JP2009229373A - Evaluation implement for electron conductivity - Google Patents
Evaluation implement for electron conductivity Download PDFInfo
- Publication number
- JP2009229373A JP2009229373A JP2008077576A JP2008077576A JP2009229373A JP 2009229373 A JP2009229373 A JP 2009229373A JP 2008077576 A JP2008077576 A JP 2008077576A JP 2008077576 A JP2008077576 A JP 2008077576A JP 2009229373 A JP2009229373 A JP 2009229373A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- current
- measuring element
- electron
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
Description
本発明は、電子伝導体における電子伝導性の評価に有効な評価治具であり、特に薄膜電子伝導体の断面方向における電気伝導度解析が必要となる電気、化学分野を始めとする多岐の技術分野に関する。 INDUSTRIAL APPLICABILITY The present invention is an evaluation jig effective for evaluating electronic conductivity in an electron conductor, and in particular, various technologies including electric and chemical fields that require electric conductivity analysis in a cross-sectional direction of a thin film electronic conductor. Related to the field.
従来の電子伝導体における電子伝導性を評価する方法について説明する。表面方向の電子伝導性については、例えば非特許文献1に記載されているように導電性プラスチックの4探針法による抵抗率試験法に記載されている様に、長さ80mm幅50mm厚さ20mm以下の直方体試験片の上部より4本のプローブを間隔5mmで接触させて外側のプローブ間に電流を流し内側のプローブ間の電圧を測定する4端子方式((1)の方法)がよく用いられている。 A method for evaluating the electron conductivity of a conventional electron conductor will be described. As described in the non-patent document 1, for example, the electronic conductivity in the surface direction is 80 mm in length, 50 mm in thickness, and 20 mm in thickness as described in the resistivity test method by the 4-probe method for conductive plastics. The following four-terminal method (method (1)) is used in which four probes are brought into contact with each other at an interval of 5 mm from the upper part of the rectangular parallelepiped test piece and current is passed between the outer probes to measure the voltage between the inner probes. ing.
一方、断面方向の電子伝導性については、例えば上部及び下部より円筒状のプローブを接触させて、上部及び下部プローブ間に電流を流しながら同じ上下部のプローブ間の電圧を測定する2端子方式((2)の方法)などがよく用いられている。
しかしながら、断面方向の電子伝導性を評価する場合に、前記(1)の方法では表面方向の電子伝導性測定方法であり、断面方向と表面方向に異方性が大きい材料については断面方向の特性が正確につかめないという課題を残していた。又、断面方向の電子伝導性を評価する場合、前記(2)の方法では、上下部のプローブが電子伝導体に接触している部分の接触抵抗による電圧降下が測定電圧に上乗せされ、特に電子伝導性の高い材料を評価する場合において実際より低い電子伝導性として評価されてしまう点に課題があった。 However, when the electron conductivity in the cross-sectional direction is evaluated, the method (1) is a method for measuring the electron conductivity in the surface direction. Remained a problem that could not be accurately grasped. When evaluating the electron conductivity in the cross-sectional direction, in the method (2), the voltage drop due to the contact resistance of the portion where the upper and lower probes are in contact with the electron conductor is added to the measured voltage. In the case of evaluating a highly conductive material, there is a problem in that it is evaluated as an electron conductivity lower than the actual one.
又、例えばリチウムイオン電池等に用いられる金属集電体上に電極層を塗布して形成された電極では、集電体層とその表面に電極層が塗布された二層で構成される薄膜電極についての断面方向の電子伝導性評価において、その二層間の界面における電子伝導性(界面抵抗)の評価も重要である。集電体層と電極層の各々のバルク電子伝導性については、異方性が無い場合には、表面方向を測定する前記(1)の方法で個別に測定が可能である。集電体層と電極層による二層の断面方向の電子伝導性が正確に測定出来れば、その電子伝導性より各々のバルク電子伝導性を解析することにより、その二層間の界面における電子伝導性まで評価できると考える。しかし、前記の通り、従来の方法では、薄膜の断面方向における電子電伝導性を正確に測定することが難しく、二層間の界面における電子伝導性の解析が不十分であるという課題もあった。 In addition, in an electrode formed by applying an electrode layer on a metal current collector used in, for example, a lithium ion battery, etc., a thin film electrode composed of a current collector layer and two layers in which an electrode layer is applied on the surface thereof In the evaluation of the electron conductivity in the cross-sectional direction, the evaluation of the electron conductivity (interface resistance) at the interface between the two layers is also important. The bulk electronic conductivity of each of the current collector layer and the electrode layer can be individually measured by the method (1) in which the surface direction is measured when there is no anisotropy. If the electron conductivity in the cross-sectional direction of the two layers by the current collector layer and the electrode layer can be accurately measured, the electronic conductivity at the interface between the two layers can be analyzed by analyzing each bulk electron conductivity from the electron conductivity. I think it can be evaluated. However, as described above, the conventional method has a problem that it is difficult to accurately measure the electronic conductivity in the cross-sectional direction of the thin film, and the analysis of the electron conductivity at the interface between the two layers is insufficient.
本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、薄膜の電子伝導体における断面方向の電子伝導性を正確に測定可能な評価治具を見出し、本発明に至った。 As a result of conducting research while paying attention to the problems of the prior art as described above, the present inventor has found an evaluation jig capable of accurately measuring the electron conductivity in the cross-sectional direction of the thin-film electron conductor. Invented.
請求項1に記載の方法は、電子伝導体の上部に接触する電流測定用と電圧測定用の2本の測定子、電子伝導体の下部に接触する電流測定用と電圧測定用の2本の測定子を具備し、上部及び下部において各々の電流測定子と電圧測定子との電子伝導体との接触面における最短距離が、測定する電子伝導体厚さの200%以下であり、電流測定子間に電流を流し、電圧測定子間の電圧を測定することを特徴とする電子伝導性の評価治具である。 The method according to claim 1 includes two measuring elements for current measurement and voltage measurement in contact with the upper part of the electron conductor, and two measurement elements for current measurement and voltage measurement in contact with the lower part of the electron conductor. A measuring element is provided, and the shortest distance in the contact surface between each current measuring element and the voltage measuring element at the upper and lower portions of the electronic conductor is 200% or less of the thickness of the electron conductor to be measured. An electronic conductivity evaluation jig characterized by passing a current between them and measuring a voltage between voltage measuring elements.
請求項2に記載の方法は、前記電子伝導性の評価治具において、上部及び下部に具備した合計4本の電流測定子と電圧測定子において、少なくとも上部の電流測定子あるいは電圧測定子の一方と少なくとも下部の電流測定子あるいは電圧測定子の一方が、弾性機構を備えていることを特徴とする請求項1記載の電子伝導性の評価治具である。 According to a second aspect of the present invention, in the electronic conductivity evaluation jig, in the total of four current measuring elements and voltage measuring elements provided in the upper and lower parts, at least one of the upper current measuring element or the voltage measuring element. 2. The electron conductivity evaluation jig according to claim 1, wherein at least one of the lower current measuring element or the voltage measuring element includes an elastic mechanism.
電子伝導体の上部及び下部に接触する各々の電流測定子と電圧測定子との電子伝導体との接触面における最短距離が、測定する電子伝導体厚さの200%以下であり、電流測定子間に電流を流し、電圧測定子間の電圧を測定することを特徴とする評価治具を用いることにより、従来困難であった、薄膜の電子伝導体における断面方向の電子伝導性を正確に評価することができる。更に、これら測定子に弾性機構を具備させることにより、4本の測定子全てを確実に接触させることでより正確な断面方向の電子伝導性を測定することも可能となる。 The shortest distance in the contact surface between each of the current measuring element and the voltage measuring element in contact with the upper and lower portions of the electron conductor is 200% or less of the thickness of the electron conductor to be measured. Accurately evaluate the electron conductivity in the cross-sectional direction of a thin-film electron conductor, which has been difficult in the past, by using an evaluation jig characterized by passing a current between them and measuring the voltage between voltage gauges can do. Furthermore, by providing these measuring elements with an elastic mechanism, it becomes possible to measure the electron conductivity in the cross-sectional direction more accurately by ensuring that all four measuring elements are in contact with each other.
また、本発明の評価治具により薄膜の電子伝導体における断面方向の電子伝導性をより正確に測定し、複数層試験片については表面方向の測定値と組み合せることにより層間界面の電子伝導性を解析することも可能となる。 Further, the electron conductivity in the cross-sectional direction of the thin-film electron conductor is more accurately measured by the evaluation jig of the present invention, and the electronic conductivity at the interlayer interface is combined with the measurement value in the surface direction for the multi-layer test piece. Can also be analyzed.
本発明の評価治具は、電子伝導体における断面方向の電子伝導性を評価する際に、電子伝導体の上部に接触する電流測定用と電圧測定用の2本の測定子、電子伝導体の下部に接触する電流測定用と電圧測定用の2本の測定子を具備し、上部及び下部において各々の電流測定子と電圧測定子との電子伝導体との接触面における最短距離が測定する電子伝導体厚さの200%以下であり、電流測定子間に電流を流し、電圧測定子間の電圧を測定することを特徴とする電子伝導性の評価治具である。電子伝導体の上部及び下部とも電流測定子と電圧測定子の2本を用いる目的は、上部あるいは下部のどちらか一方でも電流測定子と電圧測定子を兼ねた電圧電流測定子とした場合に、その測定子と電子伝導体表面との接触抵抗が必ず電圧測定値に加算されることとなり、電子伝導体自身が持つバルク電子伝導性よりも低い値が測定され正確な値が得られない。又、測定するサンプルの電子伝導性が高い程、その影響は大きく無視できなくなる。 When evaluating the electron conductivity in the cross-sectional direction of the electron conductor, the evaluation jig of the present invention has two measuring elements for current measurement and voltage measurement that are in contact with the upper part of the electron conductor. An electron having two measuring elements for current measurement and voltage measurement in contact with the lower part and measuring the shortest distance on the contact surface between the current measuring element and the voltage measuring element at the upper and lower parts of the electron conductor. It is an electronic conductivity evaluation jig characterized in that it is 200% or less of the conductor thickness, and a current is passed between current measuring elements to measure a voltage between voltage measuring elements. The purpose of using two current measuring elements and voltage measuring elements for both the upper and lower parts of the electronic conductor is that when either the upper or lower part is a voltage current measuring element that serves both as a current measuring element and a voltage measuring element, The contact resistance between the probe and the surface of the electron conductor is always added to the voltage measurement value, and a value lower than the bulk electron conductivity of the electron conductor itself is measured and an accurate value cannot be obtained. In addition, the higher the electron conductivity of the sample to be measured, the greater the influence becomes.
本発明において、上部及び下部に具備した電流測定子と電圧測定子との電子伝導体との接触面における最短距離が、測定する電子伝導体厚さの200%以下である。これは、上下の電流測定子間に電流を流し発生させている電界内の電圧を電圧測定子で測定する場合、電流測定子と電圧測定子との最短距離が重要であり、特に薄膜ではこの影響が大きい。この距離が長いと電流測定子間で発生させている電界内の電圧を精度良く測定できないからである。より精度の高い測定を行うためには、この最短距離は電流測定子と電圧測定子が電気的に絶縁されている限り小さい方が好ましく、測定する電子伝導体厚さの120%以下で0%より大であることがより望ましい。電流測定子と電圧測定子の絶縁方法は、一般的には片側の側面へ絶縁表面処理を施すこととなるため、1μm以上の場合が多いが、技術の進歩によって表面処理層の厚さがより薄くナノメートルレベルとなる可能性もある。 In the present invention, the shortest distance at the contact surface between the current measuring element and the voltage measuring element provided on the upper and lower parts of the electron conductor is 200% or less of the thickness of the electron conductor to be measured. This is because the shortest distance between the current measuring probe and the voltage measuring probe is important when measuring the voltage in the electric field generated by passing a current between the upper and lower current measuring probes. A large impact. This is because if this distance is long, the voltage in the electric field generated between the current measuring elements cannot be measured with high accuracy. In order to perform measurement with higher accuracy, it is preferable that this shortest distance is as small as the current measuring element and the voltage measuring element are electrically insulated, and 0% when the thickness of the electron conductor to be measured is 120% or less. It is more desirable to be larger. The insulation method between the current measuring probe and the voltage measuring probe generally involves applying an insulating surface treatment to one side surface. In many cases, the thickness is 1 μm or more. There is a possibility that it will be thin and nanometer level.
又、前記電子伝導性の評価治具において、上部及び下部に具備した合計4本の電流測定子と電圧測定子について、少なくとも上部の電流測定子あるいは電圧測定子の一方と少なくとも下部の電流測定子あるいは電圧測定子の一方が弾性機構を備えていることにより、計4本の測定子全てを確実に測定サンプルに接触させることが可能となり、正確な断面方向の電子伝導性を測定することが期待できる。なぜなら、上下より2本ずつプローブを接触させる際に、例えば上部あるいは下部の2本の測定子が固定されていた場合、2本の先端をサンプルに接触させる時にサンプルと2本の先端との距離がたとえ数μmの差であっても測定サンプルが硬い材料の場合は近い方の測定子しか接触しないこととなり測定できないからである。すなわち計4本の測定子を上下より2本ずつ確実に接触させるためには、例えば上下の電流測定子を接触させ、弾性機構を備えた上下の電圧測定子を用いる方法が考えられる。又、この弾性機構を設けることで、測定サンプルの表面平滑性が悪い材料についても4本の測定子が確実に接触することで測定可能となる。尚、弾性機構としては、例えば測定子が治具の上板や下板にバネやゴム等の弾性体を介して固定されている等の構造が考えられるが特に限定されない。 Further, in the electronic conductivity evaluation jig, a total of four current measuring elements and voltage measuring elements provided in the upper and lower parts, at least one of the upper current measuring element or the voltage measuring element and at least the lower current measuring element. Alternatively, if one of the voltage measuring elements is provided with an elastic mechanism, all four measuring elements can be surely brought into contact with the measurement sample, and it is expected to accurately measure the electron conductivity in the cross-sectional direction. it can. This is because, when two probes from the upper and lower sides are brought into contact with each other, for example, when two upper or lower probe is fixed, the distance between the sample and the two tips when the two tips are brought into contact with the sample. This is because even if the difference is several μm, if the measurement sample is a hard material, only the closer probe contacts and cannot measure. That is, in order to bring the total of four measuring elements into contact with each other from the upper and lower sides, for example, a method in which the upper and lower current measuring elements are brought into contact with each other and the upper and lower voltage measuring elements provided with an elastic mechanism can be considered. In addition, by providing this elastic mechanism, it is possible to measure even the material with poor surface smoothness of the measurement sample when the four measuring elements come into contact with each other. As the elastic mechanism, for example, a structure in which a measuring element is fixed to an upper plate or a lower plate of a jig via an elastic body such as a spring or rubber is conceivable, but not particularly limited.
本発明の一実施形態について、導電性シートの電子伝導性評価を例にとり、図面を参照に説明すれば以下の通りである。図1は、本実施形態の一例である電子伝導性の評価治具を示す図である。
図1(a)はその電子伝導性の評価治具を示す斜視図であり、図1(b)はその電子伝導性の評価治具の断面図と電源、電圧測定器を接続した電子伝導性の測定を説明する図である。評価治具は、上板1、底板2、上部電圧測定子3、上部電流測定子5、下部電圧測定子4、下部電流測定子6から構成される。図1(b)に示す通り、円板上に成形した導電性シートサンプル7に対し、上下より電圧測定子、電流測定子を接触させ、電源8のプラス極9を上部電流測定子5へマイナス極10を下部電流測定子6へ接続させて電流を流し、電圧測定器11のプラス極12を上部電圧測定子3へマイナス極13を下部電圧測定子4へ接続させて電圧を測定することにより電子伝導性が評価できる。例えば、電子伝導性を表す伝導度は、以下の式へ、電流を流している面積、サンプルの厚さ、前記の流した電流値と測定電圧値より求めた抵抗値を代入することで算出される。
伝導度(S/cm)=サンプル厚さ(cm)/(電流を流している面積(cm2)/抵抗値(Ω)
An embodiment of the present invention will be described below with reference to the drawings, taking an example of evaluation of electronic conductivity of a conductive sheet. FIG. 1 is a diagram showing an electron conductivity evaluation jig as an example of the present embodiment.
FIG. 1A is a perspective view showing the electron conductivity evaluation jig, and FIG. 1B is a cross-sectional view of the electron conductivity evaluation jig, and an electronic conductivity in which a power source and a voltage measuring device are connected. It is a figure explaining measurement of. The evaluation jig includes an upper plate 1, a
Conductivity (S / cm) = sample thickness (cm) / (area through which current flows (cm 2 ) / resistance value (Ω)
電圧測定子、電流測定子は、電子伝導性がある材料であれば、特に限定されるものでは無い。本実施例の場合、電流測定子はリング状、電圧測定子は電流測定子の内径内中心に配置した円形のタイプで示しているが、それぞれ長方形である等形状も特に限定されない。電流測定子のサンプルと接触する先端形状はフラット面であることが、電流を流している面積の計算が簡便となるため望ましい。本実施例の場合、電流測定子と電圧測定子との電子伝導体との接触面における最短距離は、電圧端子の内径より電圧端子の外径を引いた値の1/2値となるが、その値が電子伝導体サンプル厚さの200%以下であることが望ましい。例えばサンプル厚さが100μmの場合、前記最短距離は200μm以下が望ましく、120%以下、120μm以下であることが更に望ましい。なぜなら電流端子間で発生している電界内の電圧を電流端子の外側より可能な限り近傍で捉えるためである。前記電流測定子と電圧測定子との最短距離が短い程、2本の測定子が電気的に接触する可能性が高まるため、電流測定子あるいは電圧測定子の互いに向かい合った側面については絶縁処理を施しておくことが望ましい。又、電流測定子及び電圧測定子の先端がサンプルの表面に対する距離を同一にしておく必要がある。なぜなら、図1(b)に示す通りサンプルを本評価治具で上部及び下部より4本の測定子で挟んだ場合に、一本でも接触していない測定子があれば正確な測定が出来ないからである。 The voltage measuring element and the current measuring element are not particularly limited as long as they are materials having electronic conductivity. In the case of the present embodiment, the current measuring element is shown in a ring shape, and the voltage measuring element is shown as a circular type arranged at the center of the inner diameter of the current measuring element. It is desirable that the shape of the tip contacting the sample of the current probe is a flat surface because it is easy to calculate the area through which current flows. In the case of this example, the shortest distance on the contact surface between the current measuring element and the voltage measuring element on the electron conductor is a half value of the value obtained by subtracting the outer diameter of the voltage terminal from the inner diameter of the voltage terminal. The value is desirably 200% or less of the electron conductor sample thickness. For example, when the sample thickness is 100 μm, the shortest distance is preferably 200 μm or less, more preferably 120% or less and 120 μm or less. This is because the voltage in the electric field generated between the current terminals is captured as close as possible from the outside of the current terminals. The shorter the shortest distance between the current probe and the voltage probe, the higher the possibility that the two probes will come into electrical contact. Therefore, the side surfaces of the current probe or voltage probe facing each other should be insulated. It is desirable to give it. Further, the distance between the tip of the current measuring probe and the voltage measuring probe and the surface of the sample must be the same. This is because, as shown in FIG. 1 (b), when a sample is sandwiched between four measuring elements from the upper part and the lower part with this evaluation jig, if there is even one measuring element that is not in contact, accurate measurement cannot be performed. Because.
次に、前記電子伝導体の電子伝導性評価において、より信頼性の高い値を測定可能な評価治具について説明する。請求項2に記載した本発明における本実施形態の一例である電子伝導性の評価治具を図2に示す。図2(a)はその電子伝導性の評価治具を示す斜視図であり、図2(b)はその電子伝導性の評価治具の断面図と電源、電圧測定器を接続し電子伝導性の測定を説明する図である。評価治具は、上板1、底板2、バネ弾性機構を備えた上部電圧測定子3、上部電流測定子5、バネ弾性機構を備えた下部電圧測定子4、下部電流測定子6から構成される。図2(b)に示す通り、上下の電流測定子は上板、底板で押されて導電性シートサンプル7に接触し、その中心側でバネによる弾性機構を備えた電圧測定子が上下から電流測定子とは独立し導電性シートサンプル7に接触される仕組みとなっている。円板上に成形した導電性シートサンプル7に対し、上下より電圧測定子、電流測定子を接触させ、電源8のプラス極9を上部電流測定子5へマイナス極10を下部電流測定子6へ接続させて電流を流し、電圧測定器11のプラス極12を上部電圧測定子3へマイナス極13を下部電圧測定子4へ接続させて電圧を測定することにより電子伝導性が評価できる。この弾性機構を設けることで、測定サンプルが硬い、厚さに偏りがある、表面平滑性が悪い場合においても4本の測定子が確実に接触することで測定可能となり、常に信頼性の高いデータを得られ、特に薄膜の電子伝導性を評価する際大変有効な手段であると考える。
Next, an evaluation jig capable of measuring a more reliable value in the electronic conductivity evaluation of the electron conductor will be described. FIG. 2 shows an electronic conductivity evaluation jig as an example of the present embodiment according to the present invention. FIG. 2 (a) is a perspective view showing the electron conductivity evaluation jig, and FIG. 2 (b) is a cross-sectional view of the electron conductivity evaluation jig connected to a power source and a voltage measuring device. It is a figure explaining measurement of. The evaluation jig includes an upper plate 1, a
以下、本発明の実施例を挙げてさらに具体的に説明する。 Hereinafter, examples of the present invention will be described in more detail.
(1)黒鉛化メソカーボンマイクロビーズMCMB93重量部、導電材のアセチレンブラック2重量部、バインダーのポリフッ化ビニリデン(PVDF)5重量部を、希釈剤であるN−メチルピロリドン(NMP)と混合し合材スラリーを得た。該スラリーを基材となる厚さ40μmのポリエステルフィルムの片面に塗布、乾燥した後、プレスを行い、厚さ90μmのリチウムイオン電池用の負極電極層を作製した。次に、前記負極電極層を、ポリエステルフィルム基材より剥離し、直径11mmの円板状に打ち抜き電子伝導性を評価するための導電性シートサンプルとした。このサンプルは、断面方向と表面方向に大きな異方性は無いタイプである。 (1) Graphitized mesocarbon microbeads MCMB 93 parts by weight, conductive material acetylene black 2 parts by weight, binder polyvinylidene fluoride (PVDF) 5 parts by weight are mixed with diluent N-methylpyrrolidone (NMP). A material slurry was obtained. The slurry was applied to one side of a 40 μm thick polyester film serving as a base material, dried, and then pressed to prepare a negative electrode layer for a lithium ion battery having a thickness of 90 μm. Next, the negative electrode layer was peeled from the polyester film substrate, punched into a disk shape having a diameter of 11 mm, and used as a conductive sheet sample for evaluating electronic conductivity. This sample is of a type having no great anisotropy in the cross-sectional direction and the surface direction.
(2)前記導電性シートサンプルの電子伝導性評価について、図2に示す。評価治具は、絶縁性プラスチックの上板1、底板2、バネによる弾性機構を備え先端が直径0.6mmの円形フラット形状である上部電圧測定子3及び下部電圧測定子4、直径11mm円形の中心側より直径0.8mm円形を取り除いたリング状で表面がフラット形状である上部電流測定子5及び下部電流測定子6から構成される。上下部とも電流測定端子の中心に電圧測定子が配置され、電流測定子と電圧測定子との間隔は0.1mmである。よって電流測定子と電圧測定子との電子伝導体との接触面における最短距離が測定する電子伝導体厚さ90μmの111%である。
(2) The electronic conductivity evaluation of the conductive sheet sample is shown in FIG. The evaluation jig includes an upper plate 1 and a
(3)図2(b)に示す通り、前記導電性シートサンプル7に対し、上下より電流測定子及び電圧端子を接触させ、電源8のプラス極9を上部電流測定子5へマイナス極10を下部電流測定子6へ接続させて電流100mAを流し、電圧測定器11のプラス極12を上部電圧測定子3へマイナス極13を下部電圧測定子4へ接続させて電圧を測定し電子伝導度を算出したところ4×100(S/cm)であった。一方、図4に示す一般的な表面方向の電子伝導性を評価する治具を用い、前記導電性シートを幅10mm×長さ20mmの短冊状に裁断した導電性シートサンプル15の上部より、4本の測定子が5mm間隔で、直径3mmの円形フラット形状である電圧測定子17及び18と直径3mmの円形フラット形状である電流測定子16及び19を接触させて電流測定子間に電流1mAを流し、電圧測定子間の電圧を測定し電子伝導度を算出したところ5×100(S/cm)であった。よって、本評価治具で測定した断面方向の電子伝導度と表面方向の電子伝導度が同等の値を示した。
(比較例1)
(3) As shown in FIG. 2 (b), a current measuring element and a voltage terminal are brought into contact with the conductive sheet sample 7 from above and below, and the positive electrode 9 of the power source 8 is connected to the upper electric current measuring element 5. Connect to the lower
(Comparative Example 1)
以下、前記導電性シートサンプルと同じサンプルを用い、評価治具のみ異なる場合の比較例について説明する。 Hereinafter, a comparative example in which only the evaluation jig is different from the conductive sheet sample will be described.
図2に示す評価治具で、実施例1に対し、電流測定子の寸法のみ変更した設計治具を作製した。
評価治具は、絶縁性プラスチックの上板1、底板2、バネによる弾性機構を備え先端直径0.6mmの円形フラット形状である上部電圧測定子3及び下部電圧測定子4、直径11mm円形の中心側より直径1.4mm円形を取り除いたリング状で表面がフラット形状である上部電流測定子5及び下部電流測定子6から構成される。上下部とも電流測定端子の中心に電圧測定子が配置され、電流測定子と電圧測定子との間隔は0.4mmである。よって電流測定子と電圧測定子との電子伝導体との接触面における最短距離が測定する電子伝導体厚さ90μmの444%である。実施例1同様に、上下より電流測定子及び電圧端子を接触させ、電流100mAを流し、電圧測定子間の電圧を測定し電子伝導度を算出したところ2×102(S/cm)となり、電圧端子まで電界が強く発生しないためか、前記導電性シートサンプルは表面方向と断面方向に異方性が無いにもかかわらず、実施例1で示した表面方向の電子伝導度に対し一桁以上高い値が算出され、測定値は疑わしい結果となった。この結果は電流測定子と電圧測定子との電子伝導体との接触面における最短距離が444%と200%を超えているためである。
(比較例2)
With the evaluation jig shown in FIG. 2, a design jig in which only the dimension of the current probe was changed with respect to Example 1 was produced.
The evaluation jig includes an upper plate 1 and a
(Comparative Example 2)
以下、前記導電性シートサンプルと同じサンプルを用い、比較例1同様、評価治具のみ異なる場合のもう一つの比較例について説明する。 Hereinafter, another comparative example in which only the evaluation jig is different as in Comparative Example 1 using the same sample as the conductive sheet sample will be described.
図3に示す評価治具で、前記導電性シートサンプルと同じサンプルを用いて電子伝導性を評価した。同評価治具による測定では、サンプルの上下部より、直径11mm円筒型で先端がフラット形状の電流電圧測定子14を接触させ、電流100mAを流し、電流電圧測定子間の電圧を測定して電子伝導度を算出したところ4×10−1(S/cm)となり、実施例1で示した表面方向の電子伝導度に対し一桁低い値となった。この電子伝導度が低い値となった原因は、上下部の電流電圧測定子が電子伝導体に接触している部分の接触抵抗による電圧降下が測定電圧に上乗せされ、結果として実際より低い電子伝導が算出されたためであると考えた。 With the evaluation jig shown in FIG. 3, the electronic conductivity was evaluated using the same sample as the conductive sheet sample. In the measurement using the evaluation jig, from the upper and lower portions of the sample, a current-voltage measuring element 14 having a cylindrical shape with a diameter of 11 mm and a flat tip is brought into contact, a current of 100 mA is passed, and the voltage between the current-voltage measuring elements is measured to measure the voltage. When the conductivity was calculated, it was 4 × 10 −1 (S / cm), which was one order of magnitude lower than the electron conductivity in the surface direction shown in Example 1. The reason for this low electron conductivity is that the voltage drop due to the contact resistance of the parts where the upper and lower current / voltage gauges are in contact with the electron conductor is added to the measured voltage, resulting in a lower electron conductivity. It was thought that this was because
以上の通り、比較例1(電流測定子と電圧測定子との電子伝導体との接触面における最短距離が200%を超える場合)及び比較例2(電流測定用と電圧測定用の2本の測定子を具備していない場合)では、異方性が無い導電性シートサンプルの電子伝導度が表面方向と断面方向で大きく異なる値が測定されたが、実施例(本発明の評価治具)では両方向で同等の値が得られ本発明による評価治具の有効性が確認された。 As described above, Comparative Example 1 (when the shortest distance on the contact surface between the current measuring element and the voltage measuring element with the electron conductor exceeds 200%) and Comparative Example 2 (two for current measurement and voltage measurement) In the case where the measuring element is not provided), the values of the electroconductivity of the electrically conductive sheet sample having no anisotropy greatly differed between the surface direction and the cross-sectional direction. Then, the same value was obtained in both directions, and the effectiveness of the evaluation jig according to the present invention was confirmed.
本発明の評価治具を用いることにより、特に薄膜の電子伝導体における断面方向の電子伝導性をより正確に測定することが可能となり、薄膜の断面方向における特性解析が必要となる電気、化学分野を始めとする多岐の技術分野において大変有効な手段である。 By using the evaluation jig of the present invention, it becomes possible to more accurately measure the electron conductivity in the cross-sectional direction, particularly in the thin-film electron conductor, and the electrical and chemical fields that require characteristic analysis in the cross-sectional direction of the thin film It is a very effective means in various technical fields including
1 上板
2 底板
3 上部電圧測定子
4 下部電圧測定子
5 上部電流測定子
6 下部電流測定子
7 導電性シートサンプル(電子伝導体)
8 電源
9 電源のプラス極
10 電源のマイナス極
11 電圧測定器
12 電圧測定器のプラス極
13 電圧測定器のマイナス極
14 電流電圧測定子
15 導電性シートサンプル(電子伝導体)
16 電流測定子
17 電圧測定子
18 電圧測定子
19 電流測定子
DESCRIPTION OF SYMBOLS 1
8 Power supply 9 Positive pole of power supply 10 Negative pole of power supply 11 Voltage measuring instrument 12 Positive pole of voltage measuring instrument 13 Negative pole of voltage measuring instrument 14 Current voltage measuring element 15 Conductive sheet sample (electronic conductor)
16 Current Measuring Element 17 Voltage Measuring Element 18 Voltage Measuring Element 19 Current Measuring Element
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008077576A JP2009229373A (en) | 2008-03-25 | 2008-03-25 | Evaluation implement for electron conductivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008077576A JP2009229373A (en) | 2008-03-25 | 2008-03-25 | Evaluation implement for electron conductivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009229373A true JP2009229373A (en) | 2009-10-08 |
Family
ID=41244932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008077576A Pending JP2009229373A (en) | 2008-03-25 | 2008-03-25 | Evaluation implement for electron conductivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009229373A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009231189A (en) * | 2008-03-25 | 2009-10-08 | Kri Inc | Voltage distribution evaluation method of electric storage device, and its evaluation tool |
JP2015206754A (en) * | 2014-04-23 | 2015-11-19 | 日置電機株式会社 | Determination device and determination method |
JP2016027311A (en) * | 2014-04-14 | 2016-02-18 | 日置電機株式会社 | Measuring apparatus, and measuring method |
US11656283B2 (en) | 2018-10-30 | 2023-05-23 | Lg Energy Solution, Ltd. | Method for determining dispersibility of electrode material layer |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309797A (en) * | 2006-05-18 | 2007-11-29 | Espec Corp | Resistance measuring device and method |
-
2008
- 2008-03-25 JP JP2008077576A patent/JP2009229373A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007309797A (en) * | 2006-05-18 | 2007-11-29 | Espec Corp | Resistance measuring device and method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009231189A (en) * | 2008-03-25 | 2009-10-08 | Kri Inc | Voltage distribution evaluation method of electric storage device, and its evaluation tool |
JP2016027311A (en) * | 2014-04-14 | 2016-02-18 | 日置電機株式会社 | Measuring apparatus, and measuring method |
JP2015206754A (en) * | 2014-04-23 | 2015-11-19 | 日置電機株式会社 | Determination device and determination method |
US11656283B2 (en) | 2018-10-30 | 2023-05-23 | Lg Energy Solution, Ltd. | Method for determining dispersibility of electrode material layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2559096B1 (en) | Testing system and method for testing a battery cell | |
JP2009522729A (en) | Apparatus for measuring electrical properties of electrochemical devices | |
CN105203847B (en) | A kind of layer material square resistance and tie point contact resistance test method | |
EP2816362B1 (en) | Conductivity inspection apparatus | |
JP2009229373A (en) | Evaluation implement for electron conductivity | |
CN105759123B (en) | A kind of ionic conductivity test device and use its method of testing | |
CN201408253Y (en) | Hand-held probe type clamp for battery measurement | |
CN108646157A (en) | Roller insulation detection device | |
CN105182081A (en) | Method for testing square resistance of sheet material | |
US20130009660A1 (en) | Electrical connecting device | |
US7652479B2 (en) | Electrolyte measurement device and measurement procedure | |
JP5323375B2 (en) | Voltage distribution evaluation method for power storage devices | |
CN112904205A (en) | Fuel cell measuring device | |
JP5489969B2 (en) | Inspection apparatus and inspection method | |
CN202886406U (en) | Electrode clamp used for measuring impedance and potential of battery | |
JP2005326311A (en) | Ion conductivity measuring method | |
JP2004294316A (en) | Electric characteristics evaluation system | |
CN218099314U (en) | Detection tool and detector | |
CN210690691U (en) | Resistance value measuring terminal and measuring instrument of pole piece resistor | |
JP4899150B2 (en) | Manufacturing method of joined body, and measuring method of 4-terminal ionic conductivity in film thickness direction | |
CN216870629U (en) | Fixing jig for testing battery | |
JP2006038760A (en) | Probe for surface resistivity measurement and surface resistivity measurement method | |
JP6410426B2 (en) | Conductor processing inspection apparatus and conductor processing inspection method | |
CN113721077B (en) | Double-protection type wire electrode system for testing strip-shaped insulating surface resistivity | |
KR101649013B1 (en) | Apparatus for continuously measuring electric conductivity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120703 |