは、同じ物理的な熱交換器の大きさ及び形状の場合、効率的な熱伝達領域を場合によっては10%超増大させる。   In FIG. 1 of the present invention, the refrigerant flow flowing downward in the heat exchanger 12 flows out of the heat exchanger 12 as a liquid and vapor refrigerant outflow 80 at the outlet 62. Since the outflow 80 still contains liquid refrigerant, a liquid phase change occurs between the first and second distribution manifolds 24 and 26 and the outlet 62 in the heat exchanger 12. Thus, there is an area or region in the heat exchanger 12 where there is no heat transfer or minimal heat transfer such that the refrigerant is only steam. That is, there is no or minimal area or region where the downward flowing refrigerant stream does not provide the most efficient heat transfer (at a high heat transfer rate), so the most efficient cooling is the feed stream. To line 150 (and other lines). In this way, the heat transfer area or region in the heat exchanger 12 for heat exchange with the feed stream 10 is maximized. This increases the effective heat transfer area in some cases by more than 10% for the same physical heat exchanger size and shape.

一般に、熱交換器12は1〜10バールといった低い圧力にて動作する。熱交換器12の底部での温度は−30〜−50℃の範囲になり得るので、冷媒流出流80もこれと同じ温度である。   In general, the heat exchanger 12 operates at a low pressure of 1 to 10 bar. Since the temperature at the bottom of the heat exchanger 12 can be in the range of −30 to −50 ° C., the refrigerant outflow 80 is also at the same temperature.

蒸気及び液体の冷媒流出流80は入口78から第1の液体/蒸気分離器18に送られ、液体/蒸気分離器18もまた1〜10バールといった低い圧力にて動作する。第1の分離器18は当該技術において公知の方法にて冷媒流出流80を分離して、第1の出口82から蒸気冷媒流90を、第2の出口84から液体冷媒流110(一般に−30℃〜−50℃の同じ範囲の温度を有する)を与える。   Vapor and liquid refrigerant effluent stream 80 is routed from inlet 78 to first liquid / vapor separator 18 which also operates at a low pressure such as 1-10 bar. The first separator 18 separates the refrigerant effluent stream 80 in a manner known in the art to provide a vapor refrigerant stream 90 from the first outlet 82 and a liquid refrigerant stream 110 (generally −30 from the second outlet 84. Having the same range of temperature between 0 ° C. and −50 ° C.).

蒸気冷媒流90は、1以上の圧縮機と1以上の冷却器とを必要とする当該技術で公知の任意の方法によって圧縮できる。図1には例として圧縮機22が示され、単なる例として温度が約75℃である圧縮された流れ95を与える。この圧縮された流れ95は、次に水冷及び/又は空冷装置24並びに別の冷却装置25により冷却され、好ましくは温度が−30℃〜−50℃の範囲にある冷却された圧縮冷媒流100を与える。   The vapor refrigerant stream 90 can be compressed by any method known in the art that requires one or more compressors and one or more coolers. FIG. 1 shows a compressor 22 by way of example, which provides a compressed stream 95 having a temperature of about 75 ° C. by way of example only. This compressed stream 95 is then cooled by a water and / or air cooling device 24 and another cooling device 25, preferably with a cooled compressed refrigerant stream 100 having a temperature in the range of −30 ° C. to −50 ° C. give.

随意に、上記別の冷却装置25はまた、上述したように、熱交換器12の前に供給原料流10を予冷する際に少なくともいくらか冷却する。   Optionally, the separate cooling device 25 also cools at least some of the feed stream 10 as it is pre-cooled before the heat exchanger 12, as described above.

冷却された圧縮冷媒流100は熱交換器12に直接戻すことができる。好ましくは、該流れ100を入口86から第2の分離器26に送り、第1の出口88から蒸気冷媒流入流30を、第2の出口92から液体冷媒流入流40を得る。第2の分離器は30〜60バール、好ましくは40〜55バールの範囲といった相対的に高い圧力にて動作する。   The cooled compressed refrigerant stream 100 can be returned directly to the heat exchanger 12. Preferably, the stream 100 is sent from the inlet 86 to the second separator 26 to obtain the vapor refrigerant inflow 30 from the first outlet 88 and the liquid refrigerant inflow 40 from the second outlet 92. The second separator operates at a relatively high pressure, such as in the range of 30-60 bar, preferably 40-55 bar.

熱交換器12に戻す経路については、第2の分離器26の前にて液体冷媒流110を冷却された圧縮冷媒流100に混ぜ合わせることもできるし、又は液体冷媒流110を第2の分離器26に直接入れることもできるし、液体冷媒流110を他の冷媒流とは別々に熱交換器12に再び入れることもできる。第1の液体/蒸気分離器18の出口84と熱交換器12の入口の間で液体冷媒流110の実質的な熱交換が生じることなく、液体冷媒流110を熱交換器12に再循環させる。好ましくは、第1の液体/蒸気分離器18の出口84と熱交換器12の入口の間で液体冷媒流110の熱交換が全く生じない。   For the path back to the heat exchanger 12, the liquid refrigerant stream 110 can be mixed with the cooled compressed refrigerant stream 100 before the second separator 26, or the liquid refrigerant stream 110 can be second separated. The liquid refrigerant stream 110 can be re-entered into the heat exchanger 12 separately from the other refrigerant streams. The liquid refrigerant stream 110 is recirculated to the heat exchanger 12 without substantial heat exchange of the liquid refrigerant stream 110 between the outlet 84 of the first liquid / vapor separator 18 and the inlet of the heat exchanger 12. . Preferably, no heat exchange of the liquid refrigerant stream 110 occurs between the outlet 84 of the first liquid / vapor separator 18 and the inlet of the heat exchanger 12.

好ましくは、液体冷媒流入流40と(ポンプ94を介した)液体冷媒流110とが、接合器又はユニオンなどの混合器28を介して送られることによって、混合された液体冷媒流120として入口64から熱交換器12に再び入る。   Preferably, the liquid refrigerant inlet stream 40 and the liquid refrigerant stream 110 (via pump 94) are routed through a mixer 28, such as a junction or union, to provide a mixed liquid refrigerant stream 120 as an inlet 64. To re-enter heat exchanger 12.

好ましくは、液体冷媒流110と冷却された圧縮冷媒流100(及び冷却された圧縮冷媒流100と同じ温度か又は実質的に同じ温度になる液体冷媒流入流40)との温度差は、10℃未満であり、好ましくは5℃未満又は3℃未満である。これらの温度がこのように近接して揃っているので、熱交換器12に再び入る前にこれらの温度を均衡させるのに必要なエクセルギー損失が最小になる。   Preferably, the temperature difference between the liquid refrigerant stream 110 and the cooled compressed refrigerant stream 100 (and the liquid refrigerant inflow 40 that is at or substantially the same temperature as the cooled compressed refrigerant stream 100) is 10 ° C. It is less than, Preferably it is less than 5 degreeC or less than 3 degreeC. Because these temperatures are so close together, the exergy loss required to balance these temperatures before reentering the heat exchanger 12 is minimized.

例として、液体及び蒸気の冷媒流出流80の温度は−40℃〜−50℃の範囲にすることができるので、第1の分離器18からの液体冷媒流110はそれに近い温度又は場合によってはわずかに低い温度である。第2の分離器26からの液体冷媒流入流40の温度範囲もまた−40℃〜−50℃の範囲にある場合、混合器28によりそれらが混合されて得られる混合液体冷媒流120はそれに近い(例えば−45℃〜−50℃の範囲)。   By way of example, the temperature of the liquid and vapor refrigerant effluent stream 80 can be in the range of −40 ° C. to −50 ° C., so that the liquid refrigerant stream 110 from the first separator 18 is at or near that temperature. Slightly lower temperature. When the temperature range of the liquid refrigerant inflow 40 from the second separator 26 is also in the range of −40 ° C. to −50 ° C., the mixed liquid refrigerant stream 120 obtained by mixing them by the mixer 28 is close thereto. (For example, a range of −45 ° C. to −50 ° C.).

温度をこのように近づけて揃えることは、上述したように液体冷媒流110の導入にも適用される。   This close and uniform temperature also applies to the introduction of the liquid refrigerant flow 110 as described above.

液化システムからの液化天然ガス20は、更なる冷却のために、例えば過冷ステージ、及び/又は最終的な分離器に送ることができ、該分離器において、プラントの燃料として使用するために(例えば種々の圧縮機を運転するガスタービンのために)蒸気を取り出すことができ、また、液化天然ガス生成物を貯蔵容器又は他の貯蔵若しくは輸送装置に移送できる。   The liquefied natural gas 20 from the liquefaction system can be sent for further cooling, for example to a subcooling stage, and / or to a final separator, where it can be used as plant fuel ( Steam can be withdrawn (eg, for gas turbines operating various compressors) and the liquefied natural gas product can be transferred to a storage vessel or other storage or transport device.

最終的な分離器はエンド・フラッシュ・システムとすることができ、これは過冷ステージの下流端部にて使用して液化天然ガス(LNG)の生産を最適化できる。通常、これは別の電気駆動モータにより駆動されるエンド圧縮機を含む。エンド圧縮機を駆動するのに必要なパワーは、過冷ステージに必要な圧縮機パワーよりも通常は小さい。
本発明の利点の例を下の表1にデータで示す。
The final separator can be an end flash system, which can be used at the downstream end of the supercooling stage to optimize liquefied natural gas (LNG) production. This typically includes an end compressor driven by another electric drive motor. The power required to drive the end compressor is usually less than the compressor power required for the subcooling stage.
Examples of the advantages of the present invention are shown in the data in Table 1 below.

表1の第1欄は、スループットが約17.5kmol/sである従来技術の基準の液化方法における主熱交換器(MCHE)の動作についてのデータを示す。この熱交換器は暖かい管束と冷たい管束から構成され、それぞれの有効表面積(UA)が約60,000と13,000kW/Kである。熱交換器のシェル側から出て行く低圧冷媒の液体含有量は0%である、すなわち熱交換器は「ドライモード」で動作する。   The first column of Table 1 shows data on the operation of the main heat exchanger (MCHE) in the prior art standard liquefaction method with a throughput of about 17.5 kmol / s. The heat exchanger is composed of a warm tube bundle and a cold tube bundle, each having an effective surface area (UA) of about 60,000 and 13,000 kW / K. The liquid content of the low-pressure refrigerant exiting from the shell side of the heat exchanger is 0%, ie the heat exchanger operates in “dry mode”.

熱交換器から出て行く冷媒の液体含有量が0.5モル%となるように本発明に基づき流出する冷媒組成を変えることにより、MCHE熱交換器は今度は完全に「ウエットモード」で動作している。ウエットモードの動作の結果、熱交換器の下部における熱伝達率Uは熱交換器の全高にわたって同じである。表1の第2の「ウエット」欄に示されるように、このことによって、同じ冷媒圧縮パワー及び物理的な熱交換器エリアに対して、熱交換器の暖かい管束の有効表面積(UA)が約10%だけ上昇し、生産量が約1.6%上昇している。これは工業規模では著しい増加である。   By changing the refrigerant composition flowing out in accordance with the present invention so that the liquid content of the refrigerant leaving the heat exchanger is 0.5 mol%, the MCHE heat exchanger now operates completely in “wet mode” is doing. As a result of the wet mode operation, the heat transfer coefficient U at the bottom of the heat exchanger is the same over the entire height of the heat exchanger. As shown in the second “wet” column of Table 1, this results in an effective surface area (UA) of the heat exchanger warm tube bundle of about the same refrigerant compression power and physical heat exchanger area. It has increased by 10% and production has increased by about 1.6%. This is a significant increase on an industrial scale.

当業者なら特許請求の範囲から逸脱することなく多くの方法で本発明を実行できることが理解されよう。   Those skilled in the art will appreciate that the present invention can be implemented in many ways without departing from the scope of the claims.

EP1008823B1EP1008823B1 DE19937623A1DE199393723A1 WO2006/007278A2WO2006 / 007278A2 US4,112,700US 4,112,700 US4,180,123US 4,180,123

10 炭化水素の供給原料流
12 熱交換器
14 絞り弁
16 膨張器
18 第1の分離器
20 液化された炭化水素流
22 圧縮機
24 水冷及び/又は空冷装置
25 別の冷却装置
26 第2の分離器
28 混合器
30 蒸気冷媒の流入流
34 第1の分配マニホールド
36 第2の分配マニホールド
40 液体冷媒の流入流
45 第1の冷媒の流出流
50 第1の減圧冷媒流
52 供給原料の入口
54 供給原料の出口
60 第2の冷媒の流出流
66 第1の入口
68 第1の冷媒の出口
70 第2の減圧冷媒流
72 入口
80 液体及び蒸気の冷媒流出流
90 蒸気冷媒流
94 ポンプ
95 圧縮冷媒流
100 冷却された圧縮冷媒流
110 液体冷媒流
130 管路
140 管路
150 管路
160 冷媒回路
10 Hydrocarbon Feed Stream 12 Heat Exchanger 14 Throttle Valve 16 Expander 18 First Separator 20 Liquefied Hydrocarbon Stream 22 Compressor 24 Water Cooling and / or Air Cooling Device 25 Another Cooling Device 26 Second Separation Mixer 28 Mixer 30 Steam refrigerant inflow 34 First distribution manifold 36 Second distribution manifold 40 Liquid refrigerant inflow 45 First refrigerant outflow 50 First reduced pressure refrigerant flow 52 Feedstock inlet 54 Supply Raw material outlet 60 Second refrigerant outlet stream 66 First inlet 68 First refrigerant outlet 70 Second decompressed refrigerant stream 72 Inlet 80 Liquid and vapor refrigerant outlet stream 90 Steam refrigerant stream 94 Pump 95 Compressed refrigerant stream 100 Cooled Compressed Refrigerant Flow 110 Liquid Refrigerant Flow 130 Pipeline 140 Pipeline 150 Pipeline 160 Refrigerant Circuit

Claims (15)

供給原料流(10)から天然ガスなどの炭化水素流を液化する方法であって、
(a)熱交換器(12)において循環する混合冷媒に対して供給原料流(10)を通過させて、−100℃未満の温度を有する少なくとも部分的に液化した炭化水素流(20)を得る工程;
(b)前記混合冷媒を液体及び蒸気の冷媒流出流(80)として前記熱交換器(12)から流出させる工程;
(c)前記液体及び蒸気の冷媒流出流(80)を第1の分離器(18)に通して蒸気冷媒流(90)と液体冷媒流(110)とを得る工程;
(d)実質的な熱交換なしで工程(c)の前記液体冷媒流(110)を工程(a)の前記熱交換器(12)に循環させる工程;
(e)前記蒸気冷媒流(90)を圧縮して圧縮冷媒流(95)を得る工程;
(f)前記圧縮冷媒流(95)を冷却して温度が0℃未満の冷却された圧縮流(100)を得る工程;及び
(g)前記冷却された圧縮流(100)を工程(a)の前記熱交換器(12)に循環させる工程;
を少なくとも含む前記方法。
A method for liquefying a hydrocarbon stream, such as natural gas, from a feed stream (10) comprising:
(A) Passing the feed stream (10) through the mixed refrigerant circulating in the heat exchanger (12) to obtain an at least partially liquefied hydrocarbon stream (20) having a temperature below −100 ° C. Process;
(B) allowing the mixed refrigerant to flow out of the heat exchanger (12) as a liquid and vapor refrigerant outflow (80);
(C) passing the liquid and vapor refrigerant effluent stream (80) through a first separator (18) to obtain a vapor refrigerant stream (90) and a liquid refrigerant stream (110);
(D) circulating the liquid refrigerant stream (110) of step (c) to the heat exchanger (12) of step (a) without substantial heat exchange;
(E) compressing the vapor refrigerant stream (90) to obtain a compressed refrigerant stream (95);
(F) cooling the compressed refrigerant stream (95) to obtain a cooled compressed stream (100) having a temperature of less than 0 ° C .; and (g) converting the cooled compressed stream (100) to step (a). Circulating to the heat exchanger (12) of
The method comprising at least
前記熱交換器(12)がチューブ・イン・シェル型熱交換器又はスプール巻型熱交換器であり、好ましくは低温熱交換器である請求項1に記載の方法。   2. The method according to claim 1, wherein the heat exchanger (12) is a tube-in-shell heat exchanger or a spool wound heat exchanger, preferably a low temperature heat exchanger. 前記熱交換器(12)が前記供給原料流(10)を完全に液化する請求項1又は請求項2に記載の方法。   The process according to claim 1 or 2, wherein the heat exchanger (12) completely liquefies the feed stream (10). 前記供給原料流(10)が天然ガスであり、前記液化した炭化水素流(20)が液化天然ガスである請求項3に記載の方法。   The method of claim 3, wherein the feed stream (10) is natural gas and the liquefied hydrocarbon stream (20) is liquefied natural gas. ポンプ(94)により前記液体冷媒流(110)を前記熱交換器(12)に循環させる請求項1〜4のいずれか一項に記載の方法。   The method according to any one of the preceding claims, wherein the liquid refrigerant stream (110) is circulated to the heat exchanger (12) by a pump (94). 前記液体冷媒流(110)の温度が−30℃〜−50℃の範囲にある請求項1〜5のいずれか一項に記載の方法。   The method according to any one of the preceding claims, wherein the temperature of the liquid refrigerant stream (110) is in the range of -30 ° C to -50 ° C. 前記液体冷媒流(110)と前記冷却された圧縮流(100)との温度差が10℃未満、好ましくは5℃未満又は3℃未満である請求項1〜6のいずれか一項に記載の方法。   The temperature difference between the liquid refrigerant stream (110) and the cooled compressed stream (100) is less than 10 ° C, preferably less than 5 ° C or less than 3 ° C. Method. 前記冷却された圧縮流(100)を前記熱交換器(12)に循環させる前に分離して、蒸気冷媒流入流(30)と液体冷媒流入流(40)とを得る請求項1〜7のいずれか一項に記載の方法。   The cooled compressed stream (100) is separated prior to circulation to the heat exchanger (12) to obtain a vapor refrigerant inflow (30) and a liquid refrigerant inflow (40). The method according to any one of the above. 前記液体冷媒流入流(40)を工程(c)の前記液体冷媒流(110)と混合する請求項8に記載の方法。   The method of claim 8, wherein the liquid refrigerant inflow (40) is mixed with the liquid refrigerant stream (110) of step (c). 前記液体冷媒流(110)と前記液体冷媒流入流(40)との温度差が10℃未満、好ましくは5℃未満又は3℃未満である請求項9に記載の方法。   The method according to claim 9, wherein the temperature difference between the liquid refrigerant stream (110) and the liquid refrigerant inlet stream (40) is less than 10 ° C, preferably less than 5 ° C or less than 3 ° C. 供給原料流(10)から天然ガスなどの炭化水素流を液化する装置であって、
混合冷媒流に対して前記炭化水素流を液化するための熱交換器(12)であって、前記供給原料流(10)のための供給原料入口(52)と、前記供給原料流を少なくとも部分的に液化した流れ(20)のための供給原料出口(54)と、1以上の混合冷媒入口(64、66)と、蒸気及び液体の冷媒流出流(80)のための混合冷媒出口(62)とを有する前記熱交換器(12);
前記液体及び蒸気の冷媒流出流(80)を蒸気と液体とに分離するためのものであり、蒸気冷媒流(90)を得るための第1の出口(82)と液体冷媒流(110)を得るための第2の出口(84)とを有する第1の分離器(18);
前記液体冷媒流(110)を前記熱交換器(12)に流入させるための前記熱交換器(12)の冷媒入口(64);
前記蒸気冷媒流(90)を圧縮して圧縮冷媒流(95)を得るための圧縮機(22);
前記圧縮冷媒流(95)を冷却して温度が0℃未満の冷却された圧縮流(100)を得るための1以上の冷却装置(24、25);及び
前記冷却された圧縮流(100)を前記熱交換器(12)に循環させるための通路;
を少なくとも備えた前記装置。
An apparatus for liquefying a hydrocarbon stream, such as natural gas, from a feed stream (10),
A heat exchanger (12) for liquefying said hydrocarbon stream relative to a mixed refrigerant stream, wherein said feed stream (10) for said feed stream (10) and at least a portion of said feed stream Feed outlet (54) for a partially liquefied stream (20), one or more mixed refrigerant inlets (64, 66), and a mixed refrigerant outlet (62) for vapor and liquid refrigerant outflow (80) The heat exchanger (12) having
For separating the liquid and vapor refrigerant outflow (80) into vapor and liquid, the first outlet (82) and the liquid refrigerant flow (110) for obtaining the vapor refrigerant flow (90) A first separator (18) having a second outlet (84) for obtaining;
A refrigerant inlet (64) of the heat exchanger (12) for flowing the liquid refrigerant stream (110) into the heat exchanger (12);
A compressor (22) for compressing said vapor refrigerant stream (90) to obtain a compressed refrigerant stream (95);
One or more cooling devices (24, 25) for cooling the compressed refrigerant stream (95) to obtain a cooled compressed stream (100) having a temperature below 0 ° C; and the cooled compressed stream (100) For circulating the heat to the heat exchanger (12);
At least said device.
前記液体冷媒流(110)が前記熱交換器(12)に向かって流れるのをポンプ(94)が助ける請求項11に記載の装置。   The apparatus of claim 11, wherein a pump (94) assists the liquid refrigerant stream (110) to flow toward the heat exchanger (12). 前記冷却された圧縮流(100)を蒸気冷媒流入流(30)と液体冷媒流入流(40)とに分離するための第2の分離器(26)を更に備える請求項11又は請求項12に記載の装置。   The method of claim 11 or claim 12, further comprising a second separator (26) for separating the cooled compressed stream (100) into a vapor refrigerant inflow (30) and a liquid refrigerant inflow (40). The device described. 前記液体冷媒流入流(40)と前記液体冷媒流(110)とを、それらが前記熱交換器(12)に戻る前に混ぜ合わせるための混合器(28)を更に備える請求項13に記載の装置。   The mixer (28) of claim 13, further comprising a mixer (28) for mixing the liquid refrigerant inflow (40) and the liquid refrigerant stream (110) before they return to the heat exchanger (12). apparatus. 前記熱交換器(12)が前記蒸気冷媒流(30)のための第1の冷媒管路(130)と、前記液体冷媒流入流(40)及び前記液体冷媒流(110)のための第2の冷媒管路(140)とを含む請求項13又は請求項14に記載の装置。

The heat exchanger (12) includes a first refrigerant line (130) for the vapor refrigerant stream (30), and a second refrigerant liquid inlet stream (40) and a second refrigerant liquid stream (110). 15. A device according to claim 13 or claim 14, comprising a refrigerant line (140).

JP2009518889A 2006-07-14 2007-07-12 Method and apparatus for liquefying a hydrocarbon stream Ceased JP2009543894A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06117230 2006-07-14
EP06118728 2006-08-10
PCT/EP2007/057134 WO2008006867A2 (en) 2006-07-14 2007-07-12 Method and apparatus for cooling a hydrocarbon stream

Publications (1)

Publication Number Publication Date
JP2009543894A true JP2009543894A (en) 2009-12-10

Family

ID=38923585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009518889A Ceased JP2009543894A (en) 2006-07-14 2007-07-12 Method and apparatus for liquefying a hydrocarbon stream

Country Status (6)

Country Link
US (1) US20090241593A1 (en)
EP (1) EP2041507A2 (en)
JP (1) JP2009543894A (en)
AU (1) AU2007274267B2 (en)
RU (1) RU2432534C2 (en)
WO (1) WO2008006867A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299757A1 (en) * 2016-09-27 2018-03-28 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
JP2021534365A (en) * 2018-08-14 2021-12-09 エクソンモービル アップストリーム リサーチ カンパニー Preservation method of mixed refrigerant in natural gas liquefaction facility

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006039661A1 (en) * 2006-08-24 2008-03-20 Linde Ag Process for liquefying a hydrocarbon-rich stream
ITMI20091768A1 (en) * 2009-10-15 2011-04-16 Ecoproject Sas Di Luigi Gazzi E C PROCESS FOR LNG PLANTS ALSO WITH LARGE CAPACITY ASKING FOR LOW VOLUMETRIC REACHES TO REFRIGERATING COMPRESSORS
US9441877B2 (en) * 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
CN102492505B (en) * 2011-12-01 2014-04-09 中国石油大学(北京) Two-section type single loop mixed refrigerant natural gas liquefaction process and device
FR2993643B1 (en) * 2012-07-17 2014-08-22 Saipem Sa NATURAL GAS LIQUEFACTION PROCESS WITH PHASE CHANGE
PE20160913A1 (en) * 2013-03-15 2016-09-01 Chart Energy And Chemicals Inc MIXED REFRIGERANT SYSTEM AND METHOD
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
EP2789957A1 (en) * 2013-04-11 2014-10-15 Shell Internationale Research Maatschappij B.V. Method of liquefying a contaminated hydrocarbon-containing gas stream
AR105277A1 (en) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
PL3384216T3 (en) 2015-12-03 2020-03-31 Shell Internationale Research Maatschappij B.V. Method of liquefying a co2 contaminated hydrocarbon-containing gas stream
AU2017249441B2 (en) * 2016-04-11 2021-05-27 Geoff Rowe A system and method for liquefying production gas from a gas source
US10359228B2 (en) * 2016-05-20 2019-07-23 Air Products And Chemicals, Inc. Liquefaction method and system
US10663220B2 (en) * 2016-10-07 2020-05-26 Air Products And Chemicals, Inc. Multiple pressure mixed refrigerant cooling process and system
CN111397306A (en) * 2020-04-29 2020-07-10 中科瑞奥能源科技股份有限公司 Ethylene liquefaction device and process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763658A (en) * 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method
JPS5128101A (en) * 1974-08-09 1976-03-09 Linde Ag Tennengasuno ekikahoho
JPH09506392A (en) * 1994-10-05 1997-06-24 アンスティテュ フランセ デュ ペトロル Methods and equipment for the liquefaction of natural gas
DE19937623A1 (en) * 1999-08-10 2001-02-15 Linde Ag Process for liquefying a hydrocarbon-rich stream e.g. natural gas, comprises carrying out indirect heat exchange with at least one cycle using a two-phase coolant mixture stream before compression
JP2001165563A (en) * 1999-10-12 2001-06-22 Air Prod And Chem Inc Gas liquefaction process
JP2001165562A (en) * 1999-10-12 2001-06-22 Air Prod And Chem Inc Method of liquefying source gas
JP2003532047A (en) * 2000-04-25 2003-10-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Product control of liquefied natural gas product streams
JP2008504509A (en) * 2004-06-23 2008-02-14 エクソンモービル アップストリーム リサーチ カンパニー Mixed refrigerant liquefaction method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2123095B1 (en) * 1970-12-21 1974-02-15 Air Liquide
US3721009A (en) * 1971-04-05 1973-03-20 S Lucich Chalk line holder
DE2206620B2 (en) * 1972-02-11 1981-04-02 Linde Ag, 6200 Wiesbaden Plant for liquefying natural gas
US4180123A (en) * 1977-02-14 1979-12-25 Phillips Petroleum Company Mixed-component refrigeration in shell-tube exchanger
FR2471566B1 (en) * 1979-12-12 1986-09-05 Technip Cie METHOD AND SYSTEM FOR LIQUEFACTION OF A LOW-BOILING GAS
FR2471567B1 (en) * 1979-12-12 1986-11-28 Technip Cie METHOD AND SYSTEM FOR COOLING A LOW TEMPERATURE COOLING FLUID
MY117548A (en) * 1998-12-18 2004-07-31 Exxon Production Research Co Dual multi-component refrigeration cycles for liquefaction of natural gas
US6751985B2 (en) * 2002-03-20 2004-06-22 Exxonmobil Upstream Research Company Process for producing a pressurized liquefied gas product by cooling and expansion of a gas stream in the supercritical state
DE102005038266A1 (en) * 2005-08-12 2007-02-15 Linde Ag Process for liquefying a hydrocarbon-rich stream

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763658A (en) * 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method
JPS5128101A (en) * 1974-08-09 1976-03-09 Linde Ag Tennengasuno ekikahoho
JPH09506392A (en) * 1994-10-05 1997-06-24 アンスティテュ フランセ デュ ペトロル Methods and equipment for the liquefaction of natural gas
DE19937623A1 (en) * 1999-08-10 2001-02-15 Linde Ag Process for liquefying a hydrocarbon-rich stream e.g. natural gas, comprises carrying out indirect heat exchange with at least one cycle using a two-phase coolant mixture stream before compression
JP2001165563A (en) * 1999-10-12 2001-06-22 Air Prod And Chem Inc Gas liquefaction process
JP2001165562A (en) * 1999-10-12 2001-06-22 Air Prod And Chem Inc Method of liquefying source gas
JP2005164235A (en) * 1999-10-12 2005-06-23 Air Products & Chemicals Inc Gas liquefier
JP2003532047A (en) * 2000-04-25 2003-10-28 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Product control of liquefied natural gas product streams
JP2008504509A (en) * 2004-06-23 2008-02-14 エクソンモービル アップストリーム リサーチ カンパニー Mixed refrigerant liquefaction method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3299757A1 (en) * 2016-09-27 2018-03-28 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
KR20180034251A (en) * 2016-09-27 2018-04-04 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Mixed refrigerant cooling process and system
US10323880B2 (en) 2016-09-27 2019-06-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
AU2017232113B2 (en) * 2016-09-27 2019-07-18 Air Products And Chemicals, Inc. Mixed refrigerant cooling process and system
KR102012086B1 (en) 2016-09-27 2019-08-19 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Mixed refrigerant cooling process and system
JP2021534365A (en) * 2018-08-14 2021-12-09 エクソンモービル アップストリーム リサーチ カンパニー Preservation method of mixed refrigerant in natural gas liquefaction facility
JP7100762B2 (en) 2018-08-14 2022-07-13 エクソンモービル アップストリーム リサーチ カンパニー Preservation method of mixed refrigerant in natural gas liquefaction facility

Also Published As

Publication number Publication date
US20090241593A1 (en) 2009-10-01
RU2009105108A (en) 2010-08-27
EP2041507A2 (en) 2009-04-01
RU2432534C2 (en) 2011-10-27
WO2008006867A3 (en) 2008-10-30
AU2007274267A1 (en) 2008-01-17
WO2008006867A2 (en) 2008-01-17
AU2007274267B2 (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP2009543894A (en) Method and apparatus for liquefying a hydrocarbon stream
RU2436024C2 (en) Procedure and device for treatment of flow of hydrocarbons
AU2007286291B2 (en) Method and apparatus for cooling a hydrocarbon stream
AU2007298912B2 (en) Method and apparatus for producing a cooled hydrocarbon stream
AU2007298913C1 (en) Method and apparatus for liquefying a hydrocarbon stream
CN107917577B (en) Multi-pressure mixed refrigerant cooling method and system
MX2007009824A (en) Plant and method for liquefying natural gas.
AU2017232113B2 (en) Mixed refrigerant cooling process and system
US12111101B2 (en) Two-stage heavies removal in lng processing
RU2463535C2 (en) Method for liquefaction of hydrocarbon flows and device for its realisation
RU2743091C2 (en) Method and system for liquefaction of multiple feed streams
RU2455595C2 (en) Hydrocarbon flow cooling method and device
KR20130126582A (en) Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
JP5615543B2 (en) Method and apparatus for liquefying hydrocarbon streams
CN103299145A (en) Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
US20100307193A1 (en) Method and apparatus for cooling and separating a hydrocarbon stream

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100705

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100825

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140320

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20140619