JP2009227652A - Biphenylene derivative, its use and process for preparing the same - Google Patents
Biphenylene derivative, its use and process for preparing the same Download PDFInfo
- Publication number
- JP2009227652A JP2009227652A JP2008236973A JP2008236973A JP2009227652A JP 2009227652 A JP2009227652 A JP 2009227652A JP 2008236973 A JP2008236973 A JP 2008236973A JP 2008236973 A JP2008236973 A JP 2008236973A JP 2009227652 A JP2009227652 A JP 2009227652A
- Authority
- JP
- Japan
- Prior art keywords
- added
- mmol
- general formula
- group
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 title claims abstract description 79
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 57
- 239000004065 semiconductor Substances 0.000 claims abstract description 40
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 38
- 239000010409 thin film Substances 0.000 claims abstract description 37
- 125000001424 substituent group Chemical group 0.000 claims abstract description 36
- 230000003647 oxidation Effects 0.000 claims abstract description 28
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 28
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 14
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 13
- 125000003118 aryl group Chemical group 0.000 claims abstract description 11
- 125000001153 fluoro group Chemical group F* 0.000 claims abstract description 11
- 125000000304 alkynyl group Chemical group 0.000 claims abstract description 10
- 125000003342 alkenyl group Chemical group 0.000 claims abstract description 8
- 239000005749 Copper compound Substances 0.000 claims description 29
- 150000001880 copper compounds Chemical class 0.000 claims description 29
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 claims description 28
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 16
- 229910021592 Copper(II) chloride Inorganic materials 0.000 claims description 13
- 238000006255 dilithiation reaction Methods 0.000 claims description 11
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 claims description 10
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052740 iodine Inorganic materials 0.000 claims description 10
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 claims description 6
- 150000001983 dialkylethers Chemical class 0.000 claims description 4
- 229910021590 Copper(II) bromide Inorganic materials 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 3
- 238000000576 coating method Methods 0.000 abstract description 27
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 251
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 190
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 156
- 239000000243 solution Substances 0.000 description 127
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 116
- 230000015572 biosynthetic process Effects 0.000 description 109
- 238000003786 synthesis reaction Methods 0.000 description 109
- -1 polysubstituted polycyclic aromatic compound Chemical class 0.000 description 101
- 238000006243 chemical reaction Methods 0.000 description 96
- 239000007787 solid Substances 0.000 description 89
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 69
- 239000002904 solvent Substances 0.000 description 69
- 239000000203 mixture Substances 0.000 description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 58
- 239000012074 organic phase Substances 0.000 description 55
- 239000000126 substance Substances 0.000 description 49
- 239000012299 nitrogen atmosphere Substances 0.000 description 41
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 40
- 239000000758 substrate Substances 0.000 description 36
- 150000001875 compounds Chemical class 0.000 description 34
- 238000000034 method Methods 0.000 description 33
- 239000011541 reaction mixture Substances 0.000 description 32
- 238000001819 mass spectrum Methods 0.000 description 31
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 29
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- 239000012071 phase Substances 0.000 description 26
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 24
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 24
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 239000003153 chemical reaction reagent Substances 0.000 description 21
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 20
- 229910052757 nitrogen Inorganic materials 0.000 description 20
- 239000007864 aqueous solution Substances 0.000 description 19
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 18
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 18
- 239000003795 chemical substances by application Substances 0.000 description 18
- 238000010898 silica gel chromatography Methods 0.000 description 18
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 16
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- 238000001816 cooling Methods 0.000 description 16
- 238000005259 measurement Methods 0.000 description 16
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 16
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 239000011248 coating agent Substances 0.000 description 15
- 229910052744 lithium Inorganic materials 0.000 description 15
- 238000006722 reduction reaction Methods 0.000 description 15
- 239000003480 eluent Substances 0.000 description 14
- 238000005191 phase separation Methods 0.000 description 14
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 14
- 230000032683 aging Effects 0.000 description 13
- 229910052736 halogen Inorganic materials 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical class C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 12
- 239000012298 atmosphere Substances 0.000 description 12
- 238000006297 dehydration reaction Methods 0.000 description 12
- 150000002367 halogens Chemical class 0.000 description 12
- LVKCSZQWLOVUGB-UHFFFAOYSA-M magnesium;propane;bromide Chemical compound [Mg+2].[Br-].C[CH-]C LVKCSZQWLOVUGB-UHFFFAOYSA-M 0.000 description 12
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 12
- TULPWJUHXOWQDS-UHFFFAOYSA-N CCCCCCCCCCCCC1=C2C=CC3=C(C2=C(C(=C1CCCCCCCCCCCC)CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C5=CC=CC=C5C=C4)C6=C7C=CC=CC7=C36 Chemical group CCCCCCCCCCCCC1=C2C=CC3=C(C2=C(C(=C1CCCCCCCCCCCC)CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C5=CC=CC=C5C=C4)C6=C7C=CC=CC7=C36 TULPWJUHXOWQDS-UHFFFAOYSA-N 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical group [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 11
- 238000004992 fast atom bombardment mass spectroscopy Methods 0.000 description 11
- 230000035484 reaction time Effects 0.000 description 11
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 10
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 10
- 239000003377 acid catalyst Substances 0.000 description 10
- 239000003638 chemical reducing agent Substances 0.000 description 10
- 238000001035 drying Methods 0.000 description 10
- 150000004678 hydrides Chemical class 0.000 description 10
- PSYIWEUNIZFSNC-UHFFFAOYSA-N 5-bromo-6-iodo-2-benzofuran-1,3-dione Chemical compound C1=C(I)C(Br)=CC2=C1C(=O)OC2=O PSYIWEUNIZFSNC-UHFFFAOYSA-N 0.000 description 9
- 239000004809 Teflon Substances 0.000 description 9
- 229920006362 Teflon® Polymers 0.000 description 9
- SIPUZPBQZHNSDW-UHFFFAOYSA-N bis(2-methylpropyl)aluminum Chemical compound CC(C)C[Al]CC(C)C SIPUZPBQZHNSDW-UHFFFAOYSA-N 0.000 description 9
- SMBQBQBNOXIFSF-UHFFFAOYSA-N dilithium Chemical class [Li][Li] SMBQBQBNOXIFSF-UHFFFAOYSA-N 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 238000006138 lithiation reaction Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 239000002184 metal Substances 0.000 description 9
- 229910052763 palladium Inorganic materials 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 8
- 239000010453 quartz Substances 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- 235000017550 sodium carbonate Nutrition 0.000 description 8
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 8
- BEJFSZRYERIHNZ-UHFFFAOYSA-N 2-bromo-6,7-didodecyl-3-iodoanthracene-9,10-dione Chemical compound O=C1C2=CC(Br)=C(I)C=C2C(=O)C2=C1C=C(CCCCCCCCCCCC)C(CCCCCCCCCCCC)=C2 BEJFSZRYERIHNZ-UHFFFAOYSA-N 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 7
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 7
- 238000006862 quantum yield reaction Methods 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- WRECIMRULFAWHA-UHFFFAOYSA-N trimethyl borate Chemical compound COB(OC)OC WRECIMRULFAWHA-UHFFFAOYSA-N 0.000 description 7
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- LWBGALCKEIWBLO-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C(=C2C(=C1CCCCCCCCCCCC)C3=CC=CC=C3C4=C2C5=CC=CC=C54)CCCCCCCCCCCC)CCCCCCCCCCCC Chemical group CCCCCCCCCCCCC1=C(C(=C2C(=C1CCCCCCCCCCCC)C3=CC=CC=C3C4=C2C5=CC=CC=C54)CCCCCCCCCCCC)CCCCCCCCCCCC LWBGALCKEIWBLO-UHFFFAOYSA-N 0.000 description 6
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 6
- 239000007818 Grignard reagent Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 238000002189 fluorescence spectrum Methods 0.000 description 6
- 238000004817 gas chromatography Methods 0.000 description 6
- 150000004795 grignard reagents Chemical class 0.000 description 6
- 125000002524 organometallic group Chemical group 0.000 description 6
- 238000010792 warming Methods 0.000 description 6
- 0 *C1=*C2C=C(C3C(*)=C(C=C(*)C(*)=C4)C4=C(*)C33)C3=CC12 Chemical compound *C1=*C2C=C(C3C(*)=C(C=C(*)C(*)=C4)C4=C(*)C33)C3=CC12 0.000 description 5
- PAZSCXJJBDSVGI-UHFFFAOYSA-N 4-bromo-1,2-diiodobenzene Chemical compound BrC1=CC=C(I)C(I)=C1 PAZSCXJJBDSVGI-UHFFFAOYSA-N 0.000 description 5
- SEPDTPHTQJAFJU-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C2=C(C=C1)C3=C(C(=C2CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C=CC5=C(C(=C(C(=C54)C#CC6=CC=CC=C6)C#CC7=CC=CC=C7)C#CC8=CC=CC=C8)C#CC9=CC=CC=C9)C1=C2C=CC=CC2=C13)CCCCCCCCCCCC Chemical group CCCCCCCCCCCCC1=C(C2=C(C=C1)C3=C(C(=C2CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C=CC5=C(C(=C(C(=C54)C#CC6=CC=CC=C6)C#CC7=CC=CC=C7)C#CC8=CC=CC=C8)C#CC9=CC=CC=C9)C1=C2C=CC=CC2=C13)CCCCCCCCCCCC SEPDTPHTQJAFJU-UHFFFAOYSA-N 0.000 description 5
- VSAPIBXVNRDBRP-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C2=C(C=C1)C3=C(C(=C2CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C=CC5=C(C(=C(C(=C54)C=CC6=CC=CC=C6)C=CC7=CC=CC=C7)C=CC8=CC=CC=C8)C=CC9=CC=CC=C9)C1=C3C2=CC=CC=C21)CCCCCCCCCCCC Chemical group CCCCCCCCCCCCC1=C(C2=C(C=C1)C3=C(C(=C2CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C=CC5=C(C(=C(C(=C54)C=CC6=CC=CC=C6)C=CC7=CC=CC=C7)C=CC8=CC=CC=C8)C=CC9=CC=CC=C9)C1=C3C2=CC=CC=C21)CCCCCCCCCCCC VSAPIBXVNRDBRP-UHFFFAOYSA-N 0.000 description 5
- KDNXUNNXUKODKB-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C2=C(C=C1)C3=C(C(=C2CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C=CC5=C4C(=C(C(=C5C6=CC=CC=C6)C7=CC=CC=C7)C8=CC=CC=C8)C9=CC=CC=C9)C1=C3C2=CC=CC=C21)CCCCCCCCCCCC Chemical group CCCCCCCCCCCCC1=C(C2=C(C=C1)C3=C(C(=C2CCCCCCCCCCCC)CCCCCCCCCCCC)C4=C(C=CC5=C4C(=C(C(=C5C6=CC=CC=C6)C7=CC=CC=C7)C8=CC=CC=C8)C9=CC=CC=C9)C1=C3C2=CC=CC=C21)CCCCCCCCCCCC KDNXUNNXUKODKB-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000000741 silica gel Substances 0.000 description 5
- 229910002027 silica gel Inorganic materials 0.000 description 5
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 4
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 4
- WJECKFZULSWXPN-UHFFFAOYSA-N 1,2-didodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1CCCCCCCCCCCC WJECKFZULSWXPN-UHFFFAOYSA-N 0.000 description 4
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 4
- IOORFCDCGFTVIM-UHFFFAOYSA-N 2-bromo-3-(3-bromo-6,7-didodecylanthracen-2-yl)-6,7-didodecylanthracene Chemical group CCCCCCCCCCCCC1=C(CCCCCCCCCCCC)C=C2C=C(C=C(C(C3=C(Br)C=C4C=C5C=C(C(=CC5=CC4=C3)CCCCCCCCCCCC)CCCCCCCCCCCC)=C3)Br)C3=CC2=C1 IOORFCDCGFTVIM-UHFFFAOYSA-N 0.000 description 4
- PZXFNHVONRTHRK-UHFFFAOYSA-N 2-bromo-6,7-didodecyl-3-iodoanthracene Chemical compound BrC1=C(I)C=C2C=C(C=C(C(CCCCCCCCCCCC)=C3)CCCCCCCCCCCC)C3=CC2=C1 PZXFNHVONRTHRK-UHFFFAOYSA-N 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- BWLDBMFIYQCIQA-UHFFFAOYSA-N BrC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1I)C#CC1=CC=CC=C1)CCCCCCCCCCCC)CCCCCCCCCCCC)C#CC1=CC=CC=C1 Chemical compound BrC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1I)C#CC1=CC=CC=C1)CCCCCCCCCCCC)CCCCCCCCCCCC)C#CC1=CC=CC=C1 BWLDBMFIYQCIQA-UHFFFAOYSA-N 0.000 description 4
- LETTXMKJWDRDLD-UHFFFAOYSA-N BrC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1I)C1=CC=CC=C1)CCCCCCCCCCCC)CCCCCCCCCCCC)C1=CC=CC=C1 Chemical compound BrC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1I)C1=CC=CC=C1)CCCCCCCCCCCC)CCCCCCCCCCCC)C1=CC=CC=C1 LETTXMKJWDRDLD-UHFFFAOYSA-N 0.000 description 4
- XQYWUKARFKEUER-UHFFFAOYSA-N BrC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1I)C=CC1=CC=CC=C1)CCCCCCCCCCCC)CCCCCCCCCCCC)C=CC1=CC=CC=C1 Chemical compound BrC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1I)C=CC1=CC=CC=C1)CCCCCCCCCCCC)CCCCCCCCCCCC)C=CC1=CC=CC=C1 XQYWUKARFKEUER-UHFFFAOYSA-N 0.000 description 4
- RUJBKKSHUQHJFH-UHFFFAOYSA-N BrC1=CC2=CC3=CC(=C(C=C3C=C2C=C1I)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F Chemical compound BrC1=CC2=CC3=CC(=C(C=C3C=C2C=C1I)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F RUJBKKSHUQHJFH-UHFFFAOYSA-N 0.000 description 4
- DIGPKMRAVKXCNO-UHFFFAOYSA-N BrC1=CC2=CC3=CC(=C(C=C3C=C2C=C1I)C1=CC=CC=C1)C1=CC=CC=C1 Chemical compound BrC1=CC2=CC3=CC(=C(C=C3C=C2C=C1I)C1=CC=CC=C1)C1=CC=CC=C1 DIGPKMRAVKXCNO-UHFFFAOYSA-N 0.000 description 4
- ZJEKPNLUCYLPTC-UHFFFAOYSA-N CCCCCCCCCCCCC1=CC=CC2=CC3=C(C(=C21)CCCCCCCCCCCC)C(=C(C(=C3F)C4=CC5=CC6=CC=CC=C6C=C5C=C4Br)Br)F Chemical group CCCCCCCCCCCCC1=CC=CC2=CC3=C(C(=C21)CCCCCCCCCCCC)C(=C(C(=C3F)C4=CC5=CC6=CC=CC=C6C=C5C=C4Br)Br)F ZJEKPNLUCYLPTC-UHFFFAOYSA-N 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- 238000003747 Grignard reaction Methods 0.000 description 4
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 235000009518 sodium iodide Nutrition 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- 239000011592 zinc chloride Substances 0.000 description 4
- 235000005074 zinc chloride Nutrition 0.000 description 4
- PZRFVWIUESOINJ-UHFFFAOYSA-N 4-bromo-1,2-diphenylbenzene Chemical compound C=1C=CC=CC=1C1=CC(Br)=CC=C1C1=CC=CC=C1 PZRFVWIUESOINJ-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- WMDQOPMUKXYAEA-UHFFFAOYSA-N BrC1=CC=2C(C3=CC(=C(C=C3C(C2C=C1I)=O)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)=O Chemical compound BrC1=CC=2C(C3=CC(=C(C=C3C(C2C=C1I)=O)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)=O WMDQOPMUKXYAEA-UHFFFAOYSA-N 0.000 description 3
- AGRUOUHAIAFJEI-UHFFFAOYSA-N BrC1=CC=2C(C3=CC(=C(C=C3C(C2C=C1I)=O)C1=CC=CC=C1)C1=CC=CC=C1)=O Chemical compound BrC1=CC=2C(C3=CC(=C(C=C3C(C2C=C1I)=O)C1=CC=CC=C1)C1=CC=CC=C1)=O AGRUOUHAIAFJEI-UHFFFAOYSA-N 0.000 description 3
- ZDKGLHHUXCPKEG-UHFFFAOYSA-N C1=C2C=C(C(=CC2=CC3=CC(=C(C=C31)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)Br)C4=CC5=CC6=CC(=C(C=C6C=C5C=C4Br)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F Chemical group C1=C2C=C(C(=CC2=CC3=CC(=C(C=C31)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)Br)C4=CC5=CC6=CC(=C(C=C6C=C5C=C4Br)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F ZDKGLHHUXCPKEG-UHFFFAOYSA-N 0.000 description 3
- DRWVADRKDXTZHO-UHFFFAOYSA-N C1=CC=C(C=C1)C2=CC3=CC4=CC(=C(C=C4C=C3C=C2C5=CC=CC=C5)Br)C6=C(C=C7C=C8C=C(C(=CC8=CC7=C6)C9=CC=CC=C9)C1=CC=CC=C1)Br Chemical group C1=CC=C(C=C1)C2=CC3=CC4=CC(=C(C=C4C=C3C=C2C5=CC=CC=C5)Br)C6=C(C=C7C=C8C=C(C(=CC8=CC7=C6)C9=CC=CC=C9)C1=CC=CC=C1)Br DRWVADRKDXTZHO-UHFFFAOYSA-N 0.000 description 3
- XSXUFJUXAMKESJ-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C(=C(C2=C1C3=C(C=C2)C4=C5C=CC=CC5=C4C6=C3C=CC7=CC=CC=C76)F)F)CCCCCCCCCCCC Chemical group CCCCCCCCCCCCC1=C(C(=C(C2=C1C3=C(C=C2)C4=C5C=CC=CC5=C4C6=C3C=CC7=CC=CC=C76)F)F)CCCCCCCCCCCC XSXUFJUXAMKESJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 3
- 150000004056 anthraquinones Chemical class 0.000 description 3
- 238000004440 column chromatography Methods 0.000 description 3
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 3
- 239000002178 crystalline material Substances 0.000 description 3
- 125000003963 dichloro group Chemical group Cl* 0.000 description 3
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 3
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 238000009815 homocoupling reaction Methods 0.000 description 3
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 3
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 150000002941 palladium compounds Chemical class 0.000 description 3
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 3
- 239000003444 phase transfer catalyst Substances 0.000 description 3
- 150000003021 phthalic acid derivatives Chemical class 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- KOUDKOMXLMXFKX-UHFFFAOYSA-N sodium oxido(oxo)phosphanium hydrate Chemical compound O.[Na+].[O-][PH+]=O KOUDKOMXLMXFKX-UHFFFAOYSA-N 0.000 description 3
- 238000000859 sublimation Methods 0.000 description 3
- 230000008022 sublimation Effects 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- TWTGOTZGWNBAHK-UHFFFAOYSA-N 1-dodecyl-2-fluorobenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1F TWTGOTZGWNBAHK-UHFFFAOYSA-N 0.000 description 2
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 2
- 229920003026 Acene Polymers 0.000 description 2
- KLSLXECOHWSAGM-UHFFFAOYSA-N C1=CC=C(C=C1)C2=C(C(=C(C3=C2C=CC4=C3C5=C(C6=CC=CC=C6C=C5)C7=C4C8=CC=CC=C87)C9=CC=CC=C9)C1=CC=CC=C1)C1=CC=CC=C1 Chemical group C1=CC=C(C=C1)C2=C(C(=C(C3=C2C=CC4=C3C5=C(C6=CC=CC=C6C=C5)C7=C4C8=CC=CC=C87)C9=CC=CC=C9)C1=CC=CC=C1)C1=CC=CC=C1 KLSLXECOHWSAGM-UHFFFAOYSA-N 0.000 description 2
- NHBYOAHACCGJBM-UHFFFAOYSA-N C1=CC=C2C(=C1)C=CC3=C2C4=C5C=CC=CC5=C4C6=C3C7=C(C=C6)C(=C(C(=C7C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F Chemical group C1=CC=C2C(=C1)C=CC3=C2C4=C5C=CC=CC5=C4C6=C3C7=C(C=C6)C(=C(C(=C7C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F NHBYOAHACCGJBM-UHFFFAOYSA-N 0.000 description 2
- AMWGJDZNADTYQZ-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C=C2C=C(C(=CC2=C1)C3=CC4=CC(=C(C=C4C=C3Br)CCCCCCCCCCCC)CCCCCCCCCCCC)Br)CCCCCCCCCCCC Chemical group CCCCCCCCCCCCC1=C(C=C2C=C(C(=CC2=C1)C3=CC4=CC(=C(C=C4C=C3Br)CCCCCCCCCCCC)CCCCCCCCCCCC)Br)CCCCCCCCCCCC AMWGJDZNADTYQZ-UHFFFAOYSA-N 0.000 description 2
- HYUIALXHUBAOQG-UHFFFAOYSA-N CCCCCCCCCCCCC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1CCCCCCCCCCCC)C#CC4=CC=CC=C4)Br)C5=C(C=C6C(=C5)C(=C7C=C(C(=CC7=C6C#CC8=CC=CC=C8)CCCCCCCCCCCC)CCCCCCCCCCCC)C#CC9=CC=CC=C9)Br)C#CC1=CC=CC=C1 Chemical group CCCCCCCCCCCCC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1CCCCCCCCCCCC)C#CC4=CC=CC=C4)Br)C5=C(C=C6C(=C5)C(=C7C=C(C(=CC7=C6C#CC8=CC=CC=C8)CCCCCCCCCCCC)CCCCCCCCCCCC)C#CC9=CC=CC=C9)Br)C#CC1=CC=CC=C1 HYUIALXHUBAOQG-UHFFFAOYSA-N 0.000 description 2
- TVUKTKROBRIMKB-UHFFFAOYSA-N CCCCCCCCCCCCC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1CCCCCCCCCCCC)C4=CC=CC=C4)Br)C5=C(C=C6C(=C5)C(=C7C=C(C(=CC7=C6C8=CC=CC=C8)CCCCCCCCCCCC)CCCCCCCCCCCC)C9=CC=CC=C9)Br)C1=CC=CC=C1 Chemical group CCCCCCCCCCCCC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1CCCCCCCCCCCC)C4=CC=CC=C4)Br)C5=C(C=C6C(=C5)C(=C7C=C(C(=CC7=C6C8=CC=CC=C8)CCCCCCCCCCCC)CCCCCCCCCCCC)C9=CC=CC=C9)Br)C1=CC=CC=C1 TVUKTKROBRIMKB-UHFFFAOYSA-N 0.000 description 2
- DCFMDWMWZIZIDU-UHFFFAOYSA-N CCCCCCCCCCCCC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1CCCCCCCCCCCC)C=CC4=CC=CC=C4)Br)C5=C(C=C6C(=C5)C(=C7C=C(C(=CC7=C6C=CC8=CC=CC=C8)CCCCCCCCCCCC)CCCCCCCCCCCC)C=CC9=CC=CC=C9)Br)C=CC1=CC=CC=C1 Chemical group CCCCCCCCCCCCC1=CC2=C(C3=CC(=C(C=C3C(=C2C=C1CCCCCCCCCCCC)C=CC4=CC=CC=C4)Br)C5=C(C=C6C(=C5)C(=C7C=C(C(=CC7=C6C=CC8=CC=CC=C8)CCCCCCCCCCCC)CCCCCCCCCCCC)C=CC9=CC=CC=C9)Br)C=CC1=CC=CC=C1 DCFMDWMWZIZIDU-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 2
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- UEXCJVNBTNXOEH-UHFFFAOYSA-N Ethynylbenzene Chemical group C#CC1=CC=CC=C1 UEXCJVNBTNXOEH-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- YMOONIIMQBGTDU-VOTSOKGWSA-N [(e)-2-bromoethenyl]benzene Chemical compound Br\C=C\C1=CC=CC=C1 YMOONIIMQBGTDU-VOTSOKGWSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- YNHIGQDRGKUECZ-UHFFFAOYSA-L bis(triphenylphosphine)palladium(ii) dichloride Chemical compound [Cl-].[Cl-].[Pd+2].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 YNHIGQDRGKUECZ-UHFFFAOYSA-L 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- ODWXUNBKCRECNW-UHFFFAOYSA-M bromocopper(1+) Chemical compound Br[Cu+] ODWXUNBKCRECNW-UHFFFAOYSA-M 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 2
- 238000006880 cross-coupling reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- BILYTLYIOVUVSU-UHFFFAOYSA-N dichloro(1,3-bis(diphenylphosphino)propane)nickel Chemical compound Cl[Ni]1(Cl)P(C=2C=CC=CC=2)(C=2C=CC=CC=2)CCCP1(C=1C=CC=CC=1)C1=CC=CC=C1 BILYTLYIOVUVSU-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 2
- NQKXFODBPINZFK-UHFFFAOYSA-N dioxotantalum Chemical compound O=[Ta]=O NQKXFODBPINZFK-UHFFFAOYSA-N 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical class C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 239000004210 ether based solvent Substances 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000007646 gravure printing Methods 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000007641 inkjet printing Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 description 2
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 2
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 2
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 2
- 229910001623 magnesium bromide Inorganic materials 0.000 description 2
- MBHQEXPGNCWWBP-UHFFFAOYSA-M magnesium;dodecane;bromide Chemical compound [Mg+2].[Br-].CCCCCCCCCCC[CH2-] MBHQEXPGNCWWBP-UHFFFAOYSA-M 0.000 description 2
- FRIJBUGBVQZNTB-UHFFFAOYSA-M magnesium;ethane;bromide Chemical compound [Mg+2].[Br-].[CH2-]C FRIJBUGBVQZNTB-UHFFFAOYSA-M 0.000 description 2
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- SGNSAMGUMVFALJ-UHFFFAOYSA-N n,n'-dichloroethane-1,2-diamine Chemical compound ClNCCNCl SGNSAMGUMVFALJ-UHFFFAOYSA-N 0.000 description 2
- 150000002816 nickel compounds Chemical class 0.000 description 2
- SLYCYWCVSGPDFR-UHFFFAOYSA-N octadecyltrimethoxysilane Chemical compound CCCCCCCCCCCCCCCCCC[Si](OC)(OC)OC SLYCYWCVSGPDFR-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 125000005005 perfluorohexyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 2
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 150000004756 silanes Chemical group 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- FPGGTKZVZWFYPV-UHFFFAOYSA-M tetrabutylammonium fluoride Chemical compound [F-].CCCC[N+](CCCC)(CCCC)CCCC FPGGTKZVZWFYPV-UHFFFAOYSA-M 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- PYJJCSYBSYXGQQ-UHFFFAOYSA-N trichloro(octadecyl)silane Chemical compound CCCCCCCCCCCCCCCCCC[Si](Cl)(Cl)Cl PYJJCSYBSYXGQQ-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- PGOLTJPQCISRTO-UHFFFAOYSA-N vinyllithium Chemical compound [Li]C=C PGOLTJPQCISRTO-UHFFFAOYSA-N 0.000 description 2
- CXWYTOFTBOZXGQ-UHFFFAOYSA-N (1,2-dichloro-2-diphenylphosphanylethyl)-diphenylphosphane;nickel Chemical compound [Ni].C=1C=CC=CC=1P(C=1C=CC=CC=1)C(Cl)C(Cl)P(C=1C=CC=CC=1)C1=CC=CC=C1 CXWYTOFTBOZXGQ-UHFFFAOYSA-N 0.000 description 1
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 1
- JRTIUDXYIUKIIE-KZUMESAESA-N (1z,5z)-cycloocta-1,5-diene;nickel Chemical compound [Ni].C\1C\C=C/CC\C=C/1.C\1C\C=C/CC\C=C/1 JRTIUDXYIUKIIE-KZUMESAESA-N 0.000 description 1
- LHLHWDNRHALZNF-BQYQJAHWSA-N (e)-2,3-di(propan-2-yl)but-2-enedioic acid Chemical compound CC(C)C(\C(O)=O)=C(\C(C)C)C(O)=O LHLHWDNRHALZNF-BQYQJAHWSA-N 0.000 description 1
- HAHASQAKYSVXBE-AATRIKPKSA-N (e)-2,3-diethylbut-2-enedioic acid Chemical compound CC\C(C(O)=O)=C(\CC)C(O)=O HAHASQAKYSVXBE-AATRIKPKSA-N 0.000 description 1
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- WBYCUETVRCXUPE-UHFFFAOYSA-N 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12-pentacosafluoro-12-iodododecane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)I WBYCUETVRCXUPE-UHFFFAOYSA-N 0.000 description 1
- ONUFSRWQCKNVSL-UHFFFAOYSA-N 1,2,3,4,5-pentafluoro-6-(2,3,4,5,6-pentafluorophenyl)benzene Chemical group FC1=C(F)C(F)=C(F)C(F)=C1C1=C(F)C(F)=C(F)C(F)=C1F ONUFSRWQCKNVSL-UHFFFAOYSA-N 0.000 description 1
- XINXXEPJKIRVNV-UHFFFAOYSA-N 1,2-dichloro-N,N,N',N'-tetramethylethane-1,2-diamine Chemical compound ClC(C(N(C)C)Cl)N(C)C XINXXEPJKIRVNV-UHFFFAOYSA-N 0.000 description 1
- ZJOQIRUTMBJWEB-UHFFFAOYSA-N 1,2-dichloro-N,N,N',N'-tetramethylethane-1,2-diamine nickel Chemical compound [Ni].ClC(C(N(C)C)Cl)N(C)C ZJOQIRUTMBJWEB-UHFFFAOYSA-N 0.000 description 1
- BBOLNFYSRZVALD-UHFFFAOYSA-N 1,2-diiodobenzene Chemical compound IC1=CC=CC=C1I BBOLNFYSRZVALD-UHFFFAOYSA-N 0.000 description 1
- CXVOIIMJZFREMM-UHFFFAOYSA-N 1-(2-nitrophenoxy)octane Chemical compound CCCCCCCCOC1=CC=CC=C1[N+]([O-])=O CXVOIIMJZFREMM-UHFFFAOYSA-N 0.000 description 1
- ZCJAYDKWZAWMPR-UHFFFAOYSA-N 1-chloro-2-fluorobenzene Chemical compound FC1=CC=CC=C1Cl ZCJAYDKWZAWMPR-UHFFFAOYSA-N 0.000 description 1
- 125000001637 1-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C(*)=C([H])C([H])=C([H])C2=C1[H] 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-N 2-Methylbenzenesulfonic acid Chemical compound CC1=CC=CC=C1S(O)(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-N 0.000 description 1
- YMOONIIMQBGTDU-UHFFFAOYSA-N 2-bromoethenylbenzene Chemical compound BrC=CC1=CC=CC=C1 YMOONIIMQBGTDU-UHFFFAOYSA-N 0.000 description 1
- LDJXFZUGZASGIW-UHFFFAOYSA-L 2-diphenylphosphanylethyl(diphenyl)phosphane;palladium(2+);dichloride Chemical compound Cl[Pd]Cl.C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 LDJXFZUGZASGIW-UHFFFAOYSA-L 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- GNYICZVGHULCHE-UHFFFAOYSA-N 5-bromoisoindole-1,3-dione Chemical compound BrC1=CC=C2C(=O)NC(=O)C2=C1 GNYICZVGHULCHE-UHFFFAOYSA-N 0.000 description 1
- BVOVHMWBPMUHJD-UHFFFAOYSA-N BrC1=CC(=C(C=C1)C#CCCCCCCCCCC)C#CCCCCCCCCCC Chemical compound BrC1=CC(=C(C=C1)C#CCCCCCCCCCC)C#CCCCCCCCCCC BVOVHMWBPMUHJD-UHFFFAOYSA-N 0.000 description 1
- OQUFGKVVNAPIGY-UHFFFAOYSA-N BrC1=CC2=CC3=CC(=C(C=C3C=C2C=C1I)CCCCCCCCCCCC)F Chemical compound BrC1=CC2=CC3=CC(=C(C=C3C=C2C=C1I)CCCCCCCCCCCC)F OQUFGKVVNAPIGY-UHFFFAOYSA-N 0.000 description 1
- WTGYKJWIUCCUHN-UHFFFAOYSA-N C(CCCCCCC)C1=CC=C(C=C1)[Li] Chemical compound C(CCCCCCC)C1=CC=C(C=C1)[Li] WTGYKJWIUCCUHN-UHFFFAOYSA-N 0.000 description 1
- IBWGTJQXULBCDQ-UHFFFAOYSA-N C1=CC=C2C=C3C=C(C=CC3=CC2=C1)C4=C(C5=CC6=CC=CC=C6C=C5C=C4Br)Br Chemical group C1=CC=C2C=C3C=C(C=CC3=CC2=C1)C4=C(C5=CC6=CC=CC=C6C=C5C=C4Br)Br IBWGTJQXULBCDQ-UHFFFAOYSA-N 0.000 description 1
- RVPDVLASRPALCM-UHFFFAOYSA-N CC(C(N(C)C)N(C)C)(Cl)Cl Chemical compound CC(C(N(C)C)N(C)C)(Cl)Cl RVPDVLASRPALCM-UHFFFAOYSA-N 0.000 description 1
- FENYZDQSGOKPJN-UHFFFAOYSA-M CCCCCCCCCCC#C[Mg+].[Br-] Chemical compound CCCCCCCCCCC#C[Mg+].[Br-] FENYZDQSGOKPJN-UHFFFAOYSA-M 0.000 description 1
- TVDLDPIJNPJVGL-UHFFFAOYSA-M CCCCCCCCCCC=C[Mg+].[Br-] Chemical compound CCCCCCCCCCC=C[Mg+].[Br-] TVDLDPIJNPJVGL-UHFFFAOYSA-M 0.000 description 1
- NAHHZMMZLCMRBI-UHFFFAOYSA-N CCCCCCCCCCCCC1=C(C=C2C=C(C(=CC2=C1)Br)Br)CCCCCCCCCCCC Chemical compound CCCCCCCCCCCCC1=C(C=C2C=C(C(=CC2=C1)Br)Br)CCCCCCCCCCCC NAHHZMMZLCMRBI-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910021589 Copper(I) bromide Inorganic materials 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- YAJNRYRDDVXBMK-UHFFFAOYSA-M FC(C(C(C(C(C(C(F)(F)[Mg+])(F)F)(F)F)(F)F)(F)F)(F)F)(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)F.[Br-] Chemical compound FC(C(C(C(C(C(C(F)(F)[Mg+])(F)F)(F)F)(F)F)(F)F)(F)F)(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)F.[Br-] YAJNRYRDDVXBMK-UHFFFAOYSA-M 0.000 description 1
- ZHCWAFBRYVIKBQ-UHFFFAOYSA-M FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(C(C(C(C(C=C1)=CC=C1[Mg+])(F)F)(F)F)(F)F)F.[Br-] Chemical compound FC(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(C(C(C(C(C=C1)=CC=C1[Mg+])(F)F)(F)F)(F)F)F.[Br-] ZHCWAFBRYVIKBQ-UHFFFAOYSA-M 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical class [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 235000002597 Solanum melongena Nutrition 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XHHHAXOHMKAOSL-UHFFFAOYSA-M [Br-].[Mg+]C=C Chemical compound [Br-].[Mg+]C=C XHHHAXOHMKAOSL-UHFFFAOYSA-M 0.000 description 1
- DDACGVDBWGODOQ-UHFFFAOYSA-N [Li]C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F Chemical compound [Li]C(C(C(C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F DDACGVDBWGODOQ-UHFFFAOYSA-N 0.000 description 1
- GHXWOJHLSFOWFE-UHFFFAOYSA-N [Li]C1=CC=C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C=C1 Chemical compound [Li]C1=CC=C(C(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)C=C1 GHXWOJHLSFOWFE-UHFFFAOYSA-N 0.000 description 1
- CPNOVDWZRIYWQV-UHFFFAOYSA-N [Li]CCCCCCCC Chemical compound [Li]CCCCCCCC CPNOVDWZRIYWQV-UHFFFAOYSA-N 0.000 description 1
- CHACSSLMRRHBHQ-UHFFFAOYSA-N [Ni].ClC(C(N(C)C)N(C)C)(C)Cl Chemical compound [Ni].ClC(C(N(C)C)N(C)C)(C)Cl CHACSSLMRRHBHQ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 125000005577 anthracene group Chemical group 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- KXHPPCXNWTUNSB-UHFFFAOYSA-M benzyl(trimethyl)azanium;chloride Chemical compound [Cl-].C[N+](C)(C)CC1=CC=CC=C1 KXHPPCXNWTUNSB-UHFFFAOYSA-M 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229960001927 cetylpyridinium chloride Drugs 0.000 description 1
- YMKDRGPMQRFJGP-UHFFFAOYSA-M cetylpyridinium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+]1=CC=CC=C1 YMKDRGPMQRFJGP-UHFFFAOYSA-M 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- RFKZUAOAYVHBOY-UHFFFAOYSA-M copper(1+);acetate Chemical compound [Cu+].CC([O-])=O RFKZUAOAYVHBOY-UHFFFAOYSA-M 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- NKNDPYCGAZPOFS-UHFFFAOYSA-M copper(i) bromide Chemical compound Br[Cu] NKNDPYCGAZPOFS-UHFFFAOYSA-M 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- LCSNDSFWVKMJCT-UHFFFAOYSA-N dicyclohexyl-(2-phenylphenyl)phosphane Chemical group C1CCCCC1P(C=1C(=CC=CC=1)C=1C=CC=CC=1)C1CCCCC1 LCSNDSFWVKMJCT-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940043279 diisopropylamine Drugs 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- AGUDKYVAXRDJLV-UHFFFAOYSA-N ethynyllithium Chemical compound [Li]C#C AGUDKYVAXRDJLV-UHFFFAOYSA-N 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- FVLCOZJIIRIOQU-UHFFFAOYSA-N lithium;dodecane Chemical compound [Li+].CCCCCCCCCCC[CH2-] FVLCOZJIIRIOQU-UHFFFAOYSA-N 0.000 description 1
- CETVQRFGPOGIQJ-UHFFFAOYSA-N lithium;hexane Chemical compound [Li+].CCCCC[CH2-] CETVQRFGPOGIQJ-UHFFFAOYSA-N 0.000 description 1
- GVLUZLIABKNMAY-UHFFFAOYSA-N lithium;methoxybenzene Chemical compound [Li+].COC1=CC=[C-]C=C1 GVLUZLIABKNMAY-UHFFFAOYSA-N 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- LROBJRRFCPYLIT-UHFFFAOYSA-M magnesium;ethyne;bromide Chemical compound [Mg+2].[Br-].[C-]#C LROBJRRFCPYLIT-UHFFFAOYSA-M 0.000 description 1
- JGPDOURHDDKDEZ-UHFFFAOYSA-M magnesium;ethynylbenzene;bromide Chemical compound [Mg+2].[Br-].[C-]#CC1=CC=CC=C1 JGPDOURHDDKDEZ-UHFFFAOYSA-M 0.000 description 1
- YAMQOOCGNXAQGW-UHFFFAOYSA-M magnesium;methylbenzene;bromide Chemical compound [Mg+2].[Br-].CC1=CC=CC=[C-]1 YAMQOOCGNXAQGW-UHFFFAOYSA-M 0.000 description 1
- IOOQQIVFCFWSIU-UHFFFAOYSA-M magnesium;octane;bromide Chemical compound [Mg+2].[Br-].CCCCCCC[CH2-] IOOQQIVFCFWSIU-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005743 methylethenyl group Chemical group [H]\C(*)=C(\[H])C([H])([H])[H] 0.000 description 1
- XKBGEWXEAPTVCK-UHFFFAOYSA-M methyltrioctylammonium chloride Chemical compound [Cl-].CCCCCCCC[N+](C)(CCCCCCCC)CCCCCCCC XKBGEWXEAPTVCK-UHFFFAOYSA-M 0.000 description 1
- KFIGICHILYTCJF-UHFFFAOYSA-N n'-methylethane-1,2-diamine Chemical compound CNCCN KFIGICHILYTCJF-UHFFFAOYSA-N 0.000 description 1
- SYSQUGFVNFXIIT-UHFFFAOYSA-N n-[4-(1,3-benzoxazol-2-yl)phenyl]-4-nitrobenzenesulfonamide Chemical class C1=CC([N+](=O)[O-])=CC=C1S(=O)(=O)NC1=CC=C(C=2OC3=CC=CC=C3N=2)C=C1 SYSQUGFVNFXIIT-UHFFFAOYSA-N 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QCYXGORGJYUYMT-UHFFFAOYSA-N nickel;triphenylphosphane Chemical compound [Ni].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 QCYXGORGJYUYMT-UHFFFAOYSA-N 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000001979 organolithium group Chemical group 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- MXQOYLRVSVOCQT-UHFFFAOYSA-N palladium;tritert-butylphosphane Chemical compound [Pd].CC(C)(C)P(C(C)(C)C)C(C)(C)C.CC(C)(C)P(C(C)(C)C)C(C)(C)C MXQOYLRVSVOCQT-UHFFFAOYSA-N 0.000 description 1
- UFCVADNIXDUEFZ-UHFFFAOYSA-N pentacene-6,13-dione Chemical compound C1=CC=C2C=C3C(=O)C4=CC5=CC=CC=C5C=C4C(=O)C3=CC2=C1 UFCVADNIXDUEFZ-UHFFFAOYSA-N 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006340 pentafluoro ethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 125000005459 perfluorocyclohexyl group Chemical group 0.000 description 1
- ANRQGKOBLBYXFM-UHFFFAOYSA-M phenylmagnesium bromide Chemical compound Br[Mg]C1=CC=CC=C1 ANRQGKOBLBYXFM-UHFFFAOYSA-M 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000011181 potassium carbonates Nutrition 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical class [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 235000011150 stannous chloride Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- 150000003613 toluenes Chemical class 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- RCHUVCPBWWSUMC-UHFFFAOYSA-N trichloro(octyl)silane Chemical compound CCCCCCCC[Si](Cl)(Cl)Cl RCHUVCPBWWSUMC-UHFFFAOYSA-N 0.000 description 1
- 125000004205 trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- NHDIQVFFNDKAQU-UHFFFAOYSA-N tripropan-2-yl borate Chemical compound CC(C)OB(OC(C)C)OC(C)C NHDIQVFFNDKAQU-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
【課題】優れた耐酸化性を有し、塗布法による半導体活性相形成が可能な、ビフェニレン誘導体、それを用いた耐酸化性有機半導体材料並びにそれからなる有機薄膜、発光材料、及び該ビフェニレン誘導体を簡便に経済的に製造する方法の提供。
【解決手段】式(1)で示されることを特徴とするビフェニレン誘導体。
(ここで、置換基R1〜R8は同一又は異なって、水素原子、フッ素原子、炭素数2〜20のアルキル基、炭素数2〜20のアルキニル基、炭素数2〜30のアルケニル基、又は炭素数4〜20のアリール基を示し、mは1又は2であり、nは0〜2の整数を示す。但し、R1及びR2は同時に水素原子であることはない。)
【選択図】なしA biphenylene derivative having excellent oxidation resistance and capable of forming a semiconductor active phase by a coating method, an oxidation resistant organic semiconductor material using the same, an organic thin film comprising the same, a light emitting material, and the biphenylene derivative Providing a simple and economical manufacturing method.
A biphenylene derivative represented by the formula (1).
(Here, the substituents R 1 to R 8 are the same or different and are a hydrogen atom, a fluorine atom, an alkyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, Or an aryl group having 4 to 20 carbon atoms, m is 1 or 2, and n is an integer of 0 to 2. However, R 1 and R 2 are not simultaneously hydrogen atoms.)
[Selection figure] None
Description
本発明は、有機半導体等の電子材料への展開が可能なビフェニレン誘導体、その用途、及びそれらの製造方法に関する。 The present invention relates to a biphenylene derivative that can be developed into an electronic material such as an organic semiconductor, its use, and a production method thereof.
有機薄膜トランジスタに代表される有機半導体デバイスは、省エネルギー、低コスト、及びフレキシブルといった無機半導体デバイスにはない特徴を有することから近年注目されるようになった。有機薄膜トランジスタは有機半導体活性相、基板、絶縁相、電極等数種類の材料から構成されるが、中でも電荷のキャリアー移動を担う有機半導体活性相は該デバイスの中心的な役割を有している。この有機半導体活性相を構成する有機材料のキャリアー移動能により半導体デバイス性能が左右される。 Organic semiconductor devices typified by organic thin film transistors have recently attracted attention because they have features not found in inorganic semiconductor devices such as energy saving, low cost, and flexibility. An organic thin film transistor is composed of several kinds of materials such as an organic semiconductor active phase, a substrate, an insulating phase, and an electrode. Among them, an organic semiconductor active phase responsible for charge carrier movement has a central role of the device. The semiconductor device performance depends on the carrier mobility of the organic material constituting the organic semiconductor active phase.
有機半導体活性相を作製する方法としては一般的に、高温真空下、有機材料を気化させて実施する真空蒸着法、及び有機材料を適当な溶媒に溶解させその溶液を塗布する塗布法が知られている。塗布法は高温高真空条件を用いることなく、印刷技術を用いても実施することができるため、デバイス作製の製造コストを大幅に削減することができることから、経済的に好ましいプロセスである。しかし、従来、有機半導体材料として高性能な材料ほど塗布での活性相形成が困難になるという問題があった。 As a method for producing an organic semiconductor active phase, there are generally known a vacuum deposition method in which an organic material is vaporized under a high temperature vacuum, and a coating method in which the organic material is dissolved in an appropriate solvent and applied. ing. Since the coating method can be carried out using a printing technique without using high-temperature and high-vacuum conditions, the manufacturing cost for device fabrication can be greatly reduced, and thus it is an economically preferable process. However, conventionally, there has been a problem that a high-performance material as an organic semiconductor material makes it difficult to form an active phase by coating.
例えば、分子長軸を有するペンタセン等の結晶性材料はアモルファスシリコン並みの高いキャリアー移動度を有し、優れた半導体デバイス特性を発現することが報告されている(例えば、非特許文献1参照)。しかし、ペンタセンはその強い凝集性のため溶解性が低く、一般的には経済的な塗布法を適用することができない。また、ペンタセン等のポリアセンを溶解させ塗布法でデバイスを製造する試みも報告されているが(例えば、特許文献1参照)、元来難溶性のポリアセン類を溶解させるためには、高温加熱等の条件が必要とされ、さらにペンタセンの溶液は極めて容易に空気酸化されることから、塗布法の適用はプロセス的、経済的に困難を伴うものであった。また、ポリ−(3−ヘキシルチオフェン)等の自己組織化材料は溶媒に可溶であり、塗布によるデバイス作製が報告されているが、キャリアー移動度が結晶性低分子化合物より1桁低いことから(例えば、非特許文献2参照)、得られた有機半導体デバイスの特性が低いという問題があった。
For example, it has been reported that a crystalline material such as pentacene having a molecular long axis has a carrier mobility as high as that of amorphous silicon and exhibits excellent semiconductor device characteristics (see Non-Patent
このような中で、ビフェニレンは剛直な共役縮環化合物であり、有機半導体材料として期待できる化合物である。しかし、これまでに報告されているビフェニレン誘導体は、有機半導体材料としては満足の行くものではなかった。 Under such circumstances, biphenylene is a rigid conjugated condensed ring compound and a compound that can be expected as an organic semiconductor material. However, the biphenylene derivatives reported so far have not been satisfactory as organic semiconductor materials.
例えば多置換多環芳香族化合物およびその製造方法には剛直なビフェニレン構造を有する化合物が記載されている(例えば、特許文献2〜4参照)が、分子長軸方向以外にも置換基を有することから結晶性が低下し、塗布法により均一な膜が得られず半導体材料としては適していない。また、カチオン重合性樹脂のための三元光開始剤システム(例えば、特許文献5参照)にはビフェニレン誘導体の構造が記載されているが、分子長軸が短いため半導体材料としては適していない。 For example, a polysubstituted polycyclic aromatic compound and a method for producing the same describe a compound having a rigid biphenylene structure (see, for example, Patent Documents 2 to 4), but have a substituent other than the molecular major axis direction. Therefore, the crystallinity is lowered, and a uniform film cannot be obtained by a coating method, which is not suitable as a semiconductor material. Moreover, although the structure of a biphenylene derivative is described in the ternary photoinitiator system (for example, refer patent document 5) for cationically polymerizable resin, since the molecular long axis is short, it is not suitable as a semiconductor material.
そこで、本発明は上記の従来技術が有する問題点に鑑み、優れた耐酸化性を有し、塗布法による半導体活性相形成が可能なビフェニレン誘導体、それを用いた耐酸化性有機半導体材料並びにそれからなる有機薄膜、発光材料及び該ビフェニレン誘導体を簡便に経済的に製造する方法を提供することを目的とする。さらに本発明は、該ビフェニレン誘導体の前駆化合物であるジハロビフェニル誘導体にも関するものである。 Therefore, in view of the problems of the above-described conventional technology, the present invention has a biphenylene derivative having excellent oxidation resistance and capable of forming a semiconductor active phase by a coating method, an oxidation resistant organic semiconductor material using the same, and a It is an object to provide an organic thin film, a light emitting material, and a method for easily and economically producing the biphenylene derivative. The present invention further relates to a dihalobiphenyl derivative which is a precursor compound of the biphenylene derivative.
本発明者らは上記課題を解決するため鋭意検討の結果、新規なビフェニレン誘導体及び前駆体であるジハロビフェニル誘導体を見出した。加えて、該ビフェニレン誘導体からなる耐酸化性有機半導体材料及びそれからなる有機薄膜、発光材料を見出した。さらに、該ビフェニレン誘導体を製造するに好適な製造方法を見出し、本発明を完成するに到った。 As a result of intensive studies to solve the above problems, the present inventors have found a novel biphenylene derivative and a dihalobiphenyl derivative which is a precursor. In addition, the present inventors have found an oxidation-resistant organic semiconductor material composed of the biphenylene derivative, an organic thin film composed thereof, and a light emitting material. Furthermore, the inventors have found a production method suitable for producing the biphenylene derivative and have completed the present invention.
以下に本発明を詳細に説明する。
(ビフェニレン誘導体)
本発明のビフェニレン誘導体は下記一般式(1)で示される。
The present invention is described in detail below.
(Biphenylene derivative)
The biphenylene derivative of the present invention is represented by the following general formula (1).
本発明の一般式(1)の置換基について、述べる。
The substituent of the general formula (1) of the present invention will be described.
置換基R1〜R8における、炭素数2〜20のアルキル基は特に限定はなく、例えばプロピル基、ブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、オクチル基、イソオクチル基、ノニル基、デシル基、ドデシル基、ペンタデシル基、オクタデシル基、2−エチルヘキシル基等のアルキル基;トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロオクチル基、パーフルオロデシル基、パーフルオロドデシル基、パーフルオロオクタデシル基、パーフルオロシクロヘキシル基、パーフルオロシクロオクチル基等のパーフルオロアルキル基;トリフルオロエチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、2−エチルパーフルオロヘキシル基等の一部の水素がフッ素に置換されたハロゲン化アルキル基を挙げることができ、好ましくは炭素数5〜20のアルキル基であり、さらに好ましくはオクチル基、ドデシル基、オクタデシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロオクタデシル基、特に好ましくはドデシル基、パーフルオロドデシル基である。 The alkyl group having 2 to 20 carbon atoms in the substituents R 1 to R 8 is not particularly limited. For example, propyl group, butyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, octyl group, isooctyl group, Alkyl groups such as nonyl, decyl, dodecyl, pentadecyl, octadecyl, 2-ethylhexyl; trifluoromethyl, pentafluoroethyl, perfluorooctyl, perfluorodecyl, perfluorododecyl, perfluoro Perfluoroalkyl groups such as fluorooctadecyl group, perfluorocyclohexyl group, perfluorocyclooctyl group; some of trifluoroethyl group, pentadecafluorooctyl group, octadecafluorodecyl group, 2-ethylperfluorohexyl group, etc. C in which hydrogen is replaced by fluorine Genated alkyl groups can be mentioned, preferably an alkyl group having 5 to 20 carbon atoms, more preferably an octyl group, a dodecyl group, an octadecyl group, a perfluorooctyl group, a perfluorododecyl group, a perfluorooctadecyl group, Particularly preferred are dodecyl group and perfluorododecyl group.
置換基R1〜R8における、炭素数2〜20のアルキニル基は特に限定はなく、例えばエチニル基、メチルエチニル基、イソプロピルエチニル基、tert−ブチルエチニル基、(オクチル)エチニル基、(デシル)エチニル基、(ドデシル)エチニル基、(オクタデシル)エチニル基、(トリフルオロメチル)エチニル基、(パーフルオロオクチル)エチニル基、(パーフルオロデシル)エチニル基、(パーフルオロドデシル)エチニル基、フェニルエチニル基、{p−(オクチル)フェニル}エチニル基、ナフチルエチニル基、アントラセニルエチニル基、ベンジルエチニル基、パーフルオロフェニルエチニル基、{p−(トリフルオロメチル)フェニル}エチニル基、{p−(パーフルオロオクチル)フェニル}エチニル基等を挙げることができ、好ましくは(オクチル)エチニル基、(デシル)エチニル基、(ドデシル)エチニル基、(パーフルオロオクチル)エチニル基、(パーフルオロデシル)エチニル基、(パーフルオロドデシル)エチニル基、フェニルエチニル基等である。 The alkynyl group having 2 to 20 carbon atoms in the substituents R 1 to R 8 is not particularly limited. For example, ethynyl group, methylethynyl group, isopropylethynyl group, tert-butylethynyl group, (octyl) ethynyl group, (decyl) Ethynyl group, (dodecyl) ethynyl group, (octadecyl) ethynyl group, (trifluoromethyl) ethynyl group, (perfluorooctyl) ethynyl group, (perfluorodecyl) ethynyl group, (perfluorododecyl) ethynyl group, phenylethynyl group , {P- (octyl) phenyl} ethynyl group, naphthylethynyl group, anthracenylethynyl group, benzylethynyl group, perfluorophenylethynyl group, {p- (trifluoromethyl) phenyl} ethynyl group, {p- (per Fluorooctyl) phenyl} ethynyl group, etc. Preferably, (octyl) ethynyl group, (decyl) ethynyl group, (dodecyl) ethynyl group, (perfluorooctyl) ethynyl group, (perfluorodecyl) ethynyl group, (perfluorododecyl) ethynyl group, phenylethynyl Group.
置換基R1〜R8における、炭素数2〜30のアルケニル基は特に限定はなく、例えばエテニル基、メチルエテニル基、イソプロピルエテニル基、tert−ブチルエテニル基、(オクチル)エテニル基、(デシル)エテニル基、(ドデシル)エテニル基、(トリフルオロメチル)エテニル基、フェニルエテニル基、{p−(ヘキシル)フェニル}エテニル基、{p−(オクチル)フェニル}エテニル基、2−フェニル−1,2−ジフルオロエテニル基、2−フェニル−1,2−ジメチルエテニル基、ジフェニルエテニル基、トリフェニルエテニル基、ナフチルエテニル基、アントラセニルエテニル基、ベンジルエテニル基、フェニル(メチル)エテニル基、(パーフルオロフェニル)エテニル基、{p−(トリフルオロメチル)フェニル}エテニル基、(パーフルオロオクチル)エテニル基、(パーフルオロデシル)エテニル基、(パーフルオロドデシル)エテニル基、{5−(ヘキシル)チエニル−2−}エテニル基、{5−(パーフルオロヘキシル)チエニル−2−}エテニル基等を挙げることができ、好ましくは(オクチル)エテニル基、(デシル)エテニル基、(ドデシル)エテニル基、(パーフルオロオクチル)エテニル基、(パーフルオロデシル)エテニル基、(パーフルオロドデシル)エテニル基、{5−(ヘキシル)チエニル−2−}エテニル基、{5−(パーフルオロヘキシル)チエニル−2−}エテニル基、フェニルエテニル基等である。なお、該炭素数2〜30のアルケニル基はトランス体及びシス体の何れであってもよく、またそれらの任意の割合の混合物であってもよい。 The alkenyl group having 2 to 30 carbon atoms in the substituents R 1 to R 8 is not particularly limited, and for example, ethenyl group, methyl ethenyl group, isopropyl ethenyl group, tert-butyl ethenyl group, (octyl) ethenyl group, (decyl) ethenyl Group, (dodecyl) ethenyl group, (trifluoromethyl) ethenyl group, phenylethenyl group, {p- (hexyl) phenyl} ethenyl group, {p- (octyl) phenyl} ethenyl group, 2-phenyl-1,2 -Difluoroethenyl group, 2-phenyl-1,2-dimethylethenyl group, diphenylethenyl group, triphenylethenyl group, naphthylethenyl group, anthracenylethenyl group, benzylethenyl group, phenyl (methyl) ethenyl group , (Perfluorophenyl) ethenyl group, {p- (trifluoromethyl) phenyl Ethenyl group, (perfluorooctyl) ethenyl group, (perfluorodecyl) ethenyl group, (perfluorododecyl) ethenyl group, {5- (hexyl) thienyl-2-} ethenyl group, {5- (perfluorohexyl) thienyl -2-} ethenyl group and the like, preferably (octyl) ethenyl group, (decyl) ethenyl group, (dodecyl) ethenyl group, (perfluorooctyl) ethenyl group, (perfluorodecyl) ethenyl group, Perfluorododecyl) ethenyl group, {5- (hexyl) thienyl-2-} ethenyl group, {5- (perfluorohexyl) thienyl-2-} ethenyl group, phenylethenyl group and the like. The alkenyl group having 2 to 30 carbon atoms may be either a trans isomer or a cis isomer, or may be a mixture of any ratio thereof.
置換基R1〜R8における、炭素数4〜20のアリール基は特に限定はなく、例えばフェニル基、p−トリル基、p−(オクチル)フェニル基、m−(オクチル)フェニル基、p−(デシル)フェニル基、p−フルオロフェニル基、ペンタフルオロフェニル基、p−(トリフルオロメチル)フェニル基、p−(パーフルオロオクチル)フェニル基、m−(パーフルオロオクチル)フェニル基、p−(トリフルオロメチル)テトラフルオロフェニル基、p−メトキシフェニル基、p−フェノキシフェニル基、2−チエニル基、5−(ヘキシル)−2−チエニル基、5−(パーフルオロヘキシル)−2−チエニル基、ビフェニル基、パーフルオロビフェニル基、1−ナフチル基、2−ナフチル基、1−パーフルオロナフチル基、2−フルオレニル基、9,9−ジメチル−2−フルオレニル基、9−アントラセニル基等を挙げることができ、好ましくは、フェニル基、p−(オクチル)フェニル基、p−(トリフルオロメチル)フェニル基、p−(パーフルオロオクチル)フェニル基である。 The aryl group having 4 to 20 carbon atoms in the substituents R 1 to R 8 is not particularly limited. For example, a phenyl group, a p-tolyl group, a p- (octyl) phenyl group, an m- (octyl) phenyl group, p- (Decyl) phenyl group, p-fluorophenyl group, pentafluorophenyl group, p- (trifluoromethyl) phenyl group, p- (perfluorooctyl) phenyl group, m- (perfluorooctyl) phenyl group, p- ( (Trifluoromethyl) tetrafluorophenyl group, p-methoxyphenyl group, p-phenoxyphenyl group, 2-thienyl group, 5- (hexyl) -2-thienyl group, 5- (perfluorohexyl) -2-thienyl group, Biphenyl group, perfluorobiphenyl group, 1-naphthyl group, 2-naphthyl group, 1-perfluoronaphthyl group, 2-fluoreni Group, 9,9-dimethyl-2-fluorenyl group, 9-anthracenyl group, etc., preferably phenyl group, p- (octyl) phenyl group, p- (trifluoromethyl) phenyl group, p- (Perfluorooctyl) phenyl group.
本発明の一般式(1)で示されるビフェニレン誘導体の置換基R1〜R8の置換様式として、R1〜R4が、同一又は異なって、水素原子、フッ素原子、炭素数2〜20のアルキル基、炭素数2〜20のアルキニル基、炭素数2〜30のアルケニル基、及び炭素数4〜20のアリール基からなる群から選ばれる少なくとも一種以上の基であり、且つR5〜R8が、同一又は異なって、水素原子、フッ素原子、及び炭素数4〜20のアリール基からなる群から選ばれる少なくとも一種以上の基であることが好ましい。 As substitution modes of the substituents R 1 to R 8 of the biphenylene derivative represented by the general formula (1) of the present invention, R 1 to R 4 are the same or different, and are a hydrogen atom, a fluorine atom, or a carbon number of 2 to 20 And at least one group selected from the group consisting of an alkyl group, an alkynyl group having 2 to 20 carbon atoms, an alkenyl group having 2 to 30 carbon atoms, and an aryl group having 4 to 20 carbon atoms, and R 5 to R 8. Are the same or different and are preferably at least one group selected from the group consisting of a hydrogen atom, a fluorine atom, and an aryl group having 4 to 20 carbon atoms.
さらに置換基R1〜R4が、同一又は異なって、水素原子、フッ素原子、炭素数2〜20のアルキル基、炭素数2〜20のアルキニル基、及び炭素数4〜20のアリール基からなる群から選ばれる少なくとも一種以上の基であり、且つR5〜R8が、同一又は異なって、水素原子及び炭素数4〜20のアリール基からなる群から選ばれる少なくとも一種以上の基であることがより好ましい。 Further, the substituents R 1 to R 4 are the same or different and are each composed of a hydrogen atom, a fluorine atom, an alkyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, and an aryl group having 4 to 20 carbon atoms. It is at least one group selected from the group, and R 5 to R 8 are the same or different and are at least one group selected from the group consisting of a hydrogen atom and an aryl group having 4 to 20 carbon atoms. Is more preferable.
記号mは1又は2であり、好ましくは1である。また、記号nは0〜2の整数を示し、好ましくは1である。そして、特に好ましい記号m、nとしては、いずれも1である。 The symbol m is 1 or 2, preferably 1. The symbol n represents an integer of 0 to 2, and is preferably 1. The particularly preferred symbols m and n are both 1.
これらの中でも本発明の一般式(1)で示されるビフェニレン誘導体は、該ビフェニレン誘導体及び該ビフェニレン誘導体を含む耐酸化性有機半導体材料及びその有機薄膜が、高い耐酸化性及びキャリアー移動度を発現することから、以下の化合物が好ましく、 Among these, the biphenylene derivative represented by the general formula (1) of the present invention exhibits high oxidation resistance and carrier mobility in the biphenylene derivative, the oxidation-resistant organic semiconductor material containing the biphenylene derivative, and the organic thin film thereof. Therefore, the following compounds are preferable,
(ジハロビフェニル誘導体)
次に、本発明の一般式(1)で示されるビフェニレン誘導体の原料として用いられる下記一般式(2)で示されるジハロビフェニル誘導体について述べる。
(Dihalobiphenyl derivatives)
Next, the dihalobiphenyl derivative represented by the following general formula (2) used as a raw material for the biphenylene derivative represented by the general formula (1) of the present invention will be described.
一般式(2)におけるX1及びX2は臭素原子、ヨウ素原子又は塩素原子であり、その中でも好ましくは臭素原子又はヨウ素原子であり、より好ましくは臭素原子である。
X 1 and X 2 in the general formula (2) are a bromine atom, an iodine atom or a chlorine atom, preferably a bromine atom or an iodine atom, more preferably a bromine atom.
本発明の一般式(2)における置換基R1及びR2の好ましい例は、フッ素原子、炭素数2〜20のアルキル基、炭素数2〜20のアルキニル基であり、さらに好ましい例はフッ素原子、炭素数5〜20のアルキル基である。 Preferred examples of the substituents R 1 and R 2 in the general formula (2) of the present invention are a fluorine atom, an alkyl group having 2 to 20 carbon atoms, and an alkynyl group having 2 to 20 carbon atoms, and a more preferred example is a fluorine atom. , An alkyl group having 5 to 20 carbon atoms.
置換基R3及びR4の好ましい例は、水素原子、フッ素原子、炭素数2〜20のアルキル基、炭素数2〜20のアルキニル基であり、さらに好ましい例はフッ素原子、炭素数5〜20のアルキル基である。 Preferred examples of the substituents R 3 and R 4 are a hydrogen atom, a fluorine atom, an alkyl group having 2 to 20 carbon atoms, and an alkynyl group having 2 to 20 carbon atoms, and more preferred examples are a fluorine atom and 5 to 20 carbon atoms. It is an alkyl group.
置換基R5〜R8の特に好ましい例は、水素原子、炭素数2〜20のアルキル基、炭素数4〜20のアリール基であり、さらに好ましい例は水素原子である。 Particularly preferred examples of the substituents R 5 to R 8 are a hydrogen atom, an alkyl group having 2 to 20 carbon atoms, and an aryl group having 4 to 20 carbon atoms, and a more preferred example is a hydrogen atom.
本発明の一般式(2)で示されるジハロビフェニル誘導体としては、以下の化合物が好ましく、 As the dihalobiphenyl derivative represented by the general formula (2) of the present invention, the following compounds are preferable,
(ビフェニレン誘導体の製造方法)
次に、本発明の一般式(1)で示されるビフェニレン誘導体の製造方法について述べる。
(Method for producing biphenylene derivative)
Next, a method for producing the biphenylene derivative represented by the general formula (1) of the present invention will be described.
本発明の一般式(1)で示されるビフェニレン誘導体は一般式(2)で示されるジハロビフェニル誘導体を、銅又は銅化合物と反応させることで製造することができる。 The biphenylene derivative represented by the general formula (1) of the present invention can be produced by reacting the dihalobiphenyl derivative represented by the general formula (2) with copper or a copper compound.
該反応で用いられる銅又は銅化合物は特に限定はなく、ヨウ素又は臭素と反応するものであれば良く、例えば銅、塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、塩化銅(II)、臭化銅(II)、ヨウ化銅(II)を挙げることができ、好ましくは銅、塩化銅(II)である。また、この銅は亜鉛及び/又はスズとの合金であっても何ら差し支えなく使用することができる。なお、係る銅及び/又は銅合金の形状としては粉体状が好ましい。 The copper or copper compound used in the reaction is not particularly limited as long as it reacts with iodine or bromine. For example, copper, copper chloride (I), copper bromide (I), copper iodide (I), Examples thereof include copper (II) chloride, copper (II) bromide, and copper (II) iodide, preferably copper and copper (II) chloride. Moreover, even if this copper is an alloy with zinc and / or tin, it can be used without any problem. The shape of the copper and / or copper alloy is preferably powder.
この銅又は銅化合物との反応は溶媒を用いて、若しくは用いないで実施することができる。溶媒を用いる場合、その溶媒例としては、例えばN,N−ジメチルホルムアミド、N−メチルピロリドン、アセトニトリル、ジメチルスルホキサイド等の極性溶媒を挙げることができる。係る銅又は銅化合物との反応において、用いる銅又は銅化合物の量は一般式(2)で示されるジハロビフェニル誘導体1当量に対し、1〜50当量が好ましく、特に好ましくは5〜30当量であり、反応温度は30〜250℃が好ましく、特に好ましくは50〜220℃であり、反応時間は1〜120分が好ましく、特に好ましくは3〜80分である。 This reaction with copper or a copper compound can be carried out with or without a solvent. When a solvent is used, examples of the solvent include polar solvents such as N, N-dimethylformamide, N-methylpyrrolidone, acetonitrile, and dimethyl sulfoxide. In the reaction with such copper or copper compound, the amount of copper or copper compound to be used is preferably 1 to 50 equivalents, particularly preferably 5 to 30 equivalents, relative to 1 equivalent of the dihalobiphenyl derivative represented by the general formula (2). The reaction temperature is preferably 30 to 250 ° C, particularly preferably 50 to 220 ° C, and the reaction time is preferably 1 to 120 minutes, particularly preferably 3 to 80 minutes.
反応は、好ましくは窒素又はアルゴン等の不活性雰囲気下で実施する。得られた、一般式(1)で示されるビフェニレン誘導体は、さらに精製することができる。精製する方法は特に限定はなく、例えばカラムクロマトグラフィー、再結晶化、あるいは昇華による方法を挙げることができる。 The reaction is preferably carried out under an inert atmosphere such as nitrogen or argon. The obtained biphenylene derivative represented by the general formula (1) can be further purified. The method for purification is not particularly limited, and examples thereof include column chromatography, recrystallization, or sublimation.
本発明の一般式(1)で示されるビフェニレン誘導体の、さらに好ましい製造方法について述べる。 A more preferable production method of the biphenylene derivative represented by the general formula (1) of the present invention will be described.
さらに好ましい製造方法としては、一般式(2)で示されるジハロビフェニル誘導体をジリチオ化及び/又はジグリニャール化した後、銅化合物と反応させて製造する方法を挙げることができる。なお、ここでジリチオ化とは、一般式(2)における2個のハロゲンX1、X2をそれぞれリチウムに置換することを意味し、ジグリニャール化とは、一般式(2)における2個のハロゲンX1及びX2をそれぞれハロゲン化マグネシウムに置換することを意味する。 As a more preferable production method, there can be mentioned a method in which the dihalobiphenyl derivative represented by the general formula (2) is dilithiated and / or diglynarized and then reacted with a copper compound. Here, dilithiation means that two halogens X 1 and X 2 in the general formula (2) are each replaced with lithium, and diglynarization means that two halogens in the general formula (2) It means that halogens X 1 and X 2 are each replaced with magnesium halide.
一般式(2)で示されるジハロビフェニル誘導体をジリチオ化する場合、用いるリチオ化剤は、一般式(2)におけるハロゲンX1及びX2をリチウムに置換することができるものである限り特に限定はなく、例えばn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、ヘキシルリチウム等のアルキルリチウム;フェニルリチウム、p−tert−ブチルフェニルリチウム、p−メトキシフェニルリチウム、p−フルオロフェニルリチウム等のアリールリチウム;リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド等のリチウムアミド;リチウムパウダー等のリチウム金属を挙げることができ、好ましくはアルキルリチウムであり、特に好ましくはn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウムである。 When dilithiating the dihalobiphenyl derivative represented by the general formula (2), the lithiating agent to be used is particularly limited as long as the halogen X 1 and X 2 in the general formula (2) can be substituted with lithium. For example, alkyllithium such as n-butyllithium, sec-butyllithium, tert-butyllithium, methyllithium, hexyllithium; phenyllithium, p-tert-butylphenyllithium, p-methoxyphenyllithium, p-fluorophenyl Aryl lithium such as lithium; lithium amide such as lithium diisopropylamide and lithium hexamethyldisilazide; lithium metal such as lithium powder can be mentioned, preferably alkyllithium, particularly preferably n-butyllithium, sec- The Butyllithium, it is a tert- butyl lithium.
該リチオ化剤の使用量は、一般式(2)で示されるジハロビフェニル誘導体1当量に対し、1.5〜4当量が好ましく、さらに好ましくは1.8〜3当量、特に好ましくは1.9〜2.6当量である。 The amount of the lithiating agent used is preferably 1.5 to 4 equivalents, more preferably 1.8 to 3 equivalents, particularly preferably 1. to 1 equivalent of the dihalobiphenyl derivative represented by the general formula (2). 9 to 2.6 equivalents.
該ジリチオ化反応は、好ましくは溶媒中で実施する。用いる溶媒は特に限定はなく、例えばジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル等のジアルキルエーテル、テトラヒドロフラン(以下、THFと略す)、ジグライム、ジオキサン、トルエン、ペンタン、ヘキサン、シクロヘキサン等が挙げられ、好ましくはジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、エチレングリコールジメチルエーテル等のジアルキルエーテルであり、特に好ましくはジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテルである。又、これら溶剤は1種若しくは2種以上の混合物を用いても良い。 The dilithiation reaction is preferably carried out in a solvent. The solvent to be used is not particularly limited. For example, diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, ethylene glycol dimethyl ether and other dialkyl ethers, tetrahydrofuran (hereinafter abbreviated as THF), diglyme. , Dioxane, toluene, pentane, hexane, cyclohexane and the like, preferably dialkyl ethers such as diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, ethylene glycol dimethyl ether, Particularly preferred are diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether. It is an ether. These solvents may be used alone or as a mixture of two or more.
該ジリチオ化反応温度は−80〜50℃が好ましく、特に好ましくは−30〜30℃である。反応時間は1〜240分が好ましく、特に好ましくは1〜90分である。なお、ジリチオ化反応の進行は、反応液の一部を取り出し、水で反応を停止させた後、薄層クロマトグラフィー、ガスクロマトグラフィーで分析することで監視することもできる。 The dilithiation reaction temperature is preferably -80 to 50 ° C, particularly preferably -30 to 30 ° C. The reaction time is preferably 1 to 240 minutes, particularly preferably 1 to 90 minutes. The progress of the dilithiation reaction can also be monitored by taking out a part of the reaction solution, stopping the reaction with water, and then analyzing by thin layer chromatography or gas chromatography.
本発明の一般式(1)で示されるビフェニレン誘導体の製造方法では、ジアルキルエーテル中でジリチオ化を実施することで、ジリチオ化の反応温度を−30〜30℃に上げることができ、反応性の低い一般式(2)で示されるジハロビフェニル誘導体も効率良くジリチオ化できることを見出した。 In the method for producing a biphenylene derivative represented by the general formula (1) of the present invention, by carrying out dilithiation in a dialkyl ether, the reaction temperature of dilithiation can be increased to -30 to 30 ° C, It was found that a dihalobiphenyl derivative represented by a low general formula (2) can also be efficiently dilithiated.
該ジリチオ化反応により生成したジリチウム塩は、次いで銅化合物と反応させる。係る銅化合物との反応は、前記リチオ化反応により生成したジリチウム塩を含む反応混合物に銅化合物を直接用いて反応させる方法、生成したジリチウム塩を一度単離した後、銅化合物と反応させる方法のいずれを用いてもよい。 The dilithium salt produced by the dilithiation reaction is then reacted with a copper compound. The reaction with the copper compound includes a method of reacting the reaction mixture containing the dilithium salt generated by the lithiation reaction directly using the copper compound, a method of isolating the generated dilithium salt once, and reacting with the copper compound. Any of them may be used.
該ジリチウム塩と銅化合物との反応は、該ジリチウム塩に銅化合物を添加する方法、あるいは銅化合物に該ジリチウム塩を添加するいずれの方法を用いても実施することができる。 The reaction between the dilithium salt and the copper compound can be carried out using any method of adding a copper compound to the dilithium salt or adding the dilithium salt to a copper compound.
ジリチウム塩と銅化合物との反応に用いられる銅化合物は特に限定はなく、例えば塩化銅(II)、臭化銅(II)、ヨウ化銅(II)、酢酸銅(II)、アセチルアセトナート銅(II)等の2価銅;塩化銅(I)、臭化銅(I)、ヨウ化銅(I)、酢酸銅(I)等の1価銅等を挙げることができ、好ましくは2価銅であり、特に好ましくは塩化銅(II)、臭化銅(II)である。生成ジリチウム塩と銅化合物との反応は好ましくは溶媒中で実施する。用いる溶媒は特に限定はなく、例えばTHF、ジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、エチレングリコールジメチルエーテル、ジグライム、ジオキサン等が挙げられ、好ましくはTHF、ジエチルエーテルである。又、これら溶剤は1種若しくは2種以上の混合物を用いても良い。用いる銅化合物の量は、一般式(2)で示されるジハロビフェニル誘導体1当量に対し、0.9〜5当量が好ましく、特に好ましくは1.0〜3.5当量である。銅化合物との反応温度は−90〜50℃が好ましく、特に好ましくは−80〜30℃であり、反応時間は1〜30時間が好ましく、特に好ましくは1〜18時間である。 The copper compound used for the reaction between the dilithium salt and the copper compound is not particularly limited. For example, copper chloride (II), copper bromide (II), copper iodide (II), copper acetate (II), acetylacetonate copper Divalent copper such as (II); monovalent copper such as copper (I) chloride, copper (I) bromide, copper (I) iodide, copper (I) acetate, etc. can be mentioned, preferably divalent Copper, particularly preferably copper (II) chloride and copper (II) bromide. The reaction between the produced dilithium salt and the copper compound is preferably carried out in a solvent. The solvent to be used is not particularly limited, and examples thereof include THF, diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, ethylene glycol dimethyl ether, diglyme, dioxane and the like, preferably THF and diethyl ether. These solvents may be used alone or as a mixture of two or more. The amount of the copper compound to be used is preferably 0.9 to 5 equivalents, particularly preferably 1.0 to 3.5 equivalents, relative to 1 equivalent of the dihalobiphenyl derivative represented by the general formula (2). The reaction temperature with the copper compound is preferably −90 to 50 ° C., particularly preferably −80 to 30 ° C., and the reaction time is preferably 1 to 30 hours, particularly preferably 1 to 18 hours.
これらの銅化合物は、そのまま用いることもできるし、上記のジリチオ化反応で挙げた溶媒と混合した状態で用いることもできる。 These copper compounds can be used as they are, or can be used in a state of being mixed with the solvent mentioned in the dilithiation reaction.
本発明の一般式(1)のビフェニレン誘導体の製造は、好ましくは窒素又はアルゴン等の不活性雰囲気下で実施する。 The production of the biphenylene derivative of the general formula (1) of the present invention is preferably carried out under an inert atmosphere such as nitrogen or argon.
かくして得られた、一般式(1)で示されるビフェニレン誘導体は、さらに精製することができる。精製する方法は特に限定はなく、例えばカラムクロマトグラフィー、再結晶化、あるいは昇華による方法を挙げることができる。 The biphenylene derivative represented by the general formula (1) thus obtained can be further purified. The method for purification is not particularly limited, and examples thereof include column chromatography, recrystallization, or sublimation.
一般式(2)で示されるジハロビフェニル誘導体をジグリニャール化する場合、用いるグリニャール化剤は、例えばマグネシウム金属、臭化エチルマグネシウム、臭化イソプロピルマグネシウム等のアルキルグリニャール試薬を挙げることができ、好ましくはマグネシウム金属である。マグネシウム金属の形態は特に限定はなく、例えば削り状、リボン状、粒状を挙げることができる。 When the dihalobiphenyl derivative represented by the general formula (2) is diglynarized, examples of the Grignard agent to be used include alkyl Grignard reagents such as magnesium metal, ethylmagnesium bromide, isopropylmagnesium bromide, and the like. Is magnesium metal. The form of the magnesium metal is not particularly limited, and examples thereof include a cut shape, a ribbon shape, and a granular shape.
該グリニャール化剤は、例えばマグネシウム金属の場合、一般式(2)で示されるジハロビフェニル誘導体1当量に対し1.8〜10当量が好ましい。グリニャール化反応は、好ましくは溶媒中で実施する。用いる溶媒は特に限定はなく、例えばジリチオ化反応で用いた溶剤を挙げることができる。グリニャール化反応の温度は−20〜80℃が好ましく、反応時間は1〜120分が好ましい。 For example, in the case of magnesium metal, the Grignard agent is preferably 1.8 to 10 equivalents with respect to 1 equivalent of the dihalobiphenyl derivative represented by the general formula (2). The Grignard reaction is preferably carried out in a solvent. The solvent to be used is not particularly limited, and examples thereof include the solvent used in the dilithiation reaction. The temperature of the Grignard reaction is preferably -20 to 80 ° C, and the reaction time is preferably 1 to 120 minutes.
該ジグリニャール化反応により生成したマグネシウム塩は、次いで銅化合物と反応させる。該銅化合物との反応方法及び用いる銅化合物は、ジリチオ化反応により生成したジリチウム塩と銅化合物とを反応させる場合と同様な方法で実施できる。又、反応雰囲気、反応生成物の精製も同様な方法で実施できる。 The magnesium salt produced by the diglynarization reaction is then reacted with a copper compound. The reaction method with the copper compound and the copper compound to be used can be carried out in the same manner as when the dilithium salt produced by the dilithiation reaction is reacted with the copper compound. The reaction atmosphere and the reaction product can be purified in the same manner.
本発明の一般式(1)で示されるビフェニレン誘導体の製造方法では、一般式(2)で示されるジハロビフェニル誘導体をジリチオ化及び/又はジグリニャール化した後、塩化亜鉛と反応させた後、銅化合物と処理することもできる。 In the method for producing the biphenylene derivative represented by the general formula (1) of the present invention, the dihalobiphenyl derivative represented by the general formula (2) is dilithiated and / or diglynarized, and then reacted with zinc chloride. It can also be treated with a copper compound.
(ジハロビフェニル誘導体の製造方法)
一般式(2)で示されるジハロビフェニル誘導体は、下記一般式(3)で示される2,3−ジハロアントラセン誘導体と下記一般式(4)で示される2,3−ジハロアントラセン誘導体から誘導される3−ハロアントラセニル金属試薬をパラジウム及び/又はニッケル触媒存在下でクロスカップリングさせることで製造することができる。
(Method for producing dihalobiphenyl derivative)
The dihalobiphenyl derivative represented by the general formula (2) is composed of a 2,3-dihaloanthracene derivative represented by the following general formula (3) and a 2,3-dihaloanthracene derivative represented by the following general formula (4). It can be produced by cross-coupling the derived 3-haloanthracenyl metal reagent in the presence of palladium and / or nickel catalyst.
置換基X3及びX4は臭素原子又はヨウ素原子であり、その中でも好ましくはヨウ素原子である。
The substituents X 3 and X 4 are a bromine atom or an iodine atom, and among them, an iodine atom is preferable.
該3−ハロアントラセニル金属試薬は、その原料である一般式(4)で示される2,3−ジハロアントラセン誘導体を、例えばイソプロピルマグネシウムブロマイド等のグリニャール試薬あるいはn−ブチルリチウム等の有機リチウム試薬により一般式(4)のハロゲンであるX4とのハロゲン/金属交換反応を行った後、塩化亜鉛、トリメトキシボラン、トリ(イソプロポキシ)ボラン、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン等と反応させることで好適に調製することができる。なお、グリニャール試薬によるハロゲン/金属交換反応は、例えば「ジャーナル オブ オルガニック ケミストリィー」、2000年、65巻、4618−4634頁に記載されている方法、有機リチウム試薬によるハロゲン/金属交換反応は、例えば「ジャーナル オブ ケミカル リサーチ シノプシス」、1981年、185頁に記載されている−90℃以下でのハロゲンのリチオ化方法を用いることもできる。 The 3-haloanthracenyl metal reagent is prepared by using a 2,3-dihaloanthracene derivative represented by the general formula (4) as a raw material, a Grignard reagent such as isopropylmagnesium bromide, or an organic lithium such as n-butyllithium. After a halogen / metal exchange reaction with X 4 which is a halogen of the general formula (4) with a reagent, zinc chloride, trimethoxyborane, tri (isopropoxy) borane, 2-isopropoxy-4, 4, 5, It can be suitably prepared by reacting with 5-tetramethyl-1,3,2-dioxaborolane or the like. The halogen / metal exchange reaction using the Grignard reagent is, for example, the method described in “Journal of Organic Chemistry”, 2000, Vol. 65, pages 4618-4634, and the halogen / metal exchange reaction using an organolithium reagent is For example, the method of lithiation of halogen at −90 ° C. or lower described in “Journal of Chemical Research Synopsis”, 1981, p. 185 can also be used.
該3−ハロアントラセニル金属試薬と一般式(3)で示される2,3−ジハロアントラセン誘導体のクロスカップリング反応に用いる触媒はパラジウム及び/又はニッケル触媒であれば特に限定はなく、例えばテトラキス(トリフェニルホスフィン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム/トリフェニルホスフィン混合物、ビス(トリ−tert−ブチルホスフィン)パラジウム等の0価のパラジウム化合物;ジクロロビス(トリフェニルホスフィン)パラジウム、酢酸パラジウム/(トリ−tert−ブチルホスフィン)混合物、ジアセタトビス(トリフェニルホスフィン)パラジウム、ジクロロ(1,2−ビス(ジフェニルホスフィノ)エタン)パラジウム、ジクロロ(1,3−ビス(ジフェニルホスフィノ)プロパン)パラジウム、酢酸パラジウム/トリフェニルホスフィン混合物、酢酸パラジウム/2−(ジシクロヘキシルホスフィノ)−1,1’−ビフェニル混合物、ジクロロ(エチレンジアミン)パラジウム、ジクロロ(N,N,N’,N’−テトラメチルエチレンジアミン)パラジウム、ジクロロ(N,N,N’,N’−テトラメチルプロパンジアミン)パラジウム、ジクロロ(N,N,N’,N’−テトラメチルエチレンジアミン)パラジウム/トリフェニルホスフィン混合物等の2価のパラジウム化合物;ジクロロビス(トリフェニルホスフィン)ニッケル、ジクロロ(1,2−ビス(ジフェニルホスフィノ)エタン)ニッケル、ジクロロ(1,3−ビス(ジフェニルホスフィノ)プロパン)ニッケル、ジクロロ(エチレンジアミン)ニッケル、ジクロロ(N,N,N’,N’−テトラメチルエチレンジアミン)ニッケル、ジクロロ(N,N,N’,N’−テトラメチルプロパンジアミン)ニッケル、ジクロロ(N,N,N’,N’−テトラメチルエチレンジアミン)ニッケル/トリフェニルホスフィン混合物等の2価のニッケル化合物;ビス(1,5−シクロオクタジエン)ニッケル/トリフェニルホスフィン混合物等の0価のニッケル化合物を挙げることができ、中でも好ましくは0価あるいは2価のパラジウム化合物であり、特に好ましくはテトラキス(トリフェニルホスフィン)パラジウム、ジクロロビス(トリフェニルホスフィン)パラジウムである。 The catalyst used for the cross-coupling reaction between the 3-haloanthracenyl metal reagent and the 2,3-dihaloanthracene derivative represented by the general formula (3) is not particularly limited as long as it is a palladium and / or nickel catalyst. Zerovalent palladium compounds such as tetrakis (triphenylphosphine) palladium, tris (dibenzylideneacetone) dipalladium / triphenylphosphine mixture, bis (tri-tert-butylphosphine) palladium; dichlorobis (triphenylphosphine) palladium, palladium acetate / (Tri-tert-butylphosphine) mixture, diacetatobis (triphenylphosphine) palladium, dichloro (1,2-bis (diphenylphosphino) ethane) palladium, dichloro (1,3-bis (diphenylphosphino) propyl Pan) palladium, palladium acetate / triphenylphosphine mixture, palladium acetate / 2- (dicyclohexylphosphino) -1,1′-biphenyl mixture, dichloro (ethylenediamine) palladium, dichloro (N, N, N ′, N′-tetra) Divalent, such as methylethylenediamine) palladium, dichloro (N, N, N ′, N′-tetramethylpropanediamine) palladium, dichloro (N, N, N ′, N′-tetramethylethylenediamine) palladium / triphenylphosphine mixture Palladium compounds: dichlorobis (triphenylphosphine) nickel, dichloro (1,2-bis (diphenylphosphino) ethane) nickel, dichloro (1,3-bis (diphenylphosphino) propane) nickel, dichloro (ethylenediamine) ni Kell, dichloro (N, N, N ', N'-tetramethylethylenediamine) nickel, dichloro (N, N, N', N'-tetramethylpropanediamine) nickel, dichloro (N, N, N ', N' -A tetravalent ethylenediamine) divalent nickel compound such as a nickel / triphenylphosphine mixture; a zerovalent nickel compound such as a bis (1,5-cyclooctadiene) nickel / triphenylphosphine mixture can be mentioned, among which preferable Is a zero-valent or divalent palladium compound, particularly preferably tetrakis (triphenylphosphine) palladium or dichlorobis (triphenylphosphine) palladium.
該カップリング反応における、触媒の使用量は一般式(3)で示される2,3−ジハロアントラセン誘導体に対し、0.1〜20モル%の範囲が好ましい。また、一般式(4)から誘導される3−ハロアントラセニル金属試薬の使用量は一般式(3)で示される2,3−ジハロアントラセン誘導体1当量に対し、0.6〜1.5当量が好ましく、さらに好ましくは0.8〜1.4当量、特に好ましくは0.9〜1.2当量である。 The amount of the catalyst used in the coupling reaction is preferably in the range of 0.1 to 20 mol% with respect to the 2,3-dihaloanthracene derivative represented by the general formula (3). Moreover, the usage-amount of the 3-haloanthracenyl metal reagent induced | guided | derived from General formula (4) is 0.6-1 .1 with respect to 1 equivalent of 2,3-dihaloanthracene derivatives shown by General formula (3). 5 equivalent is preferable, More preferably, it is 0.8-1.4 equivalent, Most preferably, it is 0.9-1.2 equivalent.
反応は好ましくは溶媒中で実施する。該溶媒として、例えばTHF、ジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコール、N,N−ジメチルホルムアミド、N−メチルピロリドン、ジイソプロピルアミン、ピペリジン、トルエン、キシレン、ヘキサン、シクロヘキサン、エタノール、水等を挙げることができる。又、これら溶剤は1種若しくは2種以上の混合物を用いても良い。例えばトルエン/水、トルエン/エタノール/水のような2乃至3成分系でも使用することができる。 The reaction is preferably carried out in a solvent. Examples of the solvent include THF, diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol, N, N-dimethylformamide, N-methylpyrrolidone, diisopropylamine, piperidine, toluene, xylene, Examples include hexane, cyclohexane, ethanol, water, and the like. These solvents may be used alone or as a mixture of two or more. For example, a two-component system such as toluene / water or toluene / ethanol / water can be used.
なお、一般式(3)と一般式(4)で示される2,3−ジハロアントラセン誘導体が同じ化合物であっても良い。 The 2,3-dihaloanthracene derivative represented by the general formula (3) and the general formula (4) may be the same compound.
なお、反応系中に塩基を存在させることもできる。この場合の塩基の種類としては特に限定はなく、例えば炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸セシウム、りん酸カリウム、りん酸ナトリウム、水酸化ナトリウム、水酸化カリウム、フッ化カリウム等の無機塩基;ナトリウムメトキサイド、ナトリウムtert−ブトキサイド、カリウムtert−ブトキサイド等のアルコキサイド;トリエチルアミン、トリメチルアミン、トリプロピルアミン、トリブチルアミン、エチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、ジイソプロピルアミン、ピリジン、テトラブチルアンモニウムフルオライド等の有機塩基を好適なものとして挙げることができる。これらの塩基の使用量は一般式(3)で示される2,3−ジハロアントラセン誘導体1当量に対し、1.5〜10.0当量が好ましく、特に好ましくは2.0〜8.0当量である。さらにこれらの塩基と併用し、相間移動触媒を用いることもできる。相間移動触媒の種類は特に限定はなく、例えばトリオクチルメチルアンモニウムクロライド、テトラブチルアンモニウムクロライド、セチルピリジニウムクロライド、ベンジルトリメチルアンモニウムクロライド等を好適なものとして挙げることができる。これらの相間移動触媒の使用量は一般式(3)で示される2,3−ジハロアントラセン誘導体1当量に対し、0.1〜1.5当量が好ましく、特に好ましくは0.2〜0.8当量である。 A base can also be present in the reaction system. There are no particular limitations on the type of base in this case, for example, sodium carbonate, sodium bicarbonate, potassium bicarbonate, potassium carbonate, cesium carbonate, potassium phosphate, sodium phosphate, sodium hydroxide, potassium hydroxide, potassium fluoride. Inorganic bases such as sodium methoxide, sodium tert-butoxide, potassium tert-butoxide, etc .; triethylamine, trimethylamine, tripropylamine, tributylamine, ethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, diisopropyl Organic bases such as amine, pyridine and tetrabutylammonium fluoride can be mentioned as suitable ones. The amount of these bases used is preferably 1.5 to 10.0 equivalents, particularly preferably 2.0 to 8.0 equivalents, relative to 1 equivalent of the 2,3-dihaloanthracene derivative represented by the general formula (3). It is. Furthermore, a phase transfer catalyst can be used in combination with these bases. The type of the phase transfer catalyst is not particularly limited, and examples thereof include trioctylmethylammonium chloride, tetrabutylammonium chloride, cetylpyridinium chloride, benzyltrimethylammonium chloride and the like. The amount of these phase transfer catalysts used is preferably 0.1 to 1.5 equivalents, particularly preferably 0.2 to 0.00, per 1 equivalent of the 2,3-dihaloanthracene derivative represented by the general formula (3). 8 equivalents.
さらに反応系中にトリフェニルホスフィン等のホスフィンを存在させることもできる。これらのホスフィンの使用量は、該パラジウム及び/又はニッケル触媒1当量に対し、0.9〜8.0当量が好ましく、特に好ましくは1.0〜3.0当量である。 Further, phosphine such as triphenylphosphine can be present in the reaction system. The amount of these phosphines used is preferably 0.9 to 8.0 equivalents, particularly preferably 1.0 to 3.0 equivalents, relative to 1 equivalent of the palladium and / or nickel catalyst.
反応の温度は10〜120℃が好ましく、特に好ましくは30〜100℃であり、反応時間は1〜48時間が好ましい。 The reaction temperature is preferably 10 to 120 ° C, particularly preferably 30 to 100 ° C, and the reaction time is preferably 1 to 48 hours.
さらに、一般式(2)で示されるジハロビフェニル誘導体の別の製法について述べる。 Furthermore, another method for producing the dihalobiphenyl derivative represented by the general formula (2) will be described.
一般式(1)で示されるビフェニレン誘導体の前駆体である一般式(2)で示されるジハロビフェニル誘導体は、一般式(3)で示される2,3−ジハロアントラセン誘導体から誘導できる。 The dihalobiphenyl derivative represented by the general formula (2), which is a precursor of the biphenylene derivative represented by the general formula (1), can be derived from the 2,3-dihaloanthracene derivative represented by the general formula (3).
即ち、一般式(2)で示されるジハロビフェニル誘導体は、一般式(3)で示される2,3−ジハロアントラセン誘導体をリチオ化剤又はグリニャール化剤を用いてホモカップリングすることで製造することができる。 That is, the dihalobiphenyl derivative represented by the general formula (2) is produced by homocoupling the 2,3-dihaloanthracene derivative represented by the general formula (3) using a lithiating agent or a Grignard agent. can do.
2,3−ジハロアントラセン誘導体のホモカップリング反応に用いるリチオ化剤は、一般式(3)におけるハロゲンX1又はX3をリチオ化することができるものである限り特に限定はなく、例えばn−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、メチルリチウム、フェニルリチウム等の有機リチウム試薬;リチウムジイソプロピルアミド、リチウムヘキサメチルジシラジド等の有機リチウムアミド試薬;リチウム金属等を挙げることができ、好ましくは有機リチウム試薬であり、特に好ましくはn−ブチルリチウムである。 The lithiating agent used in the homocoupling reaction of the 2,3-dihaloanthracene derivative is not particularly limited as long as it can lithiate the halogen X 1 or X 3 in the general formula (3). -Organic lithium reagents such as butyllithium, sec-butyllithium, tert-butyllithium, methyllithium and phenyllithium; Organic lithiumamide reagents such as lithium diisopropylamide and lithium hexamethyldisilazide; An organic lithium reagent is preferred, and n-butyllithium is particularly preferred.
該リチオ化反応は、好ましくは溶媒中で実施する。用いる溶媒は特に限定はなく、例えばTHF、ジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、ジオキサン、トルエン、ペンタン、ヘキサン、シクロヘキサン等であり、好ましくはTHFである。又、これら溶剤は1種若しくは2種以上の混合物を用いても良い。 The lithiation reaction is preferably carried out in a solvent. The solvent to be used is not particularly limited, and examples thereof include THF, diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, dioxane, toluene, pentane, hexane, cyclohexane and the like, and preferably THF. These solvents may be used alone or as a mixture of two or more.
リチオ化剤は一般式(3)で示される2,3−ジハロアントラセン誘導体1当量に対し0.3〜1.2当量が好ましく、特に好ましくは0.4〜0.7当量である。リチオ化反応の温度は−100〜40℃が好ましく、特に好ましくは−90〜30℃であり、反応時間は1〜30時間が好ましく、特に好ましくは2〜20時間である。 The lithiating agent is preferably 0.3 to 1.2 equivalents, particularly preferably 0.4 to 0.7 equivalents, relative to 1 equivalent of the 2,3-dihaloanthracene derivative represented by the general formula (3). The temperature of the lithiation reaction is preferably −100 to 40 ° C., particularly preferably −90 to 30 ° C., and the reaction time is preferably 1 to 30 hours, particularly preferably 2 to 20 hours.
一方、一般式(3)で示される2,3−ジハロアントラセン誘導体のホモカップリング反応に用いるグリニャール化剤は、一般式(3)におけるハロゲンX1又はX3をグリニャール化することができるものである限り特に限定はなく、例えばマグネシウム金属、臭化エチルマグネシウム、臭化イソプロピルマグネシウム等のアルキルグリニャール試薬を挙げることができ、好ましくはマグネシウム金属である。マグネシウム金属の形態は特に限定はなく、例えば削り状、リボン状、粒状等を挙げることができる。 On the other hand, the Grignard agent used in the homocoupling reaction of the 2,3-dihaloanthracene derivative represented by the general formula (3) is capable of Grignardizing the halogen X 1 or X 3 in the general formula (3). As long as it is, there is no particular limitation, and examples thereof include alkyl Grignard reagents such as magnesium metal, ethyl magnesium bromide, isopropyl magnesium bromide, and the like is preferably magnesium metal. The form of the magnesium metal is not particularly limited, and examples thereof include a cutting shape, a ribbon shape, and a granular shape.
該グリニャール化剤は、例えばマグネシウム金属の場合、一般式(3)で示される2,3−ジハロアントラセン誘導体1当量に対し0.4〜0.7当量が好ましい。グリニャール化反応は、好ましくは溶媒中で実施する。用いる溶媒は特に限定はなく、例えばリチオ化反応で用いた溶剤を挙げることができる。グリニャール化反応の温度は−20〜100℃が好ましく、反応時間は1〜30時間が好ましい。 For example, in the case of magnesium metal, the Grignard agent is preferably 0.4 to 0.7 equivalent relative to 1 equivalent of the 2,3-dihaloanthracene derivative represented by the general formula (3). The Grignard reaction is preferably carried out in a solvent. The solvent used is not particularly limited, and examples thereof include the solvent used in the lithiation reaction. The temperature of the Grignard reaction is preferably -20 to 100 ° C, and the reaction time is preferably 1 to 30 hours.
一般式(2)で示されるジハロビフェニル誘導体の製造は、好ましくは窒素又はアルゴン等の不活性雰囲気下で実施する。 The production of the dihalobiphenyl derivative represented by the general formula (2) is preferably carried out under an inert atmosphere such as nitrogen or argon.
かくして得られた、一般式(2)で示されるジハロビフェニル誘導体は、さらに精製することができる。精製する方法は特に限定はなく、例えばカラムクロマトグラフィー、再結晶化、あるいは昇華による方法を挙げることができる。 The dihalobiphenyl derivative represented by the general formula (2) thus obtained can be further purified. The method for purification is not particularly limited, and examples thereof include column chromatography, recrystallization, or sublimation.
(2,3−ジハロアントラセン誘導体の製造方法)
一般式(3)及び一般式(4)で示される2,3−ジハロアントラセン誘導体は、下記一般式(5)で示される2,3−ジハロアントラキノン誘導体から以下に述べる二通りの方法で製造することができる。
(Method for producing 2,3-dihaloanthracene derivative)
The 2,3-dihaloanthracene derivative represented by the general formula (3) and the general formula (4) can be obtained from the 2,3-dihaloanthraquinone derivative represented by the following general formula (5) by the following two methods. Can be manufactured.
(方法1)
一般式(3)で示される2,3−ジハロアントラセン誘導体における置換基R5及びR6が水素原子である場合、一般式(5)で示される2,3−ジハロアントラキノン誘導体をヒドリド還元剤を用いて還元し、さらに酸触媒で脱水することで製造することができる。
(Method 1)
When the substituents R 5 and R 6 in the 2,3-dihaloanthracene derivative represented by the general formula (3) are hydrogen atoms, the 2,3-dihaloanthraquinone derivative represented by the general formula (5) is reduced by hydride. It can be produced by reducing with an agent and dehydrating with an acid catalyst.
用いるヒドリド還元剤は特に限定はなく、キノンをヒドロキシル基に還元できるものであれば良く、例えばジイソブチルアルミニウムヒドリド、ナトリウムボロヒドリド等を挙げることができる。該還元反応はTHF、ジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、トルエン、ヘキサン等の溶媒を用いて実施することが好ましい。反応温度は0〜60℃が好ましく、反応時間は1〜24時間が好ましい。ヒドリド還元剤の使用量は、一般式(5)で示される2,3−ジハロアントラキノン誘導体1当量に対し、1〜20当量が好ましい。 The hydride reducing agent to be used is not particularly limited as long as it can reduce quinone to a hydroxyl group, and examples thereof include diisobutylaluminum hydride and sodium borohydride. The reduction reaction is preferably carried out using a solvent such as THF, diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, toluene, hexane or the like. The reaction temperature is preferably 0 to 60 ° C., and the reaction time is preferably 1 to 24 hours. As for the usage-amount of a hydride reducing agent, 1-20 equivalent is preferable with respect to 1 equivalent of the 2, 3- dihaloanthraquinone derivative shown by General formula (5).
次に該ヒドリド還元により得られたジヒドロキシル体を酸触媒を用いて脱水反応を行う。酸触媒としては、例えば塩酸、硫酸、トルエンスルホン酸、リン酸等が挙げられる。これらの酸触媒は水溶液としても用いることもできる。反応温度は10〜100℃が好ましく、反応時間は1〜24時間が好ましい。なお、先のヒドリド還元剤を用いる還元反応終了時に該酸触媒を添加し、そのまま脱水反応を実施することもできる。脱水反応に用いる酸触媒の使用量は、一般式(5)で示される2,3−ジハロアントラキノン誘導体1当量に対し、5〜80当量が好ましい。 Next, the dihydroxyl compound obtained by the hydride reduction is subjected to a dehydration reaction using an acid catalyst. Examples of the acid catalyst include hydrochloric acid, sulfuric acid, toluenesulfonic acid, phosphoric acid and the like. These acid catalysts can also be used as an aqueous solution. The reaction temperature is preferably 10 to 100 ° C., and the reaction time is preferably 1 to 24 hours. The acid catalyst can be added at the end of the reduction reaction using the hydride reducing agent and the dehydration reaction can be carried out as it is. The amount of the acid catalyst used for the dehydration reaction is preferably 5 to 80 equivalents with respect to 1 equivalent of the 2,3-dihaloanthraquinone derivative represented by the general formula (5).
該ヒドリド還元反応及び脱水反応からなる工程は2〜4回繰り返すことで収率良く、一般式(3)で示される2,3−ジハロアントラセン誘導体を合成することができる。 The process consisting of the hydride reduction reaction and the dehydration reaction is repeated 2 to 4 times, and the 2,3-dihaloanthracene derivative represented by the general formula (3) can be synthesized with good yield.
なお、一般式(5)で示される2,3−ジハロアントラキノン誘導体は既存の方法を用いて合成することができる。例えば、「ベリヒテ」(独国)、1933年、66B巻、1876−1891頁に記載されている方法を参考にして、4−ブロモ−5−ヨード無水フタル酸と1,2−ジアルキルベンゼンから合成することができる。 The 2,3-dihaloanthraquinone derivative represented by the general formula (5) can be synthesized using an existing method. For example, it is synthesized from 4-bromo-5-iodophthalic anhydride and 1,2-dialkylbenzene with reference to a method described in “Berichite” (Germany), 1933, 66B, pp. 1876-1891. can do.
(方法2)
一般式(3)で示される2,3−ジハロアントラセン誘導体における置換基R5及びR6が炭素数2〜20のアルキル基、フッ素原子、炭素数2〜20のアルキニル基、炭素数2〜30のアルケニル基、又は炭素数4〜20のアリール基である場合、一般式(5)で示される2,3−ジハロアントラキノン誘導体と下記一般式(6)及び/又は(7)で示される有機金属試薬と反応させた後、還元することで製造することができる。
(Method 2)
The substituents R 5 and R 6 in the 2,3-dihaloanthracene derivative represented by the general formula (3) are an alkyl group having 2 to 20 carbon atoms, a fluorine atom, an alkynyl group having 2 to 20 carbon atoms, and 2 to 2 carbon atoms. In the case of a 30 alkenyl group or an aryl group having 4 to 20 carbon atoms, a 2,3-dihaloanthraquinone derivative represented by the general formula (5) and the following general formula (6) and / or (7) After reacting with an organometallic reagent, it can be produced by reduction.
R5M1 (6)
R6M2 (7)
(ここで、置換基R5及びR6は、一般式(3)で示される置換基と同意義を示し、置換基M1及びM2は、リチウム又はマグネシウムハライドを示す。)
一般式(6)、(7)で示される有機金属試薬はキノンと反応できるものであれば特に限定はなく、例えば有機リチウム試薬、グリニャール試薬を挙げることができ、有機リチウム試薬の具体例としては、例えばオクチルリチウム、ドデシルリチウム、パーフルオロドデシルリチウム等のアルキルリチウム試薬;フェニルリチウム、トリルリチウム、p−オクチルフェニルリチウム、p−(パーフルオロオクチル)フェニルリチウム等のアリールリチウム試薬;エチニルリチウム、1−ドデシニルリチウム、1−(パーフルオロドデシニル)リチウム、フェニルエチニルリチウム等のアルキニルリチウム試薬;エテニルリチウム、1−ドデセニルリチウム、1−(パーフルオロドデセニル)リチウム、フェニルエテニルリチウム等のアルケニルリチウム試薬;等を挙げることができ、グリニャール試薬の具体例としては、例えばオクチルマグネシムブロミド、ドデシルマグネシウムブロミド、パーフルオロドデシルマグネシウムブロミド等のアルキルグリニャール試薬;フェニルマグネシウムブロミド、トリルマグネシウムブロミド、p−オクチルフェニルマグネシウムブロミド、p−(パーフルオロオクチル)フェニルマグネシウムブロミド等のアリールグリニャール試薬;エチニルマグネシウムブロミド、1−ドデシニルマグネシウムブロミド、1−(パーフルオロドデシニル)マグネシウムブロミド、フェニルエチニルマグネシウムブロミド等のアルキニルグルニャール試薬;エテニルマグネシウムブロミド、1−ドデセニルマグネシウムブロミド、1−(パーフルオロドデセニル)マグネシウムブロミド、フェニルエテニルマグネシウムブロミド等のアルケニルグルニャール試薬;等を挙げることができる。
R 5 M 1 (6)
R 6 M 2 (7)
(Here, the substituents R 5 and R 6 have the same meaning as the substituent represented by the general formula (3), and the substituents M 1 and M 2 represent lithium or magnesium halide.)
The organometallic reagent represented by the general formulas (6) and (7) is not particularly limited as long as it can react with quinone, and examples thereof include an organic lithium reagent and a Grignard reagent. Specific examples of the organic lithium reagent include Alkyl lithium reagents such as octyl lithium, dodecyl lithium, perfluorododecyl lithium; aryl lithium reagents such as phenyl lithium, tolyl lithium, p-octylphenyl lithium, p- (perfluorooctyl) phenyl lithium; ethynyl lithium, 1- Alkynyllithium reagents such as dodecynyllithium, 1- (perfluorododecynyl) lithium, phenylethynyllithium; ethenyllithium, 1-dodecenyllithium, 1- (perfluorododecenyl) lithium, phenyl Arkeni such as ethenyl lithium Examples of the Grignard reagent include alkyl Grignard reagents such as octylmagnesium bromide, dodecylmagnesium bromide, perfluorododecylmagnesium bromide; phenylmagnesium bromide, tolylmagnesium bromide, p-octylphenyl Aryl Grignard reagents such as magnesium bromide and p- (perfluorooctyl) phenylmagnesium bromide; Alkynyl such as ethynylmagnesium bromide, 1-dodecynylmagnesium bromide, 1- (perfluorododecynyl) magnesium bromide and phenylethynylmagnesium bromide Grunard reagent; ethenyl magnesium bromide, 1-dodecenyl magnesium bromide, 1- (perfluorodode Yl) magnesium bromide, alkenyl glutaric Grignard reagent such as phenylethenyl bromide; and the like.
一般式(5)で示される2,3−ジハロアントラキノン誘導体と一般式(6)、(7)で示される有機金属試薬の反応はTHF、ジエチルエーテル、メチルtert−ブチルエーテル、エチルtert−ブチルエーテル、トルエン、ヘキサン等の溶媒を用いて実施することが好ましい。反応温度は−80〜60℃が好ましく、反応時間は5〜24時間が好ましい。該有機金属試薬の使用量は、一般式(5)で示される2,3−ジハロアントラキノン誘導体1当量に対し、2〜7当量が好ましい。次に該有機金属試薬との反応により得られたジヒドロキシル体を還元剤を用いて還元反応を行う。還元剤の具体例は、2塩化スズあるいは次亜リン酸ナトリウム/ヨウ化ナトリウムを用いることが好ましい。該還元反応は塩酸水溶液、酢酸等の溶媒を用いて実施することが好ましい。反応温度は20〜150℃が好ましく、反応時間は1〜5時間が好ましい。還元剤の使用量は、一般式(5)で示される2,3−ジハロアントラキノン誘導体1当量に対し、3〜10当量が好ましい。 The reaction between the 2,3-dihaloanthraquinone derivative represented by the general formula (5) and the organometallic reagent represented by the general formulas (6) and (7) is performed by THF, diethyl ether, methyl tert-butyl ether, ethyl tert-butyl ether, It is preferable to use a solvent such as toluene or hexane. The reaction temperature is preferably −80 to 60 ° C., and the reaction time is preferably 5 to 24 hours. The amount of the organometallic reagent used is preferably 2 to 7 equivalents relative to 1 equivalent of the 2,3-dihaloanthraquinone derivative represented by the general formula (5). Next, the dihydroxyl obtained by the reaction with the organometallic reagent is reduced using a reducing agent. Specific examples of the reducing agent are preferably tin dichloride or sodium hypophosphite / sodium iodide. The reduction reaction is preferably carried out using a solvent such as aqueous hydrochloric acid or acetic acid. The reaction temperature is preferably 20 to 150 ° C., and the reaction time is preferably 1 to 5 hours. The amount of the reducing agent used is preferably 3 to 10 equivalents relative to 1 equivalent of the 2,3-dihaloanthraquinone derivative represented by the general formula (5).
なお、9及び10位に置換基を有する一般式(3)で示される2,3−ジハロアントラセン誘導体は既存の方法を用いて合成することもできる。例えば、「シンレット」、2005年、217−222頁に記載されている方法を参考にして、2,3−ジハロアントラキノン誘導体から合成することができる。
(耐酸化性有機半導体材料)
次に、本発明の一般式(1)で示されるビフェニレン誘導体を含む耐酸化性有機半導体材料について述べる。該耐酸化性有機半導体材料は溶剤への溶解性、耐酸化性に優れ、好適な塗布性を有する。
The 2,3-dihaloanthracene derivative represented by the general formula (3) having substituents at the 9- and 10-positions can also be synthesized using an existing method. For example, it can be synthesized from a 2,3-dihaloanthraquinone derivative with reference to the method described in “Sinlet”, pages 217-222, 2005.
(Oxidation-resistant organic semiconductor materials)
Next, the oxidation resistant organic semiconductor material containing the biphenylene derivative represented by the general formula (1) of the present invention will be described. The oxidation-resistant organic semiconductor material is excellent in solubility in a solvent and oxidation resistance, and has suitable coating properties.
本発明の一般式(1)で示されるビフェニレン誘導体の溶解に用いる溶剤は、例えばo−ジクロロベンゼン、クロロベンゼン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロホルム、ジクロロメタン等のハロゲン系溶剤;THF、ジオキサン等のエーテル系溶剤;トルエン、キシレン等の芳香族炭化水素系溶剤;酢酸エチル、γ−ブチロラクトン等のエステル系溶剤;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶剤;等であり、その中でも装置の腐食の観点から好ましくトルエン、キシレン等の芳香族炭化水素系溶剤である。又、これら溶剤は1種若しくは2種以上の混合物を用いても良い。 Examples of the solvent used for dissolving the biphenylene derivative represented by the general formula (1) of the present invention include o-dichlorobenzene, chlorobenzene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chloroform, and dichloromethane. Halogen solvents; ether solvents such as THF and dioxane; aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as ethyl acetate and γ-butyrolactone; N, N-dimethylformamide, N-methylpyrrolidone and the like Amide solvents; among them, aromatic hydrocarbon solvents such as toluene and xylene are preferable from the viewpoint of corrosion of the apparatus. These solvents may be used alone or as a mixture of two or more.
上記に挙げた溶剤と一般式(1)で示されるビフェニレン誘導体を混合攪拌することにより、一般式(1)で示されるビフェニレン誘導体を含む耐酸化性有機半導体の溶液を調製することができる。この場合の温度は10〜130℃が好ましく、特に好ましくは20〜100℃である。得られる溶液の濃度は、溶剤及び温度により変えることができ、好ましくは0.01〜10.0重量%である。溶液の調製は空気中でも実施することができるが、好ましくは窒素、アルゴン等の不活性雰囲気下で調製する。 By mixing and stirring the above-mentioned solvent and the biphenylene derivative represented by the general formula (1), a solution of an oxidation-resistant organic semiconductor containing the biphenylene derivative represented by the general formula (1) can be prepared. In this case, the temperature is preferably 10 to 130 ° C, particularly preferably 20 to 100 ° C. The concentration of the resulting solution can vary depending on the solvent and temperature, and is preferably 0.01 to 10.0% by weight. The solution can be prepared in air, but is preferably prepared in an inert atmosphere such as nitrogen or argon.
一般式(1)で示されるビフェニレン誘導体を含む耐酸化性有機半導体材料の耐酸化性の評価は、該溶液を所定時間、空気と接触させる方法で実施することができる。まず用いる溶剤は予め脱気しておき、溶存酸素を除去する。空気との接触時間は、0.5分〜3時間が好適である。酸化の進行は、溶液の色の変化並びに薄層クロマトグラフィー、ガスクロマトグラフィー及び液体クロマトグラフィー分析による酸化物の検出により行うことができる。 Evaluation of the oxidation resistance of the oxidation-resistant organic semiconductor material containing the biphenylene derivative represented by the general formula (1) can be performed by a method in which the solution is brought into contact with air for a predetermined time. First, the solvent to be used is degassed in advance to remove dissolved oxygen. The contact time with air is preferably 0.5 minutes to 3 hours. The progress of oxidation can be carried out by changing the color of the solution and detecting the oxide by thin layer chromatography, gas chromatography and liquid chromatography analysis.
本発明の一般式(1)で示されるビフェニレン誘導体を含む耐酸化性有機半導体材料の溶液は、用いられる一般式(1)で示されるビフェニレン誘導体自体が適度の凝集性を有することから比較的に低温で溶剤へ溶解でき、且つ耐酸化性があることから、塗布法による有機薄膜の製造に好適に適用できる。即ち、雰囲気から厳密に空気を除く必要がないことから塗布工程を簡略化することができる。塗布は空気中でも実施できるが、好ましくは溶剤の乾燥を考慮して窒素気流下で行う。なお、好適な塗布性を得るために、本発明の一般式(1)で示されるビフェニレン誘導体を含む耐酸化性有機半導体材料の溶液の粘度は、0.005〜20ポアズの範囲にあることが好ましい。
(有機薄膜)
次に本発明の一般式(1)で示されるビフェニレン誘導体を含む耐酸化性有機半導体材料を用いた有機薄膜について述べる。係る有機薄膜は上記の耐酸化性有機半導体材料溶液の基板への塗布により製造することができる。
The solution of the oxidation-resistant organic semiconductor material containing the biphenylene derivative represented by the general formula (1) of the present invention has a relatively high cohesiveness because the biphenylene derivative itself represented by the general formula (1) used has appropriate cohesiveness. Since it can be dissolved in a solvent at a low temperature and has oxidation resistance, it can be suitably applied to the production of an organic thin film by a coating method. That is, since it is not necessary to strictly remove air from the atmosphere, the coating process can be simplified. The coating can be carried out in the air, but is preferably performed under a nitrogen stream in consideration of drying of the solvent. In order to obtain suitable coating properties, the viscosity of the solution of the oxidation-resistant organic semiconductor material containing the biphenylene derivative represented by the general formula (1) of the present invention may be in the range of 0.005 to 20 poise. preferable.
(Organic thin film)
Next, an organic thin film using an oxidation-resistant organic semiconductor material containing a biphenylene derivative represented by the general formula (1) of the present invention will be described. Such an organic thin film can be produced by applying the above-mentioned oxidation-resistant organic semiconductor material solution to a substrate.
基板への塗布による有機薄膜の製造は、該耐酸化性有機半導体材料溶液を基板上に塗布した後、加熱、気流、及び自然乾燥等の方法により溶剤を気化させることで実施することができる。該溶液中の一般式(1)で示されるビフェニレン誘導体の濃度は、特に限定はなく、例えば0.01〜10.0重量%であることが好ましい。塗布温度は特に限定はなく、例えば20〜130℃の間で好適に実施することができる。塗布の具体的方法は特に限定はなく、例えばスピンコート、キャストコート、ディップコート等を用いることができる。さらにスクリーン印刷、インクジェット印刷、グラビア印刷等の印刷技術を用いても作製することが可能である。使用する基板の材料は特に限定はなく、結晶性、非結晶性の種々の材料を用いることができる。また、基板は絶縁性あるいは誘電性を有する材料であっても良い。具体的な基板としては、例えばポリエチレンテレフタレート、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリエチレンナフタレート等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン等の金属基板等を挙げることができる。またこれらの基板の表面は、例えばオクタデシルトリクロロシラン、オクチルトリクロロシラン、オクタデシルトリメトキシシラン等のシラン類で修飾処理したものであっても使用することができる。塗布した後の溶剤の乾燥は、常圧若しくは減圧で除去することができる、又、加熱により乾燥してもよい。さらに、溶剤の気化速度を調節することで本発明の一般式(1)で示されるビフェニレン誘導体の結晶成長を制御することができる。基板への塗布により得られる有機薄膜の膜厚は特に限定はなく、好ましくは1nm〜100μm、特に好ましくは10nm〜20μmである。なお、このようにして得られた薄膜は、60〜150℃に加熱することでより高度に配列させることもできる。 The production of the organic thin film by application to the substrate can be carried out by applying the oxidation-resistant organic semiconductor material solution on the substrate and then evaporating the solvent by a method such as heating, air flow, and natural drying. The concentration of the biphenylene derivative represented by the general formula (1) in the solution is not particularly limited, and is preferably 0.01 to 10.0% by weight, for example. There is no particular limitation on the coating temperature, and for example, it can be suitably carried out between 20 and 130 ° C. The specific method of application is not particularly limited, and for example, spin coating, cast coating, dip coating, or the like can be used. Further, it can be produced by using a printing technique such as screen printing, ink jet printing, or gravure printing. The material of the substrate to be used is not particularly limited, and various crystalline and non-crystalline materials can be used. Further, the substrate may be made of an insulating or dielectric material. Specific examples of the substrate include plastic substrates such as polyethylene terephthalate, polymethyl methacrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, polyimide, polycarbonate, polyvinylphenol, polyvinyl alcohol, and polyethylene naphthalate; glass, quartz, aluminum oxide, silicon And inorganic material substrates such as silicon oxide, tantalum dioxide, tantalum pentoxide, and indium tin oxide; and metal substrates such as gold, copper, chromium, and titanium. The surfaces of these substrates can be used even if they are modified with silanes such as octadecyltrichlorosilane, octyltrichlorosilane, and octadecyltrimethoxysilane. Drying of the solvent after coating can be removed at normal pressure or reduced pressure, or may be performed by heating. Furthermore, crystal growth of the biphenylene derivative represented by the general formula (1) of the present invention can be controlled by adjusting the evaporation rate of the solvent. The film thickness of the organic thin film obtained by application | coating to a board | substrate does not have limitation in particular, Preferably it is 1 nm-100 micrometers, Especially preferably, it is 10 nm-20 micrometers. In addition, the thin film obtained in this way can also be arranged more highly by heating at 60-150 degreeC.
(発光材料)
本発明で得られた一般式(1)で示されるビフェニレン誘導体は、ビフェニレン誘導体の溶液の基板への塗布により発光材料として用いることができ、とりわけ有機電界発光素子の材料として用いることができる。従って、一般式(1)で示されるビフェニレン誘導体は有機EL材料としての使用が期待される。
(Luminescent material)
The biphenylene derivative represented by the general formula (1) obtained in the present invention can be used as a light emitting material by applying a solution of a biphenylene derivative to a substrate, and in particular, can be used as a material for an organic electroluminescent element. Accordingly, the biphenylene derivative represented by the general formula (1) is expected to be used as an organic EL material.
一般式(1)で示されるビフェニレン誘導体の溶液にする際の溶剤は、特に限定はなく、例えばo−ジクロロベンゼン、クロロベンゼン、1,2−ジクロロエタン、1,1,2,2−テトラクロロエタン、クロロホルム等のハロゲン系溶剤;THF、ジオキサン等のエーテル系溶剤;トルエン、キシレン、メシチレン等の芳香族化合物の炭化水素系溶剤;酢酸エチル、γ−ブチロラクトン等のエステル系溶剤;N,N−ジメチルホルムアミド、N−メチルピロリドン等のアミド系溶剤;等が挙げられる。又、これら溶剤は1種若しくは2種以上の混合物を用いても良い。中でも、好ましくはクロロベンゼン、トルエン等である。 The solvent for preparing the solution of the biphenylene derivative represented by the general formula (1) is not particularly limited. For example, o-dichlorobenzene, chlorobenzene, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, chloroform Halogen solvents such as THF; ether solvents such as THF and dioxane; hydrocarbon solvents of aromatic compounds such as toluene, xylene and mesitylene; ester solvents such as ethyl acetate and γ-butyrolactone; N, N-dimethylformamide, Amide solvents such as N-methylpyrrolidone; and the like. These solvents may be used alone or as a mixture of two or more. Of these, chlorobenzene, toluene and the like are preferable.
上記に挙げた溶剤と一般式(1)で示されるビフェニレン誘導体を混合攪拌することにより、一般式(1)で示されるビフェニレン誘導体の溶液となるものである。混合攪拌する際の温度は10〜200℃が好ましく、特に好ましくは20〜150℃である。混合攪拌する際の一般式(1)で示されるビフェニレン誘導体の濃度は、溶剤及び温度により変えることができ、0.01〜10.0重量%であることが好ましい。溶液の調製は空気中でも実施することができるが、好ましくは窒素、アルゴン等の不活性雰囲気下で調製する。 By mixing and stirring the above-mentioned solvent and the biphenylene derivative represented by the general formula (1), a solution of the biphenylene derivative represented by the general formula (1) is obtained. The temperature at the time of mixing and stirring is preferably 10 to 200 ° C, particularly preferably 20 to 150 ° C. The concentration of the biphenylene derivative represented by the general formula (1) when mixing and stirring can be changed depending on the solvent and the temperature, and is preferably 0.01 to 10.0% by weight. The solution can be prepared in air, but is preferably prepared in an inert atmosphere such as nitrogen or argon.
一般式(1)で示されるビフェニレン誘導体を含む溶液の塗布は空気中でも実施できるが、好ましくは溶剤の乾燥を考慮して窒素気流下で行う。なお、好適な塗布性を得るために、本発明の一般式(1)で示されるビフェニレン誘導体を含む溶液の粘度は、0.005〜20ポアズの範囲にあることが好ましい。 The application of the solution containing the biphenylene derivative represented by the general formula (1) can be carried out in the air, but is preferably carried out under a nitrogen stream in consideration of drying of the solvent. In order to obtain suitable coating properties, the viscosity of the solution containing the biphenylene derivative represented by the general formula (1) of the present invention is preferably in the range of 0.005 to 20 poise.
次に本発明の一般式(1)で示されるビフェニレン誘導体を含む溶液の塗布による発光材料の作製について述べる。係る発光材料は上記の溶液の基板への塗布により製造することができる。 Next, preparation of a light emitting material by applying a solution containing a biphenylene derivative represented by the general formula (1) of the present invention will be described. Such a luminescent material can be produced by applying the above solution to a substrate.
基板への塗布による発光材料の製造は、前記溶液を基板上に塗布した後、加熱、気流及び自然乾燥等の方法により溶剤を気化させることで実施することができる。該溶液中の一般式(1)で示されるビフェニレン誘導体の濃度は、特に限定はなく、例えば0.01〜10.0重量%であることが好ましい。塗布温度は特に限定はなく、例えば20〜200℃の間、特に好ましくは30〜100℃の間で好適に実施することができる。塗布の具体的方法は特に限定はなく、例えばスピンコート、キャストコート及びディップコート等を用いることができる。さらにスクリーン印刷、インクジェット印刷、グラビア印刷等の印刷技術を用いても作製することが可能である。使用する基板の材料は特に限定はなく、結晶性、非結晶性の種々の材料を用いることができる。基板の具体例としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリメチルメタクリレート、ポリエチレン、ポリプロピレン、ポリスチレン、環状ポリオレフィン、ポリイミド、ポリカーボネート、ポリビニルフェノール、ポリビニルアルコール、ポリ(ジイソプロピルフマル酸)、ポリ(ジエチルフマル酸)等のプラスチック基板;ガラス、石英、酸化アルミニウム、シリコン、酸化シリコン、二酸化タンタル、五酸化タンタル、インジウム錫酸化物等の無機材料基板;金、銅、クロム、チタン、アルミニウム等の金属基板を好適に用いることができる。またこれらの基板の表面は、例えばオクタデシルトリクロロシラン、オクタデシルトリメトキシシラン等のシラン類;ヘキサメチルジシラザン等のシリルアミン類で修飾処理したものであっても使用することができる。さらに、基板は絶縁性あるいは誘電性を有する材料であっても良い。塗布した後の溶剤の乾燥は、常圧若しくは減圧で除去することができる、又、加熱、窒素気流により乾燥してもよい。さらに、溶剤の気化速度を調節することで一般式(1)で示されるビフェニレン誘導体の膜質を制御することができる。基板への塗布により得られる発光材料の膜厚は特に限定はなく、好ましくは1nm〜100μm、特に好ましくは10nm〜20μmである。 The production of the light-emitting material by application to the substrate can be carried out by evaporating the solvent by a method such as heating, air flow, and natural drying after applying the solution onto the substrate. The concentration of the biphenylene derivative represented by the general formula (1) in the solution is not particularly limited, and is preferably 0.01 to 10.0% by weight, for example. There is no particular limitation on the coating temperature, and for example, it can be suitably carried out between 20 and 200 ° C, particularly preferably between 30 and 100 ° C. The specific method of application is not particularly limited, and for example, spin coating, cast coating, dip coating, and the like can be used. Further, it can be produced by using a printing technique such as screen printing, ink jet printing, or gravure printing. The material of the substrate to be used is not particularly limited, and various crystalline and non-crystalline materials can be used. Specific examples of the substrate include, for example, polyethylene terephthalate, polyethylene naphthalate, polymethyl methacrylate, polyethylene, polypropylene, polystyrene, cyclic polyolefin, polyimide, polycarbonate, polyvinylphenol, polyvinyl alcohol, poly (diisopropyl fumaric acid), poly (diethyl fumaric acid). ) Plastic substrate; glass, quartz, aluminum oxide, silicon, silicon oxide, tantalum dioxide, tantalum pentoxide, indium tin oxide and other inorganic material substrates; gold, copper, chromium, titanium, aluminum and other metal substrates are suitable Can be used. The surfaces of these substrates can be used even if they are modified with silanes such as octadecyltrichlorosilane and octadecyltrimethoxysilane; and silylamines such as hexamethyldisilazane. Further, the substrate may be made of an insulating or dielectric material. Drying of the solvent after coating can be removed under normal pressure or reduced pressure, or it may be dried by heating or a nitrogen stream. Furthermore, the film quality of the biphenylene derivative represented by the general formula (1) can be controlled by adjusting the evaporation rate of the solvent. The film thickness of the light emitting material obtained by coating on the substrate is not particularly limited, and is preferably 1 nm to 100 μm, particularly preferably 10 nm to 20 μm.
また、本発明の一般式(1)で示されるビフェニレン誘導体を用いた発光材料は、真空蒸着法によっても薄膜を作製することができる。真空蒸着法による薄膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で薄膜を作製する際の真空槽の真空度は、一般に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1.3×10−2〜1.3×10−5パスカルが好ましい。蒸着速度は、形成する膜圧によるが、0.005〜1.0nm/秒が好ましい。 In addition, the light-emitting material using the biphenylene derivative represented by the general formula (1) of the present invention can be formed into a thin film by a vacuum deposition method. The thin film by a vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus. The vacuum degree of the vacuum chamber when forming a thin film by the vacuum evaporation method is 1.3 × 10 −2 to 1.3 × 10 −5 Pascal that can be reached by a diffusion pump, a turbo molecular pump, a cryopump, or the like that is generally used. Is preferred. The deposition rate is preferably 0.005 to 1.0 nm / second, although it depends on the film pressure to be formed.
本発明の一般式(1)で示されるビフェニレン誘導体を用いた発光材料の発光量子収率は、好ましくは2〜80%、特に好ましくは3〜50%である。 The light emission quantum yield of the light emitting material using the biphenylene derivative represented by the general formula (1) of the present invention is preferably 2 to 80%, particularly preferably 3 to 50%.
本発明の一般式(1)で示されるビフェニレン誘導体は平面剛直性の高い分子構造を有することから、優れた半導体特性を与えることが期待できる。該ビフェニレン誘導体はトルエン等の溶媒に溶解し、溶液状態にあっても容易に空気酸化されることはない。従って、塗布法により半導体薄膜を容易に作製できる。また、本発明の一般式(1)で示されるビフェニレン誘導体は、長い共役系を有することから、黄色から赤色の長波長の発光を与えるアントラセン環を含むことから発光材料としても期待することができる。したがって、本発明の一般式(1)で示されるビフェニレン誘導体は電子ペーパー、有機ELディスプレイ、液晶ディスプレイ、又はICタグ用等のトランジスタの有機半導体活性相用途、さらに有機ELディスプレイの発光材料、ホスト材料、有機半導体レーザー材料、有機薄膜太陽電池材料、発光有機トランジスタ、フォトニック結晶材料等に利用することができる。 Since the biphenylene derivative represented by the general formula (1) of the present invention has a molecular structure with high plane rigidity, it can be expected to give excellent semiconductor characteristics. The biphenylene derivative is dissolved in a solvent such as toluene and is not easily oxidized by air even in a solution state. Therefore, a semiconductor thin film can be easily produced by a coating method. In addition, since the biphenylene derivative represented by the general formula (1) of the present invention has a long conjugated system, it includes an anthracene ring that emits light having a long wavelength from yellow to red, and thus can be expected as a light emitting material. . Accordingly, the biphenylene derivative represented by the general formula (1) of the present invention is used for an active phase of an organic semiconductor in a transistor such as an electronic paper, an organic EL display, a liquid crystal display, or an IC tag, and further, a light emitting material and a host material of an organic EL display. It can be used for organic semiconductor laser materials, organic thin film solar cell materials, light emitting organic transistors, photonic crystal materials, and the like.
優れた耐酸化性を有し、塗布法による半導体活性相形成が可能な、ビフェニレン誘導体及びその用途を提供する。さらに本発明の製造法では置換基を導入したビフェニレン誘導体を製造することができ、新規な有機半導体材料を提供することができる。 Provided are a biphenylene derivative having excellent oxidation resistance and capable of forming a semiconductor active phase by a coating method and its use. Furthermore, in the production method of the present invention, a biphenylene derivative having a substituent introduced therein can be produced, and a novel organic semiconductor material can be provided.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例にのみ限
定されるものではない。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited only to these Examples.
生成物の同定には1H NMRスペクトル及びマススペクトルを用いた。なお、1H NMRスペクトルは日本電子製JEOL GSX−270WB(270MHz)を用いて測定した。マススペクトル(MS)は日本電子製JEOL JMS−700を用いて、試料を直接導入し、電子衝突(EI)法(70エレクトロンボルト)又はFAB法(6キロエレクトロンボルト、キセノンガス、マトリックス(2−ニトロフェニルオクチルエーテル)で測定した。 For identification of the product, 1 H NMR spectrum and mass spectrum were used. The 1 H NMR spectrum was measured using JEOL GSX-270WB (270 MHz) manufactured by JEOL. The mass spectrum (MS) is obtained by directly introducing a sample using JEOL JMS-700 manufactured by JEOL, and by electron impact (EI) method (70 electron volts) or FAB method (6 kiloelectron volts, xenon gas, matrix (2- Nitrophenyl octyl ether).
反応の進行の確認等は薄層クロマトグラフィー、ガスクロマトグラフィー及びガスクロマトグラフィー−マススペクトル(GCMS)分析を用いた。 The progress of the reaction was confirmed using thin layer chromatography, gas chromatography and gas chromatography-mass spectrum (GCMS) analysis.
ガスクロマトグラフィー分析
装置 島津GC14B
カラム J&Wサイエンティフィック社製、DB−1,30m
ガスクロマトグラフィー−マススペクトル分析
装置 パーキンエルマーオートシステムXL(MS部;ターボマスゴールド)
カラム J&Wサイエンティフィック社製、DB−1,30m
反応用の溶媒は、断りのない限り市販品を用いた。なお、グリニャール試薬あるいはブチルリチウム等の有機金属試薬を用いた場合は、市販の脱水溶媒をそのまま用いた。
Gas chromatography analyzer Shimadzu GC14B
Column J & W Scientific, DB-1, 30m
Gas chromatography-mass spectrum analyzer Perkin Elmer Auto System XL (MS part; Turbomass Gold)
Column J & W Scientific, DB-1, 30m
Commercially available products were used as the reaction solvent unless otherwise noted. When a Grignard reagent or an organometallic reagent such as butyl lithium was used, a commercially available dehydrated solvent was used as it was.
発光材料としての評価は、薄膜状態での発光量子収率及び蛍光スペクトルを測定することで実施した。なお、発光量子収率は浜松ホトニクス製C9920−01を用い、蛍光スペクトルは日本分光製FP6500を用いて測定した。 Evaluation as a luminescent material was carried out by measuring a light emission quantum yield and a fluorescence spectrum in a thin film state. The emission quantum yield was measured using C9920-01 manufactured by Hamamatsu Photonics, and the fluorescence spectrum was measured using FP6500 manufactured by JASCO.
合成例1 (4−ブロモ−5−ヨード無水フタル酸の合成)
4−ブロモ−5−ヨード無水フタル酸は「ジャーナル オブ オーガニック ケミストリー」(米国)、1951年、16巻、1577−1581頁を参考に、以下の様に合成した。
Synthesis Example 1 (Synthesis of 4-bromo-5-iodophthalic anhydride)
4-Bromo-5-iodophthalic anhydride was synthesized as follows with reference to “Journal of Organic Chemistry” (USA), 1951, Vol. 16, pp. 1577-1581.
4−ブロモフタルイミド(東京化成工業製)9.95g(44.0mmol)を窒素ガスで置換した50mlの二口ナスフラスコに入れた。次いでヨウ素5.87g(23.1mmol)及び10%発煙硫酸(ヨツハタ化学工業製)12mlを加え、90℃で23時間反応を行った。反応混合物を室温に冷やして氷に注ぎ入れた後、ガラスフィルターでろ過し、黄色固体12.8gを得た。得られた固体を濃硫酸35mlに溶解させ、130℃で5時間反応を行った。反応混合物を氷冷後、氷水を加えて析出した固体をろ過し、フタル酸誘導体の固体13.8gを得た。次に得られた固体を、水酸化ナトリウム3.6gを水18mlに溶かした水溶液に室温で溶かした。この塩基性水溶液に酢酸を加えpHを3〜4に調整し、析出するフタル酸誘導体のモノナトリウム塩の白色沈殿をろ過した。得られた白色固体を水に懸濁させ、濃塩酸でpHを1以下にし、再びフタル酸誘導体として白色固体4.93gを得た。この固体をトルエン48mlに溶かし、無水酢酸8.7g(85.7mmol)を加え、105℃で4時間反応を行った。反応液を減圧濃縮して白色固体3.79gを得た。この固体から加熱トルエンに不溶な成分を除き、目的の4−ブロモ−5−ヨード無水フタル酸5.13g(14.5mmol)を得た(収率33%)。
1H NMR(CDCl3,22℃):δ=8.51(s,1H),8.23(s,1H)。
MS m/z: 353(M+,100%),309(M+−CO2,18%),282(M+−C2O3,10%),155(M+−C2O3−I,16%),74(M+−C2O3−I−Br,32%)。
4-Bromophthalimide (Tokyo Chemical Industry Co., Ltd.) 9.95 g (44.0 mmol) was placed in a 50 ml two-necked eggplant flask substituted with nitrogen gas. Subsequently, 5.87 g (23.1 mmol) of iodine and 12 ml of 10% fuming sulfuric acid (manufactured by Yotsuhata Chemical Industry) were added, and the reaction was performed at 90 ° C. for 23 hours. The reaction mixture was cooled to room temperature and poured into ice, and then filtered through a glass filter to obtain 12.8 g of a yellow solid. The obtained solid was dissolved in 35 ml of concentrated sulfuric acid and reacted at 130 ° C. for 5 hours. The reaction mixture was ice-cooled, ice water was added and the precipitated solid was filtered to obtain 13.8 g of a phthalic acid derivative solid. Next, the obtained solid was dissolved in an aqueous solution obtained by dissolving 3.6 g of sodium hydroxide in 18 ml of water at room temperature. Acetic acid was added to this basic aqueous solution to adjust the pH to 3 to 4, and the white precipitate of the monosodium salt of the phthalic acid derivative was filtered. The obtained white solid was suspended in water, the pH was adjusted to 1 or less with concentrated hydrochloric acid, and 4.93 g of a white solid was obtained again as a phthalic acid derivative. This solid was dissolved in 48 ml of toluene, 8.7 g (85.7 mmol) of acetic anhydride was added, and the reaction was performed at 105 ° C. for 4 hours. The reaction solution was concentrated under reduced pressure to obtain 3.79 g of a white solid. A component insoluble in heated toluene was removed from this solid to obtain 5.13 g (14.5 mmol) of the desired 4-bromo-5-iodophthalic anhydride (yield 33%).
1 H NMR (CDCl 3 , 22 ° C.): δ = 8.51 (s, 1H), 8.23 (s, 1H).
MS m / z: 353 (M + , 100%), 309 (M + —CO 2 , 18%), 282 (M + —C 2 O 3 , 10%), 155 (M + —C 2 O 3 − I, 16%), 74 ( M + -C 2 O 3 -I-Br, 32%).
合成例2 (1,2―ジドデシルベンゼンの合成)
1,2−ジドデシルベンゼンは「日本化学会誌」1989年、983−987頁に従い以下の様に合成した。
Synthesis Example 2 (Synthesis of 1,2-didodecylbenzene)
1,2-didodecylbenzene was synthesized as follows according to “The Chemical Society of Japan”, 1989, pages 983-987.
1,2−ジクロロベンゼン2.22g(15.1mmol)、ジクロロ〔1,3−ビス(ジフェニルホスフィノ)プロパン〕ニッケル(東京化成工業製)131mg(0.24mmol)、乾燥ジエチルエーテル11.5mlの混合液にドデシルマグネシウムブロミド(シグマ−アルドリッチ製、1.0mol/lジエチルエーテル溶液)45ml(45mmol)を窒素雰囲気中0℃で滴下した。35℃で20時間反応を行い、反応混合物を0℃に冷却し希塩酸を加え、ジエチルエーテルで抽出した。ジエチルエーテル溶液を水、飽和炭酸水素ナトリウム水溶液、水の順に洗浄し、塩化カルシウムで乾燥させた。得られた液体をシリカゲルカラムクロマトグラフィー(溶離液;ヘキサン)及び減圧蒸留で精製し、目的の1,2―ジドデシルベンゼン5.56g(13.4mmol)を得た(収率88%)。
1H NMR(CDCl3,22℃):δ=7.14−7.09(m,4H),2.59(t,J=7.8Hz,4H),1.55(m,4H),1.26(m,36H),0.88(t,J=6.8Hz,6H)。
MS m/z: 414(M+,100%),260(M+−C11H23,71%),106(M+−C22H46,98%)。
2.22 g (15.1 mmol) of 1,2-dichlorobenzene, 131 mg (0.24 mmol) of dichloro [1,3-bis (diphenylphosphino) propane] nickel (Tokyo Chemical Industry), 11.5 ml of dry diethyl ether To the mixed solution, 45 ml (45 mmol) of dodecylmagnesium bromide (manufactured by Sigma-Aldrich, 1.0 mol / l diethyl ether solution) was added dropwise at 0 ° C. in a nitrogen atmosphere. The reaction was carried out at 35 ° C. for 20 hours, the reaction mixture was cooled to 0 ° C., diluted hydrochloric acid was added, and the mixture was extracted with diethyl ether. The diethyl ether solution was washed with water, a saturated aqueous solution of sodium bicarbonate and water in that order and dried over calcium chloride. The resulting liquid was purified by silica gel column chromatography (eluent: hexane) and vacuum distillation to obtain 5.56 g (13.4 mmol) of the desired 1,2-didodecylbenzene (yield 88%).
1 H NMR (CDCl 3 , 22 ° C.): δ = 7.14-7.09 (m, 4H), 2.59 (t, J = 7.8 Hz, 4H), 1.55 (m, 4H), 1.26 (m, 36H), 0.88 (t, J = 6.8 Hz, 6H).
MS m / z: 414 (M +, 100%), 260 (M + -C 11 H 23, 71%), 106 (M + -C 22 H 46, 98%).
合成例3 (2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノンの合成)(一般式(5)の化合物)
2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノンは「ベリヒテ」(独国)、1933年、66B巻、1876−1891頁を参考に以下の様に合成した。
Synthesis Example 3 (Synthesis of 2-bromo-3-iodo-6,7-didodecylanthraquinone) (compound of general formula (5))
2-Bromo-3-iodo-6,7-didodecylanthraquinone was synthesized as follows with reference to “Berichte” (Germany), 1933, 66B, pages 1876-1891.
合成例1で得られた4−ブロモ−5−ヨード無水フタル酸2.82g(8.00mmol)、合成例2で得られた1,2−ジドデシルベンゼン3.32g(8.00mmol)、テトラクロロエタン5.0mlの混合液に塩化アルミニウム2.41g(18.1mmol)を加え、室温で3時間反応を行った。水を加えてクエンチし、さらに水洗浄を行い、真空加熱乾燥後、白色固体6.2gを得た。得られた固体を濃硫酸44mlに溶かし、80℃で1時間反応した。反応混合物を氷に注ぎ入れ、析出した固体をろ過して水で洗浄した。減圧乾燥後、シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:塩化メチレン=10:1)及びヘプタンからの再結晶で精製し、2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノンの黄色固体4.20g(5.60mmol)を得た(収率70%)。
1H NMR(CDCl3,22℃):δ=8.73(s,1H),8.45(s,1H),8.05(s,2H),2.75(m,4H),1.62(m,4H),1.26(m,36H),0.88(m,6H)。
MS m/z: 750(M+,100%),440(M+−C22H46,8%),313(M+−C22H46−I,2%),233(M+−C22H46−I−Br,1%)。
4-Bromo-5-iodophthalic anhydride 2.82 g (8.00 mmol) obtained in Synthesis Example 1, 3.32 g (8.00 mmol) of 1,2-didodecylbenzene obtained in Synthesis Example 2, tetra To a mixed solution of 5.0 ml of chloroethane, 2.41 g (18.1 mmol) of aluminum chloride was added and reacted at room temperature for 3 hours. Quenched by adding water, further washed with water, and dried under vacuum heating to obtain 6.2 g of a white solid. The obtained solid was dissolved in 44 ml of concentrated sulfuric acid and reacted at 80 ° C. for 1 hour. The reaction mixture was poured into ice, and the precipitated solid was filtered and washed with water. After drying under reduced pressure, the product was purified by silica gel column chromatography (eluent: hexane: methylene chloride = 10: 1) and recrystallization from heptane, and a yellow solid of 2-bromo-3-iodo-6,7-didodecylanthraquinone 4 .20 g (5.60 mmol) was obtained (yield 70%).
1 H NMR (CDCl 3 , 22 ° C.): δ = 8.73 (s, 1H), 8.45 (s, 1H), 8.05 (s, 2H), 2.75 (m, 4H), 1 .62 (m, 4H), 1.26 (m, 36H), 0.88 (m, 6H).
MS m / z: 750 (M +, 100%), 440 (M + -C 22 H 46, 8%), 313 (M + -C 22 H 46 -I, 2%), 233 (M + -C 22 H 46 -I-Br, 1 %).
合成例4 (2−ブロモ−3−ヨード−6,7−ジドデシルアントラセンの合成)(一般式(3)及び(4)の化合物)
窒素雰囲気下、100mlシュレンク反応容器に合成例3で合成した2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノン1.10g(1.47mmol)を入れた。次いでTHF17mlを加え、ヒドリド還元剤として水素化ジイソブチルアルミニウム(関東化学製、0.99mol/l、トルエン溶液)4.0ml(4.0mmol)を加え、室温で1.5時間還元反応を行った。次いで反応混合物に酸触媒として6M塩酸水溶液10mlを加え、65℃で3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。再びTHF17mlを加え、水素化ジイソブチルアルミニウム5.5ml(5.4mmol)を加え、室温で1.5時間還元反応を行った。次いで反応混合物に6M塩酸水溶液10mlを加え、3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(溶離液:ヘキサン)で精製し、2−ブロモ−3−ヨード−6,7−ジドデシルアントラセンの黄色固体629mg(0.87mmol)を得た(収率59%)。
1H NMR(CDCl3,22℃):δ=8.55(s,1H),8.27(s,1H),8.16(s,1H),8.15(s,1H),7.72(s,2H),2.78(m,4H),1.71(m,4H),1.27(m,36H)0.88(m,6H)。
MS m/z: 720(M+,100%),410(M+−C22H46,16%),283(M+−C22H46−I,4%),203(M+−C22H46−I−Br,5%)。
Synthesis Example 4 (Synthesis of 2-bromo-3-iodo-6,7-didodecylanthracene) (compounds of general formulas (3) and (4))
Under a nitrogen atmosphere, 1.10 g (1.47 mmol) of 2-bromo-3-iodo-6,7-didodecylanthraquinone synthesized in Synthesis Example 3 was placed in a 100 ml Schlenk reaction vessel. Next, 17 ml of THF was added, and 4.0 ml (4.0 mmol) of diisobutylaluminum hydride (manufactured by Kanto Chemical Co., 0.99 mol / l, toluene solution) was added as a hydride reducing agent, and a reduction reaction was performed at room temperature for 1.5 hours. Subsequently, 10 ml of 6M hydrochloric acid aqueous solution was added to the reaction mixture as an acid catalyst, and dehydration reaction was performed at 65 ° C. for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Again, 17 ml of THF was added, 5.5 ml (5.4 mmol) of diisobutylaluminum hydride was added, and a reduction reaction was performed at room temperature for 1.5 hours. Subsequently, 10 ml of 6M hydrochloric acid aqueous solution was added to the reaction mixture, and dehydration reaction was performed for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel column chromatography (eluent: hexane) gave 629 mg (0.87 mmol) of 2-bromo-3-iodo-6,7-didodecylanthracene as a yellow solid (yield 59%).
1 H NMR (CDCl 3 , 22 ° C.): δ = 8.55 (s, 1H), 8.27 (s, 1H), 8.16 (s, 1H), 8.15 (s, 1H), 7 .72 (s, 2H), 2.78 (m, 4H), 1.71 (m, 4H), 1.27 (m, 36H) 0.88 (m, 6H).
MS m / z: 720 (M +, 100%), 410 (M + -C 22 H 46, 16%), 283 (M + -C 22 H 46 -I, 4%), 203 (M + -C 22 H 46 -I-Br, 5 %).
実施例1 (6,7,6’,7’−テトラドデシル−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)[一般式(2)で示されるジハロビフェニル誘導体の合成]
窒素雰囲気下、100mlシュレンク反応容器に合成例4で合成した2−ブロモ−3−ヨード−6,7−ジドデシルアントラセン205mg(0.285mmol)及びTHF8mlを添加した。この溶液を−55℃に冷却し、イソプロピルマグネシウムブロマイド(東京化成工業製、0.81M)のTHF溶液0.70ml(0.57mmol)を滴下した。5分間熟成後、−78℃に冷却し、トリメトキシボラン(和光純薬工業製)59.2mg(0.57mmol)を滴下した。徐々に室温まで昇温した後、3M塩酸水溶液を加えて30分間攪拌後、トルエンを添加し分相した。有機相を減圧濃縮した。得られた固形物に、合成例4で合成した2−ブロモ−3−ヨード−6,7−ジドデシルアントラセン210mg(0.292mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)16.5mg(0.014mmol)、トルエン5ml、及びエタノール1.2mlを添加した。さらに炭酸ナトリウム92.8mg(0.873mmol)と水1.6mlからなる水溶液を加え、60℃で24時間反応を実施した。室温まで冷却後、トルエン及び水を添加し分相した。有機相を濃縮し、得られた残渣をトルエン5mlに溶解後、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)0.02mlを添加し、室温で2時間撹拌した。このトルエン溶液を水で2回洗浄後、無水硫酸ナトリウムで乾燥した。有機相を濾過し、減圧濃縮し、得られた残渣をシリカゲルを充填したカラムで濾過した(溶媒、ヘキサン)。得られた粗固体をヘプタンから再結晶化し、目的物の黄色固体287mgを得た(収率85%)。
1H NMR(CDCl3,22℃):δ=8.33(s,2H),8.31(s,2H),8.29(s,2H),7.97(s,2H),7.78(s,2H),7.75(s,2H),2.79(m,8H),1.72(m,8H),1.28(m,72H)0.87(m,12H)。
1H NMRスペクトルを図1に示した。
MS m/z: 1185(M+,2%),592(M+/2,100)。
Example 1 (Synthesis of 6,7,6 ′, 7′-tetradodecyl-3,3′-dibromo-2,2′-bianthracenyl) [Synthesis of dihalobiphenyl derivative represented by general formula (2)]
Under a nitrogen atmosphere, 205 mg (0.285 mmol) of 2-bromo-3-iodo-6,7-didodecylanthracene synthesized in Synthesis Example 4 and 8 ml of THF were added to a 100 ml Schlenk reaction vessel. This solution was cooled to −55 ° C., and 0.70 ml (0.57 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Tokyo Chemical Industry Co., Ltd., 0.81 M) was added dropwise. After aging for 5 minutes, the mixture was cooled to −78 ° C., and 59.2 mg (0.57 mmol) of trimethoxyborane (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After gradually warming to room temperature, 3M aqueous hydrochloric acid solution was added and stirred for 30 minutes, and then toluene was added for phase separation. The organic phase was concentrated under reduced pressure. To the obtained solid, 210 mg (0.292 mmol) of 2-bromo-3-iodo-6,7-didodecylanthracene synthesized in Synthesis Example 4 and tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 16. 5 mg (0.014 mmol), 5 ml of toluene, and 1.2 ml of ethanol were added. Further, an aqueous solution consisting of 92.8 mg (0.873 mmol) of sodium carbonate and 1.6 ml of water was added, and the reaction was carried out at 60 ° C. for 24 hours. After cooling to room temperature, toluene and water were added for phase separation. The organic phase was concentrated, and the resulting residue was dissolved in 5 ml of toluene, 0.02 ml of 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. This toluene solution was washed twice with water and then dried over anhydrous sodium sulfate. The organic phase was filtered and concentrated under reduced pressure, and the resulting residue was filtered through a column packed with silica gel (solvent, hexane). The obtained crude solid was recrystallized from heptane to obtain 287 mg of the target yellow solid (yield 85%).
1 H NMR (CDCl 3 , 22 ° C.): δ = 8.33 (s, 2H), 8.31 (s, 2H), 8.29 (s, 2H), 7.97 (s, 2H), 7 .78 (s, 2H), 7.75 (s, 2H), 2.79 (m, 8H), 1.72 (m, 8H), 1.28 (m, 72H) 0.87 (m, 12H) ).
The 1 H NMR spectrum is shown in FIG.
MS m / z: 1185 (M + , 2%), 592 (M + / 2, 100).
1H NMR及びMS測定より、6,7,6’,7’−テトラドデシル−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお。その構造式を下記に示す。 From 1 H NMR and MS measurements, it was confirmed that 6,7,6 ′, 7′-tetradodecyl-3,3′-dibromo-2,2′-bianthracenyl was obtained. Note that. Its structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に実施例1で合成した6,7,6’,7’−テトラドデシル−3,3’−ジブロモ−2,2’−ビアントラセニル240mg(0.202mmol)及びジエチルエーテル7mlを添加した。この混合物を0℃に冷却後、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.28ml(0.44mmol)を滴下した。1時間かけて5℃まで昇温しメタル化の熟成を行った。一方、別の100mlシュレンク反応容器に塩化銅(II)(和光純薬工業製)95.3mg(0.709mmol)及びTHF10mlを添加し、−78℃に冷却した。ここへ先のメタル化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。徐々に昇温し、一晩かけて室温まで反応温度を上げた。3M塩酸水溶液及びトルエンを添加した。分相し、有機相をさらに水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を濾過し、減圧濃縮し、得られた粗固体をトルエンから再結晶化し、目的物の黄色固体108mgを得た(収率52%)。
1H NMR(重トルエン,60℃):δ=7.95(s,4H),7.65(s,4H),7.40(s,4H),2.83(t,J=8.5Hz,8H),1.78(m,8H),1.31(m,72H)0.92(m,12H)。
1H NMRスペクトルを図2に示した。
FABMS m/z: 1026(M+)。
Under a nitrogen atmosphere, 240 mg (0.202 mmol) of 6,7,6 ′, 7′-tetradodecyl-3,3′-dibromo-2,2′-bianthracenyl synthesized in Example 1 and diethyl ether in a 100 ml Schlenk reaction vessel 7 ml was added. After cooling the mixture to 0 ° C., 0.28 ml (0.44 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise. The temperature was raised to 5 ° C. over 1 hour, and aging of metallization was performed. On the other hand, 95.3 mg (0.709 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 10 ml of THF were added to another 100 ml Schlenk reaction vessel and cooled to -78 ° C. The diethyl ether solution of the metallized product was transferred here using a Teflon (registered trademark) cannula. The temperature was gradually raised, and the reaction temperature was raised to room temperature overnight. 3M aqueous hydrochloric acid and toluene were added. The phases were separated and the organic phase was further washed with water and dried over anhydrous sodium sulfate. The organic phase was filtered and concentrated under reduced pressure, and the resulting crude solid was recrystallized from toluene to obtain 108 mg of the objective yellow solid (yield 52%).
1 H NMR (deuterium toluene, 60 ° C.): δ = 7.95 (s, 4H), 7.65 (s, 4H), 7.40 (s, 4H), 2.83 (t, J = 8. 5 Hz, 8H), 1.78 (m, 8H), 1.31 (m, 72H) 0.92 (m, 12H).
The 1 H NMR spectrum is shown in FIG.
FABMS m / z: 1026 (M + ).
1H NMR及びMS測定より、テトラドデシルジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From 1 H NMR and MS measurements, it was confirmed that tetradodecyldinaphthobiphenylene was obtained. The structural formula is shown below.
合成例2で1,2−ジクロロベンゼンの代わりに、1−クロロ−2−フルオロベンゼン(東京化成工業製)を用いた以外は合成例2と同じ操作を繰り返して1−ドデシル−2−フルオロベンゼンを合成した(収率80%)。この1−ドデシル−2−フルオロベンゼンと合成例1で得られた4−ブロモ−5−ヨード無水フタル酸を用い、合成例3と同じ操作を繰り返し2−ブロモ−3−ヨード−6,7−(ドデシル)フルオロアントラキノンを得(収率54%)、さらに合成例4と同じ操作を繰り返して、2−ブロモ−3−ヨード−6,7−(ドデシル)フルオロアントラセンへ変換した(収率63%)。
The same operation as in Synthesis Example 2 was repeated except that 1-chloro-2-fluorobenzene (manufactured by Tokyo Chemical Industry Co., Ltd.) was used instead of 1,2-dichlorobenzene in Synthesis Example 2, and 1-dodecyl-2-fluorobenzene was repeated. Was synthesized (yield 80%). Using this 1-dodecyl-2-fluorobenzene and 4-bromo-5-iodophthalic anhydride obtained in Synthesis Example 1, the same operation as in Synthesis Example 3 was repeated and 2-bromo-3-iodo-6,7- (Dodecyl) fluoroanthraquinone was obtained (yield 54%), and further the same operation as in Synthesis Example 4 was repeated to convert to 2-bromo-3-iodo-6,7- (dodecyl) fluoroanthracene (yield 63%). ).
実施例3 (ジドデシルジフルオロ−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)[一般式(2)で示されるジハロビフェニル誘導体の合成]
窒素雰囲気下、100mlシュレンク反応容器に合成例5で合成した2−ブロモ−3−ヨード−6,7−(ドデシル)フルオロアントラセン464mg(0.815mmol)及びTHF10mlを添加した。この溶液を−60℃に冷却し、イソプロピルマグネシウムブロマイド(関東化学製、0.65M)のTHF溶液1.3ml(0.84mmol)を滴下した。5分間熟成後、−78℃に冷却し、塩化亜鉛(シグマ−アルドリッチ製、1.0M)のジエチルエーテル溶液0.84ml(0.84mmol)を滴下した。徐々に室温まで昇温した後、生成したスラリー液を減圧濃縮した。得られた固形物に、合成例5で合成した2−ブロモ−3−ヨード−6−ドデシル−7−フルオロアントラセン471mg(0.827mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)47.1mg(0.041mmol)、及びTHF8mlを添加した。64℃で8時間反応を実施した。室温まで冷却後、トルエン及び水を添加し分相した。有機相を濃縮し、得られた残渣をトルエン5mlに溶解後、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)0.1mlを添加し、室温で2時間撹拌した。このトルエン溶液を水で2回洗浄後、有機相を減圧濃縮し、得られた残渣に飽和食塩水及びトルエンを添加した。分相し、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を濾過し、減圧濃縮し、得られた残渣をシリカゲルを充填したカラムで濾過した(溶媒;ヘキサン)。濾液を減圧濃縮し、得られた粗固体をヘプタンから再結晶化し、ジドデシルジフルオロ−3,3’−ジブロモ−2,2’−ビアントラセニルの2種類の異性体の混合物からなる黄色固体440mgを得た(収率61%)。
MS m/z: 885(M+,4%),725(M+−2Br,100)。
Example 3 (Synthesis of didodecyldifluoro-3,3′-dibromo-2,2′-bianthracenyl) [Synthesis of dihalobiphenyl derivative represented by general formula (2)]
Under a nitrogen atmosphere, 464 mg (0.815 mmol) of 2-bromo-3-iodo-6,7- (dodecyl) fluoroanthracene synthesized in Synthesis Example 5 and 10 ml of THF were added to a 100 ml Schlenk reaction vessel. This solution was cooled to −60 ° C., and 1.3 ml (0.84 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Kanto Chemical Co., Ltd., 0.65 M) was added dropwise. After aging for 5 minutes, the mixture was cooled to −78 ° C., and 0.84 ml (0.84 mmol) of a diethyl ether solution of zinc chloride (manufactured by Sigma-Aldrich, 1.0 M) was added dropwise. After gradually raising the temperature to room temperature, the produced slurry was concentrated under reduced pressure. To the obtained solid, 471 mg (0.827 mmol) of 2-bromo-3-iodo-6-dodecyl-7-fluoroanthracene synthesized in Synthesis Example 5 and tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 47 0.1 mg (0.041 mmol) and THF 8 ml were added. The reaction was carried out at 64 ° C. for 8 hours. After cooling to room temperature, toluene and water were added for phase separation. The organic phase was concentrated, and the resulting residue was dissolved in 5 ml of toluene, 0.1 ml of 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. The toluene solution was washed twice with water, the organic phase was concentrated under reduced pressure, and saturated brine and toluene were added to the resulting residue. The phases were separated and the organic phase was washed with water and dried over anhydrous sodium sulfate. The organic phase was filtered and concentrated under reduced pressure, and the resulting residue was filtered through a column packed with silica gel (solvent; hexane). The filtrate was concentrated under reduced pressure, and the resulting crude solid was recrystallized from heptane to obtain 440 mg of a yellow solid consisting of a mixture of two isomers of didodecyldifluoro-3,3′-dibromo-2,2′-bianthracenyl. (Yield 61%).
MS m / z: 885 (M + , 4%), 725 (M + -2Br, 100).
MS測定より、ジドデシルジフルオロ−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお、その構造式を下記に示す。 From the MS measurement, it was confirmed that didodecyldifluoro-3,3'-dibromo-2,2'-bianthracenyl was obtained. The structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に、実施例3で合成したジドデシルジフルオロ−3,3’−ジブロモ−2,2’−ビアントラセニル388mg(0.438mmol)及びジエチルエーテル7mlを添加した。この混合物を0℃に冷却し、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.60ml(0.95mmol)を滴下した。0℃で80分間撹拌した(リチオ化反応)。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)177mg(1.31mmol)及びTHF15mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、2種類のジドデシルジフルオロジナフトビフェニレンの2種類の異性体の混合物からなる黄色固体146mgを得た(収率46%)。
FABMS m/z: 725(M+)。
Under a nitrogen atmosphere, 388 mg (0.438 mmol) of didodecyldifluoro-3,3′-dibromo-2,2′-bianthracenyl synthesized in Example 3 and 7 ml of diethyl ether were added to a 100 ml Schlenk reaction vessel. The mixture was cooled to 0 ° C., and 0.60 ml (0.95 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise. The mixture was stirred at 0 ° C. for 80 minutes (lithiation reaction). To another 100 ml Schlenk reaction vessel, 177 mg (1.31 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 15 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the obtained solid was recrystallized from toluene to obtain 146 mg of a yellow solid composed of a mixture of two kinds of isomers of two kinds of didodecyldifluorodinaphthobiphenylene (yield: 46). %).
FABMS m / z: 725 (M + ).
MS測定より、ジドデシルジフルオロジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that didodecyldifluorodinaphthobiphenylene was obtained. The structural formula is shown below.
100mlシュレンク反応容器に、1,2−ジヨードベンゼン(東京化成工業製)5.56g(16.8mmol)及びジクロロメタン30mlを添加し、0℃に冷却した。鉄粉(シグマ−アルドリッチ製)67mg及びヨウ素10mg(0.04mmol)を添加後、臭素0.87ml(17mmol)を滴下した。0℃で8時間撹拌後、亜硫酸水素ナトリウム水溶液を添加し、反応を停止させた。有機相を水で洗浄後、無水硫酸ナトリウムで乾燥した。減圧濃縮し、得られた残渣をTHF:メタノール=1:1から2回再結晶化し、4−ブロモ−1,2−ジヨードベンゼン4.94gの白色結晶を得た(収率72%)。
To a 100 ml Schlenk reaction vessel, 5.56 g (16.8 mmol) of 1,2-diiodobenzene (manufactured by Tokyo Chemical Industry) and 30 ml of dichloromethane were added and cooled to 0 ° C. After adding 67 mg of iron powder (manufactured by Sigma-Aldrich) and 10 mg (0.04 mmol) of iodine, 0.87 ml (17 mmol) of bromine was added dropwise. After stirring at 0 ° C. for 8 hours, an aqueous sodium hydrogen sulfite solution was added to stop the reaction. The organic phase was washed with water and dried over anhydrous sodium sulfate. The residue was recrystallized twice from THF: methanol = 1: 1 to obtain 4.94 g of 4-bromo-1,2-diiodobenzene as white crystals (yield 72%).
合成例7 (4−ブロモ−1,2−(パーフルオロドデシル)ベンゼンの合成)
4−ブロモ−1,2−(パーフルオロドデシル)ベンゼンは、「ジャーナル オブ フルオリン ケミストリィー」、1989年、43巻、207−228頁を参考に次のように合成した。
Synthesis Example 7 (Synthesis of 4-bromo-1,2- (perfluorododecyl) benzene)
4-Bromo-1,2- (perfluorododecyl) benzene was synthesized as follows with reference to “Journal of Fluorine Chemistry”, 1989, 43, 207-228.
窒素雰囲気下、100mlシュレンク反応容器に、銅粉(カッパーブロンズ)(シグマ−アルドリッチ製)2.85g(44.8mmol)、パーフルオロドデシルアイオダイド(シンクエスト製)18.4g(24.6mmol)、合成例6で合成した4−ブロモ−1,2−ジヨードベンゼン4.58g(11.2mmol)、及びジメチルスルホキシド(和光純薬工業製、脱水品)18mlを添加し、125℃に加熱し、8時間反応させた。室温に冷却後、水を添加し反応を停止させた。さらにジエチルエーテルを添加し、混合物をセライトを用いて濾過した。濾液をジエチルエーテル抽出し、合わせた有機相を水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン)、4−ブロモ−1,2−(パーフルオロドデシル)ベンゼンの無色の液体6.24gを得た(収率40%)。 In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 2.85 g (44.8 mmol) of copper powder (copper bronze) (manufactured by Sigma-Aldrich), 18.4 g (24.6 mmol) of perfluorododecyl iodide (manufactured by Synquest), 4.58 g (11.2 mmol) of 4-bromo-1,2-diiodobenzene synthesized in Synthesis Example 6 and 18 ml of dimethyl sulfoxide (manufactured by Wako Pure Chemical Industries, Ltd., dehydrated product) were added and heated to 125 ° C., The reaction was allowed for 8 hours. After cooling to room temperature, water was added to stop the reaction. Further diethyl ether was added and the mixture was filtered through celite. The filtrate was extracted with diethyl ether, and the combined organic phases were washed with water and dried over anhydrous magnesium sulfate. The residue was purified by silica gel column chromatography (solvent: hexane) to obtain 6.24 g of 4-bromo-1,2- (perfluorododecyl) benzene as a colorless liquid (yield 40). %).
合成例8 (2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラキノンの合成)(一般式(5)の化合物)
窒素雰囲気下、300mlシュレンク反応容器に、合成例7で得られた4−ブロモ−1,2−(パーフルオロドデシル)ベンゼン6.11g(4.39mmol)及びTHF80mlを添加した。この溶液を−50℃に冷却し、イソプロピルマグネシウムブロマイド(関東化学製、0.65M)のTHF溶液6.8ml(4.4mmol)を滴下した。−50℃で30分熟成後、ここに合成例1で合成した4−ブロモ−5−ヨード無水フタル酸1.48g(4.20mmol)とTHF20mlからなる溶液を滴下した。反応混合物を一晩かけて室温まで昇温した後、氷冷し3M塩酸水溶液を添加した。ジエチルエーテルで抽出し、合わせた有機相を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。減圧下濃縮し、白色固体7.00g得た。得られた固体に濃硫酸40mlを添加し、80℃で12時間反応した。反応混合物を氷に注ぎ入れ、析出した固体をろ過して水で洗浄した。乾燥後、シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:塩化メチレン=15:1)及びヘプタンからの再結晶で精製し、2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラキノンの固体1.86g(1.13mmol)を得た(収率27%)。
Synthesis Example 8 (Synthesis of 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthraquinone) (Compound of general formula (5))
Under a nitrogen atmosphere, 6.11 g (4.39 mmol) of 4-bromo-1,2- (perfluorododecyl) benzene obtained in Synthesis Example 7 and 80 ml of THF were added to a 300 ml Schlenk reaction vessel. This solution was cooled to −50 ° C., and 6.8 ml (4.4 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Kanto Chemical Co., Ltd., 0.65 M) was added dropwise. After aging at −50 ° C. for 30 minutes, a solution consisting of 1.48 g (4.20 mmol) of 4-bromo-5-iodophthalic anhydride synthesized in Synthesis Example 1 and 20 ml of THF was added dropwise thereto. The reaction mixture was allowed to warm to room temperature overnight, then cooled with ice and 3M aqueous hydrochloric acid was added. The mixture was extracted with diethyl ether, and the combined organic phases were washed with saturated brine and dried over anhydrous magnesium sulfate. Concentration under reduced pressure gave 7.00 g of a white solid. Concentrated sulfuric acid (40 ml) was added to the obtained solid and reacted at 80 ° C. for 12 hours. The reaction mixture was poured into ice, and the precipitated solid was filtered and washed with water. After drying, the product was purified by silica gel column chromatography (eluent: hexane: methylene chloride = 15: 1) and recrystallization from heptane, and 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthraquinone was purified. 1.86 g (1.13 mmol) of solid was obtained (27% yield).
合成例9 (2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラセンの合成)(一般式(3)及び(4)の化合物)
窒素雰囲気下、100mlシュレンク反応容器に合成例8で合成した2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラキノン1.81g(1.10mmol)を入れた。次いでTHF15mlを加え、ヒドリド還元剤である水素化ジイソブチルアルミニウム(関東化学製、0.99mol/l、トルエン溶液)3.5ml(3.5mmol)を加え、室温で1.5時間還元反応を行った。次いで反応混合物に酸触媒として6M塩酸水溶液10mlを加え、65℃で3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。再びTHF15mlを加え、水素化ジイソブチルアルミニウム3.5ml(3.5mmol)を加え、室温で1.5時間還元反応を行った。次いで反応混合物に6M塩酸水溶液10mlを加え、3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン)で精製し、2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラセンの黄色固体1.12gを得た(収率63%)。
Synthesis Example 9 (Synthesis of 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthracene) (Compounds of general formulas (3) and (4))
Under a nitrogen atmosphere, 1.81 g (1.10 mmol) of 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthraquinone synthesized in Synthesis Example 8 was placed in a 100 ml Schlenk reaction vessel. Next, 15 ml of THF was added, and 3.5 ml (3.5 mmol) of diisobutylaluminum hydride (manufactured by Kanto Chemical Co., 0.99 mol / l, toluene solution) as a hydride reducing agent was added, and a reduction reaction was performed at room temperature for 1.5 hours. . Subsequently, 10 ml of 6M hydrochloric acid aqueous solution was added to the reaction mixture as an acid catalyst, and dehydration reaction was performed at 65 ° C. for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. 15 ml of THF was added again, 3.5 ml (3.5 mmol) of diisobutylaluminum hydride was added, and a reduction reaction was performed at room temperature for 1.5 hours. Subsequently, 10 ml of 6M hydrochloric acid aqueous solution was added to the reaction mixture, and dehydration reaction was performed for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel column chromatography (eluent: hexane) gave 1.12 g of 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthracene as a yellow solid (yield 63%).
実施例5 (6,7,6’,7’−テトラ(パーフルオロドデシル)−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)[一般式(2)で示されるジハロビフェニル誘導体の合成]
窒素雰囲気下、100mlシュレンク反応容器に合成例9で合成した2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラセン483mg(0.298mmol)及びTHF7mlを添加した。この溶液を−70℃に冷却し、イソプロピルマグネシウムブロマイド(関東化学製、0.65M)のTHF溶液0.46ml(0.30mmol)を滴下した。10分間熟成後、−78℃に冷却し、塩化亜鉛(シグマ−アルドリッチ製、1.0Mジエチルエーテル溶液、)0.30ml(0.30mmol)を滴下した。徐々に室温まで昇温した後、減圧濃縮した。得られた残渣に、合成例9で合成した2−ブロモ−3−ヨード−6,7−ジ(パーフルオロドデシル)アントラセン490mg(0.303mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)17.3mg(0.015mmol)、THF8mlを加え、64℃で10時間反応を実施した。容器を水冷し3M塩酸水溶液3mlを添加することで反応を停止させた。トルエンを添加後、分相し、有機相を食塩水で洗浄した。有機相を減圧濃縮し溶媒を留去し、さらに真空乾燥した。得られた残渣にトルエンを添加し、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)(0.06ml)を添加し、室温で2時間撹拌した。この溶液を水洗浄し、有機相を減圧濃縮析出した。残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン及びヘキサン:クロロホルム=10:1)、6,7,6’,7’−テトラ(パーフルオロドデシル)−3,3’−ジブロモ−2,2’−ビアントラセニルの黄色固体507mgを得た(収率57%)。
FABMS m/z: 2985(M+)。
Example 5 (Synthesis of 6,7,6 ′, 7′-tetra (perfluorododecyl) -3,3′-dibromo-2,2′-bianthracenyl) [dihalobiphenyl derivative represented by the general formula (2) Synthesis]
Under a nitrogen atmosphere, 483 mg (0.298 mmol) of 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthracene synthesized in Synthesis Example 9 and 7 ml of THF were added to a 100 ml Schlenk reaction vessel. The solution was cooled to −70 ° C., and 0.46 ml (0.30 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Kanto Chemical Co., Ltd., 0.65 M) was added dropwise. After aging for 10 minutes, the mixture was cooled to −78 ° C., and 0.30 ml (0.30 mmol) of zinc chloride (manufactured by Sigma-Aldrich, 1.0 M diethyl ether solution) was added dropwise. The mixture was gradually warmed to room temperature and concentrated under reduced pressure. To the obtained residue, 490 mg (0.303 mmol) of 2-bromo-3-iodo-6,7-di (perfluorododecyl) anthracene synthesized in Synthesis Example 9 and tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) ) 17.3 mg (0.015 mmol) and 8 ml of THF were added, and the reaction was carried out at 64 ° C. for 10 hours. The reaction was stopped by cooling the vessel with water and adding 3 ml of 3M aqueous hydrochloric acid. After adding toluene, the phases were separated, and the organic phase was washed with brine. The organic phase was concentrated under reduced pressure, the solvent was distilled off, and further dried under vacuum. Toluene was added to the obtained residue, 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) (0.06 ml) was added, and the mixture was stirred at room temperature for 2 hours. This solution was washed with water, and the organic phase was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (solvent: hexane and hexane: chloroform = 10: 1), and 6,7,6 ′, 7′-tetra (perfluorododecyl) -3,3′-dibromo-2,2 507 mg of a yellow solid of '-bianthracenyl was obtained (yield 57%).
FABMS m / z: 2985 (M + ).
MS測定より、6,7,6’,7’−テトラ(パーフルオロドデシル)−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that 6,7,6 ', 7'-tetra (perfluorododecyl) -3,3'-dibromo-2,2'-bianthracenyl was obtained. The structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に、実施例5で合成した6,7,6’,7’−テトラ(パーフルオロドデシル)−3,3’−ジブロモ−2,2’−ビアントラセニル500mg(0.167mmol)及びジエチルエーテル7mlを添加した。この混合物を0℃に冷却し、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.23ml(0.37mmol)を滴下し、0℃で90分間撹拌した(リチオ化反応)。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)67.4mg(0.501mmol)及びTHF16mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、目的物の黄色固体184mgを得た(収率39%)。
FABMS m/z: 2825(M+)。
In a 100 ml Schlenk reaction vessel under a nitrogen atmosphere, 500 mg (0 .. 6) of 6,7,6 ′, 7′-tetra (perfluorododecyl) -3,3′-dibromo-2,2′-bianthracenyl synthesized in Example 5 was used. 167 mmol) and 7 ml of diethyl ether were added. The mixture was cooled to 0 ° C., 0.23 ml (0.37 mmol) of a hexane solution of n-butyl lithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise, and the mixture was stirred at 0 ° C. for 90 minutes ( Lithiation reaction). To another 100 ml Schlenk reaction vessel, 67.4 mg (0.501 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 16 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the obtained solid was recrystallized from toluene to obtain 184 mg of the objective yellow solid (yield 39%).
FABMS m / z: 2825 (M + ).
MS測定より、テトラ(パーフルオロドデシル)ジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that tetra (perfluorododecyl) dinaphthobiphenylene was obtained. The structural formula is shown below.
窒素雰囲気下、200mlシュレンク反応容器に、合成例6で得られた4−ブロモ−1,2−ジヨードベンゼン2.15g(5.25mmol)にジヒドロキシフェニルボラン(和光純薬工業製)1.47g(12.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)458mg(0.40mmol)、炭酸ナトリウム3.34g(31.5mmol)、トルエン42ml、エタノール10.5ml、水13.3mlを加え、80℃で29時間反応させた。1M塩酸水溶液を加えて反応をクエンチし、トルエンで抽出した後、有機層を水洗浄して無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン)で精製して目的の4−ブロモ−1,2−ジフェニルベンゼン1.46g(4.72mmol)を得た(収率90%)。
Under a nitrogen atmosphere, in a 200 ml Schlenk reaction vessel, 2.47 g (5.25 mmol) of 4-bromo-1,2-diiodobenzene obtained in Synthesis Example 6 and 1.47 g of dihydroxyphenylborane (manufactured by Wako Pure Chemical Industries, Ltd.) (12.1 mmol), tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.) 458 mg (0.40 mmol), sodium carbonate 3.34 g (31.5 mmol), toluene 42 ml, ethanol 10.5 ml, water 13.3 ml. In addition, the mixture was reacted at 80 ° C. for 29 hours. The reaction was quenched with 1M aqueous hydrochloric acid and extracted with toluene. The organic layer was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and purified by silica gel column chromatography (eluent: hexane) to obtain 1.46 g (4.72 mmol) of the desired 4-bromo-1,2-diphenylbenzene (yield 90%). .
合成例11 (2−ブロモ−3−ヨード−6,7−ジフェニルアントラキノンの合成)(一般式(5)の化合物)
窒素雰囲気下、300mlシュレンク反応容器に、合成例10で得られた4−ブロモ−1,2−ジフェニルベンゼン1.46g(4.72mmol)を入れた。次いでTHF28mlを加えて−78℃に冷却し、n−ブチルリチウム(関東化学製、1.59mol/l、ヘキサン溶液)3.0ml(4.77mmol)を加え、30分間反応させた。次いで合成例1で合成した4−ブロモ−5−ヨード無水フタル酸1.66g(4.72mmol)を加え、室温まで昇温した。水を加えてクエンチし得られた固体を濾過し、さらに水洗浄を行い、加熱真空乾燥後白色固体3.2gを得た。得られた固体に濃硫酸26mlを添加し、80℃で1時間反応した。反応混合物を氷に注ぎ入れ、析出した固体をろ過して水で洗浄した。乾燥後、シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:塩化メチレン=10:1)及びヘプタンからの再結晶で精製し、2−ブロモ−3−ヨード−6,7−ジフェニルアントラキノンの黄色固体298mg(0.53mmol)を得た(収率11%)。
Synthesis Example 11 (Synthesis of 2-bromo-3-iodo-6,7-diphenylanthraquinone) (compound of general formula (5))
Under a nitrogen atmosphere, 1.46 g (4.72 mmol) of 4-bromo-1,2-diphenylbenzene obtained in Synthesis Example 10 was placed in a 300 ml Schlenk reaction vessel. Next, 28 ml of THF was added and cooled to −78 ° C., and 3.0 ml (4.77 mmol) of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 mol / l, hexane solution) was added and reacted for 30 minutes. Next, 1.66 g (4.72 mmol) of 4-bromo-5-iodophthalic anhydride synthesized in Synthesis Example 1 was added, and the temperature was raised to room temperature. The solid obtained by quenching by adding water was filtered, washed with water, and dried under heating in vacuum to obtain 3.2 g of a white solid. 26 ml of concentrated sulfuric acid was added to the obtained solid and reacted at 80 ° C. for 1 hour. The reaction mixture was poured into ice, and the precipitated solid was filtered and washed with water. After drying, the residue was purified by silica gel column chromatography (eluent; hexane: methylene chloride = 10: 1) and recrystallization from heptane, and 298 mg (0 of 2-bromo-3-iodo-6,7-diphenylanthraquinone yellow solid) .53 mmol) was obtained (yield 11%).
合成例12 (2−ブロモ−3−ヨード−6,7−ジフェニルアントラセンの合成)(一般式(3)及び(4)の化合物)
窒素雰囲気下、50mlシュレンク反応容器に、合成例11で合成した2−ブロモ−3−ヨード−6,7−ジフェニルアントラキノン243mg(0.43mmol)及びTHF5mlを加えた。ヒドリド還元剤である水素化ジイソブチルアルミニウム(関東化学製、0.99mol/l、トルエン溶液)1.20ml(1.20mmol)を滴下し、室温で1.5時間還元反応を行った。この反応混合物に酸触媒である6M塩酸水溶液3mlを加え、65℃で3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して、無水硫酸ナトリウムで乾燥、減圧濃縮した。得られた残渣に再びTHF5mlを加え、水素化ジイソブチルアルミニウム(関東化学製、0.99mol/l、トルエン溶液)1.20ml(1.20mmol)を加え、室温で1.5時間還元反応を行った。次いで反応混合物に6M塩酸水溶液3mlを加え、3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン)で精製し、2−ブロモ−3−ヨード−6,7−ジフェニルアントラセンの黄色固体128mg(0.239mmol)を得た(収率56%)。
Synthesis Example 12 (Synthesis of 2-bromo-3-iodo-6,7-diphenylanthracene) (Compounds of general formulas (3) and (4))
Under a nitrogen atmosphere, 243 mg (0.43 mmol) of 2-bromo-3-iodo-6,7-diphenylanthraquinone synthesized in Synthesis Example 11 and 5 ml of THF were added to a 50 ml Schlenk reaction vessel. 1.20 ml (1.20 mmol) of diisobutylaluminum hydride as a hydride reducing agent (manufactured by Kanto Chemical Co., 0.99 mol / l, toluene solution) was added dropwise, and a reduction reaction was performed at room temperature for 1.5 hours. To this reaction mixture, 3 ml of 6M aqueous hydrochloric acid as an acid catalyst was added, and dehydration reaction was performed at 65 ° C. for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. To the obtained residue, 5 ml of THF was added again, 1.20 ml (1.20 mmol) of diisobutylaluminum hydride (manufactured by Kanto Chemical Co., 0.99 mol / l, toluene solution) was added, and a reduction reaction was performed at room temperature for 1.5 hours. . Subsequently, 3 ml of 6M hydrochloric acid aqueous solution was added to the reaction mixture, and dehydration reaction was performed for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel column chromatography (eluent: hexane) gave 128 mg (0.239 mmol) of 2-bromo-3-iodo-6,7-diphenylanthracene as a yellow solid (yield 56%).
実施例7 (6,7,6’,7’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)[一般式(2)で示されるジハロビフェニル誘導体の合成]
窒素雰囲気下、100mlシュレンク反応容器に合成例12で合成した2−ブロモ−3−ヨード−6,7−ジフェニルアントラセン(一般式(3)の化合物)128mg(0.239mmol)及びTHF5mlを添加した。この溶液を−70℃に冷却し、イソプロピルマグネシウムブロマイド(関東化学製、0.65M)のTHF溶液0.74ml(0.48mmol)を滴下した。20分間熟成後、−78℃に冷却し、トリメトキシボラン(和光純薬工業製)49.7mg(0.48mmol)を滴下した。徐々に室温まで昇温した後、3M塩酸水溶液を加えて30分間攪拌後、トルエンを添加し分相した。有機相を減圧濃縮した。得られた残渣に、合成例12で合成した2−ブロモ−3−ヨード−6,7−ジフェニルアントラセン(一般式(4)の化合物)125mg(0.233mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)10.3mg(0.009mmol)、トルエン5ml、及びエタノール1.2mlを添加した。さらに炭酸ナトリウム78.5mg(0.741mmol)と水1.6mlからなる水溶液を加え、60℃で24時間反応を実施した。室温まで冷却後、トルエン及び水を添加し分相した。有機相を減圧濃縮し溶媒を留去し、さらに真空乾燥した。得られた残渣にトルエンを添加し、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)(0.03ml)を添加し、室温で2時間撹拌した。この溶液を水洗浄し、有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン(アントラセン誘導体を溶出)及びヘキサン:ジクロロメタン=10:1(目的物を溶出))、6,7,6’,7’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニルの黄色固体87.2mgを得た(収率57%)。
MS m/z: 817(M+,2%),657(M+−2Br,100)。
Example 7 (Synthesis of 6,7,6 ′, 7′-tetraphenyl-3,3′-dibromo-2,2′-bianthracenyl) [Synthesis of dihalobiphenyl derivative represented by general formula (2)]
Under a nitrogen atmosphere, 128 mg (0.239 mmol) of 2-bromo-3-iodo-6,7-diphenylanthracene (a compound of the general formula (3)) synthesized in Synthesis Example 12 and 5 ml of THF were added to a 100 ml Schlenk reaction vessel. This solution was cooled to −70 ° C., and 0.74 ml (0.48 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Kanto Chemical Co., Ltd., 0.65 M) was added dropwise. After aging for 20 minutes, the mixture was cooled to −78 ° C., and 49.7 mg (0.48 mmol) of trimethoxyborane (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After gradually warming to room temperature, 3M aqueous hydrochloric acid solution was added and stirred for 30 minutes, and then toluene was added for phase separation. The organic phase was concentrated under reduced pressure. To the obtained residue, 125 mg (0.233 mmol) of 2-bromo-3-iodo-6,7-diphenylanthracene synthesized in Synthesis Example 12 (compound of general formula (4)), tetrakis (triphenylphosphine) palladium ( (Tokyo Chemical Industry Co., Ltd.) 10.3 mg (0.009 mmol), toluene 5 ml, and ethanol 1.2 ml were added. Further, an aqueous solution composed of 78.5 mg (0.741 mmol) of sodium carbonate and 1.6 ml of water was added, and the reaction was carried out at 60 ° C. for 24 hours. After cooling to room temperature, toluene and water were added for phase separation. The organic phase was concentrated under reduced pressure, the solvent was distilled off, and further dried under vacuum. Toluene was added to the obtained residue, 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) (0.03 ml) was added, and the mixture was stirred at room temperature for 2 hours. This solution was washed with water, and the organic phase was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (solvent; hexane (eluting anthracene derivative) and hexane: dichloromethane = 10: 1 (eluting the target product)), 6,7,6 ′, 7′-tetraphenyl-3, 87.2 mg of a yellow solid of 3′-dibromo-2,2′-bianthracenyl was obtained (yield 57%).
MS m / z: 817 (M <+> , 2%), 657 (M <+ > - 2Br, 100).
MS測定より、6,7,6’,7’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお、その構造式を下記に示す。 From the MS measurement, it was confirmed that 6,7,6 ', 7'-tetraphenyl-3,3'-dibromo-2,2'-bianthracenyl was obtained. The structural formula is shown below.
窒素雰囲気下、50mlシュレンク反応容器に、実施例7で合成した6,7,6’,7’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニル87.0mg(0.106mmol)及びジエチルエーテル4mlを添加した。この混合物を0℃に冷却し、リチオ化であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.16ml(0.25mmol)を滴下し、0℃で90分間撹拌した(リチオ化反応)。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)47.0mg(0.350mmol)及びTHF8mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、目的物の黄色固体27mgを得た(収率39%)。
FABMS m/z: 657(M+)。
Under a nitrogen atmosphere, 87.0 mg (0.106 mmol) of 6,7,6 ′, 7′-tetraphenyl-3,3′-dibromo-2,2′-bianthracenyl synthesized in Example 7 was placed in a 50 ml Schlenk reaction vessel. And 4 ml of diethyl ether were added. The mixture was cooled to 0 ° C., 0.16 ml (0.25 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as lithiation was added dropwise, and the mixture was stirred at 0 ° C. for 90 minutes (Lithio). Reaction). In another 100 ml Schlenk reaction vessel, 47.0 mg (0.350 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 8 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the resulting solid was recrystallized from toluene to obtain 27 mg of the objective yellow solid (yield 39%).
FABMS m / z: 657 (M + ).
MS測定より、テトラフェニルジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From the MS measurement, it was confirmed that tetraphenyldinaphthobiphenylene was obtained. The structural formula is shown below.
窒素雰囲気下、300mlシュレンク反応容器に、合成例6で得られた4−ブロモ−1,2−ジヨードベンゼン1.84g(4.50mmol)、ヨウ化銅(I)(和光純薬工業製)90mg(0.47mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)272mg(0.24mmol)、THF59ml、トリエチルアミン2.29g(22.2mmol)、1−ドデシン1.57g(9.47mmol)を加えた。この反応混合物を室温で26時間反応させた。1M塩酸水溶液を加えて反応をクエンチし、トルエンで抽出した後、有機相を水洗浄して無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、シリカゲルカラムクロマトグラフィー(溶離液;ジエチルエーテル:ヘキサン=1:30の混合液)で精製して目的の4−ブロモ−1,2−ジ(ドデシン−1−イル)ベンゼン1.52g(3.14mmol)を得た(収率70%)。
In a 300 ml Schlenk reaction vessel under a nitrogen atmosphere, 1.84 g (4.50 mmol) of 4-bromo-1,2-diiodobenzene obtained in Synthesis Example 6 and copper (I) iodide (manufactured by Wako Pure Chemical Industries, Ltd.) 90 mg (0.47 mmol), tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry) 272 mg (0.24 mmol), THF 59 ml, triethylamine 2.29 g (22.2 mmol), 1-dodecine 1.57 g (9.47 mmol) Was added. The reaction mixture was reacted at room temperature for 26 hours. The reaction was quenched with 1M aqueous hydrochloric acid and extracted with toluene. The organic phase was washed with water and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure and purified by silica gel column chromatography (eluent; diethyl ether: hexane = 1: 30 mixture) to obtain the desired 4-bromo-1,2-di (dodecin-1-yl) benzene. 1.52 g (3.14 mmol) was obtained (70% yield).
合成例14 (2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラキノンの合成)(一般式(5)の化合物)
窒素雰囲気下、200mlシュレンク反応容器に、合成例13で得られた4−ブロモ−1,2−ジ(ドデシン−1−イル)ベンゼン1.52g(3.14mmol)を入れた。次いでTHF19mlを加えて−78℃に冷却し、n−ブチルリチウム(関東化学製、1.59mol/l、ヘキサン溶液)2.0ml(3.18mmol)を加え、30分間反応させた。次いで合成例1で得られた4−ブロモ−5−ヨードフタル酸無水物1.10g(3.14mmol)を加え、室温まで昇温した。水を加えてクエンチし得られた固体を濾過し、さらに水洗浄を行い、加熱真空乾燥後白色固体2.3g(3.1mmol)を得た。この固体に濃硫酸17mlを添加し、80℃で1時間反応した。反応混合物を氷に注ぎ入れ、析出した固体をろ過して水で洗浄した。乾燥後、シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:塩化メチレン=10:1)及びヘプタンからの再結晶で精製し、2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラキノンの黄色固体245mg(0.33mmol)を得た(収率11%)。
Synthesis Example 14 (Synthesis of 2-bromo-3-iodo-6,7-di (dodecin-1-yl) anthraquinone) (Compound of general formula (5))
Under a nitrogen atmosphere, 1.52 g (3.14 mmol) of 4-bromo-1,2-di (dodecin-1-yl) benzene obtained in Synthesis Example 13 was placed in a 200 ml Schlenk reaction vessel. Next, 19 ml of THF was added and cooled to −78 ° C., and 2.0 ml (3.18 mmol) of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 mol / l, hexane solution) was added and reacted for 30 minutes. Next, 1.10 g (3.14 mmol) of 4-bromo-5-iodophthalic anhydride obtained in Synthesis Example 1 was added, and the temperature was raised to room temperature. The solid obtained by quenching by adding water was filtered, washed with water, and dried under heating in vacuum to obtain 2.3 g (3.1 mmol) of white solid. 17 ml of concentrated sulfuric acid was added to this solid and reacted at 80 ° C. for 1 hour. The reaction mixture was poured into ice, and the precipitated solid was filtered and washed with water. After drying, it was purified by silica gel column chromatography (eluent; hexane: methylene chloride = 10: 1) and recrystallization from heptane, and 2-bromo-3-iodo-6,7-di (dodecin-1-yl) 245 mg (0.33 mmol) of an anthraquinone yellow solid was obtained (yield 11%).
合成例15 (2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラセンの合成)(一般式(3)及び(4)の化合物)
窒素雰囲気下、50mlシュレンク反応容器に、合成例14で合成した2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラキノン245mg(0.33mmol)及びTHF4mlを加えた。ヒドリド還元剤である水素化ジイソブチルアルミニウム(関東化学製、0.99mol/l、トルエン溶液)0.70ml(0.70mmol)を滴下し、室温で1.5時間還元反応を行った。この反応混合物に酸触媒である6M塩酸水溶液2mlを加え、65℃で3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣に再びTHF4mlを加え、水素化ジイソブチルアルミニウム0.70ml(0.70mmol)を加え、室温で1.5時間還元反応を行った。次いで反応混合物に6M塩酸水溶液2mlを加え、3時間脱水反応を行った。反応混合物を室温まで冷やし、ジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(溶離液;ヘキサン)で精製し、2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラセンの黄色固体102mg(0.143mmol)を得た(収率42%)。
Synthesis Example 15 (Synthesis of 2-bromo-3-iodo-6,7-di (dodecin-1-yl) anthracene) (Compounds of general formulas (3) and (4))
Under a nitrogen atmosphere, 245 mg (0.33 mmol) of 2-bromo-3-iodo-6,7-di (dodecin-1-yl) anthraquinone synthesized in Synthesis Example 14 and 4 ml of THF were added to a 50 ml Schlenk reaction vessel. 0.70 ml (0.70 mmol) of diisobutylaluminum hydride as a hydride reducing agent (manufactured by Kanto Chemical Co., 0.99 mol / l, toluene solution) was added dropwise, and a reduction reaction was performed at room temperature for 1.5 hours. To this reaction mixture, 2 ml of 6M aqueous hydrochloric acid as an acid catalyst was added, and dehydration reaction was performed at 65 ° C. for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. To the obtained residue, 4 ml of THF was added again, 0.70 ml (0.70 mmol) of diisobutylaluminum hydride was added, and a reduction reaction was performed at room temperature for 1.5 hours. Subsequently, 2 ml of 6M hydrochloric acid aqueous solution was added to the reaction mixture, and dehydration reaction was performed for 3 hours. The reaction mixture was cooled to room temperature and extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (eluent: hexane) to give 102 mg (0.143 mmol) of 2-bromo-3-iodo-6,7-di (dodecin-1-yl) anthracene as a yellow solid. Obtained (yield 42%).
実施例9 (6,7,6’,7’−テトラ(ドデシン−1−イル)−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)(一般式(2)で示されるジハロビフェニル誘導体)
窒素雰囲気下、100mlシュレンク反応容器に合成例15で合成した2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラセン102mg(0.143mmol)(一般式(3)の化合物)及びTHF5mlを添加した。この溶液を−70℃に冷却し、イソプロピルマグネシウムブロマイド(関東化学製、0.65M)のTHF溶液0.45ml(0.29mmol)を滴下した。10分間熟成後、−78℃に冷却し、トリメトキシボラン(和光純薬工業製)29.7mg(0.29mmol)を滴下した。徐々に室温まで昇温した後、3M塩酸水溶液を加えて30分間攪拌後、トルエンを添加し分相した。有機相を減圧濃縮した。得られた残渣に、合成例15で合成した2−ブロモ−3−ヨード−6,7−ジ(ドデシン−1−イル)アントラセン(一般式(4)の化合物)99.3mg(0.140mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)8.1mg(0.007mmol)、トルエン5ml、及びエタノール1.2mlを添加した。さらに炭酸ナトリウム44.5mg(0.420mmol)と水1.6mlからなる水溶液を加え、60℃で24時間反応を実施した。室温に冷却し、トルエンを添加後、分相し、有機相を食塩水で洗浄した。有機相を減圧濃縮し溶媒を留去し、さらに真空乾燥した。得られた残渣にトルエンを添加し、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)(0.03ml)を添加し、室温で1時間撹拌した。この溶液を水洗浄し、有機相を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(溶媒;ヘキサン(アントラセン誘導体を溶出)及びヘキサン:クロロホルム=10:1(目的物を溶出))、6,7,6’,7’−テトラ(ドデシン−1−イル)−3,3’−ジブロモ−2,2’−ビアントラセニルの黄色固体93.3mgを得た(収率57%)。
FABMS m/z: 1169(M+,100%),1089(M+−Br,7)。
Example 9 (Synthesis of 6,7,6 ′, 7′-tetra (dodecin-1-yl) -3,3′-dibromo-2,2′-bianthracenyl) (dihalo represented by the general formula (2) Biphenyl derivatives)
102 mg (0.143 mmol) of 2-bromo-3-iodo-6,7-di (dodecin-1-yl) anthracene synthesized in Synthesis Example 15 in a 100 ml Schlenk reaction vessel under a nitrogen atmosphere (compound of general formula (3) ) And 5 ml of THF were added. This solution was cooled to −70 ° C., and 0.45 ml (0.29 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Kanto Chemical Co., Ltd., 0.65 M) was added dropwise. After aging for 10 minutes, the mixture was cooled to −78 ° C., and 29.7 mg (0.29 mmol) of trimethoxyborane (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After gradually warming to room temperature, 3M aqueous hydrochloric acid solution was added and stirred for 30 minutes, and then toluene was added for phase separation. The organic phase was concentrated under reduced pressure. 99.3 mg (0.140 mmol) of 2-bromo-3-iodo-6,7-di (dodecin-1-yl) anthracene (compound of general formula (4)) synthesized in Synthesis Example 15 was added to the obtained residue. Then, 8.1 mg (0.007 mmol) of tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.), 5 ml of toluene, and 1.2 ml of ethanol were added. Further, an aqueous solution consisting of 44.5 mg (0.420 mmol) of sodium carbonate and 1.6 ml of water was added, and the reaction was carried out at 60 ° C. for 24 hours. After cooling to room temperature, toluene was added, phase separation was performed, and the organic phase was washed with brine. The organic phase was concentrated under reduced pressure, the solvent was distilled off, and further dried under vacuum. Toluene was added to the obtained residue, 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) (0.03 ml) was added, and the mixture was stirred at room temperature for 1 hour. This solution was washed with water, and the organic phase was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (solvent; hexane (elution of anthracene derivative) and hexane: chloroform = 10: 1 (elution of the desired product)), 6,7,6 ′, 7′-tetra (dodecin-1 -Yl) -3,3′-dibromo-2,2′-bianthracenyl 93.3 mg of yellow solid was obtained (yield 57%).
FABMS m / z: 1169 (M + , 100%), 1089 (M + -Br, 7).
MS測定より、6,7,6’,7’−テトラ(ドデシン−1−イル)−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお、その構造式を下記に示す。 From the MS measurement, it was confirmed that 6,7,6 ', 7'-tetra (dodecin-1-yl) -3,3'-dibromo-2,2'-bianthracenyl was obtained. The structural formula is shown below.
窒素雰囲気下、50mlシュレンク反応容器に、実施例9で合成した6,7,6’,7’−テトラ(ドデシン−1−イル)−3,3’−ジブロモ−2,2’−ビアントラセニル93.0mg(0.080mmol)及びジエチルエーテル5mlを添加した。この混合物を0℃に冷却し、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.23ml(0.13mmol)を滴下し、0℃で30分間及び10℃で60分間撹拌した(リチオ化反応)。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)35.5mg(0.264mmol)及びTHF10mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、目的物の黄色固体28.1mgを得た(収率35%)。
FABMS m/z: 1010(M+)。
In a 50 ml Schlenk reaction vessel under a nitrogen atmosphere, 6,7,6 ′, 7′-tetra (dodecin-1-yl) -3,3′-dibromo-2,2′-bianthracenyl synthesized in Example 9 was obtained. 0 mg (0.080 mmol) and 5 ml of diethyl ether were added. The mixture was cooled to 0 ° C., and 0.23 ml (0.13 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise, and at 0 ° C. for 30 minutes and 10 ° C. For 60 minutes (lithiation reaction). To another 100 ml Schlenk reaction vessel, 35.5 mg (0.264 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 10 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the obtained solid was recrystallized from toluene to obtain 28.1 mg of the objective yellow solid (yield 35%).
FABMS m / z: 1010 (M + ).
MS測定より、テトラ(ドデシン−1−イル)ジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that tetra (dodecin-1-yl) dinaphthobiphenylene was obtained. The structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に合成例3で合成した2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノン541mg(0.722mmol)及びTHF20mlを添加した。−78℃に冷却後、フェニルリチウム(関東化学製、1.0mol/l、シクロヘキサン/ジエチルエーテル溶液)1.5ml(1.5mmol)(一般式(6)及び(7)の化合物)を加えた後、一晩かけて室温まで昇温した。次いで反応混合物に3M塩酸水溶液及びジエチルエーテルを加えた後、分相し、さらにジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣に酢酸30ml、ヨウ化ナトリウム749mg(5.0mmol)、及び次亜りん酸ナトリウム・1水和物727mg(6.86mmol)を加え、1時間加熱還流下で反応を行った(還元反応)。反応混合物を室温まで冷やし、トルエンで抽出した。トルエン溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:トルエン=30:1)で精製し、2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ジフェニルアントラセンの黄色固体453mgを得た(収率72%)。
Under a nitrogen atmosphere, 541 mg (0.722 mmol) of 2-bromo-3-iodo-6,7-didodecylanthraquinone synthesized in Synthesis Example 3 and 20 ml of THF were added to a 100 ml Schlenk reaction vessel. After cooling to −78 ° C., 1.5 ml (1.5 mmol) of phenyllithium (manufactured by Kanto Chemical Co., 1.0 mol / l, cyclohexane / diethyl ether solution) (compounds of general formulas (6) and (7)) was added. Thereafter, the temperature was raised to room temperature overnight. Next, 3M aqueous hydrochloric acid and diethyl ether were added to the reaction mixture, the phases were separated, and the mixture was further extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. To the obtained residue, 30 ml of acetic acid, 749 mg (5.0 mmol) of sodium iodide and 727 mg (6.86 mmol) of sodium hypophosphite monohydrate were added, and the reaction was carried out under heating and refluxing for 1 hour (reduction) reaction). The reaction mixture was cooled to room temperature and extracted with toluene. The toluene solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel column chromatography (eluent; hexane: toluene = 30: 1) gave 453 mg of 2-bromo-3-iodo-6,7-didodecyl-9,10-diphenylanthracene as a yellow solid (yield) 72%).
実施例11 (6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)[一般式(2)で示されるジハロビフェニル誘導体の合成]
窒素雰囲気下、100mlシュレンク反応容器に合成例16で合成した2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ジフェニルアントラセン205mg(0.235mmol)及びTHF6mlを添加した。この混合物を−60℃に冷却し、イソプロピルマグネシウムブロマイド(東京化成工業製、0.81M)のTHF溶液0.58ml(0.47mmol)を滴下した。10分間熟成後、−78℃に冷却し、トリメトキシボラン(和光純薬工業製)48.8mg(0.47mmol)を滴下した。徐々に室温まで昇温した後、3M塩酸水溶液を加えて30分間攪拌後、トルエンを添加し分相した。有機相を減圧濃縮した。得られた固形物に、合成例16で合成した2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ジフェニルアントラセン210mg(0.241mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)13.9mg(0.012mmol)、トルエン5ml、及びエタノール1.2mlを添加した。さらに炭酸ナトリウム76.6mg(0.723mmol)と水1.6mlからなる水溶液を加え、60℃で24時間反応を実施した。室温まで冷却後、トルエン及び水を添加し分相した。有機相を濃縮し、得られた残渣をトルエン5mlに溶解後、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)0.02mlを添加し、室温で2時間撹拌した。このトルエン溶液を水で2回洗浄後、有機相を減圧濃縮し、得られた残渣に飽和食塩水及びトルエンを添加した。分相し、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を濾過し、減圧濃縮し、得られた残渣をシリカゲルを充填したカラムで濾過した(溶媒:ヘキサン)。得られた粗固体をヘプタンから再結晶化し、目的物の黄色固体217mgを得た(収率62%)。
FABMS m/z: 1490(M+,100%),1419(M+−Br,5)。
Example 11 (Synthesis of 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetraphenyl-3,3′-dibromo-2,2′-bianthracenyl) [General formula ( Synthesis of dihalobiphenyl derivative represented by 2)]
Under a nitrogen atmosphere, 205 mg (0.235 mmol) of 2-bromo-3-iodo-6,7-didodecyl-9,10-diphenylanthracene synthesized in Synthesis Example 16 and 6 ml of THF were added to a 100 ml Schlenk reaction vessel. This mixture was cooled to −60 ° C., and 0.58 ml (0.47 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Tokyo Chemical Industry Co., Ltd., 0.81M) was added dropwise. After aging for 10 minutes, the mixture was cooled to −78 ° C., and 48.8 mg (0.47 mmol) of trimethoxyborane (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After gradually warming to room temperature, 3M aqueous hydrochloric acid solution was added and stirred for 30 minutes, and then toluene was added for phase separation. The organic phase was concentrated under reduced pressure. To the obtained solid, 210 mg (0.241 mmol) of 2-bromo-3-iodo-6,7-didodecyl-9,10-diphenylanthracene synthesized in Synthesis Example 16, tetrakis (triphenylphosphine) palladium (Tokyo Kasei) 13.9 mg (0.012 mmol), 5 ml of toluene, and 1.2 ml of ethanol were added. Further, an aqueous solution composed of 76.6 mg (0.723 mmol) of sodium carbonate and 1.6 ml of water was added, and the reaction was carried out at 60 ° C. for 24 hours. After cooling to room temperature, toluene and water were added for phase separation. The organic phase was concentrated, and the resulting residue was dissolved in 5 ml of toluene, 0.02 ml of 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. The toluene solution was washed twice with water, the organic phase was concentrated under reduced pressure, and saturated brine and toluene were added to the resulting residue. The phases were separated and the organic phase was washed with water and dried over anhydrous sodium sulfate. The organic phase was filtered and concentrated under reduced pressure, and the resulting residue was filtered through a column packed with silica gel (solvent: hexane). The obtained crude solid was recrystallized from heptane to obtain 217 mg of the target yellow solid (yield 62%).
FABMS m / z: 1490 (M + , 100%), 1419 (M + -Br, 5).
MS測定より、6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお。その構造式を下記に示す。 From MS measurement, it was confirmed that 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetraphenyl-3,3′-dibromo-2,2′-bianthracenyl was obtained. did. Note that. Its structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に実施例11で合成した6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラフェニル−3,3’−ジブロモ−2,2’−ビアントラセニル210mg(0.141mmol)及びジエチルエーテル7mlを添加した。この混合物を0℃に冷却後、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.20ml(0.31mmol)を滴下した。1時間かけて5℃まで昇温しメタル化の熟成を行った。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)64.5mg(0.479mmol)及びTHF15mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、目的物の黄色固体97.5mgを得た(収率52%)。
FABMS m/z: 1330(M+)。
Under a nitrogen atmosphere, 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetraphenyl-3,3′-dibromo-2 synthesized in Example 11 in a 100 ml Schlenk reaction vessel, 210 mg (0.141 mmol) of 2′-bianthracenyl and 7 ml of diethyl ether were added. After cooling this mixture to 0 ° C., 0.20 ml (0.31 mmol) of a hexane solution of n-butyl lithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise. The temperature was raised to 5 ° C. over 1 hour, and aging of metallization was performed. To another 100 ml Schlenk reaction vessel, 64.5 mg (0.479 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 15 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the obtained solid was recrystallized from toluene to obtain 97.5 mg of the objective yellow solid (yield 52%).
FABMS m / z: 1330 (M + ).
MS測定より、テトラドデシルテトラフェニルジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that tetradodecyltetraphenyldinaphthobiphenylene was obtained. The structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器にフェニルアセチレン(東京化成工業製)178mg(1.74mmol)及びTHF20mlを添加した。n−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液1.05ml(1.67mmol)を滴下し、20分間撹拌した。合成例3で合成した2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノン523mg(0.697mmol)を加えた後、混合物を室温で一晩反応させた。次いで反応混合物に3M塩酸水溶液及びジエチルエーテルを加えた後、分相し、さらにジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣に酢酸30ml、ヨウ化ナトリウム749mg(5.0mmol)、及び次亜りん酸ナトリウム・1水和物727mg(6.86mmol)を加え、1時間加熱還流下で反応を行った。反応混合物を室温まで冷やし、トルエンで抽出した。トルエン溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:トルエン=30:1の混合液)で精製し、2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ビス(フェニルエチニル)アントラセンの黄色固体393mgを得た(収率61%)。
Under a nitrogen atmosphere, 178 mg (1.74 mmol) of phenylacetylene (manufactured by Tokyo Chemical Industry) and 20 ml of THF were added to a 100 ml Schlenk reaction vessel. 1.05 ml (1.67 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Inc., 1.59 M) was added dropwise and stirred for 20 minutes. After adding 523 mg (0.697 mmol) of 2-bromo-3-iodo-6,7-didodecylanthraquinone synthesized in Synthesis Example 3, the mixture was reacted at room temperature overnight. Next, 3M aqueous hydrochloric acid and diethyl ether were added to the reaction mixture, the phases were separated, and the mixture was further extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. To the obtained residue, 30 ml of acetic acid, 749 mg (5.0 mmol) of sodium iodide, and 727 mg (6.86 mmol) of sodium hypophosphite monohydrate were added, and the reaction was carried out with heating under reflux for 1 hour. The reaction mixture was cooled to room temperature and extracted with toluene. The toluene solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel column chromatography (eluent: hexane: toluene = 30: 1 mixture) and yellow solid of 2-bromo-3-iodo-6,7-didodecyl-9,10-bis (phenylethynyl) anthracene 393 mg was obtained (61% yield).
実施例13 (6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラキス(フェニルエチニル)−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)(一般式(2)で示されるジハロビフェニル誘導体の合成)
窒素雰囲気下、100mlシュレンク反応容器に合成例17で合成した2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ビス(フェニルエチニル)アントラセン190mg(0.206mmol)及びTHF6mlを添加した。この混合物を−60℃に冷却し、イソプロピルマグネシウムブロマイド(東京化成工業製、0.81M)のTHF溶液0.51ml(0.41mmol)を滴下した。5分間熟成後、−78℃に冷却し、トリメトキシボラン(和光純薬工業製)42.6mg(0.41mmol)を滴下した。徐々に室温まで昇温した後、3M塩酸水溶液を加えて室温で30分間攪拌後、トルエンを添加し分相した。有機相を減圧濃縮し、得られた固形物に、合成例17で合成した2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ビス(フェニルエチニル)アントラセン195mg(0.212mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)13.9mg(0.012mmol)、トルエン5ml、及びエタノール1.2mlを添加した。さらに炭酸ナトリウム67.4mg(0.636mmol)と水1.6mlからなる水溶液を加え、60℃で24時間反応を実施した。室温まで冷却後、トルエン及び水を添加し分相した。有機相を濃縮し、得られた残渣をトルエン5mlに溶解後、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)0.02mlを添加し、室温で2時間撹拌した。このトルエン溶液を水で2回洗浄後、有機相を減圧濃縮し、得られた残渣に飽和食塩水及びトルエンを添加した。分相し、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を濾過し、減圧濃縮し、得られた残渣をシリカゲルを充填したカラムで濾過した(溶媒:ヘキサン)。得られた粗固体をヘプタンから再結晶化し、目的物の黄色固体212mgを得た(収率65%)。
MS m/z: 1586(M+,2%),793(M+/2,100)。
Example 13 (Synthesis of 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetrakis (phenylethynyl) -3,3′-dibromo-2,2′-bianthracenyl) ( Synthesis of dihalobiphenyl derivative represented by general formula (2))
Under a nitrogen atmosphere, 190 mg (0.206 mmol) of 2-bromo-3-iodo-6,7-didodecyl-9,10-bis (phenylethynyl) anthracene synthesized in Synthesis Example 17 and 6 ml of THF were added to a 100 ml Schlenk reaction vessel. . This mixture was cooled to −60 ° C., and 0.51 ml (0.41 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Tokyo Chemical Industry Co., Ltd., 0.81 M) was added dropwise. After aging for 5 minutes, the mixture was cooled to −78 ° C., and 42.6 mg (0.41 mmol) of trimethoxyborane (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After gradually warming to room temperature, 3M hydrochloric acid aqueous solution was added and stirred at room temperature for 30 minutes, and then toluene was added for phase separation. The organic phase was concentrated under reduced pressure, and 195 mg (0.212 mmol) of 2-bromo-3-iodo-6,7-didodecyl-9,10-bis (phenylethynyl) anthracene synthesized in Synthesis Example 17 was added to the obtained solid. , 13.9 mg (0.012 mmol) of tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry), 5 ml of toluene, and 1.2 ml of ethanol were added. Further, an aqueous solution composed of 67.4 mg (0.636 mmol) of sodium carbonate and 1.6 ml of water was added, and the reaction was carried out at 60 ° C. for 24 hours. After cooling to room temperature, toluene and water were added for phase separation. The organic phase was concentrated, and the resulting residue was dissolved in 5 ml of toluene, 0.02 ml of 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. The toluene solution was washed twice with water, the organic phase was concentrated under reduced pressure, and saturated brine and toluene were added to the resulting residue. The phases were separated and the organic phase was washed with water and dried over anhydrous sodium sulfate. The organic phase was filtered and concentrated under reduced pressure, and the resulting residue was filtered through a column packed with silica gel (solvent: hexane). The resulting crude solid was recrystallized from heptane to obtain 212 mg of the target yellow solid (yield 65%).
MS m / z: 1586 (M <+> , 2%), 793 (M <+ > / 2, 100).
MS測定より、6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラキス(フェニルエチニル)−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお。その構造式を下記に示す。 From the MS measurement, 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetrakis (phenylethynyl) -3,3′-dibromo-2,2′-bianthracenyl was obtained. It was confirmed. Note that. Its structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に実施例13で合成した6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラキス(フェニルエチニル)−3,3’−ジブロモ−2,2’−ビアントラセニル208mg(0.131mmol)及びジエチルエーテル7mlを添加した。この混合物を0℃に冷却後、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.20ml(0.31mmol)を滴下した。1時間かけて5℃まで昇温しメタル化の熟成を行った。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)64.5mg(0.479mmol)及びTHF15mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、目的物の橙色固体80.3mgを得た(収率43%)。
FABMS m/z: 1426(M+)。
6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetrakis (phenylethynyl) -3,3′-dibromo synthesized in Example 13 in a 100 ml Schlenk reaction vessel under nitrogen atmosphere 208 mg (0.131 mmol) of -2,2'-bianthracenyl and 7 ml of diethyl ether were added. After cooling this mixture to 0 ° C., 0.20 ml (0.31 mmol) of a hexane solution of n-butyl lithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise. The temperature was raised to 5 ° C. over 1 hour, and aging of metallization was performed. To another 100 ml Schlenk reaction vessel, 64.5 mg (0.479 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 15 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the resulting solid was recrystallized from toluene to obtain 80.3 mg of the objective orange solid (43% yield).
FABMS m / z: 1426 (M + ).
MS測定より、テトラドデシルテトラキス(フェニルエチニル)ジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that tetradodecyltetrakis (phenylethynyl) dinaphthobiphenylene was obtained. The structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器にマグネシウム54.7mg(2.25mmol)及びTHF20mlを添加した。ヨウ素5mgを加えた後、β−ブロモスチレン(東京化成工業製)40mgを添加し、撹拌下マグネシウムを活性化させた。β−ブロモスチレン359mg(1.96mmol、計2.17mmol)を緩く還流が起こる程度に滴下した。滴下終了後、30分間撹拌を継続した。合成例3で合成した2−ブロモ−3−ヨード−6,7−ジドデシルアントラキノン678mg(0.904mmol)を加えた後、混合物を室温で一晩反応させた。次いで反応混合物に3M塩酸水溶液及びジエチルエーテルを加えた後、分相し、さらにジエチルエーテルで抽出した。ジエチルエーテル溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣に酢酸30ml、ヨウ化ナトリウム749mg(5.0mmol)、及び次亜りん酸ナトリウム・1水和物727mg(6.86mmol)を加え、1時間加熱還流下で反応を行った。反応混合物を室温まで冷やし、トルエンで抽出した。トルエン溶液を飽和食塩水で洗浄して無水硫酸ナトリウムで乾燥し、減圧濃縮した。シリカゲルカラムクロマトグラフィー(溶離液;ヘキサン:トルエン=30:1の混合液)で精製し、2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ビス(フェニルエテニル)アントラセンの黄色固体468mgを得た(収率56%)。
Under a nitrogen atmosphere, 54.7 mg (2.25 mmol) of magnesium and 20 ml of THF were added to a 100 ml Schlenk reaction vessel. After adding 5 mg of iodine, 40 mg of β-bromostyrene (manufactured by Tokyo Chemical Industry Co., Ltd.) was added to activate magnesium under stirring. 359 mg (1.96 mmol, 2.17 mmol in total) of β-bromostyrene was added dropwise to such an extent that reflux occurred slowly. After completion of the dropping, stirring was continued for 30 minutes. After adding 678 mg (0.904 mmol) of 2-bromo-3-iodo-6,7-didodecylanthraquinone synthesized in Synthesis Example 3, the mixture was reacted at room temperature overnight. Next, 3M aqueous hydrochloric acid and diethyl ether were added to the reaction mixture, the phases were separated, and the mixture was further extracted with diethyl ether. The diethyl ether solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. To the obtained residue, 30 ml of acetic acid, 749 mg (5.0 mmol) of sodium iodide, and 727 mg (6.86 mmol) of sodium hypophosphite monohydrate were added, and the reaction was carried out with heating under reflux for 1 hour. The reaction mixture was cooled to room temperature and extracted with toluene. The toluene solution was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. Purification by silica gel column chromatography (eluent; hexane: toluene = 30: 1 mixture), yellow of 2-bromo-3-iodo-6,7-didodecyl-9,10-bis (phenylethenyl) anthracene 468 mg of solid was obtained (56% yield).
実施例15 (6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラキス(フェニルエテニル)−3,3’−ジブロモ−2,2’−ビアントラセニルの合成)(一般式(2)で示されるジハロビフェニル誘導体の合成)
窒素雰囲気下、100mlシュレンク反応容器に合成例18で合成した2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ビス(フェニルエテニル)アントラセン225mg(0.243mmol)及びTHF7mlを添加した。この混合物を−60℃に冷却し、イソプロピルマグネシウムブロマイド(東京化成工業製、0.81M)のTHF溶液0.60ml(0.49mmol)を滴下した。5分間熟成後、−78℃に冷却し、トリメトキシボラン(和光純薬工業製)50.9mg(0.490mmol)を滴下した。徐々に室温まで昇温した後、3M塩酸水溶液を加えて室温で30分間攪拌後、トルエンを添加し分相した。有機相を減圧濃縮し、得られた固形物に、合成例18で合成した2−ブロモ−3−ヨード−6,7−ジドデシル−9,10−ビス(フェニルエテニル)アントラセン235mg(0.254mmol)、テトラキス(トリフェニルホスフィン)パラジウム(東京化成工業製)13.9mg(0.012mmol)、トルエン5ml、及びエタノール1.2mlを添加した。さらに炭酸ナトリウム80.8mg(0.762mmol)と水1.6mlからなる水溶液を加え、60℃で24時間反応を実施した。室温まで冷却後、トルエン及び水を添加し分相した。有機相を濃縮し、得られた残渣をトルエン5mlに溶解後、70%tert−ブチルハイドロパーオキサイド溶液(和光純薬工業製)0.02mlを添加し、室温で2時間撹拌した。このトルエン溶液を水で2回洗浄後、有機相を減圧濃縮し、得られた残渣に飽和食塩水及びトルエンを添加した。分相し、有機相を水で洗浄し、無水硫酸ナトリウムで乾燥した。有機相を濾過し、減圧濃縮し、得られた残渣をシリカゲルを充填したカラムで濾過した(溶媒:ヘキサン)。得られた粗固体をヘプタンから再結晶化し、目的物の黄色固体259mgを得た(収率67%)。
MS m/z: 1594(M+,2%),797(M+/2,100)。
Example 15 (Synthesis of 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetrakis (phenylethenyl) -3,3′-dibromo-2,2′-bianthracenyl) (Synthesis of dihalobiphenyl derivative represented by general formula (2))
Under a nitrogen atmosphere, 225 mg (0.243 mmol) of 2-bromo-3-iodo-6,7-didodecyl-9,10-bis (phenylethenyl) anthracene synthesized in Synthesis Example 18 and 7 ml of THF were added to a 100 ml Schlenk reaction vessel. did. The mixture was cooled to −60 ° C., and 0.60 ml (0.49 mmol) of a THF solution of isopropyl magnesium bromide (manufactured by Tokyo Chemical Industry Co., Ltd., 0.81M) was added dropwise. After aging for 5 minutes, the mixture was cooled to −78 ° C., and 50.9 mg (0.490 mmol) of trimethoxyborane (manufactured by Wako Pure Chemical Industries, Ltd.) was added dropwise. After gradually warming to room temperature, 3M hydrochloric acid aqueous solution was added and stirred at room temperature for 30 minutes, and then toluene was added for phase separation. The organic phase was concentrated under reduced pressure, and 235 mg (0.254 mmol) of 2-bromo-3-iodo-6,7-didodecyl-9,10-bis (phenylethenyl) anthracene synthesized in Synthesis Example 18 was added to the obtained solid. ), 13.9 mg (0.012 mmol) of tetrakis (triphenylphosphine) palladium (manufactured by Tokyo Chemical Industry Co., Ltd.), 5 ml of toluene, and 1.2 ml of ethanol were added. Further, an aqueous solution consisting of 80.8 mg (0.762 mmol) of sodium carbonate and 1.6 ml of water was added, and the reaction was carried out at 60 ° C. for 24 hours. After cooling to room temperature, toluene and water were added for phase separation. The organic phase was concentrated, and the resulting residue was dissolved in 5 ml of toluene, 0.02 ml of 70% tert-butyl hydroperoxide solution (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the mixture was stirred at room temperature for 2 hours. The toluene solution was washed twice with water, the organic phase was concentrated under reduced pressure, and saturated brine and toluene were added to the resulting residue. The phases were separated and the organic phase was washed with water and dried over anhydrous sodium sulfate. The organic phase was filtered and concentrated under reduced pressure, and the resulting residue was filtered through a column packed with silica gel (solvent: hexane). The obtained crude solid was recrystallized from heptane to obtain 259 mg of the target yellow solid (yield 67%).
MS m / z: 1594 (M + , 2%), 797 (M + / 2,100).
MS測定より、6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラキス(フェニルエテニル)−3,3’−ジブロモ−2,2’−ビアントラセニルが得られたことを確認した。なお。その構造式を下記に示す。 From the MS measurement, 6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetrakis (phenylethenyl) -3,3′-dibromo-2,2′-bianthracenyl is obtained. I confirmed that. Note that. Its structural formula is shown below.
窒素雰囲気下、100mlシュレンク反応容器に実施例15で合成した6,7,6’,7’−テトラドデシル−9,10,9’,10’−テトラキス(フェニルエテニル)−3,3’−ジブロモ−2,2’−ビアントラセニル254mg(0.159mmol)及びジエチルエーテル7mlを添加した。この混合物を0℃に冷却後、リチオ化剤であるn−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.22ml(0.35mmol)を滴下した。1時間かけて5℃まで昇温しメタル化の熟成を行った。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)64.1mg(0.477mmol)及びTHF15mlを添加し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温までゆっくり昇温し、3M塩酸水溶液を添加した。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、目的物の橙色固体93.5mgを得た(収率41%)。
6,7,6 ′, 7′-tetradodecyl-9,10,9 ′, 10′-tetrakis (phenylethenyl) -3,3′- synthesized in Example 15 in a 100 ml Schlenk reaction vessel under nitrogen atmosphere 254 mg (0.159 mmol) of dibromo-2,2′-bianthracenyl and 7 ml of diethyl ether were added. After cooling this mixture to 0 ° C., 0.22 ml (0.35 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) as a lithiating agent was added dropwise. The temperature was raised to 5 ° C. over 1 hour, and aging of metallization was performed. To another 100 ml Schlenk reaction vessel, 64.1 mg (0.477 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries) and 15 ml of THF were added and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was slowly raised to room temperature over 15 hours, and 3M aqueous hydrochloric acid was added. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the obtained solid was recrystallized from toluene to obtain 93.5 mg of the objective orange solid (yield 41%).
FABMS m/z: 1434(M+)。 FABMS m / z: 1434 (M + ).
MS測定より、テトラドデシルテトラキス(フェニルエテニル)ジナフトビフェニレンが得られたことを確認した。なお、その構造式を下記に示す。 From MS measurement, it was confirmed that tetradodecyltetrakis (phenylethenyl) dinaphthobiphenylene was obtained. The structural formula is shown below.
窒素雰囲気下、100mlシュレンク容器にトルエン10.4gを添加し、凍結(液体窒素)−減圧−窒素置換−融解から成るサイクルを3回繰り返すことで溶存酸素を除去した。そこへ実施例2で得られたテトラドデシルジナフトビフェニレンの黄色固体10.5mgを添加し、110℃に加熱溶解させると黄色透明溶液となった。次にこのシュレンク容器の上部の栓を開け、1時間、外気に接触させることで空気を導入し、さらに110℃で撹拌した。で酸化に由来する新たなピークの出現はなかった。
Under a nitrogen atmosphere, 10.4 g of toluene was added to a 100 ml Schlenk container, and dissolved oxygen was removed by repeating the cycle consisting of freezing (liquid nitrogen) -depressurization-nitrogen replacement-thawing three times. Thereto was added 10.5 mg of a tetradodecyldinaphthobiphenylene yellow solid obtained in Example 2 and dissolved by heating at 110 ° C. to obtain a yellow transparent solution. Next, the stopper at the top of the Schlenk container was opened, air was introduced by contact with outside air for 1 hour, and the mixture was further stirred at 110 ° C. There was no new peak due to oxidation.
さらにこの溶液を110℃、1時間、撹拌下で空気を導入しても溶液の色の変化はみられず、耐酸化性に優れるものであった。 Furthermore, even if this solution was introduced with air at 110 ° C. for 1 hour with stirring, the color of the solution was not changed, and the oxidation resistance was excellent.
比較例1
窒素雰囲気下、100mlシュレンク容器にトルエン28.9gを添加し、凍結(液体窒素)−減圧−窒素置換−融解から成るサイクルを3回繰り返すことで溶存酸素を除去した。そこへペンタセン(東京化成工業製)3.0mgを添加し、110℃に加熱し溶解させると赤紫色溶液となった。次にこのシュレンク容器の上部の栓を開け、1時間、空気を導入すると溶液の色が赤ピンク色に変化していた。さらに110℃で撹拌した。ガスクロマトグラフィー及びガスクロマトグラフィー−マススペクトル(GCMS)分析から、6,13−ペンタセンキノンが生成していることがわかった。
Comparative Example 1
Under a nitrogen atmosphere, 28.9 g of toluene was added to a 100 ml Schlenk container, and dissolved oxygen was removed by repeating the cycle of freezing (liquid nitrogen) -depressurization-nitrogen replacement-thawing three times. Thereto was added 3.0 mg of pentacene (manufactured by Tokyo Chemical Industry Co., Ltd.), and when heated to 110 ° C. and dissolved, a reddish purple solution was obtained. Next, when the stopper at the top of the Schlenk container was opened and air was introduced for 1 hour, the color of the solution changed to red pink. The mixture was further stirred at 110 ° C. From gas chromatography and gas chromatography-mass spectrum (GCMS) analysis, it was found that 6,13-pentacenequinone was produced.
さらにこの溶液を110℃、1時間、撹拌下で空気を導入すると溶液の色が黄色に変化していた。 Further, when air was introduced into the solution with stirring at 110 ° C. for 1 hour, the color of the solution changed to yellow.
実施例18 (有機薄膜の作製)
窒素雰囲気下、実施例2で得られたテトラドデシルジナフトビフェニレン7.2mgをトルエン(10.2g)と混合し、80℃で1時間撹拌し、テトラドデシルジナフトビフェニレンの黄色透明溶液を調製した。
Example 18 (Preparation of organic thin film)
Under a nitrogen atmosphere, 7.2 mg of tetradodecyldinaphthobiphenylene obtained in Example 2 was mixed with toluene (10.2 g) and stirred at 80 ° C. for 1 hour to prepare a yellow transparent solution of tetradodecyldinaphthobiphenylene. .
空気雰囲気下、凹面のある石英基板を80℃に加熱し、この基板上に上記の溶液をスポイトを用いて塗布し常圧下で乾燥し、膜厚420nmの有機薄膜を作製した。この有機薄膜の成分をガスクロマトグラフィーで分析した結果、テトラドデシルジナフトビフェニレン以外にピークはなく、酸化されていなかった。従って、空気中でも酸化されることなくテトラドデシルジナフトビフェニレンの有機薄膜を作製できることがわかった。 A quartz substrate having a concave surface was heated to 80 ° C. in an air atmosphere, and the above solution was applied onto the substrate using a dropper and dried under normal pressure to produce an organic thin film having a thickness of 420 nm. As a result of analyzing the components of this organic thin film by gas chromatography, there was no peak other than tetradodecyldinaphthobiphenylene, and it was not oxidized. Accordingly, it was found that an organic thin film of tetradodecyldinaphthobiphenylene can be produced without being oxidized in the air.
実施例19 (有機薄膜の作製、発光材料としての評価)
窒素雰囲気下、実施例2で得られたテトラドデシルジナフトビフェニレン26mgをジクロロエタン5gと混合し、80℃で1時間撹拌し、テトラドデシルジナフトビフェニレンの黄色溶液を調製した。
Example 19 (Preparation of organic thin film, evaluation as light emitting material)
Under a nitrogen atmosphere, 26 mg of tetradodecyl dinaphthobiphenylene obtained in Example 2 was mixed with 5 g of dichloroethane and stirred at 80 ° C. for 1 hour to prepare a yellow solution of tetradodecyl dinaphthobiphenylene.
空気雰囲気下、石英基板を70℃に加熱し、この基板上に上記の溶液をスポイトを用いて塗布し常圧下で乾燥し、膜厚287nmの有機薄膜を作製した。この有機薄膜を用いて、発光量子収率及び蛍光スペクトルを測定した。結果を表1に示す。これらの結果からテトラドデシルジナフトビフェニレンは発光材料として利用できるものであった。 In an air atmosphere, the quartz substrate was heated to 70 ° C., and the above solution was applied onto the substrate using a dropper and dried under normal pressure to produce an organic thin film having a thickness of 287 nm. Using this organic thin film, the emission quantum yield and the fluorescence spectrum were measured. The results are shown in Table 1. From these results, tetradodecyldinaphthobiphenylene can be used as a light emitting material.
実施例20 (有機薄膜の作製、発光材料としての評価)
窒素雰囲気下、実施例12で得られたテトラドデシルテトラフェニルジナフトビフェニレン36mgをジクロロエタン5gと混合し、80℃で1時間撹拌し、テトラドデシルテトラフェニルジナフトビフェニレンの黄色溶液を調製した。
Example 20 (Production of organic thin film, evaluation as light emitting material)
Under a nitrogen atmosphere, 36 mg of tetradodecyltetraphenyldinaphthobiphenylene obtained in Example 12 was mixed with 5 g of dichloroethane and stirred at 80 ° C. for 1 hour to prepare a yellow solution of tetradodecyltetraphenyldinaphthobiphenylene.
空気雰囲気下、石英基板を70℃に加熱し、この基板上に上記の溶液をスポイトを用いて塗布し常圧下で乾燥し、膜厚398nmの有機薄膜を作製した。この有機薄膜を用いて、発光量子収率及び蛍光スペクトルを測定した。結果を表1に示す。これらの結果からテトラドデシルテトラフェニルジナフトビフェニレンは発光材料として利用できるものであった。 In an air atmosphere, the quartz substrate was heated to 70 ° C., and the above solution was applied onto the substrate using a dropper and dried under normal pressure to produce an organic thin film having a thickness of 398 nm. Using this organic thin film, the emission quantum yield and the fluorescence spectrum were measured. The results are shown in Table 1. From these results, tetradodecyltetraphenyldinaphthobiphenylene can be used as a light emitting material.
実施例21 (有機薄膜の作製、発光材料としての評価)
窒素雰囲気下、実施例14で得られたテトラドデシルテトラキス(フェニルエチニル)ジナフトビフェニレン36mgをジクロロエタン5gと混合し、80℃で1時間撹拌し、テトラドデシルテトラキス(フェニルエチニル)ジナフトビフェニレンの橙色溶液を調製した。
Example 21 (Preparation of organic thin film, evaluation as light emitting material)
Under a nitrogen atmosphere, 36 mg of tetradodecyltetrakis (phenylethynyl) dinaphthobiphenylene obtained in Example 14 was mixed with 5 g of dichloroethane, stirred at 80 ° C. for 1 hour, and an orange solution of tetradodecyltetrakis (phenylethynyl) dinaphthobiphenylene Was prepared.
空気雰囲気下、石英基板を70℃に加熱し、この基板上に上記の溶液をスポイトを用いて塗布し常圧下で乾燥し、膜厚378nmの有機薄膜を作製した。この有機薄膜を用いて、発光量子収率及び蛍光スペクトルを測定した。結果を表1に示す。これらの結果からテトラドデシルテトラキス(フェニルエチニル)ジナフトビフェニレンは発光材料として利用できるものであった。 In an air atmosphere, the quartz substrate was heated to 70 ° C., and the above solution was applied onto the substrate using a dropper and dried under normal pressure to produce an organic thin film having a thickness of 378 nm. Using this organic thin film, the emission quantum yield and the fluorescence spectrum were measured. The results are shown in Table 1. From these results, tetradodecyltetrakis (phenylethynyl) dinaphthobiphenylene can be used as a light emitting material.
実施例22 (有機薄膜の作製、発光材料としての評価)
窒素雰囲気下、実施例16で得られたテトラドデシルテトラキス(フェニルエテニル)ジナフトビフェニレン32mgをジクロロエタン5gと混合し、80℃で1時間撹拌し、テトラドデシルテトラキス(フェニルエテニル)ジナフトビフェニレンの橙色溶液を調製した。
Example 22 (Preparation of organic thin film, evaluation as light emitting material)
Under a nitrogen atmosphere, 32 mg of tetradodecyltetrakis (phenylethenyl) dinaphthobiphenylene obtained in Example 16 was mixed with 5 g of dichloroethane, stirred at 80 ° C. for 1 hour, and tetradodecyltetrakis (phenylethenyl) dinaphthobiphenylene. An orange solution was prepared.
空気雰囲気下、石英基板を70℃に加熱し、この基板上に上記の溶液をスポイトを用いて塗布し常圧下で乾燥し、膜厚356nmの有機薄膜を作製した。この有機薄膜を用いて、発光量子収率及び蛍光スペクトルを測定した。結果を表1に示す。これらの結果からテトラドデシルテトラキス(フェニルエテニル)ジナフトビフェニレンは発光材料として利用できるものであった。 In an air atmosphere, the quartz substrate was heated to 70 ° C., and the above solution was applied onto the substrate using a dropper and dried under normal pressure to produce an organic thin film having a thickness of 356 nm. Using this organic thin film, the emission quantum yield and the fluorescence spectrum were measured. The results are shown in Table 1. From these results, tetradodecyltetrakis (phenylethenyl) dinaphthobiphenylene can be used as a light emitting material.
1) (3,3’−ジブロモ−6,7,6’,7’−テトラドデシル−2,2’−ビナフチルの合成)
窒素雰囲気下、100mlシュレンク反応容器に2,3−ジブロモ−6,7−ジドデシルナフタレン389mg(0.625mmol)及びTHF9mlを加えた。−78℃に冷却し、n−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.20ml(0.31mmol)を滴下した。20分間反応後、冷却用バスを外し、室温で1時間撹拌した。3M塩酸水溶液及びトルエン添加し分相した。有機相を無水硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をヘプタンから再結晶精製し、白色固体204mgを得た(収率61%)。
1) (Synthesis of 3,3′-dibromo-6,7,6 ′, 7′-tetradodecyl-2,2′-binaphthyl)
Under a nitrogen atmosphere, 389 mg (0.625 mmol) of 2,3-dibromo-6,7-didodecylnaphthalene and 9 ml of THF were added to a 100 ml Schlenk reaction vessel. The mixture was cooled to −78 ° C., and 0.20 ml (0.31 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) was added dropwise. After reacting for 20 minutes, the cooling bath was removed and the mixture was stirred at room temperature for 1 hour. 3M hydrochloric acid aqueous solution and toluene were added for phase separation. The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The residue was recrystallized and purified from heptane to obtain 204 mg of a white solid (yield 61%).
2) (テトラドデシルジベンゾビフェニレンの合成)
窒素雰囲気下、100mlシュレンク反応容器に上記1)で得た3,3’−ジブロモ−6,7,6’,7’−テトラドデシル−2,2’−ビナフチル201mg(0.185mmol)及びジエチルエーテル5mlを加えた。0℃に冷却し、n−ブチルリチウム(関東化学製、1.59M)のヘキサン溶液0.25ml(0.40mmol)を滴下し、0℃で30分間及び10℃で60分間撹拌した。別の100mlシュレンク反応容器に、塩化銅(II)(和光純薬工業製)74.6mg(0.555mmol)及びTHF10mlを投入し、−78℃に冷却した。ここへ先のジリチオ化物のジエチルエーテル溶液をテフロン(登録商標)キャヌラーを用いて移液した。15時間かけて室温まで昇温し、3M塩酸水溶液を加えて反応を停止させた。分相し、有機相をさらに飽和食塩水で洗浄した。懸濁している有機相を濾過し、固体を濾別した。この固体を水及びヘキサンで洗浄し、得られた固体をトルエンから再結晶化し、テトラドデシルジベンゾビフェニレンの淡黄色固体83.9mgを得た(収率49%)。
2) (Synthesis of tetradodecyl dibenzobiphenylene)
Under a nitrogen atmosphere, in a 100 ml Schlenk reaction vessel, 201 mg (0.185 mmol) of 3,3′-dibromo-6,7,6 ′, 7′-tetradodecyl-2,2′-binaphthyl obtained in 1) above and diethyl ether 5 ml was added. After cooling to 0 ° C., 0.25 ml (0.40 mmol) of a hexane solution of n-butyllithium (manufactured by Kanto Chemical Co., Ltd., 1.59 M) was added dropwise, and the mixture was stirred at 0 ° C. for 30 minutes and at 10 ° C. for 60 minutes. In a separate 100 ml Schlenk reaction vessel, 74.6 mg (0.555 mmol) of copper (II) chloride (manufactured by Wako Pure Chemical Industries, Ltd.) and 10 ml of THF were charged and cooled to -78 ° C. To this, the diethyl ether solution of the dilithiated compound was transferred using a Teflon (registered trademark) cannula. The temperature was raised to room temperature over 15 hours, and a 3M aqueous hydrochloric acid solution was added to stop the reaction. The phases were separated, and the organic phase was further washed with saturated brine. The suspended organic phase was filtered and the solid was filtered off. This solid was washed with water and hexane, and the obtained solid was recrystallized from toluene to obtain 83.9 mg of a light yellow solid of tetradodecyldibenzobiphenylene (yield 49%).
なお、その構造式を下記に示す。 The structural formula is shown below.
窒素雰囲気下、100mlシュレンク容器にトルエン10.2gを添加し、凍結(液体窒素)−減圧−窒素置換−融解から成るサイクルを3回繰り返すことで溶存酸素を除去した。そこへ上記2)で得たテトラドデシルジベンゾビフェニレン7.2mgを添加し、80℃で1時間撹拌し、テトラドデシルジベンゾビフェニレンの薄黄色透明溶液を調製した。
次に窒素雰囲気下、凹面のある石英基板を80℃に加熱し、この基板上に上記の溶液をスポイトを用いて塗布し常圧下で乾燥した。しかし、材料がある部分とない部分が存在し、均一な膜は得られず、塗布による均質な薄膜作製は困難であった。 Next, a quartz substrate having a concave surface was heated to 80 ° C. in a nitrogen atmosphere, and the above solution was applied onto the substrate with a dropper and dried under normal pressure. However, there are portions where the material is present and portions where the material is not present, and a uniform film cannot be obtained, and it is difficult to produce a uniform thin film by coating.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008236973A JP5481815B2 (en) | 2008-02-28 | 2008-09-16 | Biphenylene derivative, use thereof, and production method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008047803 | 2008-02-28 | ||
JP2008047803 | 2008-02-28 | ||
JP2008236973A JP5481815B2 (en) | 2008-02-28 | 2008-09-16 | Biphenylene derivative, use thereof, and production method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009227652A true JP2009227652A (en) | 2009-10-08 |
JP5481815B2 JP5481815B2 (en) | 2014-04-23 |
Family
ID=41243463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008236973A Active JP5481815B2 (en) | 2008-02-28 | 2008-09-16 | Biphenylene derivative, use thereof, and production method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5481815B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181462A1 (en) * | 2017-03-31 | 2018-10-04 | 東ソー株式会社 | Aromatic compound, organic semiconductor layer, and organic thin film transistor |
JP2018174322A (en) * | 2017-03-31 | 2018-11-08 | 東ソー株式会社 | Aromatic compound, organic semiconductor layer, and organic thin film transistor |
JP2020029450A (en) * | 2018-03-27 | 2020-02-27 | 東ソー株式会社 | Method for producing aromatic compound |
JP2020057787A (en) * | 2018-09-28 | 2020-04-09 | 東ソー株式会社 | Biphenylene derivative, organic semiconductor layer, and organic thin film transistor |
JP2020070289A (en) * | 2018-09-19 | 2020-05-07 | 国立大学法人茨城大学 | Fluorine-containing polycyclic aromatic compound and method for producing the same, and organic thin film transistor, solar cell, electrophotographic photoreceptor and method for producing organic light emitting element each of which uses the fluorine-containing polycyclic aromatic compound |
WO2021060384A1 (en) * | 2019-09-25 | 2021-04-01 | 出光興産株式会社 | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004256497A (en) * | 2003-02-27 | 2004-09-16 | Japan Science & Technology Agency | Polysubstituted polycyclic aromatic compound and method for producing the same |
JP2006156980A (en) * | 2004-11-02 | 2006-06-15 | Tosoh Corp | Organic thin film and manufacturing method thereof |
JP2006328006A (en) * | 2005-05-27 | 2006-12-07 | Tosoh Corp | Method for producing dibenzobiphenylene derivative |
JP2007224011A (en) * | 2006-01-30 | 2007-09-06 | Tosoh Corp | Biphenylene derivative, use thereof, and production method thereof |
-
2008
- 2008-09-16 JP JP2008236973A patent/JP5481815B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004256497A (en) * | 2003-02-27 | 2004-09-16 | Japan Science & Technology Agency | Polysubstituted polycyclic aromatic compound and method for producing the same |
JP2006156980A (en) * | 2004-11-02 | 2006-06-15 | Tosoh Corp | Organic thin film and manufacturing method thereof |
JP2006328006A (en) * | 2005-05-27 | 2006-12-07 | Tosoh Corp | Method for producing dibenzobiphenylene derivative |
JP2007224011A (en) * | 2006-01-30 | 2007-09-06 | Tosoh Corp | Biphenylene derivative, use thereof, and production method thereof |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018181462A1 (en) * | 2017-03-31 | 2018-10-04 | 東ソー株式会社 | Aromatic compound, organic semiconductor layer, and organic thin film transistor |
JP2018174322A (en) * | 2017-03-31 | 2018-11-08 | 東ソー株式会社 | Aromatic compound, organic semiconductor layer, and organic thin film transistor |
JP7159586B2 (en) | 2017-03-31 | 2022-10-25 | 東ソー株式会社 | Aromatic compounds, organic semiconductor layers, and organic thin film transistors |
JP2020029450A (en) * | 2018-03-27 | 2020-02-27 | 東ソー株式会社 | Method for producing aromatic compound |
JP7279412B2 (en) | 2018-03-27 | 2023-05-23 | 東ソー株式会社 | Method for producing aromatic compound |
JP2020070289A (en) * | 2018-09-19 | 2020-05-07 | 国立大学法人茨城大学 | Fluorine-containing polycyclic aromatic compound and method for producing the same, and organic thin film transistor, solar cell, electrophotographic photoreceptor and method for producing organic light emitting element each of which uses the fluorine-containing polycyclic aromatic compound |
JP7061804B2 (en) | 2018-09-19 | 2022-05-02 | 国立大学法人茨城大学 | A fluorine-containing polycyclic aromatic compound and a method for producing the same, and a method for producing an organic thin film transistor and a solar cell using the fluorine-containing aromatic compound. |
JP2020057787A (en) * | 2018-09-28 | 2020-04-09 | 東ソー株式会社 | Biphenylene derivative, organic semiconductor layer, and organic thin film transistor |
JP7494456B2 (en) | 2018-09-28 | 2024-06-04 | 東ソー株式会社 | Biphenylene derivative, organic semiconductor layer, and organic thin film transistor |
WO2021060384A1 (en) * | 2019-09-25 | 2021-04-01 | 出光興産株式会社 | Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP5481815B2 (en) | 2014-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5716781B2 (en) | Heteroacene derivatives, tetrahaloterphenyl derivatives and methods for producing them | |
JP5272345B2 (en) | Heteroacene derivatives, tetrahaloterphenyl derivatives and methods for producing them | |
JP5716821B2 (en) | Heteroacene derivatives, precursor compounds thereof, and methods for producing the same | |
US7985885B2 (en) | Terphenylene derivative, tetrahaloterphenyl derivative, and processes for producing both | |
JP5549829B2 (en) | Heteroacene derivatives and uses thereof | |
JP2007197400A (en) | Dibenzothiophene derivative, production method and use thereof | |
JP5481815B2 (en) | Biphenylene derivative, use thereof, and production method thereof | |
JP5076466B2 (en) | Biphenylene derivative, use thereof, and production method thereof | |
JP2009203183A (en) | Method for producing heteroacene derivative | |
JP5577604B2 (en) | Process for producing heteroacene derivative and tetrahaloterphenyl derivative | |
JP4978003B2 (en) | Dibenzosilole derivatives, precursor compounds thereof, and production methods thereof | |
JP2010070473A (en) | Method of producing terphenylene derivative | |
JP4984642B2 (en) | Spirobi (heterofluorene) derivative, use thereof, and production method thereof | |
JP5169191B2 (en) | Heteroacene derivatives, (tetrahalo) diarylthienothiophene derivatives and methods for producing them | |
JP5617296B2 (en) | Bi (anthrachalcogenophenyl) derivatives, precursor compounds thereof, and production methods thereof | |
JP5076599B2 (en) | Method for producing terphenylene derivative | |
TWI706946B (en) | Carbazole-substituted triazine compounds and organic electroluminescent devices using the same | |
JP2007210964A (en) | Tetraphenylene derivative, use thereof, and production method thereof | |
JP2010254636A (en) | Halobenzochalcogenophene derivatives, raw material compounds thereof, and production methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130926 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140121 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140203 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5481815 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |