[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009301906A - Photomultiplier tube - Google Patents

Photomultiplier tube Download PDF

Info

Publication number
JP2009301906A
JP2009301906A JP2008155788A JP2008155788A JP2009301906A JP 2009301906 A JP2009301906 A JP 2009301906A JP 2008155788 A JP2008155788 A JP 2008155788A JP 2008155788 A JP2008155788 A JP 2008155788A JP 2009301906 A JP2009301906 A JP 2009301906A
Authority
JP
Japan
Prior art keywords
incident surface
light incident
light
photoelectric conversion
photomultiplier tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008155788A
Other languages
Japanese (ja)
Other versions
JP5065171B2 (en
Inventor
Yoshihisa Sakurai
敬久 櫻井
Takayuki Sumiyoshi
孝行 住吉
Fuyuki Tokano
冬樹 門叶
Hiroyuki Sugiyama
浩之 杉山
Akiyuki Okada
晃行 岡田
Takayuki Omura
孝幸 大村
Noboru Oishi
登 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2008155788A priority Critical patent/JP5065171B2/en
Publication of JP2009301906A publication Critical patent/JP2009301906A/en
Application granted granted Critical
Publication of JP5065171B2 publication Critical patent/JP5065171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Tubes For Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain sensitivity by preventing the feedback of ions to the photoelectric surface. <P>SOLUTION: A photomultiplier tube 1 utilizing the electron multiplying operation of gas comprises: a photoelectric conversion part 3 arranged opposite to an incident plane plate 7 into which incident light is emitted, and having a plurality of inclined portions 9 inclined to a light incident plane 7a and arrayed along the light incident plane 7a and a reflection type photoelectric surface 10 formed on the inclined portions 9 at the side of the incident plane plate 7; and an electron multiplying part 4 arranged opposite to the incident plane plate 7 across the photoelectric conversion part 3 and having a plurality of through-holes 8 formed along the light incident plane 7a. The plurality of inclined portions 9 are arranged adjacent to each other to prevent the electron multiplying part 4 from being seen through from the side of the incident plane plate 7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ガスによる電子増倍を利用した光電子増倍管に関するものである。   The present invention relates to a photomultiplier tube using electron multiplication by gas.

近年、ガス中における電子増倍作用を用いた電子増幅器の開発が進められている。ガスを利用することにより、装置内部が大気圧であり高真空容器を必要としない、電子増倍構造が簡略化される、安価に製造できる等の利点がある。この種の電子増倍器としては、多数の貫通孔が形成された多孔プレート(電子増倍部)を内蔵し、この貫通孔の両端に電圧が印加されることにより、貫通孔に入射する電子が増倍される(下記特許文献1〜3参照)。また、このような電子増倍構造に光電面を組み合わせて光電子増倍管として利用することも検討されている(下記非特許文献1,2参照)。
特開2006−302844号公報 特開2005−32634号公報 特開2001−508935号公報 A. Breskin et al., Nuclear Instrument and Methods in PhysicsResearch A 513 (2003) pp250-255 J. Va’vra and T. Sumiyoshi, Nuclear Instrument and Methods inPhysics Research A 535 (2004) pp334-340
In recent years, development of an electronic amplifier using an electron multiplication effect in a gas has been advanced. By using gas, there are advantages such that the inside of the apparatus is at atmospheric pressure and does not require a high vacuum container, the electron multiplication structure is simplified, and it can be manufactured at low cost. As this type of electron multiplier, a multi-hole plate (electron multiplier) having a large number of through holes is built in, and electrons are incident on the through holes by applying a voltage to both ends of the through holes. Is multiplied (see Patent Documents 1 to 3 below). In addition, it has been studied to use a photomultiplier tube by combining a photocathode with such an electron multiplier structure (see Non-Patent Documents 1 and 2 below).
JP 2006-302844 A JP 2005-32634 A JP 2001-508935 A A. Breskin et al., Nuclear Instrument and Methods in Physics Research A 513 (2003) pp250-255 J. Va'vra and T. Sumiyoshi, Nuclear Instrument and Methods inPhysics Research A 535 (2004) pp334-340

しかしながら、上述したような電子増倍構造に光電面を組み合わせた場合には、電子増倍部におけるガスの電離に伴うイオンのフィードバックに起因して、光電面の劣化が生じやすい傾向にある。その結果、入射光に対する感度が低下してしまう場合があった。   However, when the photocathode is combined with the electron multiplying structure as described above, the photocathode tends to deteriorate due to the feedback of ions accompanying the ionization of the gas in the electron multiplying portion. As a result, the sensitivity to incident light may be reduced.

そこで、本発明は、かかる課題に鑑みて為されたものであり、光電面に対するイオンのフィードバックを防止して感度を維持することが可能な光電子増倍管を提供することを目的とする。   Therefore, the present invention has been made in view of such problems, and an object thereof is to provide a photomultiplier tube capable of maintaining sensitivity by preventing feedback of ions to the photocathode.

上記課題を解決するため、本発明の光電子増倍管は、ガスによる電子増倍作用を利用した光電子増倍管において、入射光が入射する光入射面に対向して設けられており、光入射面に対して傾斜する複数の傾斜部が、光入射面に沿って配列され、該傾斜部の光入射面側に反射型の光電面が形成された光電変換部と、光電変換部を挟んで光入射面に対向して設けられ、光入射面に沿って複数の貫通孔が形成された電子増倍部とを備え、複数の傾斜部は、光入射面側から電子増倍部が見通せないように互いに近接して配置されている。   In order to solve the above problems, the photomultiplier tube of the present invention is provided in a photomultiplier tube using an electron multiplying action by a gas so as to face a light incident surface on which incident light is incident. A plurality of inclined portions that are inclined with respect to the surface are arranged along the light incident surface, and a photoelectric conversion portion in which a reflective photoelectric surface is formed on the light incident surface side of the inclined portion, and the photoelectric conversion portion sandwiched therebetween An electron multiplying portion provided opposite to the light incident surface and having a plurality of through holes formed along the light incident surface, and the plurality of inclined portions cannot be seen from the light incident surface side. Are arranged close to each other.

このような光電子増倍管によれば、光入射面から入射した入射光が、光電変換部の反射型光電面によって光電子に変換され、光電子は電子増倍部の貫通孔に入射することにより増倍され、増倍電子が計測されることにより入射光が検出される。この際、反射型光電面は光入射面に対して傾斜する傾斜部の光入射面側に形成され、複数の傾斜部が光入射面側から電子増倍部を見通せないように配置されている。従って、光電子の増倍時にガス分子に由来して電子増倍部で発生したイオンが光電変換部側に戻ってきても光電面に衝突しにくいので、光電面の劣化が少なくなり入射光の検出感度を維持することができる。   According to such a photomultiplier tube, incident light incident from the light incident surface is converted into photoelectrons by the reflective photocathode of the photoelectric conversion unit, and the photoelectrons are amplified by being incident on the through holes of the electron multiplier unit. The incident light is detected by multiplying and measuring the multiplied electrons. At this time, the reflective photocathode is formed on the light incident surface side of the inclined portion inclined with respect to the light incident surface, and the plurality of inclined portions are arranged so that the electron multiplier portion cannot be seen from the light incident surface side. . Therefore, even when the photoelectron multiplication causes ions generated in the electron multiplication part due to gas molecules to return to the photoelectric conversion part side, it does not easily collide with the photocathode. Sensitivity can be maintained.

複数の傾斜部の光入射面に沿った配列ピッチは、複数の貫通孔の光入射面に沿った配列ピッチよりも大きいことが好適である。この場合、反射型光電面から出射した光電子が複数の貫通孔に導かれるので、ガスによる増倍時に1つの貫通孔で発生する電子及びイオンを少なくすることができ、貫通孔付近における放電によるノイズの発生を抑制することができる。   The arrangement pitch along the light incident surfaces of the plurality of inclined portions is preferably larger than the arrangement pitch along the light incident surfaces of the plurality of through holes. In this case, since photoelectrons emitted from the reflective photocathode are guided to a plurality of through holes, electrons and ions generated in one through hole at the time of multiplication by gas can be reduced, and noise caused by discharge in the vicinity of the through hole. Can be suppressed.

また、光入射面と光電変換部との間には、入射光に応じて光電面から発生した光電子を電子増倍部に導くための制御電極をさらに備える、ことも好適である。かかる構成を採れば、光電変換部で発生した光電子を効率的に電子増倍部に導くことができるので、入射光の感度をより高めることができる。   It is also preferable to further include a control electrode for guiding photoelectrons generated from the photocathode in response to the incident light to the electron multiplier between the light incident surface and the photoelectric conversion unit. By adopting such a configuration, the photoelectrons generated in the photoelectric conversion unit can be efficiently guided to the electron multiplying unit, so that the sensitivity of incident light can be further increased.

本発明によれば、光電面に対するイオンのフィードバックを防止して感度を維持することができる。   According to the present invention, sensitivity can be maintained by preventing feedback of ions to the photocathode.

以下、図面を参照しつつ本発明に係る光電子増倍管の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。   Hereinafter, preferred embodiments of a photomultiplier according to the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の好適な一実施形態に係る光電子増倍管1の縦断面図、図2は、図1の光電子増倍管1の要部を拡大して示す断面図である。   FIG. 1 is a vertical cross-sectional view of a photomultiplier tube 1 according to a preferred embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view showing a main part of the photomultiplier tube 1 of FIG.

図1及び図2に示す光電子増倍管1は、アルゴン、キセノン等の希ガス、或いは希ガスとクエンチングガスの混合ガスが封入された筐体2の内部に、光電変換部3、電子増倍部4、アノード5、及び制御電極6を収容して構成されている。光電子増倍管1は、筐体2の一方の端面に設けられた入射面板7から入射する入射光を光電子に変換し、この光電子を希ガスによる電子増倍作用により増幅することにより入射光を検出する。   The photomultiplier tube 1 shown in FIGS. 1 and 2 includes a photoelectric conversion unit 3 and an electron multiplier 3 in a housing 2 in which a rare gas such as argon or xenon or a mixed gas of a rare gas and a quenching gas is enclosed. The multiplier 4, the anode 5, and the control electrode 6 are accommodated. The photomultiplier tube 1 converts incident light incident from an incident surface plate 7 provided on one end face of the housing 2 into photoelectrons, and amplifies the photoelectrons by an electron multiplying action by a rare gas to thereby convert the incident light. To detect.

電子増倍部4は、入射面板7に対向して設けられたガラス製の平板状部材であり、その両面はAl、Niなどの金属膜によって成膜されている。さらに、電子増倍部4には、入射面板7の光入射面7aに平行な方向に沿って配列された複数の貫通孔8が、光入射面7aにほぼ垂直な方向に貫通するように形成されている。この電子増倍部4の厚さは、例えば300μmに設定され、貫通孔8は、レーザ加工、プラズマエッチングやマイクロブラスト加工により、径が数10〜数100μm程度、配列ピッチが25μm〜800μmとなるように形成されている。   The electron multiplier 4 is a flat plate member made of glass provided to face the incident surface plate 7, and both surfaces thereof are formed by a metal film such as Al or Ni. Furthermore, a plurality of through holes 8 arranged along the direction parallel to the light incident surface 7a of the incident surface plate 7 are formed in the electron multiplier 4 so as to penetrate in a direction substantially perpendicular to the light incident surface 7a. Has been. The thickness of the electron multiplying portion 4 is set to, for example, 300 μm, and the through holes 8 have a diameter of about several tens to several hundreds of μm and an arrangement pitch of 25 μm to 800 μm by laser processing, plasma etching, or microblast processing. It is formed as follows.

光電変換部3は、入射面板7と電子増倍部4とで挟まれた位置に、入射面板7に対向するように配置されており、Ni等の金属板の一部に複数の傾斜部9が近接して設けられた構造を有している。詳細には、複数の傾斜部9は、光入射面7aに沿って一定のピッチで配列されるようにプレス加工等により形成され、光入射面7aに対してその配列方向に沿って傾斜している。また、隣接する2つの傾斜部9はスリット状に分離されることにより、傾斜部9の入射面板7側の面から出射した光電子が電子増倍部4側に通過できるようになっている。この傾斜部9の入射面板7側の面には、入射光を光電子に変換する反射型の光電面10が形成され、この光電面10は、入射面板7側からの入射光の入射角度に対するほぼ反射方向に向けて光電子を放出する。また、入射傾斜部9の光電面10と反対側の面は、2次電子の放出を抑制するZnOやSnO等の酸化物で被覆されている。   The photoelectric conversion unit 3 is disposed at a position sandwiched between the incident surface plate 7 and the electron multiplying unit 4 so as to face the incident surface plate 7, and a plurality of inclined portions 9 are formed on a part of a metal plate such as Ni. Are provided close to each other. Specifically, the plurality of inclined portions 9 are formed by pressing or the like so as to be arranged at a constant pitch along the light incident surface 7a, and are inclined along the arrangement direction with respect to the light incident surface 7a. Yes. Further, two adjacent inclined portions 9 are separated in a slit shape, so that photoelectrons emitted from the surface on the incident surface plate 7 side of the inclined portion 9 can pass to the electron multiplying portion 4 side. A reflection type photoelectric surface 10 for converting incident light into photoelectrons is formed on the surface of the inclined portion 9 on the incident surface plate 7 side, and this photoelectric surface 10 is substantially equal to the incident angle of incident light from the incident surface plate 7 side. Photoelectrons are emitted in the direction of reflection. The surface of the incident inclined portion 9 opposite to the photocathode 10 is covered with an oxide such as ZnO or SnO that suppresses the emission of secondary electrons.

ここで、光電変換部3における傾斜部9の入射面板7に対する傾斜角θ、及び傾斜部9の光入射面7aに沿ったピッチPは、入射面板7から光入射面7aに垂直な方向に沿って見たときに電子増倍部4が光電変換部3によって覆われて見通せないような値に設定されている(図2)。すなわち、傾斜部9のピッチPに対して傾斜部の傾斜角θが所定角以下になるように加工される。さらに、傾斜部9のピッチPは、電子増倍部4の貫通孔8の光入射面7aに沿ったピッチPよりも大きくなるようにされている。 Here, the inclination angle θ 1 of the inclined portion 9 with respect to the incident surface plate 7 in the photoelectric conversion unit 3 and the pitch P 1 along the light incident surface 7 a of the inclined portion 9 are directions perpendicular to the light incident surface 7 a from the incident surface plate 7. Is set to such a value that the electron multiplier section 4 is covered by the photoelectric conversion section 3 and cannot be seen through (see FIG. 2). That is, processing is performed such that the inclination angle θ 1 of the inclined portion is equal to or smaller than a predetermined angle with respect to the pitch P 1 of the inclined portion 9. Furthermore, the pitch P 1 of the inclined portion 9 is set to be larger than the pitch P 2 along the light incident surface 7 a of the through hole 8 of the electron multiplying portion 4.

この光電変換部3と入射面板7との間には、光入射面7aに沿ってメッシュ状の制御電極6が設けられている。この制御電極6は、光電面10から発生した光電子を電子増倍部4に導くための電界を発生させる。すなわち、制御電極6には、光電面10から出射した光電子を電子増倍部4側に反射させるような光電変換部3よりも低い電位が印加される。このメッシュ状の制御電極6は、光入射面7aに沿ったピッチPが、傾斜部9のピッチPよりも十分小さくなるように形成されている。 Between the photoelectric conversion unit 3 and the incident surface plate 7, a mesh-like control electrode 6 is provided along the light incident surface 7a. The control electrode 6 generates an electric field for guiding photoelectrons generated from the photocathode 10 to the electron multiplier 4. That is, the control electrode 6 is applied with a lower potential than the photoelectric conversion unit 3 that reflects the photoelectrons emitted from the photocathode 10 to the electron multiplying unit 4 side. The mesh-shaped control electrode 6 is formed such that the pitch P 3 along the light incident surface 7 a is sufficiently smaller than the pitch P 1 of the inclined portion 9.

このような光電子増倍管1では、光入射面7aから入射した入射光Lが、光電変換部3の反射型光電面10によって光電子Eに変換され、光電子Eは光電面10から電子増倍部4の貫通孔8に向けて入射する。電子増倍部4には貫通孔8の開口部間に電界が印加されており、光電子Eはこの電界からエネルギーが与えられる結果、貫通孔8内部のガス分子に衝突して電離及び衝突を繰り返してなだれ式に増倍される。その後、増倍電子Eがアノード5によって外部に取り出されることにより入射光が検出される。このとき、貫通孔8の内部ではガス分子の電離によってイオンIが発生し、そのイオンIが光電変換部3に戻るが、大部分は傾斜部9の光電面10と反対側の面に吸収されるため、光電面10におけるイオンの衝突による劣化が極めて少なくされる。特に、光電面10の材料としてバイアルカリ等のアルカリ金属を用いる場合にイオンのフィードバックによる劣化の影響が大きいが、このような光電面を電子増倍部4と組み合わせた場合もその劣化を防止することができ、光電面10の材料の選択の自由度が高まる。その結果、様々な波長帯域の入射光の検出感度を安定して維持することができる。さらには、傾斜部9の光電面10と反対側の面は2次電子の放出を抑制する材料で覆われているので、イオンの入射によるノイズの発生も防止される。 In such a photomultiplier tube 1, incident light L incident from the light incident surface 7 a is converted into photoelectrons E 1 by the reflective photocathode 10 of the photoelectric conversion unit 3, and the photoelectrons E 1 are amplified from the photocathode 10. The light enters the through hole 8 of the multiplication unit 4. An electric field is applied to the electron multiplier 4 between the openings of the through hole 8, and the photoelectron E 1 receives energy from this electric field, and as a result, collides with gas molecules inside the through hole 8 to cause ionization and collision. Repeatedly avalanche multiplication. Thereafter, it multiplied electrons E 2 is the incident light is detected by being taken out by the anode 5. At this time, ions I 1 are generated inside the through-holes 8 due to ionization of gas molecules, and the ions I 1 return to the photoelectric conversion unit 3, but most of them are on the surface of the inclined portion 9 opposite to the photoelectric surface 10. Since it is absorbed, deterioration due to ion collision on the photocathode 10 is extremely reduced. In particular, when an alkali metal such as a bialkali is used as the material of the photocathode 10, the influence of deterioration due to ion feedback is large. However, when such a photocathode is combined with the electron multiplier 4, the deterioration is prevented. This increases the degree of freedom in selecting the material of the photocathode 10. As a result, the detection sensitivity of incident light in various wavelength bands can be stably maintained. Furthermore, since the surface of the inclined portion 9 opposite to the photocathode 10 is covered with a material that suppresses the emission of secondary electrons, the generation of noise due to the incidence of ions is also prevented.

さらに、電子増倍部4では、電子とイオンの再結合による発光も起こりうるが、光電面10から電子増倍部4が見通せないような構造になっているので、フォトンのフィードバックによるノイズの発生も低減されることになる。   Further, although the electron multiplier 4 may emit light due to recombination of electrons and ions, the electron multiplier 4 is structured so that the electron multiplier 4 cannot be seen from the photocathode 10, so that noise is generated due to photon feedback. Will also be reduced.

また、傾斜部9の光入射面7aに沿った配列ピッチPは、貫通孔8の光入射面7aに沿った配列ピッチPよりも大きいので、光電面10から出射した光電子Eが複数の貫通孔8に導かれるので、電子増倍時に1つの貫通孔8で発生する電子−イオン対を少なくすることができ、貫通孔8付近における放電によるノイズの発生を抑制することができる。 Further, since the arrangement pitch P 1 along the light incident surface 7 a of the inclined portion 9 is larger than the arrangement pitch P 2 along the light incident surface 7 a of the through hole 8, a plurality of photoelectrons E 1 emitted from the photocathode 10 are present. Therefore, the number of electron-ion pairs generated in one through-hole 8 during electron multiplication can be reduced, and the generation of noise due to discharge in the vicinity of the through-hole 8 can be suppressed.

また、入射面板7と光電変換部3との間には制御電極6が設けられているので、光電変換部3で発生した光電子を効率的に電子増倍部4に導くことができ、入射光の感度をより高めることができる。さらに、この制御電極6のピッチPが傾斜部9のピッチPよりも十分小さくされることで、光電子をより効率的に電子増倍部4に導くことが可能である。 In addition, since the control electrode 6 is provided between the incident face plate 7 and the photoelectric conversion unit 3, the photoelectrons generated in the photoelectric conversion unit 3 can be efficiently guided to the electron multiplication unit 4. The sensitivity can be further increased. Furthermore, by making the pitch P 3 of the control electrode 6 sufficiently smaller than the pitch P 1 of the inclined portion 9, it is possible to guide photoelectrons to the electron multiplying portion 4 more efficiently.

図3は、制御電極6と光電変換部3との間の電位差[V]に対する入射光の相対検出効率の変化を示すグラフである。なお、この場合の制御電極6と光電面10との間の距離は0.5mmである。同図に示すように、制御電極6と光電変換部3との間の電位差が0より大きく〜約8Vの範囲においては、電位差をかけない場合と比較して検出効率が向上していることが分かる。   FIG. 3 is a graph showing a change in relative detection efficiency of incident light with respect to a potential difference [V] between the control electrode 6 and the photoelectric conversion unit 3. In this case, the distance between the control electrode 6 and the photocathode 10 is 0.5 mm. As shown in the figure, in the range where the potential difference between the control electrode 6 and the photoelectric conversion unit 3 is larger than 0 to about 8 V, the detection efficiency is improved as compared with the case where no potential difference is applied. I understand.

なお、本発明は、前述した実施形態に限定されるものではない。例えば、電子増倍部4の材料としてはガラス基板以外にも、ポリイミドフィルム等の樹脂シートを用いてもよいし、両面に成膜する金属薄膜としてはCu等を用いてもよい。   In addition, this invention is not limited to embodiment mentioned above. For example, a resin sheet such as a polyimide film may be used as the material of the electron multiplying unit 4 in addition to a glass substrate, and Cu or the like may be used as a metal thin film formed on both surfaces.

また、制御電極6に関して、図4に示す本発明の変形例である光電子増倍管101のように、入射面板7の内側に沿って配置された透光性を有する導電性膜106で代用してもよい。このような導電性膜106としては、ITO(Indium Tin Oxide)等の透明導電膜、Cr、Au等の金属薄膜等が用いられる。   Further, as for the control electrode 6, as in the photomultiplier tube 101 which is a modification of the present invention shown in FIG. May be. As such a conductive film 106, a transparent conductive film such as ITO (Indium Tin Oxide), a metal thin film such as Cr or Au, or the like is used.

本発明の好適な一実施形態に係る光電子増倍管の縦断面図である。1 is a longitudinal sectional view of a photomultiplier tube according to a preferred embodiment of the present invention. 図1の光電子増倍管1の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the photomultiplier tube 1 of FIG. 図1の制御電極と光電変換部との間の電位差に対する入射光の相対検出効率の変化を示すグラフである。It is a graph which shows the change of the relative detection efficiency of incident light with respect to the electric potential difference between the control electrode of FIG. 1, and a photoelectric conversion part. 本発明の変形例に係る光電子増倍管の縦断面図である。It is a longitudinal cross-sectional view of the photomultiplier tube which concerns on the modification of this invention.

符号の説明Explanation of symbols

…光電子、L…入射光、P1,…配列ピッチ、1,101…光電子増倍管、3…光電変換部、4…電子増倍部、6,106…制御電極、7…入射面板、7a…光入射面、8…貫通孔、9…傾斜部、10…光電面。 E 1 ... Photoelectrons, L ... Incident light, P 1, P 2 ... Arrangement pitch, 1, 101 ... Photomultiplier tube, 3 ... Photoelectric converter, 4 ... Electron multiplier, 6, 106 ... Control electrode, 7 ... Incident surface plate, 7a ... light incident surface, 8 ... through hole, 9 ... inclined portion, 10 ... photoelectric surface.

Claims (3)

ガスによる電子増倍作用を利用した光電子増倍管において、
入射光が入射する光入射面に対向して設けられており、前記光入射面に対して傾斜する複数の傾斜部が、前記光入射面に沿って配列され、該傾斜部の前記光入射面側に反射型の光電面が形成された光電変換部と、
前記光電変換部を挟んで前記光入射面に対向して設けられ、前記光入射面に沿って複数の貫通孔が形成された電子増倍部とを備え、
前記複数の傾斜部は、前記光入射面側から前記電子増倍部が見通せないように互いに近接して配置されている、
ことを特徴とする光電子増倍管。
In photomultiplier tubes using electron multiplication by gas,
A plurality of inclined portions that are provided to face the light incident surface on which incident light is incident and are inclined with respect to the light incident surface are arranged along the light incident surface, and the light incident surface of the inclined portion A photoelectric conversion part having a reflective photoelectric surface formed on the side;
An electron multiplier section provided opposite to the light incident surface across the photoelectric conversion portion, and having a plurality of through holes formed along the light incident surface;
The plurality of inclined portions are arranged close to each other so that the electron multiplying portion cannot be seen from the light incident surface side.
A photomultiplier tube characterized by that.
前記複数の傾斜部の前記光入射面に沿った配列ピッチは、前記複数の貫通孔の前記光入射面に沿った配列ピッチよりも大きい、
ことを特徴とする請求項1記載の光電子増倍管。
The arrangement pitch along the light incident surface of the plurality of inclined portions is larger than the arrangement pitch along the light incident surface of the plurality of through holes.
The photomultiplier tube according to claim 1.
前記光入射面と前記光電変換部との間には、前記入射光に応じて前記光電面から発生した光電子を前記電子増倍部に導くための制御電極をさらに備える、
ことを特徴とする請求項1又は2記載の光電子増倍管。
A control electrode for guiding photoelectrons generated from the photoelectric surface in response to the incident light to the electron multiplying unit is further provided between the light incident surface and the photoelectric conversion unit.
The photomultiplier tube according to claim 1 or 2, wherein
JP2008155788A 2008-06-13 2008-06-13 Photomultiplier tube Expired - Fee Related JP5065171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008155788A JP5065171B2 (en) 2008-06-13 2008-06-13 Photomultiplier tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008155788A JP5065171B2 (en) 2008-06-13 2008-06-13 Photomultiplier tube

Publications (2)

Publication Number Publication Date
JP2009301906A true JP2009301906A (en) 2009-12-24
JP5065171B2 JP5065171B2 (en) 2012-10-31

Family

ID=41548601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008155788A Expired - Fee Related JP5065171B2 (en) 2008-06-13 2008-06-13 Photomultiplier tube

Country Status (1)

Country Link
JP (1) JP5065171B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515096A (en) * 1978-07-12 1980-02-01 Commissariat Energie Atomique Device of detecting and positioning radiation
JP2005032634A (en) * 2003-07-08 2005-02-03 Japan Science & Technology Agency Gas proportional counter tube and photographing system
JP2006302844A (en) * 2005-04-25 2006-11-02 Univ Of Tokyo Gas electron amplifier, its manufacturing method and radiation detector using gas electron amplifier
JP2007059391A (en) * 2005-07-29 2007-03-08 Japan Science & Technology Agency Microchannel plate, gas proportional counter tube and imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5515096A (en) * 1978-07-12 1980-02-01 Commissariat Energie Atomique Device of detecting and positioning radiation
JP2005032634A (en) * 2003-07-08 2005-02-03 Japan Science & Technology Agency Gas proportional counter tube and photographing system
JP2006302844A (en) * 2005-04-25 2006-11-02 Univ Of Tokyo Gas electron amplifier, its manufacturing method and radiation detector using gas electron amplifier
JP2007059391A (en) * 2005-07-29 2007-03-08 Japan Science & Technology Agency Microchannel plate, gas proportional counter tube and imaging device

Also Published As

Publication number Publication date
JP5065171B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4608572B2 (en) Phosphor
US7663081B2 (en) Apparatus for digital imaging photodetector using gas electron multiplier
EP2297763B1 (en) Charged particle detection system and method
US8134129B2 (en) Microchannel plate, gas proportional counter and imaging device
JP5290804B2 (en) Photomultiplier tube
JP2009301904A (en) Detector and method of manufacturing the same
WO2004113890A1 (en) Time resolution measurement device and position detection electron multiplier
JPWO2002067288A1 (en) Photomultiplier tube
WO1999066534A1 (en) Electron tube
US7795608B2 (en) Photocathode
JP5065171B2 (en) Photomultiplier tube
JP2009206057A (en) Gas electron amplifier and radiation detector using the same
US20060164008A1 (en) Electron multiplier unit and photomultiplier including the same
JP4173134B2 (en) Photomultiplier tube and method of using the same
US20070051879A1 (en) Image Intensifier Device and Method
JP4863931B2 (en) Electron tube
JP7545620B2 (en) Electron tube, imaging device, and electromagnetic wave detection device
JP2007234595A (en) Tandem continuous channel electron multiplier
JP2005197112A (en) Photomultiplier tube
JP5597572B2 (en) Charged particle detector, time-of-flight mass spectrometer
JP2008293917A (en) Electron tube
JP5951203B2 (en) Detector
JP5159393B2 (en) Electronic amplifier and radiation detector using the same
JP2005243554A (en) Photomultiplier tube
JP2008027795A (en) Proportional counter tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120809

R150 Certificate of patent or registration of utility model

Ref document number: 5065171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees