[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009229483A - Porous film, glass and resin using the same - Google Patents

Porous film, glass and resin using the same Download PDF

Info

Publication number
JP2009229483A
JP2009229483A JP2008070945A JP2008070945A JP2009229483A JP 2009229483 A JP2009229483 A JP 2009229483A JP 2008070945 A JP2008070945 A JP 2008070945A JP 2008070945 A JP2008070945 A JP 2008070945A JP 2009229483 A JP2009229483 A JP 2009229483A
Authority
JP
Japan
Prior art keywords
porous film
film
porous
inorganic oxide
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070945A
Other languages
Japanese (ja)
Other versions
JP5370981B2 (en
Inventor
Hideki Agata
秀樹 縣
Isao Yamamoto
功 山本
Yuji Okuyama
裕司 奥山
Masahiro Tatsumisago
昌弘 辰巳砂
Kiyoharu Tadanaga
清治 忠永
Akitoshi Hayashi
晃敏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Nissan Motor Co Ltd
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Osaka University NUC, Osaka Prefecture University PUC filed Critical Nissan Motor Co Ltd
Priority to JP2008070945A priority Critical patent/JP5370981B2/en
Publication of JP2009229483A publication Critical patent/JP2009229483A/en
Application granted granted Critical
Publication of JP5370981B2 publication Critical patent/JP5370981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous film having one layer formed by reaction by irradiation with not heat but light, compatibly having scratch resistance without spoiling a reflection preventing function and capable of being applied to a part with which man's hands and bodies come in contact and which comes in contact with other members. <P>SOLUTION: The porous film is composed of an inorganic oxide or an organically modified inorganic oxide, an organic polymer and a reaction promoter, and formed by layering at least one layer of a structure having an inclination structure in which a refractive index is inclined in a film thickness direction. The organic polymer has the molecular weight of 400 or large , is a polypropylene glycol, for example, and contained in the porous film at a content of 5 mass% or higher. The porous film composed of the organically modified inorganic oxide using methyl silsesquioxane, for example, is formed on a substrate, and at least one layer of the porous film is layered. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、反射防止機能を有し、自動車を始めとする各種車両や船舶、航空機などのメータカバーや窓ガラス、建材用ガラス、眼鏡レンズ、光学機器用のレンズやガラスなどに広く適用される反射防止構造と、このような構造を備えた反射防止構造体に関するものである。   INDUSTRIAL APPLICABILITY The present invention has an antireflection function, and is widely applied to meter covers, window glass, glass for building materials, spectacle lenses, lenses and glasses for optical equipment, etc. for various vehicles including automobiles, ships, and airplanes. The present invention relates to an antireflection structure and an antireflection structure having such a structure.

例えば、液晶パネルなどのディスプレイ装置においては、外光や室内の照明などが画面に映り込むと、表示内容の視認性が著しく損なわれることから、反射防止膜が実用化されており、一般にSi/Ti系の多層膜技術が利用されている。
このような多層膜は膜の層数を増すことによって理論的には反射率を限りなく「0」に近づけることが可能であるが、膜の層数を増すことによって製造コストが嵩むと共に、多層膜は光の入射角依存性が高く、上記した車両や船舶、航空機などのように、光があらゆる角度から入ってくるようなものには効果を示さないという欠点がある。
For example, in a display device such as a liquid crystal panel, when external light, indoor lighting, or the like is reflected on the screen, the visibility of the display content is remarkably impaired. Ti-based multilayer film technology is used.
Such a multilayer film can theoretically make the reflectance as close to “0” as possible by increasing the number of layers of the film, but increasing the number of layers of the film increases the manufacturing cost and increases the number of layers. The film is highly dependent on the incident angle of light, and has a drawback that it does not show an effect on the light entering from all angles such as the above-mentioned vehicles, ships, and aircrafts.

一方、透明アルミナから成る花弁状膜、または膜内に屈折率の傾斜構造を持たせることにより、反射機能を示すことが知られており(特許文献1参照)、このような屈折率の傾斜構造を持つ膜は、上記多層膜に較べて、安価に製造することができると共に、光の入射角依存性が少ないというメリットがある。
特開平9−202649号公報
On the other hand, it is known that a reflective function is exhibited by providing a petal-like film made of transparent alumina or a gradient structure of refractive index in the film (see Patent Document 1), and such a gradient structure of refractive index. Compared with the above multilayer film, the film having the has an advantage that it is less expensive and has less dependency on the incident angle of light.
JP-A-9-202649

しかしながら、上記した透明アルミナから成る花弁状膜はその表面がナノサイズの凹凸で形成されているため、表面の硬度が低く、傷に対する耐久性に乏しいため、人が触れたり、他の部材と接触したりするような部位への適用は難しく、耐傷付性の向上が必要である。
耐傷付性の向上対策として、樹脂などにおいては、一般にハードコート処理が施される場合があるが、このような処理では反射防止機能が損なわれるため、本来の機能を果さなくなるという問題点がある。
また、屈折率の傾斜構造を持たせる膜は、熱によって反応を促進させ、膜を硬くするために焼成をする必要がある。そのため、反応を制御することが難しく、また熱に弱い樹脂については、成膜することが難しい欠点が有り、使っている薬品が有機溶剤のため、廃棄処理するためには、自然に負荷をかけてしまうという問題があった。
However, the above petaloid film made of transparent alumina has nano-sized irregularities on its surface, so the surface hardness is low and the durability against scratches is poor. Therefore, it is difficult to apply it to a part that is damaged, and it is necessary to improve the scratch resistance.
As a measure for improving the scratch resistance, a hard coat treatment is generally applied to resins and the like, but the antireflection function is impaired by such treatment, so that the original function is not achieved. is there.
In addition, a film having a refractive index gradient structure needs to be fired in order to accelerate the reaction by heat and harden the film. For this reason, it is difficult to control the reaction and the resin that is weak to heat has the disadvantage that it is difficult to form a film, and the chemicals used are organic solvents. There was a problem that.

本発明は、従来の花弁状膜および屈折率の傾斜構造を持たせる膜における上記課題を解決すべくなされたものであって、その目的とするところは、反射防止機能を損なうことなく、表面の耐傷付性を向上させることができ、人の手や身体が触れたり、他の部材と接触したりするような部位にも適用することができる反射防止構造を提供することにある。   The present invention has been made to solve the above-mentioned problems in conventional petal-like films and films having a gradient structure of refractive index, and the object of the present invention is to reduce the antireflection function without impairing the surface. An object of the present invention is to provide an antireflection structure which can improve the scratch resistance and can be applied to a part where a human hand or body touches or comes into contact with other members.

本発明者らは、上記目的を達成すべく、鋭意検討を重ねた結果、無機酸化物あるいは有機修飾酸化物、有機ポリマー、反応促進剤によって、多孔質膜を形成することによって上記課題が解決できることを見出し、本発明を完成するに到った。   As a result of intensive studies to achieve the above object, the present inventors can solve the above problems by forming a porous film with an inorganic oxide or an organic modified oxide, an organic polymer, and a reaction accelerator. As a result, the present invention has been completed.

本発明は上記知見に基づくものであって、本発明の多孔質膜は、無機酸化物あるいは有機修飾酸化物から成る多孔質膜が基板上に形成することを特徴としている。   The present invention is based on the above findings, and the porous film of the present invention is characterized in that a porous film made of an inorganic oxide or an organic modified oxide is formed on a substrate.

本発明によれば、紫外線を照射させることにより、反応を促進させ、1層で多孔性の傾斜構造を持たせているため、反射率の低下と反射率の角度依存性の低減を両立させ、熱に弱い樹脂などの表面へも備えることができる。また、光エネルギーによる反応により、熱による反応と同等以上の反応促進作用を持つため、熱で焼成した場合と同じように、表面が硬くなり、表面強度を向上させ、多孔性の傾斜膜による反射防止機能を損なうことなく、当該多孔質膜表面の耐傷付性を向上させることができ、人や物と触れ合う部位への適用が可能なものとなる。   According to the present invention, by irradiating ultraviolet rays, the reaction is promoted, and since a porous inclined structure is provided in one layer, both reduction in reflectance and reduction in reflectance angle dependency are achieved, It can also be provided on the surface of heat-sensitive resin. In addition, the reaction by light energy has a reaction promoting effect equal to or better than the reaction by heat, so that the surface becomes harder, the surface strength is improved, and the reflection by the porous gradient film is the same as in the case of baking with heat. The damage resistance of the surface of the porous film can be improved without impairing the prevention function, and application to a part that comes into contact with a person or an object becomes possible.

以下、本発明の多孔質膜の構造や、このような構造を適用した多孔質膜について、その製造方法や実施形態などと共に、さらに詳細に説明する。   Hereinafter, the structure of the porous film of the present invention and the porous film to which such a structure is applied will be described in more detail along with the production method and embodiments thereof.

本発明の多孔質膜は、上記したように、基板上に無機酸化物あるいは有機修飾酸化物から成る多孔質膜が形成されたものである。   As described above, the porous film of the present invention is obtained by forming a porous film made of an inorganic oxide or an organic modified oxide on a substrate.

ここで、多孔質膜とは、例えば、メチルトリエトキシシラン、水、エタノールを含む塗布液によるゾル−ゲル法によって形成される透明なメチルシルセスキオキサンからなり、膜内に微細な空隙が傾斜して存在するという特異な構造を有するものであって、このような空隙によって、膜内に屈折率の傾斜構造が形成されることから、その反射率が大幅に低減されることになる。   Here, the porous film is made of, for example, transparent methylsilsesquioxane formed by a sol-gel method using a coating solution containing methyltriethoxysilane, water, and ethanol, and fine voids are inclined in the film. Since such a gap forms a gradient structure of refractive index in the film, the reflectance is greatly reduced.

本発明においては、上記のような多孔質膜は紫外線を照射させることにより、反応を促進させ、1層で多孔性の傾斜構造を持たせているため、反射率の低下と反射率の角度依存性の低減を両立させ、熱に弱い樹脂などの表面へも備えることができる。また、光エネルギーによる反応により、熱による反応と同等以上の反応促進作用を持つため、熱で焼成した場合と同じように、表面が硬くなり、表面強度を向上させ、多孔性の傾斜膜による反射防止機能を損なうことなく、当該多孔質膜表面の耐傷付性を向上させることができ、人や物と触れ合う部位への適用が可能なものとなる。   In the present invention, the porous film as described above accelerates the reaction by irradiating with ultraviolet rays, and has a porous gradient structure in one layer. It is possible to provide the surface of a resin or the like that is weak against heat. In addition, the reaction by light energy has a reaction promoting effect equal to or better than the reaction by heat, so that the surface becomes harder, the surface strength is improved, and the reflection by the porous gradient film is the same as in the case of baking with heat. The damage resistance of the surface of the porous film can be improved without impairing the prevention function, and application to a part that comes into contact with a person or an object becomes possible.

発明の多孔質膜を形成する無機酸化物としては、とくに限定されず、上記したメチルシルセスキオキサン以外にも様々なRSi(OR’)(R=エチル、プロピル、ブチル、ペンチル、オクチル、フェニル、ベンジルなど、R’=メチル、エチル)から作製されるオルガノシルセスキオキサン、チタニア、アルミナなどを用いることができる。 The inorganic oxide forming the porous film of the invention is not particularly limited, and various RSi (OR ′) 3 (R = ethyl, propyl, butyl, pentyl, octyl, other than the above-mentioned methylsilsesquioxane, Organosilsesquioxane, titania, alumina, etc. prepared from phenyl, benzyl, etc. (R ′ = methyl, ethyl) can be used.

上記多孔質膜として、例えば透明メチルシルセスキオキサンを形成するには、次の方法がある。すなわち、基板上に、反応促進剤である光塩基発生剤を含むメチルトリエトキシシランである前駆体溶液を塗布液とし、該塗布液を例えばディッピング法によって塗布する。   In order to form, for example, transparent methylsilsesquioxane as the porous film, there are the following methods. That is, a precursor solution that is methyltriethoxysilane containing a photobase generator that is a reaction accelerator is used as a coating solution on a substrate, and the coating solution is applied by, for example, a dipping method.

そして、上記塗布液に用いられる触媒として、リン酸を用い、希釈溶媒としては、例えばメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、さらには一般的なゾルゲル法において用いられる希釈溶媒などを挙げることができる。   Then, phosphoric acid is used as the catalyst used in the coating solution, and examples of the diluting solvent include methyl alcohol, ethyl alcohol, propyl alcohol, butyl alcohol, and a diluting solvent used in a general sol-gel method. Can do.

上記光塩基発生剤として用いられるものとしては、[Co(NH)5Br](ClO、[Co(NHCH)5Br](ClO、[Co(NHCH)5Cl](ClO、[Co(NH)5Br](BPh、[Co(NH](BPh、[Co(NH]Cl、[Co(en)](BPh、[Co(en)]Clがある(en=エチレンジアミン、HNCHCHNH)。 As the photobase generator, [Co (NH 3 ) 5 Br] (ClO 4 ) 2 , [Co (NH 2 CH 3 ) 5 Br] (ClO 4 ) 2 , [Co (NH 2 CH 3 ) 5Cl] (ClO 4 ) 2 , [Co (NH 3 ) 5Br] (BPh 4 ) 2 , [Co (NH 3 ) 6 ] (BPh 4 ) 3 , [Co (NH 3 ) 6 ] Cl 3 , [Co ( en) 3 ] (BPh 4 ) 3 and [Co (en) 3 ] Cl 3 (en = ethylenediamine, H 2 NCH 2 CH 2 NH 2 ).

さらに、成膜するため上記塗布液の塗布方法としては、ディッピング法、スピンコート法、ノズルフローコート法、スプレー法、リバースコート法、フレキソ法、印刷法、フローコート法等と共に、これらの併用など既知の塗布手段を適宜採用することができる。
これらのうち、ディッピング法における塗布液からの引き上げ速度としては、必要な膜厚に応じて適宜選択すべきことではあるが、例えば、浸漬後約0.1〜3.0mm/秒程度の静かな均一速度で引き上げることが好ましい。
Furthermore, as a coating method for forming the film, the dipping method, the spin coating method, the nozzle flow coating method, the spray method, the reverse coating method, the flexo method, the printing method, the flow coating method, etc. are used together. Known application means can be appropriately employed.
Among these, the pulling speed from the coating solution in the dipping method should be appropriately selected according to the required film thickness. For example, it is quiet about 0.1 to 3.0 mm / second after immersion. It is preferable to pull up at a uniform speed.

紫外線の照射強度としては、例えば50mw/cm程度以下(波長254nm)、好ましくは約5mw/cm程度以下(波長254nm)の照射強度で、約5〜30分程度の時間照射する。 The irradiation intensity of the ultraviolet rays is, for example, about 50 mw / cm 2 or less (wavelength 254 nm), preferably about 5 mw / cm 2 or less (wavelength 254 nm) at a irradiation time of about 5 to 30 minutes.

なお、このような多孔質膜の膜厚としては、100〜2000nm程度が好ましい。
すなわち、この膜厚が50nmに満たない場合には、十分な空隙の傾斜構造が形成されないため、反射防止機能が発現しなくなり、1000nmを超えるとクラックが生じる可能性が高く、また、下地層の厚みが大きくなるために、大きな干渉を生じる可能性がある。
In addition, as a film thickness of such a porous membrane, about 100-2000 nm is preferable.
That is, when this film thickness is less than 50 nm, a sufficient inclined structure of voids is not formed, so that the antireflection function does not appear, and when it exceeds 1000 nm, there is a high possibility of cracking. The increased thickness can cause significant interference.

上記においては、透明メチルシルセスキオキサンから成る多孔質膜の形成方法について説明したが、他の透明有機修飾金属酸化物、あるいは金属酸化物から成る多孔質膜についても、基本的に同様な方法によって成膜することができる。例えば、エチルシルセスキオキサン、プロピルシルセスキオキサン、フェニルシルセスキオキサンなどのオルガノシルセスキオキサン、アルミナ、チタニア、Al−ZnOやAl−MgO、Al−NiO系などを用いることができる。オルガノシルセスキオキサン系については、対応するアルコキシシラン、アルコール、水を用いて、アルミナについては、酢アルミニウムブトキシド、アセト酢酸エチル、イソプロピルアルコール、水、チタニアについては、チタンブトキシド、アセチルアセトン、エタノール、水、アルミナー酸化物2成分系については、酸亜鉛や酢酸マグネシウムをそれぞれの酸化物の出発原料に用いて、2成分の薄膜を作製することによって膜内に空隙を持たせることができる。 In the above description, the method for forming a porous film made of transparent methylsilsesquioxane has been described. However, basically the same method can be used for other transparent organic modified metal oxides or porous films made of metal oxides. Can be formed. For example, organosilsesquioxanes such as ethyl silsesquioxane, propyl silsesquioxane, phenyl silsesquioxane, alumina, titania, Al 2 O 3 —ZnO, Al 2 O 3 —MgO, Al 2 O 3 — NiO-based materials can be used. For organosilsesquioxanes, use the corresponding alkoxysilanes, alcohols, and water; for alumina, aluminum acetate butoxide, ethyl acetoacetate, isopropyl alcohol, water, and titania: titanium butoxide, acetylacetone, ethanol, water As for the alumina-oxide two-component system, voids can be provided in the film by producing a two-component thin film using zinc oxide or magnesium acetate as a starting material for each oxide.

本発明において、上記多孔質膜の膜内の空隙率については、10%以上であることが望ましい。
すなわち、多孔質膜の空隙率が10%未満であると、十分な反射防止効果が得られなくなる傾向があることによる。
In the present invention, the porosity in the porous membrane is preferably 10% or more.
That is, when the porosity of the porous film is less than 10%, a sufficient antireflection effect tends to be not obtained.

本発明において、上記有機ポリマーとして、ポリプロピレングリコール(分子量300、700、3000など)、PEG(600、1000、3000など)、ポリエチレンオキシド(10,000、50,000、100,000など)などを挙げることができる。   In the present invention, examples of the organic polymer include polypropylene glycol (molecular weight 300, 700, 3000, etc.), PEG (600, 1000, 3000, etc.), polyethylene oxide (10,000, 50,000, 100,000, etc.) and the like. be able to.

本発明の反射防止構造に用いる基板について、特に制限はなく、ガラスやプラスチックなどの透明体のみならず、金属などあらゆるものを使用することができる。   There is no restriction | limiting in particular about the board | substrate used for the reflection preventing structure of this invention, Not only transparent bodies, such as glass and a plastics, but all things, such as a metal, can be used.

以下に、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されないことは言うまでもない。   EXAMPLES Hereinafter, the present invention will be described more specifically based on examples, but it goes without saying that the present invention is not limited to these examples.

(実施例1)
メチルトリエトキシシラン、エタノール、有機ポリマーとして分子量1000のポリプロピレングリコールを混合し10分間攪拌した。この溶液に、リン酸水溶液を混合し、4時間攪拌してメチルシルセスキオキサン前駆体溶液とした。一方、6規定の塩化水素とエチレンジアミンを混合した溶液を塩化コバルト溶液中に入れ、1時間室温で攪拌した。この溶液を加熱により濃縮した後、濃塩化水素とエチルアルコールを加え、コバルト錯体を得た。メチルシルセスキオキサン前駆体溶液に、この錯体を0.1質量%となるように加え、前駆体溶液を得た。
Example 1
Methyltriethoxysilane, ethanol, and polypropylene glycol having a molecular weight of 1000 as an organic polymer were mixed and stirred for 10 minutes. This solution was mixed with an aqueous phosphoric acid solution and stirred for 4 hours to obtain a methylsilsesquioxane precursor solution. On the other hand, a solution prepared by mixing 6N hydrogen chloride and ethylenediamine was put in a cobalt chloride solution and stirred at room temperature for 1 hour. After concentrating this solution by heating, concentrated hydrogen chloride and ethyl alcohol were added to obtain a cobalt complex. This complex was added to the methyl silsesquioxane precursor solution so as to be 0.1% by mass to obtain a precursor solution.

この前駆体溶液へガラス基板を浸漬し、3mm/sの速度で引き上げ、当該ガラス基板上にゲル膜を形成させる。
このガラス基板へ強度5mW/cmを持つ紫外線を、30分間照射し、その後120℃で12時間乾燥することによって、透明メチルシルセスキオキサン膜を形成した。
上記コーティング溶液の組成は、モル比でメチルトリエトキシシラン:エタノール:水(リン酸0.4質量%)=1:6:4とした。
A glass substrate is immersed in this precursor solution and pulled up at a speed of 3 mm / s to form a gel film on the glass substrate.
The glass substrate was irradiated with ultraviolet rays having an intensity of 5 mW / cm 2 for 30 minutes and then dried at 120 ° C. for 12 hours to form a transparent methylsilsesquioxane film.
The composition of the coating solution was methyltriethoxysilane: ethanol: water (phosphoric acid 0.4 mass%) = 1: 6: 4 in molar ratio.

(実施例2)
多孔質膜の形成に際して、紫外線照射時間を30分行い、400℃で30分間熱処理したこと以外は、上記実施例1と同様の操作を繰り返し、本例の試料を作製した。
(Example 2)
When forming the porous film, the sample of this example was prepared by repeating the same operation as in Example 1 except that the ultraviolet irradiation time was 30 minutes and heat treatment was performed at 400 ° C. for 30 minutes.

(実施例3)
多孔質膜の作製に際して、分子量3000のポリエチレングリコールを用いたこと以外は、上記実施例1と同様の操作を繰り返し、本例の試料を作製した。
(Example 3)
A sample of this example was produced by repeating the same operation as in Example 1 except that polyethylene glycol having a molecular weight of 3000 was used in producing the porous membrane.

(比較例1)
多孔質膜の形成に際して、紫外線照射しないこと(照射時間0分)としたこと以外は、上記実施例1と同様の操作を繰り返し、本例の試料を作製した。
(Comparative Example 1)
A sample of this example was prepared by repeating the same operation as in Example 1 except that ultraviolet irradiation was not performed (irradiation time 0 minutes) when forming the porous film.

(比較例2)
多孔質膜の形成に際して、コバルト錯体を混合しなかったこと以外は、上記実施例1と同様の操作を繰り返し、本例の試料を作製した。
(Comparative Example 2)
In the formation of the porous film, the same operation as in Example 1 was repeated except that the cobalt complex was not mixed to prepare a sample of this example.

(比較例3)
多孔質膜の形成に際して、有機ポリマーとして分子量1000のポリプロピレングリコールを混合しなかったこと以外は、上記実施例1と同様の操作を繰り返し、本例の試料を作製した。
(Comparative Example 3)
A sample of this example was prepared by repeating the same operation as in Example 1 except that polypropylene glycol having a molecular weight of 1000 was not mixed as an organic polymer when forming the porous film.

(比較例4)
アルミニウムトリセカンダリーブトキシドをイソプロピルアルコールに溶解し、
20分間攪拌した。この溶液に、アセト酢酸エチルを加え、さらに20分間攪拌した。この溶液に、イソプロピルアルコールで希釈した水を加え、1時間攪拌して、アルミナ膜の前躯体溶液とした。このゾルに、ガラス基板を浸漬し、3mm/sの速度で引き上げ、当該ガラス基板上にゲル膜を形成した後、室温で10分間乾燥し、400℃で1時間熱処理した。この処理によって得られた多孔質アルミナ膜を60℃の熱水に15分間浸漬したのち、400℃で30分間熱処理することによって花弁状透明アルミナ膜を作製し、本例の試料とした。
(Comparative Example 4)
Aluminum trisecondary butoxide is dissolved in isopropyl alcohol,
Stir for 20 minutes. To this solution, ethyl acetoacetate was added and stirred for another 20 minutes. To this solution, water diluted with isopropyl alcohol was added and stirred for 1 hour to obtain an alumina membrane precursor solution. A glass substrate was immersed in this sol and pulled up at a rate of 3 mm / s to form a gel film on the glass substrate, followed by drying at room temperature for 10 minutes and heat treatment at 400 ° C. for 1 hour. The porous alumina membrane obtained by this treatment was immersed in hot water at 60 ° C. for 15 minutes and then heat-treated at 400 ° C. for 30 minutes to produce a petal-like transparent alumina membrane, which was used as a sample of this example.

〈評価方法〉
上記によって作製した実施例及び比較例の各試料について、多孔質膜の膜厚及び屈折率をそれぞれ測定した。
なお、屈折率は、透過率測定によって得られたスペクトルから計算によって求めた。
<Evaluation methods>
About each sample of the Example and comparative example produced by the above, the film thickness and refractive index of the porous film were measured, respectively.
The refractive index was obtained by calculation from the spectrum obtained by transmittance measurement.

また、各試料の反射率を分光光度計によって測定すると共に、反射防止膜としての角度依存性を入射角を変化させて分光光度測定することによって調査し、50°以上のものを「○」、40°〜50°未満のものを「△」、40°未満のものを「×」と評価した。
そして、膜表面の硬度について鉛筆硬度によって調査し、H以上のものを「○」、3B以上のものを「△」、3B未満〜6Bのものを「×」とそれぞれ評価した。
これらの結果を表1に併せて示す。
なお、耐傷付性は、膜の表面硬度に依存する。
Moreover, while measuring the reflectance of each sample with a spectrophotometer and investigating the angle dependence as an antireflection film by changing the incident angle and measuring the spectrophotometer, a sample having a value of 50 ° or more is indicated with “O”, Those with 40 ° to less than 50 ° were evaluated as “Δ”, and those with less than 40 ° were evaluated as “x”.
Then, the hardness of the film surface was examined by pencil hardness, and those with H or higher were evaluated as “◯”, those with 3B or higher as “Δ”, and those with less than 6B to 6B as “X”.
These results are also shown in Table 1.
The scratch resistance depends on the surface hardness of the film.

Figure 2009229483
Figure 2009229483

その結果、透明メチルシルセスキオキサン膜から成る本発明の実施例の反射防止構造に較べて、屈折率の傾斜構造にならない透明メチルシルセスキオキサン膜である比較例1、比較例2、比較例3については、表面硬度については優れているものの、反射率の角度依存性は劣ることが確認された。   As a result, as compared with the antireflection structure of the embodiment of the present invention composed of a transparent methylsilsesquioxane film, Comparative Example 1, Comparative Example 2, and Comparative Example 2, which are transparent methylsilsesquioxane films that do not have a gradient structure of refractive index. About Example 3, although it was excellent about surface hardness, it was confirmed that the angle dependence of a reflectance is inferior.

一方、実施例の中では、透明メチルシルセスキオキサン膜の屈折率の傾斜が小さい実施例2では、反射防止機能において、透明メチルシルセスキオキサン膜の空隙が大きい実施例3において、最良の性能を示した実施例1に較べて、それぞれ僅かに劣る傾向が認められた。   On the other hand, among the examples, Example 2 in which the gradient of the refractive index of the transparent methylsilsesquioxane film is small is the best in Example 3 in which the gap of the transparent methylsilsesquioxane film is large in the antireflection function. Compared with Example 1 which showed performance, the tendency which is slightly inferior in each was recognized.

Claims (7)

無機酸化物あるいは有機修飾無機酸化物、有機ポリマー、反応促進剤から成り、膜厚方向に屈折率の傾斜構造を有した構造をを少なくとも1層積層して成ることを特徴とする多孔質膜。   A porous film comprising an inorganic oxide or an organically modified inorganic oxide, an organic polymer, and a reaction accelerator, and comprising at least one layer of a structure having a refractive index gradient structure in the film thickness direction. 上記記載の有機ポリマーは、分子量400以上で、例えばポリプロピレングリコールであり、含有量5質量%以上であることを特徴とする請求項1に記載の多孔質膜。   The porous film according to claim 1, wherein the organic polymer has a molecular weight of 400 or more, for example, polypropylene glycol, and a content of 5% by mass or more. 上記記載の光による反応促進剤は例えばコバルト錯体であり、含有量0.1mol%以上であることを特徴とする請求項1又は2に記載の多孔質膜。   The porous film according to claim 1 or 2, wherein the light-accelerated reaction accelerator is, for example, a cobalt complex and has a content of 0.1 mol% or more. 上記記載の有機修飾シリケート、アルミナ、チタニアからなる群から選ばれた少なくとも1種の化合物を含むことを特徴とする請求項1〜3のいずれか1つの項に記載の多孔質膜。   The porous film according to any one of claims 1 to 3, comprising at least one compound selected from the group consisting of the above-mentioned organically modified silicate, alumina, and titania. 上記記載の無機酸化物あるいは有機修飾無機酸化物、有機ポリマー、コバルト錯体である光塩基発生剤を混合し、紫外線を照射することにより、相分離させ屈折率の傾斜構造を持つことを特徴とする請求項1〜4のいずれか1つの項に記載の多孔質膜。   It is characterized by having a refractive index gradient structure by mixing the above-described inorganic oxide or organic modified inorganic oxide, an organic polymer, and a photobase generator that is a cobalt complex and irradiating ultraviolet rays. The porous membrane as described in any one of Claims 1-4. 請求項1〜5のいずれか1つの項に記載の多孔性薄膜構造上を備えたことを特徴とするガラス。   A glass comprising the porous thin film structure according to any one of claims 1 to 5. 請求項1〜5のいずれか1つの項に記載の多孔性薄膜構造上を備えたことを特徴とする樹脂。   A resin comprising the porous thin film structure according to any one of claims 1 to 5.
JP2008070945A 2008-03-19 2008-03-19 Porous membrane laminate Expired - Fee Related JP5370981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070945A JP5370981B2 (en) 2008-03-19 2008-03-19 Porous membrane laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070945A JP5370981B2 (en) 2008-03-19 2008-03-19 Porous membrane laminate

Publications (2)

Publication Number Publication Date
JP2009229483A true JP2009229483A (en) 2009-10-08
JP5370981B2 JP5370981B2 (en) 2013-12-18

Family

ID=41245013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070945A Expired - Fee Related JP5370981B2 (en) 2008-03-19 2008-03-19 Porous membrane laminate

Country Status (1)

Country Link
JP (1) JP5370981B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130469A (en) * 2014-01-07 2015-07-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method therefor
JP2016041658A (en) * 2010-05-19 2016-03-31 ユーロケラ Preparation of glass or glass ceramic article having improved coating, and article thereof
KR20200073002A (en) * 2018-12-13 2020-06-23 삼성전자주식회사 Optical member, method for producing the same and display device compring the same
CN117806114A (en) * 2024-02-29 2024-04-02 中国空气动力研究与发展中心低速空气动力研究所 Ice-shaped developer and preparation method and application method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276733A (en) * 1988-09-14 1990-03-16 Nok Corp Composite membrane
JP2005015310A (en) * 2003-06-27 2005-01-20 Mitsubishi Chemicals Corp Porous silica film and laminated body having it
JP2006236850A (en) * 2005-02-25 2006-09-07 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell and its manufacturing method
WO2006132351A1 (en) * 2005-06-09 2006-12-14 Hitachi Chemical Company, Ltd. Method for forming antireflection film
JP2007284623A (en) * 2006-04-19 2007-11-01 Asahi Kasei Corp Coating composition for thin film
JP2008003426A (en) * 2006-06-23 2008-01-10 Nippon Zeon Co Ltd Polarizing plate
JP2008538543A (en) * 2005-04-21 2008-10-30 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Precursor material infiltration and coating methods

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276733A (en) * 1988-09-14 1990-03-16 Nok Corp Composite membrane
JP2005015310A (en) * 2003-06-27 2005-01-20 Mitsubishi Chemicals Corp Porous silica film and laminated body having it
JP2006236850A (en) * 2005-02-25 2006-09-07 Dainippon Printing Co Ltd Electrode layer for solid oxide fuel cell and its manufacturing method
JP2008538543A (en) * 2005-04-21 2008-10-30 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Precursor material infiltration and coating methods
WO2006132351A1 (en) * 2005-06-09 2006-12-14 Hitachi Chemical Company, Ltd. Method for forming antireflection film
JP2007284623A (en) * 2006-04-19 2007-11-01 Asahi Kasei Corp Coating composition for thin film
JP2008003426A (en) * 2006-06-23 2008-01-10 Nippon Zeon Co Ltd Polarizing plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041658A (en) * 2010-05-19 2016-03-31 ユーロケラ Preparation of glass or glass ceramic article having improved coating, and article thereof
US10154544B2 (en) 2010-05-19 2018-12-11 Eurokera Preparation of an article in glass or in glass-ceramic with improved coating and said article
US11032876B2 (en) 2010-05-19 2021-06-08 Eurokera Preparation of an article of a glass or a glass-ceramic having an improved coating and that article
JP2015130469A (en) * 2014-01-07 2015-07-16 サムソン エレクトロ−メカニックス カンパニーリミテッド. Chip electronic component and manufacturing method therefor
KR20200073002A (en) * 2018-12-13 2020-06-23 삼성전자주식회사 Optical member, method for producing the same and display device compring the same
KR102623556B1 (en) * 2018-12-13 2024-01-09 삼성전자주식회사 Optical member, method for producing the same and display device compring the same
CN117806114A (en) * 2024-02-29 2024-04-02 中国空气动力研究与发展中心低速空气动力研究所 Ice-shaped developer and preparation method and application method thereof
CN117806114B (en) * 2024-02-29 2024-04-26 中国空气动力研究与发展中心低速空气动力研究所 Ice-shaped developer and preparation method and application method thereof

Also Published As

Publication number Publication date
JP5370981B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP6305462B2 (en) Sulfonate functional coatings and methods
US10400130B2 (en) Anti-fogging coated transparent article
JP4048912B2 (en) Surface antifouling composite resin film, surface antifouling article, decorative board
US5948481A (en) Process for making a optical transparency having a diffuse antireflection coating
JP2003522092A (en) Anti-reflective UV blocking multilayer coating with cerium oxide film
JPH02212337A (en) Three-layered irreflexive coating composition and preparation thereof
WO2010134464A1 (en) Coating composition and optical article
ES2362801T3 (en) COMPOSITION OF HARD COATING AND PLASTIC OPTICAL PRODUCT.
JP2007199702A (en) Laminated body of fine particle-layered film, method for manufacturing same, and optical member using same
JP2017039928A (en) Composition for forming anti-reflection film, anti-reflection film and formation method therefor
JP4309744B2 (en) Fluorine-based composite resin film and solar cell
JP5370981B2 (en) Porous membrane laminate
JP5264914B2 (en) Method for transparent coating of substrate with plasma at atmospheric pressure
WO2011090156A1 (en) Anti-fog article
JP3514065B2 (en) Laminate and manufacturing method thereof
JPH05330856A (en) Low-reflecting glass
JP2007241177A (en) Antireflection structure and structure
JP2805877B2 (en) Composition for coating
JP2008114413A (en) Particle laminated film laminate, method for producing the laminate, and optical member using the laminate
JP3678043B2 (en) Low reflection glass articles for automobiles
JP2003082284A (en) Photo-catalytic film, photo-catalytic laminate and method for producing photo-catalytic film
JP7083342B2 (en) A method for manufacturing a transparent substrate with a low-reflection film, a photoelectric conversion device, a coating liquid for forming a low-reflection film of a transparent substrate with a low-reflection film, and a transparent substrate with a low-reflection film.
JP2000344546A (en) Hydrophilic and antifogging base material and its production
JPH0656479A (en) Ultraviolet ray shielding film and ultraviolet ray shielding glass
WO2020129456A1 (en) Photocatalyst composite material, signage display protection member, touch panel protection member, solar cell protection member, sensor cover protection member, signage display, touch panel, solar cell, and sensor cover

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees