[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009221362A - Photocatalyst coating film and photocatalyst composition - Google Patents

Photocatalyst coating film and photocatalyst composition Download PDF

Info

Publication number
JP2009221362A
JP2009221362A JP2008067792A JP2008067792A JP2009221362A JP 2009221362 A JP2009221362 A JP 2009221362A JP 2008067792 A JP2008067792 A JP 2008067792A JP 2008067792 A JP2008067792 A JP 2008067792A JP 2009221362 A JP2009221362 A JP 2009221362A
Authority
JP
Japan
Prior art keywords
photocatalyst
coating film
titanium oxide
type titanium
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008067792A
Other languages
Japanese (ja)
Other versions
JP5368720B2 (en
Inventor
Asami Ohashi
亜沙美 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2008067792A priority Critical patent/JP5368720B2/en
Publication of JP2009221362A publication Critical patent/JP2009221362A/en
Application granted granted Critical
Publication of JP5368720B2 publication Critical patent/JP5368720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst coating film sufficiently excellent in durability of a substrate and/or coating while holding the decomposition activity (photocatalyst activity) and/or hydrophilicity of an organic substance at a high level by a photocatalyst immobilized on the surface of the substrate. <P>SOLUTION: The photocatalyst film comprises a rutile type titanium dioxide and a compound showing high photocatalyst ability. The content of the rutile type titanium dioxide satisfies the conditions represented by the following formula (1): 4/X≤a≤100/X, wherein X represents the thickness (unit: μm) of the photocatalyst coating film; and a represents the content (unit: % by mass) of the rutile type titanium dioxide to the total amount of the photocatalyst coating film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光触媒塗膜及び光触媒組成物に関するものである。   The present invention relates to a photocatalyst coating film and a photocatalyst composition.

光触媒とは、光照射によって他の物質の反応(例えば酸化、還元反応)を進行させる物質のことをいう。言い換えれば、伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)を有する光(励起光)を照射した際に、価電子帯中の電子の励起(光励起)が生じて、伝導電子と正孔とを生成しうる物質である。このとき、伝導帯に生成した電子の還元力及び/又は価電子帯に生成した正孔の酸化力を利用して、種々の化学反応を行うことができる。   The photocatalyst refers to a substance that causes a reaction (for example, oxidation or reduction reaction) of another substance to proceed by light irradiation. In other words, when light (excitation light) having energy larger than the energy gap between the conduction band and the valence band (ie, short wavelength) is irradiated, excitation of electrons in the valence band (photoexcitation) occurs. Thus, it is a substance that can generate conduction electrons and holes. At this time, various chemical reactions can be performed using the reducing power of electrons generated in the conduction band and / or the oxidizing power of holes generated in the valence band.

また、光触媒活性とは、光照射によって酸化、還元反応を進行させる活性をいう。光触媒は、この光触媒活性を有することにより、有機物質の分解作用や表面の親水化作用を示すことが知られている。かかる作用に基づいて、光触媒は環境浄化や防汚、防曇等の分野に応用されている。例えば、特許文献1では、光触媒粒子を含有する表層部を備え、降雨により自己清浄化(セルフクリーニング)される表面を有する屋外表示板、及びその清浄化方法が提案されている。特許文献1によると、光触媒を含有する表面層を備えることにより、光触媒の光励起に応じて、表層部の表面は親水性を呈する。そのため、屋外表示板の表面が降雨にさらされた時に付着堆積物及び/又は汚染物が雨滴により洗い流されることが可能となる、とされている。   The photocatalytic activity refers to an activity that causes an oxidation or reduction reaction to proceed by light irradiation. It is known that a photocatalyst exhibits a photocatalytic activity and exhibits an organic substance decomposing action and a surface hydrophilizing action. Based on this action, the photocatalyst is applied to fields such as environmental purification, antifouling, and antifogging. For example, Patent Document 1 proposes an outdoor display panel that includes a surface layer portion containing photocatalyst particles and has a surface that is self-cleaned by rain (self-cleaning), and a cleaning method therefor. According to Patent Document 1, by providing a surface layer containing a photocatalyst, the surface of the surface layer portion exhibits hydrophilicity according to photoexcitation of the photocatalyst. Therefore, when the surface of the outdoor display panel is exposed to rain, the deposited deposits and / or contaminants can be washed away by raindrops.

ところで、光触媒を環境浄化や防汚、防曇等の分野へ応用させる場合、基体への光触媒の固定化技術が非常に重要な役割を担う。この固定化技術では、(ア)光触媒活性を損なわずに基体へ強固に固定化するとともに、(イ)光触媒作用で基体及びそのコーティングが劣化しない安定性を付与する必要がある。   By the way, when the photocatalyst is applied to fields such as environmental purification, antifouling, and antifogging, the technology for immobilizing the photocatalyst on the substrate plays a very important role. In this immobilization technique, it is necessary to (a) firmly fix the photocatalytic activity to the substrate without impairing the photocatalytic activity, and (b) provide stability that does not deteriorate the substrate and its coating by the photocatalytic action.

このような必要性を満足する光触媒の固定化を意図して、基体とその上に設けられた光触媒を含有する表層部との間に保護層を介在させる方法が提案されている。例えば、特許文献2では、基材フィルムの一方の面に所定の厚みを有するケイ素酸化物又はアルミニウム酸化物からなる蒸着層を設け、その上に酸化チタンを主成分とする光触媒層を設けた多層光触媒フィルムが提案されている。あるいは、特許文献3では、光触媒を樹脂塗料中に混合し、この樹脂塗料を基材へコーティングする方法も提案されている。さらには、例えば特許文献4に開示されているように、光触媒粒子表面に光触媒では分解困難な無機物を担持する方法も提案されている。
特開平9−230810号公報 特開平11−348172号公報 特開2002−154915号公報 特開2005−170687号公報
In order to fix the photocatalyst satisfying such a need, a method has been proposed in which a protective layer is interposed between the substrate and the surface layer portion containing the photocatalyst provided thereon. For example, in Patent Document 2, a multilayer in which a vapor deposition layer made of silicon oxide or aluminum oxide having a predetermined thickness is provided on one surface of a base film and a photocatalytic layer mainly composed of titanium oxide is provided thereon. Photocatalytic films have been proposed. Alternatively, Patent Document 3 proposes a method in which a photocatalyst is mixed in a resin paint and the resin paint is coated on a substrate. Furthermore, as disclosed in Patent Document 4, for example, a method of supporting an inorganic substance that is difficult to decompose with a photocatalyst on the surface of the photocatalyst particle has been proposed.
Japanese Patent Laid-Open No. 9-230810 Japanese Patent Laid-Open No. 11-348172 JP 2002-154915 A JP 2005-170687 A

しかしながら、特許文献2で提案された方法は、塗装工程が増えるため作業性に劣るという欠点がある。また、光触媒を樹脂塗料中に混合し、この樹脂塗料を基体へコーティングする方法では、十分な光触媒活性及び/又は親水性を示すために樹脂塗料の使用量を少なくする必要がある。これでは、基体の耐久性やコーティングの硬度、密着性が十分ではないという欠点がある。一方で、樹脂塗料の使用量を多くすると光触媒活性及び/又は親水性が不十分となる。さらに、特許文献3、4に記載の方法では、無機物の担持量や樹脂塗料の混合量が少なければ基体及びコーティングの劣化を抑制できず、それらが多ければ光触媒活性及び親水性の低下をも招くことになる。したがって、光触媒による有機物の分解活性(光触媒活性)及び/又は親水性を高いレベルで保持しつつ、基体及びコーティングの劣化も抑制できる光触媒の層を基体上に形成するのは非常に困難であった。   However, the method proposed in Patent Document 2 has a drawback that the workability is inferior because the number of coating steps increases. Further, in the method of mixing a photocatalyst in a resin paint and coating the resin paint on a substrate, it is necessary to reduce the amount of the resin paint used in order to exhibit sufficient photocatalytic activity and / or hydrophilicity. This has the disadvantage that the durability of the substrate, the hardness of the coating, and the adhesion are not sufficient. On the other hand, when the amount of the resin coating used is increased, the photocatalytic activity and / or hydrophilicity becomes insufficient. Furthermore, in the methods described in Patent Documents 3 and 4, deterioration of the substrate and the coating cannot be suppressed if the amount of the inorganic substance supported or the amount of the resin coating is small, and if they are large, the photocatalytic activity and the hydrophilicity are also reduced. It will be. Therefore, it is very difficult to form a photocatalyst layer on the substrate that can maintain the decomposition activity (photocatalytic activity) and / or hydrophilicity of the organic substance by the photocatalyst at a high level and can also suppress the deterioration of the substrate and the coating. .

しかも、これらの従来の技術で用いられる塗料は、そのほとんどで有機溶剤が採用されており、有機溶剤の揮発による毒性、環境汚染、引火性の点で改善の余地がある。さらに、耐溶剤性の観点から、樹脂からなる基体や有機皮膜が形成された基体を用いることについても検討の余地がある。   Moreover, most of the paints used in these conventional techniques employ organic solvents, and there is room for improvement in terms of toxicity, environmental pollution, and flammability due to volatilization of organic solvents. Further, from the viewpoint of solvent resistance, there is room for studying the use of a substrate made of a resin or a substrate on which an organic film is formed.

本発明は上記事情にかんがみてなされたものであり、基体表面に固定化した光触媒による有機物の分解活性(光触媒活性)及び/又は親水性を高いレベルで保持しつつ、基体及び/又はコーティングの耐久性に十分優れる光触媒塗膜及びその光触媒塗膜を形成可能な光触媒組成物を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the durability of the substrate and / or coating is maintained while maintaining a high level of decomposition activity (photocatalytic activity) and / or hydrophilicity of organic substances by the photocatalyst immobilized on the surface of the substrate. An object of the present invention is to provide a photocatalyst coating film that is sufficiently excellent in properties and a photocatalyst composition that can form the photocatalyst coating film.

本発明者らは上記目的を達成すべく鋭意検討した結果、本発明を完成させた。すなわち、本発明は下記のとおりである。   As a result of intensive studies to achieve the above object, the present inventors have completed the present invention. That is, the present invention is as follows.

(1)ルチル型酸化チタン及び高い光触媒能を示す化合物を含む光触媒塗膜であって、前記ルチル型酸化チタンの含有割合が下記式(1)で表される条件を満足する、光触媒塗膜。
4/X≦a≦100/X (1)
ここで、式(1)中、Xは前記光触媒塗膜の膜厚(単位:μm)を示し、aは前記ルチル型酸化チタンの前記光触媒塗膜の総量に対する含有割合(単位:質量%)を示す。
(2)前記ルチル型酸化チタンの含有割合が下記式(1a)で表される条件を満足する、(1)の光触媒塗膜。
4/X≦a≦60/X (1a)
ここで、式(1)中、Xは前記光触媒塗膜の膜厚(単位:μm)を示し、aは前記ルチル型酸化チタンの前記光触媒塗膜の総量に対する含有割合(単位:質量%)を示す。
(3)前記ルチル型酸化チタンに対する前記高い光触媒能を示す化合物の質量比が0.10〜2.0である、(1)又は(2)の光触媒塗膜。
(4)前記ルチル型酸化チタン及び前記高い光触媒能を示す化合物の粒子径が、一次粒子径で共に100nm以下である、(1)〜(3)のいずれか一つの光触媒塗膜。
(5)前記高い光触媒能を示す化合物がアナターゼ型酸化チタンである、請求項1〜4のいずれか一項に記載の光触媒塗膜。
(6)水系バインダーを含む、(1)〜(5)のいずれか一つの光触媒塗膜。
(1)〜(6)のいずれか一つの光触媒塗膜を形成するために用いられる光触媒組成物。
(1) A photocatalytic coating film comprising rutile titanium oxide and a compound exhibiting high photocatalytic activity, wherein the content ratio of the rutile titanium oxide satisfies the condition represented by the following formula (1).
4 / X ≦ a ≦ 100 / X (1)
Here, in the formula (1), X represents the film thickness (unit: μm) of the photocatalyst coating film, and a represents the content ratio (unit: mass%) of the rutile titanium oxide with respect to the total amount of the photocatalyst coating film. Show.
(2) The photocatalytic coating film according to (1), wherein a content ratio of the rutile-type titanium oxide satisfies a condition represented by the following formula (1a).
4 / X ≦ a ≦ 60 / X (1a)
Here, in the formula (1), X represents the film thickness (unit: μm) of the photocatalyst coating film, and a represents the content ratio (unit: mass%) of the rutile titanium oxide with respect to the total amount of the photocatalyst coating film. Show.
(3) The photocatalytic coating film according to (1) or (2), wherein a mass ratio of the compound exhibiting high photocatalytic activity to the rutile-type titanium oxide is 0.10 to 2.0.
(4) The photocatalytic coating film according to any one of (1) to (3), wherein the rutile-type titanium oxide and the compound exhibiting high photocatalytic activity both have a primary particle diameter of 100 nm or less.
(5) The photocatalyst coating film as described in any one of Claims 1-4 whose compound which shows the said high photocatalytic ability is anatase type titanium oxide.
(6) The photocatalyst coating film according to any one of (1) to (5), comprising an aqueous binder.
The photocatalyst composition used in order to form any one photocatalyst coating film of (1)-(6).

本発明によると、基体表面に固定化した光触媒による有機物の分解活性(光触媒活性)及び/又は親水性を高いレベルで保持しつつ、基体及び/又はコーティングの耐久性に十分優れる光触媒塗膜を提供することができる。   According to the present invention, there is provided a photocatalyst coating film that is sufficiently excellent in durability of the substrate and / or coating while maintaining the decomposition activity (photocatalytic activity) and / or hydrophilicity of the organic substance by the photocatalyst immobilized on the substrate surface at a high level. can do.

以下、本発明を実施するための最良の形態(以下、単に「本実施形態」という。)について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.

本実施形態の光触媒塗膜は、ルチル型酸化チタン及び高い光触媒能を示す化合物を含む光触媒塗膜であって、ルチル型酸化チタンの含有割合が上記式(1)で表される条件を満足するものである。ここで、「光触媒」とは、その伝導帯と価電子帯との間のエネルギーギャップよりも大きなエネルギー(すなわち短い波長)の光(励起光)を照射したときに、価電子帯中の電子の励起(光励起)が生じて、伝導電子と正孔とを生成し得る物質をいう。また、「高い光触媒能」とは、ルチル型酸化チタンよりも単位質量当たりの光触媒に基づく有機物の分解活性のことをいう。   The photocatalyst coating film of this embodiment is a photocatalyst coating film containing a compound showing rutile type titanium oxide and high photocatalytic activity, and the content ratio of the rutile type titanium oxide satisfies the condition represented by the above formula (1). Is. Here, the “photocatalyst” means that an electron in the valence band is irradiated with light (excitation light) having energy (ie, short wavelength) larger than the energy gap between the conduction band and the valence band. A substance that can generate conduction electrons and holes when excitation (photoexcitation) occurs. “High photocatalytic activity” refers to the decomposition activity of organic substances based on a photocatalyst per unit mass rather than rutile titanium oxide.

高い光触媒能を示す化合物は、高い防汚性を発現でき、特に光触媒塗膜表面ではその防汚性がより優れたものとなる。一方、ルチル型酸化チタンは光触媒としての活性は低いものの、高い紫外線吸収能を示す。したがって、本実施形態の光触媒塗膜は、これらを共に含有することにより基体へ到達する紫外線量を減らすことができ、基体近傍に存在する高い光触媒能を有する化合物の光触媒活性を抑制することが可能となる。その結果、本実施形態の光触媒は、優れた耐候性と防汚性とを共に発現することが可能となる。   A compound exhibiting a high photocatalytic ability can exhibit a high antifouling property, and the antifouling property is particularly excellent on the surface of the photocatalyst coating film. On the other hand, rutile-type titanium oxide exhibits high ultraviolet absorbing ability although it has low activity as a photocatalyst. Therefore, the photocatalytic coating film of this embodiment can reduce the amount of ultraviolet rays reaching the substrate by containing both of them, and can suppress the photocatalytic activity of a compound having a high photocatalytic ability existing in the vicinity of the substrate. It becomes. As a result, the photocatalyst of this embodiment can exhibit both excellent weather resistance and antifouling properties.

高い光触媒能を示す化合物としては、例えば、アナターゼ型酸化チタン(TiO)、ブルッカイト型酸化チタン(TiO)、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、BaTiO、BaTi、KNbO、Nb、Fe、Ta、KTaSi、WO、SnO、Bi、BiVO、NiO、CuO、SiC、MoS、InPb、RuO、CeOが挙げられる。また、高い光触媒能を示す化合物として、例えば、Ti、Nb、Ta、Vからなる群より選ばれる1種以上の元素を有する層状酸化物が挙げられる。かかる層状酸化物は、特開昭62−74452号公報、特開平2−172535号公報、特開平7−24329号公報、特開平8−89799号公報、特開平8−89800号公報、特開平8−89804号公報、特開平8−198061号公報、特開平9−248465号公報、特開平10−99694号公報、特開平10−244165号公報に記載されている。また、これらの光触媒にPt、Rh、Ru、Nb、Cu、Sn、Ni、Feに代表される金属及び/又は金属の酸化物を添加又は固定化したものや、多孔質リン酸カルシウム等で被覆された光触媒(例えば、特開平11−267519号公報に記載のもの)も、本実施形態に係る高い光触媒能を示す化合物として用いられてもよい。 Examples of the compound exhibiting high photocatalytic activity include anatase type titanium oxide (TiO 2 ), brookite type titanium oxide (TiO 2 ), ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , BaTiO 4 , BaTi 4. O 9 , K 2 NbO 3 , Nb 2 O 5 , Fe 2 O 3 , Ta 2 O 5 , K 3 Ta 3 Si 2 O 3 , WO 3 , SnO 2 , Bi 2 O 3 , BiVO 4 , NiO, Cu 2 O, SiC, MoS 2, InPb , RuO 2, CeO 2 and the like. Moreover, as a compound which shows high photocatalytic ability, the layered oxide which has 1 or more types of elements chosen from the group which consists of Ti, Nb, Ta, and V is mentioned, for example. Such layered oxides are disclosed in JP-A-62-274452, JP-A-2-172535, JP-A-7-24329, JP-A-8-89799, JP-A-8-89800, JP-A-8. -89804, JP-A-8-198061, JP-A-9-248465, JP-A-10-99694, and JP-A-10-244165. In addition, these photocatalysts were coated with a metal typified by Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe and / or an oxide of a metal, or porous calcium phosphate. A photocatalyst (for example, one described in JP-A-11-267519) may also be used as a compound exhibiting high photocatalytic activity according to this embodiment.

また、高い光触媒能を示す化合物として、(例えば約400〜800nmの波長を有する)可視光の照射により、光触媒活性及び/又は親水性を発現することができる可視光応答型光触媒を用いてもよい。本実施形態の光触媒塗膜がこの可視光応答型光触媒を含む場合、室内等の紫外線が十分に照射されない場所等においても環境浄化効果や防汚効果が大きなものとなる点で有用である。   In addition, a visible light responsive photocatalyst that can exhibit photocatalytic activity and / or hydrophilicity by irradiation with visible light (for example, having a wavelength of about 400 to 800 nm) may be used as the compound exhibiting high photocatalytic activity. . When the photocatalyst coating film of this embodiment contains this visible light responsive photocatalyst, it is useful in that the environmental purification effect and the antifouling effect are increased even in places where ultraviolet rays such as indoors are not sufficiently irradiated.

上記可視光応答型光触媒は、可視光で光触媒活性及び/又は親水性を発現するものであればよい。そのような可視光応答型光触媒としては、例えば、TaON、LaTiON、CaNbON、LaTaON、CaTaONに代表されるオキシナイトライド化合物(例えば、特開2002−66333号公報を参照)、SmTi等に代表されるオキシサルファイド化合物(例えば、特開2002−233770号公報を参照)、CaIn、SrIn、ZnGa、NaSbに代表されるd10電子状態の金属イオンを含む酸化物(例えば、特開2002−59008号公報を参照)が挙げられる。また、各種の修飾を施されることで可視光応答型の機能を付与された酸化チタンも可視光応答型光触媒として挙げられる。そのような酸化チタンとしては、アンモニアや尿素に代表される窒素含有化合物存在下で、例えばオキシ硫酸チタン、塩化チタン、アルコキシチタンに代表されるチタン酸化物前駆体や高表面酸化チタンを焼成して得られる窒素ドープ酸化チタン(例えば、特開2002−29750号公報、特開2002−87818号公報、特開2002−154823号公報、特開2001−207082号公報を参照)、チオ尿素等の硫黄化合物存在下で、オキシ硫酸チタン、塩化チタン、アルコキシチタンに代表されるチタン酸化物前駆体を焼成して得られる硫黄ドープ酸化チタン、酸化チタンを水素プラズマ処理したり真空下で加熱処理したりすることによって得られる酸素欠陥型の酸化チタン(例えば、特開2001−98219号公報を参照)が挙げられる。さらには、光触媒粒子をハロゲン化白金化合物で処理したもの(例えば、特開2002−239353号公報を参照)、光触媒粒子をタングステンアルコキシドで処理(特開2001−286755号公報を参照)に代表される表面処理光触媒も、可視光応答型光触媒として好適に用いられる。 The visible light responsive photocatalyst is only required to exhibit photocatalytic activity and / or hydrophilicity with visible light. Examples of such visible light responsive photocatalysts include oxynitride compounds represented by TaON, LaTiO 2 N, CaNbO 2 N, LaTaON 2 , and CaTaO 2 N (see, for example, JP-A-2002-66333). , Oxysulfide compounds represented by Sm 2 Ti 2 S 2 O 7 and the like (see, for example, JP-A-2002-233770), CaIn 2 O 4 , SrIn 2 O 4 , ZnGa 2 O 4 , Na 2 Sb 2 O 6 oxides containing metal ions of d 10 electronic states represented by (e.g., see JP-a-2002-59008) and the like. Titanium oxide imparted with a visible light responsive function by various modifications can also be cited as a visible light responsive photocatalyst. As such a titanium oxide, in the presence of a nitrogen-containing compound typified by ammonia or urea, for example, a titanium oxide precursor typified by titanium oxysulfate, titanium chloride or alkoxytitanium or high surface titanium oxide is baked. Nitrogen-doped titanium oxide obtained (see, for example, JP 2002-29750 A, JP 2002-87818 A, JP 2002-154823 A, JP 2001-207082 A), sulfur compounds such as thiourea Sulfur-doped titanium oxide and titanium oxide obtained by firing titanium oxide precursors represented by titanium oxysulfate, titanium chloride, and alkoxy titanium in the presence of hydrogen plasma treatment or heat treatment under vacuum Oxygen-deficient titanium oxide (see, for example, JP-A-2001-98219) And the like. Further, the photocatalyst particles are treated with a platinum halide compound (for example, see JP-A-2002-239353), and the photocatalyst particles are treated with tungsten alkoxide (see JP-A-2001-286755). A surface-treated photocatalyst is also preferably used as the visible light responsive photocatalyst.

上記高い光触媒能を示す化合物は、その光触媒活性を更に高める等のために、上述の光触媒粒子の表面に白金、金、銀、銅、パラジウム、ロジウム、ルテニウムなどの金属や該金属の酸化物を被着したものであってもよい。
上述の高い光触媒能を示す化合物は1種を単独で又は2種以上を組み合わせて用いられる。
In order to further increase the photocatalytic activity of the compound exhibiting high photocatalytic activity, a metal such as platinum, gold, silver, copper, palladium, rhodium, ruthenium or an oxide of the metal is added to the surface of the photocatalyst particles. It may be attached.
The above compounds exhibiting high photocatalytic activity are used singly or in combination of two or more.

上記高い光触媒能を示す化合物の中では、アナターゼ型酸化チタン及びブルッカイト型酸化チタンが好ましく、アナターゼ型酸化チタンがより好ましい。いずれの酸化チタンも安価かつ無害であり、また化学的安定性にも優れることから光触媒として好適である。特にアナターゼ型酸化チタンは更に光触媒活性が高いので、上記化合物として有用である。   Among the compounds exhibiting high photocatalytic activity, anatase type titanium oxide and brookite type titanium oxide are preferable, and anatase type titanium oxide is more preferable. Any titanium oxide is suitable as a photocatalyst because it is inexpensive and harmless and has excellent chemical stability. In particular, anatase-type titanium oxide is useful as the above compound because of its higher photocatalytic activity.

本実施形態に係る高い光触媒能を示す化合物は、各種の性能を発揮するためにその一次粒子及び/又は二次粒子に表面処理が施されてもよい。例えば、この化合物の粒子にシリコーンやシリカ、アルミナ、リン酸カルシウムやアパタイト、粘土化合物等の無機物を被覆してもよい。これらのうち、シリカやアルミナは粒子の二次凝集を抑制するという観点で頻用される。   The compound showing high photocatalytic activity according to the present embodiment may be subjected to surface treatment on the primary particles and / or secondary particles in order to exhibit various performances. For example, the particles of this compound may be coated with an inorganic substance such as silicone, silica, alumina, calcium phosphate, apatite, or clay compound. Of these, silica and alumina are frequently used from the viewpoint of suppressing secondary aggregation of particles.

本実施形態に係る高い光触媒能を示す化合物は、その粒子にPt、Rh、Ru、Nb、Cu、Sn、Ni、Feに代表される金属及び/又は金属の酸化物を添加又は固定化したものや、その粒子が多孔質リン酸カルシウム等で被覆されたもの(例えば、特開平11−267519号公報に記載のもの)であってもよい。   The compound exhibiting high photocatalytic activity according to the present embodiment is obtained by adding or fixing a metal represented by Pt, Rh, Ru, Nb, Cu, Sn, Ni, Fe and / or an oxide of a metal to the particle. Alternatively, the particles may be coated with porous calcium phosphate or the like (for example, those described in JP-A-11-267519).

本実施形態の光触媒塗膜は、上記式(1)で表される条件を満足するようにルチル型酸化チタンを含む。この光触媒塗膜は、上記式(1a)で表される条件を満足するようにルチル型酸化チタンを含むと好ましく、下記式(1b)で表される条件を満足するようにルチル型酸化チタンを含むとより好ましい。
6/X≦a≦40/X (1b)
ここで、式(1b)におけるX、aはそれぞれ上記式(1)におけるものと同義である。
The photocatalyst coating film of this embodiment contains a rutile type titanium oxide so that the conditions represented by the said Formula (1) may be satisfied. This photocatalyst coating film preferably contains rutile type titanium oxide so as to satisfy the condition represented by the above formula (1a), and contains rutile type titanium oxide so as to satisfy the condition represented by the following formula (1b). More preferably.
6 / X ≦ a ≦ 40 / X (1b)
Here, X and a in formula (1b) have the same meanings as in formula (1).

このような条件を満足することにより、本実施形態の光触媒塗膜は、その膜厚に応じて、主に紫外線吸収の観点から適当量のルチル型酸化チタンを含むことができる。つまり、光触媒塗膜の膜厚が厚くなると、そのこと自体で基板に到達する紫外線量を抑制するため、ルチル型酸化チタンの含有量が相対的に少なくてもよい。一方、光触媒塗膜の膜厚が薄くなると紫外線が塗膜を透過しやすくなるところ、ルチル型酸化チタンの含有量が相対的に多くなり紫外線の吸収量が多くなるため、基板に到達する紫外線量を抑制することができる。その結果、本実施形態の光触媒塗膜は、より効率的かつ確実に紫外線を吸収することができる。また、上記条件を満足することにより、本実施形態の光触媒塗膜はルチル型酸化チタンを過剰に含まないため、透明性など塗膜が本来有する性能をも高く維持することができる。   By satisfying such conditions, the photocatalytic coating film of this embodiment can contain an appropriate amount of rutile-type titanium oxide mainly from the viewpoint of ultraviolet absorption, depending on the film thickness. That is, when the film thickness of the photocatalyst coating film is increased, the amount of the rutile titanium oxide may be relatively small in order to suppress the amount of ultraviolet rays that reach the substrate by itself. On the other hand, when the film thickness of the photocatalytic coating film becomes thinner, the ultraviolet rays easily pass through the coating film, and the content of rutile-type titanium oxide is relatively increased and the amount of absorbed ultraviolet rays increases. Can be suppressed. As a result, the photocatalytic coating film of this embodiment can absorb ultraviolet rays more efficiently and reliably. Moreover, since the photocatalyst coating film of this embodiment does not contain excessive rutile type titanium oxide by satisfying the above conditions, the performance inherent to the coating film such as transparency can be maintained high.

また、本実施形態の光触媒塗膜において、ルチル型酸化チタンに対する高い光触媒能を示す化合物の質量比が0.10〜2.0であることが好ましい。当該数値範囲内でルチル型酸化チタンと高い光触媒能を示す化合物とを含むことにより、この光触媒塗膜は、耐候性を保持しつつ光触媒の性能をより効果的に発現させることができる。同様の観点から、その質量比が0.10〜1.3であるとより好ましい。   Moreover, in the photocatalyst coating film of this embodiment, it is preferable that mass ratio of the compound which shows the high photocatalytic ability with respect to a rutile type titanium oxide is 0.10-2.0. By including a rutile type titanium oxide and a compound exhibiting high photocatalytic activity within the numerical range, this photocatalytic coating film can more effectively express the performance of the photocatalyst while maintaining weather resistance. From the same viewpoint, the mass ratio is more preferably 0.10 to 1.3.

なお、ルチル型酸化チタンとアナターゼ型酸化チタンとを含む光触媒として、デグッサ社製、商品名「P−25」が市販されている。この光触媒では、ルチル型酸化チタンに対するアナターゼ型酸化チタンの質量比が73.5/26.5(≒2.8)である。しかしながら、当該光触媒は光触媒性能が高いことを特徴としており、本実施形態の光触媒塗膜のように高い耐候性を示すことはできない。また、この光触媒の活性が高い理由は諸説ある上、一般的には、ルチル型酸化チタンとアナターゼ型酸化チタンとが担持構造をなすことが特徴であると考えられている。このように、デグッサ社製の上記光触媒は本実施形態に係るものとは思想が全く異なるものである(大谷文章著、「光触媒標準研究法」、東京書籍、2005年1月、P373〜374参照)。   In addition, as a photocatalyst containing rutile type titanium oxide and anatase type titanium oxide, a product name “P-25” manufactured by Degussa Co., Ltd. is commercially available. In this photocatalyst, the mass ratio of anatase-type titanium oxide to rutile-type titanium oxide is 73.5 / 26.5 (≈2.8). However, the photocatalyst is characterized by high photocatalytic performance, and cannot exhibit high weather resistance like the photocatalyst coating film of this embodiment. In addition, there are various theories as to the reason for the high activity of this photocatalyst, and it is generally considered that the feature is that rutile-type titanium oxide and anatase-type titanium oxide form a supporting structure. Thus, the above-mentioned photocatalyst manufactured by Degussa is completely different from the one according to the present embodiment (refer to Otani Bunko, “Photocatalyst Standard Research Method”, Tokyo Book, January 2005, P373-374). ).

本実施形態の光触媒塗膜においてルチル型酸化チタン及び高い光触媒能を示す化合物は粒子状で存在するが、両粒子の粒子径は、一次粒子径で共に100nm以下であることが好ましく、50nm以下であることがより好ましく、30nm以下であることが更に好ましい。両粒子の粒子径を当該数値範囲内に調整することで、光触媒活性が更に優れると共に、より良好な外観を保持できる。なお、両粒子の一次粒子径は、透過型電子顕微鏡にて観察した粒子100個をランダムに抽出し、その相加平均を算出して得られる値である。   In the photocatalyst coating film of this embodiment, the rutile-type titanium oxide and the compound exhibiting high photocatalytic activity exist in the form of particles, but the particle diameter of both particles is preferably 100 nm or less in terms of primary particle diameter, preferably 50 nm or less. More preferably, it is more preferably 30 nm or less. By adjusting the particle diameter of both particles within the numerical range, the photocatalytic activity is further improved and a better appearance can be maintained. The primary particle size of both particles is a value obtained by randomly extracting 100 particles observed with a transmission electron microscope and calculating an arithmetic average thereof.

また、本実施形態の光触媒塗膜において、ルチル型酸化チタンの一次粒子径に対する高い光触媒能を示す化合物の一次粒子径の比が3/1〜1/5であることが好ましい。これにより、分散均一性と良好な外観が更に保持される。   Moreover, in the photocatalyst coating film of this embodiment, it is preferable that the ratio of the primary particle diameter of the compound which shows the high photocatalytic capability with respect to the primary particle diameter of a rutile type titanium oxide is 3/1-1/5. This further maintains the dispersion uniformity and good appearance.

本実施形態の光触媒塗膜において、ルチル型酸化チタン及び高い光触媒能を示す化合物はその一次粒子が均一に分散していてもよくその二次粒子が均一に分散していてもよく、一次粒子及び二次粒子が混在して均一に分散していてもよい。ここで、両者の二次粒子は、ルチル型酸化チタンの一次粒子が凝集した二次粒子、高い光触媒能を示す化合物の一次粒子が凝集した二次粒子、上記両者の一次粒子が混在して凝集した二次粒子からなる群より選ばれる1種以上の二次粒子である。   In the photocatalyst coating film of the present embodiment, the rutile titanium oxide and the compound exhibiting high photocatalytic activity may have the primary particles uniformly dispersed or the secondary particles uniformly dispersed, the primary particles and Secondary particles may be mixed and uniformly dispersed. Here, the secondary particles of both are secondary particles in which primary particles of rutile titanium oxide are aggregated, secondary particles in which primary particles of a compound exhibiting high photocatalytic activity are aggregated, and the above primary particles coexist. 1 or more types of secondary particles selected from the group consisting of secondary particles.

本実施形態の光触媒塗膜は、水系バインダーを含むことが好ましい。ここで、「水系バインダー」とは、実質的に水を分散媒とするバインダー樹脂溶液又はバインダー樹脂の分散体に含まれる固形成分のことをいう。水系バインダーに含まれるバインダー樹脂としては、例えば、ポリビニルアルコール、カチオン変性ポリビニルアルコール、シラノール変性ポリビニルアルコールに代表されるポリビニルアルコール誘導体、ポリビニルピロリドン、ポリアクリルアミド類、デンプン及びデンプン誘導体、カルボキシメチルセルロース、ヒドロキシエチルセルロースに代表されるセルロース誘導体、カゼイン、ゼラチン、水性媒体中でのラジカル重合、アニオン重合、カチオン重合などによって得られる従来公知のポリ(メタ)アクリレート系、ポリビニルアセテート系、酢酸ビニル−アクリル系、エチレン酢酸ビニル系、シリコーン系、ポリブタジエン系、スチレンブタジエン系、NBR系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系、塩化ビニリデン系、ポリスチレン−(メタ)アクリレート系、スチレン−無水マレイン酸系等の共重合体、シリコーン変性アクリル系、フッソ−アクリル系、アクリルシリコン、エポキシ−アクリル系等の変性共重合体が挙げられる。ここで、「(メタ)アクリレート」とは、メタクリレート及びそれに対応するアクリレートを意味する。   It is preferable that the photocatalyst coating film of this embodiment contains an aqueous binder. Here, the “aqueous binder” refers to a solid component contained in a binder resin solution or binder resin dispersion substantially containing water as a dispersion medium. Examples of the binder resin contained in the aqueous binder include polyvinyl alcohol, cation-modified polyvinyl alcohol, polyvinyl alcohol derivatives typified by silanol-modified polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylamides, starch and starch derivatives, carboxymethyl cellulose, and hydroxyethyl cellulose. Conventionally known poly (meth) acrylate-based, polyvinyl acetate-based, vinyl acetate-acrylic-based, ethylene vinyl acetate obtained by representative cellulose derivatives, casein, gelatin, radical polymerization, anionic polymerization, cationic polymerization in an aqueous medium , Silicone, polybutadiene, styrene butadiene, NBR, polyvinyl chloride, chlorinated polypropylene, polyethylene, Restyrene-based, vinylidene chloride-based, polystyrene- (meth) acrylate-based, styrene-maleic anhydride-based copolymers, silicone-modified acrylic, fluorine-acrylic, acrylic silicon, epoxy-acrylic modified copolymers Is mentioned. Here, “(meth) acrylate” means methacrylate and its corresponding acrylate.

光触媒塗膜が水系バインダーを含むことにより、この光触媒塗膜及びこれを形成するために用いられる光触媒組成物は、有機溶剤の揮発による毒性、環境汚染、引火性が改善され、環境負荷が少ないものとなる。また、耐溶剤性の観点から、樹脂からなる基体や有機皮膜が形成された基体の採用が容易になる。
水系バインダーは、光触媒塗膜の全質量に対して、30質量%〜99.9質量%含まれることが好ましく、50質量%〜99質量%含まれることがより好ましい。当該範囲で水系バインダーを含むことで、光触媒塗膜は、成膜性に一層優れると共に、その成膜性と光触媒の活性とを更にバランスよく両立することができる。
When the photocatalyst coating film contains an aqueous binder, the photocatalyst coating film and the photocatalyst composition used to form the photocatalyst coating film are improved in toxicity, environmental pollution, and flammability due to volatilization of organic solvents, and have a low environmental impact. It becomes. Further, from the viewpoint of solvent resistance, it becomes easy to adopt a substrate made of a resin or a substrate on which an organic film is formed.
The aqueous binder is preferably contained in an amount of 30% by mass to 99.9% by mass and more preferably 50% by mass to 99% by mass with respect to the total mass of the photocatalyst coating film. By including the aqueous binder in the range, the photocatalytic coating film is further excellent in film formability, and the film formability and the activity of the photocatalyst can be further balanced.

水系バインダーは、バインダー樹脂が有する官能基と反応する官能基を有する化合物を更に含んでもよい。そのような化合物としては、例えば、(ポリ)イソシアネート化合物、(ポリ)エポキシ化合物、アミノ化合物、(ポリ)カルボキシ化合物、(ポリ)ヒドロキシ化合物、グリコール化合物、シラノール化合物、シリル化合物、アルコキシ化合物、(メタ)アクリレート類が挙げられる。   The aqueous binder may further include a compound having a functional group that reacts with the functional group of the binder resin. Examples of such compounds include (poly) isocyanate compounds, (poly) epoxy compounds, amino compounds, (poly) carboxy compounds, (poly) hydroxy compounds, glycol compounds, silanol compounds, silyl compounds, alkoxy compounds, (meta ) Acrylates.

本実施形態の光触媒塗膜は、上述の酸化チタンに加えて、その他の光触媒を含んでもよい。その他の光触媒は、光照射により他の物質の酸化、還元反応を進行させる能力と、正孔と電子とを生成させるのに必要な光のエネルギーとのバランスから、バンドギャップエネルギーが1.2〜5.0eVの半導体化合物が好ましく、1.5〜4.1eVの半導体化合物がより好ましい。   The photocatalyst coating film of this embodiment may contain other photocatalysts in addition to the above-described titanium oxide. Other photocatalysts have a band gap energy of 1.2 to 1.2 from the balance between the ability to advance oxidation and reduction reactions of other substances by light irradiation and the light energy necessary to generate holes and electrons. A semiconductor compound of 5.0 eV is preferable, and a semiconductor compound of 1.5 to 4.1 eV is more preferable.

本実施形態の光触媒塗膜における水系バインダーは、更に光触媒能を有しない金属酸化物粒子及び/又は重合体エマルジョン粒子を含むことが特に好ましい。さらに、本実施形態の光触媒塗膜は、後述の光触媒組成物に含まれ得るその他の成分のうち、固形成分を含んでもよい。後述の光触媒組成物の説明において、これらの粒子及びその他の成分について詳細に説明する。   It is particularly preferable that the aqueous binder in the photocatalyst coating film of the present embodiment further contains metal oxide particles and / or polymer emulsion particles that do not have photocatalytic activity. Furthermore, the photocatalyst coating film of the present embodiment may include a solid component among other components that can be included in the photocatalyst composition described below. In the description of the photocatalyst composition described below, these particles and other components will be described in detail.

本実施形態の光触媒塗膜中の各成分の含有割合は、上記式(1)で表される条件を満足し、好ましくはルチル型酸化チタンに対する高い光触媒能を示す化合物の質量比が上記数値範囲内にあり、本発明の目的を達成できる範囲であれば特に限定されない。ただし、重合体エマルジョン粒子100質量部に対し、高い光触媒能を示す化合物の粒子及び光触媒能を有しない金属酸化物粒子が、各々5〜900質量部であると好ましく、0.1〜50質量部であるとより好ましく、10〜800質量部であると更に好ましく、0.5〜30質量部であると特に好ましい。これにより、塗膜の成膜性に優れ、欠陥が少なく透明性が高い膜を更に高いレベルで形成できる。さらには、耐水性と親水性とのバランス、光触媒の光触媒活性の観点からも当該範囲が好ましい。   The content ratio of each component in the photocatalyst coating film of the present embodiment satisfies the condition represented by the above formula (1), and the mass ratio of the compound exhibiting high photocatalytic ability with respect to rutile-type titanium oxide is preferably in the above numerical range. If it is in the range which can achieve the objective of this invention, it will not specifically limit. However, with respect to 100 parts by mass of the polymer emulsion particles, the compound particles having high photocatalytic ability and the metal oxide particles having no photocatalytic ability are each preferably 5 to 900 parts by mass, and 0.1 to 50 parts by mass. Is more preferable, 10 to 800 parts by mass is further preferable, and 0.5 to 30 parts by mass is particularly preferable. As a result, it is possible to form a film having excellent coating film formability and few defects and high transparency at a higher level. Furthermore, this range is preferable from the viewpoint of the balance between water resistance and hydrophilicity and the photocatalytic activity of the photocatalyst.

本実施形態の光触媒塗膜の膜厚は特に限定されないが、0.05〜100μmであると好ましく、0.1〜10μmであるとより好ましく、1.0〜2.5μmであると更に好ましい。これにより、本発明による上述の効果を一層有効かつ確実に奏することができる。また、この厚みが100μm以下であることにより、良好な透明性を確保することができ、0.05μm以上であることにより、防汚性、光触媒活性等の機能をより有効に発現することができる。この膜厚は、後述の光触媒組成物に含まれる光触媒の含有割合、水系バインダーに含まれるバインダー樹脂の種類や含有割合、塗布方法などを調整することによって制御される。   Although the film thickness of the photocatalyst coating film of this embodiment is not specifically limited, It is preferable in it being 0.05-100 micrometers, it is more preferable in it being 0.1-10 micrometers, and it is still more preferable in it being 1.0-2.5 micrometers. Thereby, the above-mentioned effect by this invention can be show | played more effectively and reliably. In addition, when the thickness is 100 μm or less, good transparency can be secured, and when the thickness is 0.05 μm or more, functions such as antifouling property and photocatalytic activity can be expressed more effectively. . This film thickness is controlled by adjusting the content ratio of the photocatalyst contained in the photocatalyst composition described later, the type and content ratio of the binder resin contained in the aqueous binder, the coating method, and the like.

また、本実施形態の光触媒塗膜は、その透明性を確保する観点から、ヘイズ値が0.0〜2.0であることが好ましく、0.0であることが特に好ましい。このヘイズ値は、膜厚や固形成分の含有割合、特に光触媒能を有しない金属酸化物粒子や重合体エマルジョン粒子の含有割合を調整することで制御される。   Moreover, it is preferable that the haze value is 0.0-2.0, and it is especially preferable that the photocatalyst coating film of this embodiment is 0.0-2.0 from a viewpoint of ensuring the transparency. This haze value is controlled by adjusting the film thickness and the content ratio of solid components, particularly the content ratio of metal oxide particles and polymer emulsion particles that do not have photocatalytic activity.

本実施形態の光触媒塗膜は、基体の表面全体を被覆するように形成されてもよく、光触媒による有機物の分解活性(光触媒活性)及び/又は親水性を高いレベルで保持しつつ、耐久性を十分優れたものとする必要のある基体の表面の一部のみを被覆するように形成されてもよい。   The photocatalyst coating film of this embodiment may be formed so as to cover the entire surface of the substrate, and maintains durability at a high level while maintaining the decomposition activity (photocatalytic activity) and / or hydrophilicity of organic substances by the photocatalyst at a high level. It may be formed so as to cover only a part of the surface of the substrate that needs to be sufficiently excellent.

以上説明した本実施形態の光触媒塗膜は、上述のような構成を備えることにより、光触媒活性及び/又は親水性に優れると共に、耐候性、耐水性、光学特性に優れるものとなる。基体の劣化や光触媒塗膜の剥離を抑制するためには、光触媒能を有しない金属酸化物粒子などを増やして基体に到達する紫外線を低減することも考えられる。しかしながら、これでは光触媒塗膜の透明性が低下してしまうところ、上記式(1)で表される条件を満足するようにルチル型酸化チタンを含むことで、基体の劣化等を抑制すると共に、十分な透明性も確保できる。また、この光触媒塗膜は、高い光触媒能を示す化合物を含むことにより良好な防汚及び防曇効果を示す。そして、この光触媒塗膜は、基体の表面に直接接触するように形成されても、基体の分解や劣化を十分に抑制することができるため、少ない工程で簡便に形成することが可能となる。さらには、本実施形態の光触媒塗膜は、長期に亘って剥離を抑制でき、一方で、光触媒活性及び親水性が長期に亘って高く維持される。   The photocatalyst coating film of the present embodiment described above is excellent in photocatalytic activity and / or hydrophilicity as well as in weather resistance, water resistance, and optical characteristics by having the above-described configuration. In order to suppress the deterioration of the substrate and the peeling of the photocatalyst coating film, it is also conceivable to reduce the ultraviolet rays reaching the substrate by increasing the number of metal oxide particles having no photocatalytic activity. However, in this case, the transparency of the photocatalyst coating film is lowered, and by containing the rutile type titanium oxide so as to satisfy the condition represented by the above formula (1), the deterioration of the substrate is suppressed, Sufficient transparency can be secured. Moreover, this photocatalyst coating film shows a favorable antifouling and antifogging effect by including a compound exhibiting high photocatalytic activity. And even if this photocatalyst coating film is formed so as to be in direct contact with the surface of the substrate, decomposition and deterioration of the substrate can be sufficiently suppressed, so that it can be easily formed with fewer steps. Furthermore, the photocatalyst coating film of this embodiment can suppress peeling over a long period, while maintaining high photocatalytic activity and hydrophilicity over a long period.

ここで、光触媒活性は、例えば、光触媒塗膜に光照射した際の、その塗膜と接触した材料における色素等の有機物の分解性を測定することにより判定することができる。光触媒活性を有する表面は、優れた汚染有機物質の分解活性や耐汚染性を発現する。ここで、光照射は光触媒のバンドギャップエネルギーよりも高いエネルギーの光の光源を用いて行う。光源としては、太陽光や室内照明灯等の一般住宅環境下で得られる光の他、ブラックライト、キセノンランプ、水銀灯、LED等の光が利用できる。光の照度は、0.001mW/cm以上であることが好ましく、0.01mW/cm以上であるとより好ましく、0.1mW/cm以上であると更に好ましい。 Here, the photocatalytic activity can be determined, for example, by measuring the decomposability of an organic substance such as a pigment in a material in contact with the coating film when the photocatalytic coating film is irradiated with light. A surface having photocatalytic activity exhibits excellent decomposition activity and contamination resistance of contaminating organic substances. Here, the light irradiation is performed using a light source having a higher energy than the band gap energy of the photocatalyst. As the light source, light such as black light, xenon lamp, mercury lamp, LED, etc. can be used in addition to light obtained in a general residential environment such as sunlight and indoor lighting. Illuminance of the light is preferably at 0.001 mW / cm 2 or more, more preferably 0.01 mW / cm 2 or more, further preferable to be 0.1 mW / cm 2 or more.

また、親水性は、光触媒塗膜表面の光照射時における接触角を測定することで判定される。親水性に優れた表面は低い接触角を示す。防汚性の観点から、光照射時におけるこの接触角は60°以下であることが好ましく、40°以下であることがより好ましい。   Moreover, hydrophilicity is determined by measuring the contact angle at the time of light irradiation of the photocatalyst coating film surface. A surface with excellent hydrophilicity exhibits a low contact angle. From the viewpoint of antifouling properties, the contact angle at the time of light irradiation is preferably 60 ° or less, and more preferably 40 ° or less.

次に、本実施形態の光触媒組成物について詳細に説明する。本実施形態の光触媒組成物は、上記光触媒塗膜を形成するために用いられる光触媒組成物である。この光触媒組成物を基体又は基体を被覆するコーティングの表面に塗布して乾燥することにより、上記光触媒塗膜が得られる。したがって、本実施形態の光触媒組成物は、ルチル型酸化チタン及び高い光触媒能を示す化合物の両方を含むものである。さらに、この光触媒組成物は水系バインダーを含むことが好ましく、その場合、水系バインダーの溶媒又は分散媒となる水を含む。これらの各成分についての詳細は上述と同様であり、ここでは説明を省略する。   Next, the photocatalyst composition of this embodiment will be described in detail. The photocatalyst composition of this embodiment is a photocatalyst composition used for forming the photocatalyst coating film. The photocatalyst coating film is obtained by applying the photocatalyst composition to the surface of a substrate or a coating covering the substrate and drying it. Therefore, the photocatalyst composition of this embodiment contains both a rutile type titanium oxide and a compound exhibiting high photocatalytic activity. Furthermore, this photocatalyst composition preferably contains an aqueous binder, and in that case, it contains water as a solvent or dispersion medium for the aqueous binder. Details of these components are the same as those described above, and a description thereof is omitted here.

本実施形態の光触媒組成物は、光触媒能を有しない金属酸化物粒子と、水及び第1の乳化剤の存在下で、少なくとも第1の加水分解性ケイ素化合物と第1の2級及び/又は3級アミド基を有するビニル単量体とを共重合して得られる重合体エマルジョン粒子とを更に含むとより好ましい。ここで、「光触媒能を有しない」とは、光照射によっても光触媒活性を示さない物質をいう。   The photocatalyst composition of the present embodiment comprises at least a first hydrolyzable silicon compound and a first secondary and / or 3 in the presence of metal oxide particles having no photocatalytic activity, water and a first emulsifier. More preferably, it further comprises polymer emulsion particles obtained by copolymerization with a vinyl monomer having a secondary amide group. Here, “having no photocatalytic activity” refers to a substance that does not exhibit photocatalytic activity even when irradiated with light.

本実施形態に係る光触媒能を有しない金属酸化物粒子としては、例えば、二酸化ケイ素(シリカ)粒子、酸化アルミニウム(アルミナ)粒子、珪酸カルシウム粒子、酸化マグネシウム粒子、酸化アンチモン粒子、酸化ジルコニウム粒子及びそれらの複合酸化物粒子が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。それらの中でも、表面水酸基が多く、金属酸化物粒子の表面積が大きくなり、金属酸化物粒子同士、又は金属酸化物と重合体エマルジョン粒子との結合を強固にするという観点から、二酸化ケイ素粒子、酸化アルミニウム粒子、酸化アンチモン粒子及びそれらの複合酸化物粒子が好ましく、二酸化ケイ素を基本単位とするシリカの水若しくは水溶性溶媒中の分散体であるコロイダルシリカ粒子がより好ましい。   Examples of the metal oxide particles having no photocatalytic activity according to the present embodiment include silicon dioxide (silica) particles, aluminum oxide (alumina) particles, calcium silicate particles, magnesium oxide particles, antimony oxide particles, zirconium oxide particles and the like. These composite oxide particles are mentioned. These are used singly or in combination of two or more. Among these, from the viewpoint of increasing the surface hydroxyl groups, increasing the surface area of the metal oxide particles, and strengthening the bond between the metal oxide particles or between the metal oxide and the polymer emulsion particles, the silicon dioxide particles, oxidation Aluminum particles, antimony oxide particles, and composite oxide particles thereof are preferable, and colloidal silica particles that are a dispersion of silica based on silicon dioxide in water or a water-soluble solvent are more preferable.

この金属酸化物粒子の数平均粒子径は、1〜400nmであると好ましく、1〜100nmであるとより好ましく、1〜50nmであると更に好ましい。この粒子径が400nm以下であると、金属酸化物粒子の表面積が大きくなり、金属酸化物粒子同士、又は金属酸化物と重合体エマルジョン粒子との結合が強固になるという効果が奏される。ここで、金属酸化物粒子の数平均粒子径は動的光散乱方式の湿式粒子径測定装置によって測定される。この数平均粒子径は、動的光散乱方式の湿式粒子径測定装置によるものとレーザー回折/散乱式の湿式粒子径測定装置によるものとの間で検量線を作成し、レーザー回折/散乱式の測定装置で測定した数平均粒子径を動的光散乱方式の測定装置で測定したものに換算することで決定されてもよい。   The number average particle diameter of the metal oxide particles is preferably 1 to 400 nm, more preferably 1 to 100 nm, and further preferably 1 to 50 nm. When the particle diameter is 400 nm or less, the surface area of the metal oxide particles is increased, and the effect of strengthening the bond between the metal oxide particles or between the metal oxide and the polymer emulsion particles is exhibited. Here, the number average particle size of the metal oxide particles is measured by a wet particle size measuring apparatus of a dynamic light scattering method. This number average particle size is determined by creating a calibration curve between the dynamic light scattering wet particle size measuring device and the laser diffraction / scattering wet particle size measuring device. You may determine by converting the number average particle diameter measured with the measuring apparatus into what was measured with the measuring apparatus of the dynamic light scattering system.

本実施形態に係る重合体エマルジョン粒子は、水及び第1の乳化剤の存在下で、少なくとも第1の加水分解性ケイ素化合物と第1の2級及び/又は3級アミド基を有するビニル単量体とを共重合して得られるものである。第1の加水分解性ケイ素化合物としては、下記一般式(1)で表される化合物、その縮合生成物、シランカップリング剤を例示することができる。
SiW (2)
ここで、式中、Wは炭素数1〜20のアルコキシ基、水酸基、炭素数1〜20のアセトキシ基、ハロゲン原子、水素原子、炭素数1〜20のオキシム基、フェノキシ基、アミノキシ基、アミド基からなる群より選ばれる基を示す。Rは、直鎖状若しくは分岐状の炭素数1〜30のアルキル基、炭素数5〜20のシクロアルキル基、炭素数6〜20のアリール基からなる群より選ばれる炭化水素基を示す。なお、炭素数6〜20のアリール基は、炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基又はハロゲン原子で置換されていてもよい。また、xは1〜4の整数であり、yは0〜3の整数であり、x+y=4である。さらに、xが2以上のとき、複数のWは互いに同一でも異なっていてもよく、yが2以上のとき、複数のRは互いに同一でも異なっていてもよい。
The polymer emulsion particles according to this embodiment are a vinyl monomer having at least a first hydrolyzable silicon compound and a first secondary and / or tertiary amide group in the presence of water and a first emulsifier. Are obtained by copolymerization. As a 1st hydrolysable silicon compound, the compound represented by following General formula (1), its condensation product, and a silane coupling agent can be illustrated.
SiW x R y (2)
In the formula, W is an alkoxy group having 1 to 20 carbon atoms, a hydroxyl group, an acetoxy group having 1 to 20 carbon atoms, a halogen atom, a hydrogen atom, an oxime group having 1 to 20 carbon atoms, a phenoxy group, an aminoxy group, an amide. A group selected from the group consisting of groups is shown. R represents a hydrocarbon group selected from the group consisting of linear or branched alkyl groups having 1 to 30 carbon atoms, cycloalkyl groups having 5 to 20 carbon atoms, and aryl groups having 6 to 20 carbon atoms. Note that the aryl group having 6 to 20 carbon atoms may be substituted with an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or a halogen atom. X is an integer of 1 to 4, y is an integer of 0 to 3, and x + y = 4. Further, when x is 2 or more, the plurality of Ws may be the same or different from each other, and when y is 2 or more, the plurality of Rs may be the same or different from each other.

上記式(2)で表される化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトライソプロポキシシラン、テトラ−n−ブトキシシランに代表されるテトラアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ペンチルトリメトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘプチルトリメトキシシラン、n−オクチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、3−クロロプロピルトリメトキシシラン、3−クロロプロピルトリエトキシシラン、3,3,3−トリフロロプロピルトリメトキシシラン、3,3,3−トリフロロプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、2−ヒドロキシエチルトリエトキシシラン、2−ヒドロキシプロピルトリメトキシシラン、2−ヒドロキシプロピルトリエトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、3−イソシアナートプロピルトリメトキシシラン、3−イソシアナートプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、3−ウレイドプロピルトリメトキシシラン、3−ウレイドプロピルトリエトキシシランに代表されるトリアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、ジ−n−ペンチルジメトキシシラン、ジ−n−ペンチルジエトキシシラン、ジ−n−ヘキシルジメトキシシラン、ジ−n−ヘキシルジエトキシシラン、ジ−n−ヘプチルジメトキシシラン、ジ−n−ヘプチルジエトキシシラン、ジ−n−オクチルジメトキシシラン、ジ−n−オクチルジエトキシシラン、ジ−n−シクロヘキシルジメトキシシラン、ジ−n−シクロヘキシルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシランに代表されるジアルコキシシラン類、トリメチルメトキシシラン、トリメチルエトキシシランに代表されるモノアルコキシシラン類が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   Examples of the compound represented by the above formula (2) include tetraalkoxysilanes represented by tetramethoxysilane, tetraethoxysilane, tetra-n-propoxysilane, tetraisopropoxysilane, and tetra-n-butoxysilane, Methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, isopropyltrimethoxysilane, isopropyltriethoxysilane, n-butyltrimethoxysilane N-butyltriethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, n-heptyltrimethoxysilane, n-octyltrimethoxysilane, vinyltrimethoxysilane, vinyl Ethoxysilane, allyltrimethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, 3,3,3- Trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 2-hydroxyethyltriethoxy Silane, 2-hydroxypropyltrimethoxysilane, 2-hydroxypropyltriethoxysilane, 3-hydroxypropyltrimethoxysilane, 3-hydroxypropyltriethoxysilane 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Triethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meta ) Atacrylyloxypropyltriethoxysilane, 3- (meth) acryloyloxypropyltri-n-propoxysilane, 3- (meth) acryloyloxypropyltriisopropoxysilane, 3-ureidopropyltrimethoxysila , Trialkoxysilanes represented by 3-ureidopropyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, di-n-propyldimethoxysilane, di-n-propyldi Ethoxysilane, diisopropyldimethoxysilane, diisopropyldiethoxysilane, di-n-butyldimethoxysilane, di-n-butyldiethoxysilane, di-n-pentyldimethoxysilane, di-n-pentyldiethoxysilane, di-n- Hexyldimethoxysilane, di-n-hexyldiethoxysilane, di-n-heptyldimethoxysilane, di-n-heptyldiethoxysilane, di-n-octyldimethoxysilane, di-n-octyldiethoxysilane, di-n -Cyclohe For dialkoxysilanes represented by sildimethoxysilane, di-n-cyclohexyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, 3- (meth) acryloyloxypropylmethyldimethoxysilane, trimethylmethoxysilane, trimethylethoxysilane Representative monoalkoxysilanes can be mentioned. These are used singly or in combination of two or more.

シランカップリング剤は、有機物との反応性を有する官能基を分子内に有する加水分解性ケイ素化合物であると好ましい。上記官能基としては、例えば、ビニル重合性基、チオール基、エポキシ基、アミノ基、メタクリル基、メルカプト基、イソシアネート基が挙げられる。これらの官能基の中では、2級及び/又は3級アミド基を有するビニル単量体との共重合又は連鎖移動反応による化学結合生成の観点からビニル重合性基が好ましい。ビニル重合性基を有する加水分解性珪素化合物としては、例えば3−(メタ)アクリルオキシプロピルトリメトキシシラン、3−(メタ)アタクリルオキシプロピルトリエトキシシラン、3−(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3−(メタ)アクリロイルオキシプロピルトリn−プロポキシシラン、3−(メタ)アクリロイルオキシプロピルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、2−トリメトキシシリルエチルビニルエーテルが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。この場合、上述と同様の観点から、第1の加水分解性ケイ素化合物が、後述の第1の2級及び/又は3級アミド基を有するビニル単量体100質量部に対して、ビニル重合性基を有する加水分解性ケイ素化合物の1種以上を0.1〜100質量部含むと好ましい。   The silane coupling agent is preferably a hydrolyzable silicon compound having a functional group having reactivity with an organic substance in the molecule. Examples of the functional group include a vinyl polymerizable group, a thiol group, an epoxy group, an amino group, a methacryl group, a mercapto group, and an isocyanate group. Among these functional groups, a vinyl polymerizable group is preferable from the viewpoint of forming a chemical bond by copolymerization or a chain transfer reaction with a vinyl monomer having a secondary and / or tertiary amide group. Examples of the hydrolyzable silicon compound having a vinyl polymerizable group include 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, and 3- (meth) acryloyloxypropylmethyldimethoxy. Silane, 3- (meth) acryloyloxypropyltri-n-propoxysilane, 3- (meth) acryloyloxypropyltriisopropoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, 2-trimethoxysilylethyl Vinyl ether is mentioned. These are used singly or in combination of two or more. In this case, from the same viewpoint as described above, the first hydrolyzable silicon compound is vinyl polymerizable with respect to 100 parts by mass of the vinyl monomer having the first secondary and / or tertiary amide group described later. It is preferable to contain 0.1 to 100 parts by mass of one or more hydrolyzable silicon compounds having a group.

第1の2級及び/又は3級アミド基を有するビニル単量体としては、N−アルキル又はN−アルキレン置換(メタ)アクリルアミドを例示することができる。より具体的には、例えば、N−メチルアクリルアミド、N−メチルメタアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、N,N−ジメチルメタアクリルアミド、N,N−ジエチルアクリルアミド、N−エチルメタアクリルアミド、N−メチル−N−エチルアクリルアミド、N−メチル−N−エチルメタアクリルアミド、N−イソプロピルアクリルアミド、N−n−プロピルアクリルアミド、N−イソプロピルメタアクリルアミド、N−n−プロピルメタアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピロリジン、N−メタクリロイルピロリジン、N−アクリロイルピペリジン、N−メタクリロイルピペリジン、N−アクリロイルヘキサヒドロアゼピン、N−アクリロイルモルホリン、N−メタクリロイルモルホリン、N−ビニルピロリドン、N−ビニルカプロラクタム、N,N’−メチレンビスアクリルアミド、N,N’−メチレンビスメタクリルアミド、N−ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N−メチロールアクリルアミド、N−メチロールメタアクリルアミドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。これらの中では、3級アミド基を有するビニル単量体を用いると水素結合性が強まるので好ましい。   Examples of the vinyl monomer having the first secondary and / or tertiary amide group include N-alkyl or N-alkylene-substituted (meth) acrylamide. More specifically, for example, N-methylacrylamide, N-methylmethacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N, N-diethylacrylamide, N-ethylmeta Acrylamide, N-methyl-N-ethylacrylamide, N-methyl-N-ethylmethacrylamide, N-isopropylacrylamide, Nn-propylacrylamide, N-isopropylmethacrylamide, Nn-propylmethacrylamide, N-methyl -N-n-propylacrylamide, N-methyl-N-isopropylacrylamide, N-acryloylpyrrolidine, N-methacryloylpyrrolidine, N-acryloylpiperidine, N-methacryloylpiperidine, N-acrylic Ylhexahydroazepine, N-acryloylmorpholine, N-methacryloylmorpholine, N-vinylpyrrolidone, N-vinylcaprolactam, N, N′-methylenebisacrylamide, N, N′-methylenebismethacrylamide, N-vinylacetamide, dye Examples include acetone acrylamide, diacetone methacrylamide, N-methylol acrylamide, and N-methylol methacrylamide. These are used singly or in combination of two or more. Among these, it is preferable to use a vinyl monomer having a tertiary amide group because hydrogen bondability is enhanced.

また、第1の乳化剤としては、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸に代表される酸性乳化剤、酸性乳化剤のアルカリ金属(Li、Na、K等)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸に代表されるアニオン性界面活性剤、アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレートに代表される四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型などのカチオン性界面活性剤、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンブロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルに代表されるノニオン型界面活性剤、ラジカル重合性の二重結合を有する反応性乳化剤が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。これらの中では、重合体エマルジョン粒子の水分散安定性及び形成された塗膜の機械強度、耐薬品性、耐水性の観点から、ラジカル重合性の二重結合を有する反応性乳化剤が好ましい。   Examples of the first emulsifier include acid typified by alkylbenzene sulfonic acid, alkyl sulfonic acid, alkyl sulfosuccinic acid, polyoxyethylene alkyl sulfuric acid, polyoxyethylene alkyl aryl sulfuric acid, and polyoxyethylene distyryl phenyl ether sulfonic acid. Emulsifier, alkali metal (Li, Na, K, etc.) salt of acidic emulsifier, ammonium salt of acidic emulsifier, anionic surfactant represented by fatty acid soap, alkyltrimethylammonium bromide, alkylpyridinium bromide, imidazolinium laurate Representative cationic surfactants such as quaternary ammonium salt, pyridinium salt, imidazolinium salt type, polyoxyethylene alkyl aryl ether, polyoxyethylene sorbitan fatty acid ester, polyoxy Ethylene polyoxypropylene block copolymers, nonionic surfactants represented by polyoxyethylene distyryl phenyl ether, a reactive emulsifier having a radical-polymerizable double bond. These are used singly or in combination of two or more. Among these, a reactive emulsifier having a radical polymerizable double bond is preferable from the viewpoints of water dispersion stability of the polymer emulsion particles and mechanical strength, chemical resistance, and water resistance of the formed coating film.

上記ラジカル重合性の二重結合を有する反応性乳化剤としては、例えばスルホン酸基又はスルホネート基を有するビニル単量体、硫酸エステル基を有するビニル単量体それらビニル単量体のアルカリ金属塩及びアンモニウム塩、ポリオキシエチレンに代表されるノニオン基を有するビニル単量体、4級アンモニウム塩を有するビニル単量体が挙げられる。   Examples of the reactive emulsifier having a radical polymerizable double bond include vinyl monomers having a sulfonic acid group or a sulfonate group, vinyl monomers having a sulfate ester group, alkali metal salts of these vinyl monomers, and ammonium. Examples thereof include vinyl monomers having nonionic groups represented by salts and polyoxyethylene, and vinyl monomers having quaternary ammonium salts.

上記反応性乳化剤のうち、スルホン酸基又はスルホネート基を有するビニル単量体の塩としては、例えば、ラジカル重合性の二重結合を有し、かつスルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基、炭素数6又は10のアリール基及びコハク酸基からなる群から選ばれる置換基を有する化合物、並びに、スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基が結合しているビニル基を有するビニルスルホネート化合物が挙げられる。硫酸エステル基を有するビニル単量体としては、ラジカル重合性の二重結合を有し、かつ硫酸エステル基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数1〜20のアルキル基、炭素数2〜4のアルキルエーテル基、炭素数2〜4のポリアルキルエーテル基及び炭素数6又は10のアリール基からなる群から選ばれる置換基を有する化合物が挙げられる。   Among the reactive emulsifiers, the vinyl monomer salt having a sulfonic acid group or a sulfonate group includes, for example, a radical polymerizable double bond, and an ammonium salt, sodium salt or potassium salt of a sulfonic acid group. A partially substituted alkyl group having 1 to 20 carbon atoms, an alkyl ether group having 2 to 4 carbon atoms, a polyalkyl ether group having 2 to 4 carbon atoms, an aryl group having 6 or 10 carbon atoms, and Examples thereof include a compound having a substituent selected from the group consisting of a succinic acid group, and a vinyl sulfonate compound having a vinyl group to which a group which is an ammonium salt, sodium salt or potassium salt of a sulfonic acid group is bonded. The vinyl monomer having a sulfate ester group has a radically polymerizable double bond and is partially substituted with a group that is an ammonium salt, sodium salt, or potassium salt of a sulfate ester group, having 1 carbon atom. Examples thereof include compounds having a substituent selected from the group consisting of ˜20 alkyl groups, C 2-4 alkyl ether groups, C 2-4 polyalkyl ether groups, and C 6 or 10 aryl groups.

上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換されたコハク酸基を有する化合物の具体例としては、アリルスルホコハク酸塩が挙げられる。市販されているものとしては、例えば、エレミノールJS−2(商品名、三洋化成(株)製)、ラテムルS−120、S−180A又はS−180(商品名、花王(株)製)が挙げられる。   Specific examples of the compound having a succinic acid group partially substituted with a group which is an ammonium salt, sodium salt or potassium salt of the sulfonic acid group include allylsulfosuccinate. Examples of commercially available products include Eleminol JS-2 (trade name, manufactured by Sanyo Kasei Co., Ltd.), Latemul S-120, S-180A or S-180 (trade name, manufactured by Kao Corporation). It is done.

また、上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基により一部が置換された、炭素数2〜4のアルキルエーテル基又は炭素数2〜4のポリアルキルエーテル基を有する化合物の市販されているものとしては、例えば、アクアロンHS−10又はKH−1025(商品名、第一工業製薬(株)製)、アデカリアソープSE−1025N又はSR−1025(商品名、旭電化工業(株)製)が挙げられる。   Further, a compound having an alkyl ether group having 2 to 4 carbon atoms or a polyalkyl ether group having 2 to 4 carbon atoms, which is partially substituted by a group which is an ammonium salt, sodium salt or potassium salt of the sulfonic acid group. As what is marketed, for example, Aqualon HS-10 or KH-1025 (trade name, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), Adekaria Soap SE-1025N or SR-1025 (trade name, Asahi Denka Kogyo ( Co., Ltd.).

その他、スルホネート基により一部が置換されたアリール基を有する化合物の具体例として、p−スチレンスルホン酸のアンモニウム塩、ナトリウム塩及びカリウム塩が挙げられる。   Other specific examples of the compound having an aryl group partially substituted with a sulfonate group include ammonium salt, sodium salt and potassium salt of p-styrenesulfonic acid.

上記スルホン酸基のアンモニウム塩、ナトリウム塩又はカリウム塩である基が結合しているビニル基を有するビニルスルホネート化合物としては、例えば、2−スルホエチルアクリレートに代表されるアルキルスルホン酸(メタ)アクリレート、メチルプロパンスルホン酸(メタ)アクリルアミド、アリルスルホン酸のアンモニウム塩、ナトリウム塩及びカリウム塩が挙げられる。   Examples of the vinyl sulfonate compound having a vinyl group to which a group of ammonium salt, sodium salt or potassium salt of the sulfonic acid group is bonded include, for example, alkylsulfonic acid (meth) acrylate represented by 2-sulfoethyl acrylate, Examples include methyl propane sulfonic acid (meth) acrylamide, and ammonium salt, sodium salt, and potassium salt of allyl sulfonic acid.

上記の硫酸エステル基のアンモニウム塩、ナトリウム塩又はカリウム塩により一部が置換された炭素数2〜4のアルキルエーテル基又は炭素数2〜4のポリアルキエーテル基を有する化合物としては、例えばスルホネート基により一部が置換されたアルキルエーテル基を有する化合物が挙げられる。   Examples of the compound having an alkyl ether group having 2 to 4 carbon atoms or a polyalkyl ether group having 2 to 4 carbon atoms partially substituted by ammonium salt, sodium salt or potassium salt of the sulfate group include, for example, sulfonate group And a compound having an alkyl ether group partially substituted by.

また、ノニオン基を有するビニル単量体の具体例としては、α−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ヒドロキシポリオキシエチレン(商品名:アデカリアソープNE−20、NE−30、NE−40等、旭電化工業(株)製)、ポリオキシエチレンアルキルプロペニルフェニルエーテル(商品名:アクアロンRN−10、RN−20、RN−30、RN−50等、第一製薬工業(株)製)が挙げられる。   In addition, specific examples of vinyl monomers having a nonionic group include α- [1-[(allyloxy) methyl] -2- (nonylphenoxy) ethyl] -ω-hydroxypolyoxyethylene (trade name: ADEKA rear soap). NE-20, NE-30, NE-40, etc., manufactured by Asahi Denka Kogyo Co., Ltd.), polyoxyethylene alkylpropenyl phenyl ether (trade names: Aqualon RN-10, RN-20, RN-30, RN-50, etc.) , Daiichi Pharmaceutical Industry Co., Ltd.).

本実施形態に係る重合体エマルジョン粒子は、上記第1の加水分解性ケイ素化合物及び第1の2級及び/又は3級アミド基を有するビニル単量体と共に、それ以外の単量体を共重合して得られるものでもよく、例えば、2級及び3級アミドを有しないビニル単量体を重合して得られるものであってもよい。2級及び3級アミドを有しないビニル単量体としては、例えば、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル類の他、カルボキシル基含有ビニル単量体、水酸基含有ビニル系単量体、エポキシ基含有ビニル単量体、カルボニル基含有ビニル単量体、アニオン型ビニル単量体のような官能基を含有する単量体が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   The polymer emulsion particles according to the present embodiment are copolymerized with the first hydrolyzable silicon compound and the vinyl monomer having the first secondary and / or tertiary amide group and other monomers. For example, it may be obtained by polymerizing a vinyl monomer having no secondary or tertiary amide. Examples of vinyl monomers having no secondary or tertiary amide include, for example, (meth) acrylic acid esters, aromatic vinyl compounds, vinyl cyanides, carboxyl group-containing vinyl monomers, and hydroxyl group-containing vinyl monomers. And monomers containing functional groups such as a monomer, an epoxy group-containing vinyl monomer, a carbonyl group-containing vinyl monomer, and an anionic vinyl monomer. These are used singly or in combination of two or more.

上記(メタ)アクリル酸エステルの例としては、アルキル部の炭素数が1〜50の(メタ)アクリル酸アルキルエステル、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンジ(メタ)アクリレートが挙げられる。(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシルが挙げられる。(ポリ)オキシエチレンジ(メタ)アクリレートの具体例としては、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコールが挙げられる。   Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl ester having 1 to 50 carbon atoms in the alkyl portion, and (poly) oxyethylene di (meth) acrylate having 1 to 100 ethylene oxide groups. Is mentioned. Specific examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and methyl (meth) acrylate. Examples include cyclohexyl, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, and dodecyl (meth) acrylate. Specific examples of (poly) oxyethylene di (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol methoxy (meth) acrylate, tetraethylene glycol di (meth) acrylate Is mentioned.

なお、本明細書中で、「(メタ)アクリル」とは「メタクリル」及びそれに対応する「アクリル」を意味する。   In the present specification, “(meth) acryl” means “methacryl” and “acryl” corresponding to it.

2級及び3級アミドを有しないビニル単量体が(メタ)アクリル酸エステルを含む場合、その含有量は、1種又は2種以上の混合物として、全2級及び3級アミドを有しないビニル単量体量を基準として、好ましくは0質量%超99.9質量%、より好ましくは5〜80質量%である。   When the vinyl monomer having no secondary or tertiary amide contains a (meth) acrylic acid ester, the content thereof is one or a mixture of two or more vinyls having no secondary and tertiary amide. Based on the monomer amount, it is preferably more than 0 mass% and 99.9 mass%, more preferably 5 to 80 mass%.

上記カルボキシル基含有ビニル単量体としては、例えば、アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマール酸、無水マレイン酸、又はイタコン酸、マレイン酸、フマール酸に代表される2塩基酸のハーフエステルが挙げられる。カルボン酸基含有ビニル単量体を用いることによって、重合体エマルジョン粒子にカルボキシル基を導入することができ、エマルジョンとしての安定性を向上させ、外部からの分散破壊作用に対する抵抗力を持たせることが可能となる。この際、重合体エマルジョン粒子に導入したカルボキシル基は、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミン等のアミン類やNaOH、KOH等の塩基で中和することもできる。   Examples of the carboxyl group-containing vinyl monomer include acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, maleic anhydride, or itaconic acid, maleic acid, and fumaric acid. Examples include half esters of acids. By using a carboxylic acid group-containing vinyl monomer, a carboxyl group can be introduced into the polymer emulsion particles, improving the stability as an emulsion, and having a resistance to an external dispersion breaking action. It becomes possible. At this time, a part or all of the carboxyl groups introduced into the polymer emulsion particles can be neutralized with amines such as ammonia, triethylamine and dimethylethanolamine, and bases such as NaOH and KOH.

2級及び3級アミドを有しないビニル単量体がカルボキシル基含有ビニル単量体を含む場合、その含有量は、1種又は2種以上の混合物として、全2級及び3級アミドを有しないビニル単量体量を基準として、0質量%超50質量%であることが耐水性の観点から好ましい。この含有量は、より好ましくは0.1〜10質量%、更に好ましくは0.1〜5質量%である。   When the vinyl monomer having no secondary or tertiary amide contains a carboxyl group-containing vinyl monomer, its content does not have all secondary and tertiary amides as one or a mixture of two or more. From the viewpoint of water resistance, it is preferably more than 0 mass% and 50 mass% based on the vinyl monomer amount. This content is more preferably 0.1 to 10% by mass, still more preferably 0.1 to 5% by mass.

また、上記水酸基含有ビニル単量体としては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、3−ヒドロキシブチル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレートに代表される(メタ)アクリル酸のヒドロキシアルキルエステル、ジ−2−ヒドロキシエチルフマレート、モノ−2−ヒドロキシエチルモノブチルフマレート、アリルアルコール、エチレンオキシド基の数が1〜100個の(ポリ)オキシエチレンモノ(メタ)アクリレート、プロピレンオキシド基の数が1〜100個の(ポリ)オキシプロピレンモノ(メタ)アクリレートが挙げられる。さらには、「プラクセルFM、FAモノマー」(商品名、ダイセル化学(株)製、カプロラクトン付加モノマー)、その他のα,β−エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類が挙げられる。上記(ポリ)オキシエチレン(メタ)アクリレートの具体例としては、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコールが挙げられる。また、(ポリ)オキシプロピレン(メタ)アクリレートの具体例としては、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコールが挙げられる。水酸基含有ビニル単量体を用いることによって、2級及び/又は3級アミド基を有するビニル単量体との重合生成物の水素結合力を制御することが可能になると共に、重合体エマルジョン粒子の水分散安定性を向上させることができる。   Examples of the hydroxyl group-containing vinyl monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, hydroxyalkyl ester of (meth) acrylic acid represented by 4-hydroxybutyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl monobutyl fumarate , Allyl alcohol, (poly) oxyethylene mono (meth) acrylate having 1 to 100 ethylene oxide groups, and (poly) oxypropylene mono (meth) acrylate having 1 to 100 propylene oxide groups. Furthermore, “Placcel FM, FA monomer” (trade name, manufactured by Daicel Chemical Industries, Ltd., caprolactone-added monomer) and other hydroxyalkyl esters of α, β-ethylenically unsaturated carboxylic acid can be mentioned. Specific examples of the (poly) oxyethylene (meth) acrylate include ethylene glycol (meth) acrylate, ethylene glycol methoxy (meth) acrylate, diethylene glycol (meth) acrylate, diethylene glycol methoxy (meth) acrylate, (meth ) Tetraethylene glycol acrylate and tetraethylene glycol methoxy (meth) acrylate. Specific examples of (poly) oxypropylene (meth) acrylate include propylene glycol (meth) acrylate, propylene glycol methoxy (meth) acrylate, dipropylene glycol (meth) acrylate, dimethoxy meth (meth) acrylate. Examples include propylene glycol, tetrapropylene glycol (meth) acrylate, and tetrapropylene glycol methoxy (meth) acrylate. By using a hydroxyl group-containing vinyl monomer, it becomes possible to control the hydrogen bonding force of the polymerization product with a vinyl monomer having a secondary and / or tertiary amide group, and the polymer emulsion particles Water dispersion stability can be improved.

2級及び3級アミドを有しないビニル単量体が水酸基含有ビニル単量体を含む場合、その含有量は、1種又は2種以上の混合物として、全2級及び3級アミドを有しないビニル単量体量を基準として、0質量%超80質量%であることが好ましく、0.1〜50質量%であるとより好ましく、0.1〜10質量%であると更に好ましい。   When the vinyl monomer having no secondary or tertiary amide contains a hydroxyl group-containing vinyl monomer, the content thereof is one or a mixture of two or more vinyls having no secondary or tertiary amide. Based on the monomer amount, it is preferably more than 0% by mass and 80% by mass, more preferably 0.1 to 50% by mass, and further preferably 0.1 to 10% by mass.

上記グリシジル基含有ビニル単量体としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、アリルジメチルグリシジルエーテルが挙げられる。   Examples of the glycidyl group-containing vinyl monomer include glycidyl (meth) acrylate, allyl glycidyl ether, and allyl dimethyl glycidyl ether.

グリシジル基含有ビニル単量体やカルボニル基含有ビニル単量体を使用すると、重合体エマルジョン粒子が良好な反応性を有するようになる。その結果、ヒドラジン誘導体やカルボン酸誘導体、イソシアネート誘導体等と架橋させて、耐溶剤性等に優れた光触媒組成物の形成が可能となる。2級及び3級アミドを有しないビニル単量体がグリシジル基含有ビニル単量体及び/又はカルボニル基含有ビニル単量体を含む場合、それらの含有量は、1種又は2種以上の混合物として、全2級及び3級アミドを有しないビニル単量体量を基準として、0質量%超50質量%であることが好ましい。   When a glycidyl group-containing vinyl monomer or a carbonyl group-containing vinyl monomer is used, the polymer emulsion particles have good reactivity. As a result, it is possible to form a photocatalyst composition excellent in solvent resistance by crosslinking with a hydrazine derivative, a carboxylic acid derivative, an isocyanate derivative, or the like. When the vinyl monomer having no secondary or tertiary amide contains a glycidyl group-containing vinyl monomer and / or a carbonyl group-containing vinyl monomer, the content thereof is one or a mixture of two or more. Based on the amount of vinyl monomer having no secondary or tertiary amide, it is preferably more than 0% by mass and 50% by mass.

また、上記以外のビニル単量体の具体例としては、例えば(メタ)アクリルアミド、エチレン、プロピレン、イソブチレンに代表されるオレフィン類、ブタジエンに代表されるジエン類、塩化ビニル、塩化ビニリデンフッ化ビニル、テトラフルオロエチレン、クロロトリフルオロエチレンに代表されるハロオレフィン類、酢酸ビニル、プロピオン酸ビニル、n−酪酸ビニル、安息香酸ビニル、p−t−ブチル安息香酸ビニル、ピバリン酸ビニル、2−エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニルに代表されるカルボン酸ビニルエステル類、酢酸イソプロペニル、プロピオン酸イソプロペニルに代表されるカルボン酸イソプロペニルエステル類、エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテルに代表されるビニルエーテル類、スチレン、ビニルトルエンに代表される芳香族ビニル化合物、酢酸アリル、安息香酸アリルに代表されるアリルエステル類、アリルエチルエーテル、アリルフェニルエーテルに代表されるアリルエーテル類、4−(メタ)アクリロイルオキシ−2,2,6,6,−テトラメチルピペリジン、4−(メタ)アクリロイルオキシ−1,2,2,6,6,−ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロールプロパントリ(メタ)アクリレート、(メタ)アクリル酸アリルが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。   Specific examples of vinyl monomers other than those described above include, for example, (meth) acrylamide, ethylene, propylene, olefins typified by isobutylene, dienes typified by butadiene, vinyl chloride, vinylidene chloride vinyl chloride, Haloolefins typified by tetrafluoroethylene, chlorotrifluoroethylene, vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl benzoate, vinyl pt-butylbenzoate, vinyl pivalate, 2-ethylhexanoic acid Carboxylic acid vinyl esters typified by vinyl, vinyl versatate, vinyl laurate, isopropenyl acetate, isopropenyl carboxylic acid represented by isopropenyl propionate, ethyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl Vinyl ethers typified by ether, aromatic vinyl compounds typified by styrene, vinyl toluene, allyl acetates typified by allyl acetate, allyl benzoate, allyl ethers typified by allyl ethyl ether, allyl phenyl ether, 4- (meth) acryloyloxy-2,2,6,6, -tetramethylpiperidine, 4- (meth) acryloyloxy-1,2,2,6,6-pentamethylpiperidine, perfluoromethyl (meth) Examples include acrylate, perfluoropropyl (meth) acrylate, perfluoropropylmethyl (meth) acrylate, vinylpyrrolidone, trimethylolpropane tri (meth) acrylate, and allyl (meth) acrylate. These are used singly or in combination of two or more.

本実施形態に係る重合体エマルジョン粒子は、上述のものを用いる他は公知の乳化重合により調製され、その際、過硫酸アンモニウム等の重合開始剤やドデシルベンゼンスルホン酸等の界面活性剤など公知のものが用いられてもよい。このとき、重合体エマルジョン粒子に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比が0.1〜0.5であると好ましく0.1〜0.3であるとより好ましい。該質量比をこの範囲内にすることで、水素結合性と配合安定性のバランスを良好なものにすることができる。   The polymer emulsion particles according to this embodiment are prepared by a known emulsion polymerization except that the above-mentioned ones are used. In this case, a known one such as a polymerization initiator such as ammonium persulfate or a surfactant such as dodecylbenzenesulfonic acid is used. May be used. At this time, the mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to the polymer emulsion particles is preferably 0.1 to 0.5 and preferably 0.1 to 0.3. And more preferred. By setting the mass ratio within this range, the balance between hydrogen bonding properties and blending stability can be improved.

上述の金属酸化物粒子に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比は、0.1〜1.0であると好ましく、0.1〜0.7であるとより好ましい。水素結合性と配合安定性のバランスを良好なものとする観点から、該質量比をこの範囲内にすることが好ましい。   The mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to the metal oxide particles described above is preferably 0.1 to 1.0, preferably 0.1 to 0.7. More preferably. From the viewpoint of achieving a good balance between hydrogen bonding properties and blending stability, the mass ratio is preferably within this range.

本実施形態に係る重合体エマルジョン粒子は、コア部とそのコア部を被覆する1層又は2層以上のシェル部とを含むコア/シェル構造を有していてもよい。例えば、重合体エマルジョン粒子がコア部と1層のシェル部とを含む場合、水、第1の乳化剤及びシード粒子の存在下で、少なくとも第1の加水分解性ケイ素化合物と第1の2級及び/又は3級アミド基を有するビニル単量体とを共重合して得られるものであって、シード粒子は、水及び第2の乳化剤の存在下で、少なくとも、第2の2級及び/又は3級アミド基を有するビニル単量体と、そのビニル単量体と共重合可能であり2級及び3級アミド基を有しないビニル単量体と、第2の加水分解性ケイ素化合物とからなる群より選ばれる1種以上の化合物を重合して得られるものであってもよい。   The polymer emulsion particles according to the present embodiment may have a core / shell structure including a core part and one or more shell parts covering the core part. For example, when the polymer emulsion particles include a core portion and a single shell portion, in the presence of water, a first emulsifier and seed particles, at least a first hydrolyzable silicon compound and a first secondary and Obtained by copolymerizing with a vinyl monomer having a tertiary amide group, wherein the seed particles are at least a second secondary and / or in the presence of water and a second emulsifier. A vinyl monomer having a tertiary amide group, a vinyl monomer copolymerizable with the vinyl monomer and having no secondary or tertiary amide group, and a second hydrolyzable silicon compound It may be obtained by polymerizing one or more compounds selected from the group.

シード粒子を得るための第2の加水分解性ケイ素化合物は、第1の加水分解性ケイ素化合物と同様のものが用いられる。ただし、同じ重合体エマルジョン粒子を得るために用いられる第1及び第2の加水分解性ケイ素化合物は、互いに同一でも異なっていてもよい。また、シード粒子を得るための第2の2級及び/又は3級アミド基を有するビニル重合体は、第1の2級及び/又は3級アミド基と同様のものが用いられる。ただし、同じ重合体エマルジョン粒子を得るために用いられる第1及び第2の2級及び/又は3級アミド基を有するビニル重合体は、互いに同一でも異なっていてもよい。さらに、シード粒子を得るための第2の乳化剤は、第1の乳化剤と同様のものが用いられる。ただし、同じ重合体エマルジョン粒子を得るために用いられる第1及び第2の乳化剤は、互いに同一でも異なっていてもよい。   As the second hydrolyzable silicon compound for obtaining the seed particles, the same one as the first hydrolyzable silicon compound is used. However, the first and second hydrolyzable silicon compounds used to obtain the same polymer emulsion particles may be the same as or different from each other. The vinyl polymer having the second secondary and / or tertiary amide group for obtaining seed particles is the same as the first secondary and / or tertiary amide group. However, the first and second vinyl polymers having secondary and / or tertiary amide groups used to obtain the same polymer emulsion particles may be the same or different from each other. Further, the second emulsifier for obtaining seed particles is the same as the first emulsifier. However, the first and second emulsifiers used to obtain the same polymer emulsion particles may be the same or different from each other.

第2のビニル単量体と共重合可能であり2級及び3級アミド基を有しないビニル単量体としては、例えば、アクリル酸エステル、メタクリル酸エステル、芳香族ビニル化合物、シアン化ビニル類の他、カルボキシル基含有ビニル単量体、水酸基含有ビニル系単量体、エポキシ基含有ビニル単量体、カルボニル基含有ビニル単量体、アニオン型ビニル単量体のような官能基を含有する単量体が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。これらの化合物は上述のものが例示でき、水分散性や水素結合力の制御、耐水性や耐薬品性などの求める性能に応じて選択することができる。   Examples of vinyl monomers that can be copolymerized with the second vinyl monomer and have no secondary or tertiary amide group include acrylic acid esters, methacrylic acid esters, aromatic vinyl compounds, and vinyl cyanides. Others containing a functional group such as a carboxyl group-containing vinyl monomer, a hydroxyl group-containing vinyl monomer, an epoxy group-containing vinyl monomer, a carbonyl group-containing vinyl monomer, or an anionic vinyl monomer The body is mentioned. These are used singly or in combination of two or more. These compounds can be exemplified by those described above, and can be selected according to the required performance such as water dispersibility, control of hydrogen bonding force, water resistance and chemical resistance.

上記シード粒子は、第2の加水分解性ケイ素化合物を重合して得られるものであると好ましい。これにより、塗膜に高い柔軟性を付与することができる上、更に高い耐候性が認められる。   The seed particles are preferably obtained by polymerizing the second hydrolyzable silicon compound. Thereby, high flexibility can be imparted to the coating film, and higher weather resistance is recognized.

本実施形態に係る重合体エマルジョン粒子が、コア部とそのコア部を被覆する1層又は2層以上のシェル部とを含むコア/シェル構造を有する場合、シェル部のうち最外のシェル部及びコア部は、少なくとも第1の加水分解性ケイ素化合物と第1の2級及び/又は3級アミド基を有するビニル単量体とを共重合して得られるものであり、コア部における第1の加水分解性ケイ素化合物に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比が1.0以下であり、かつ最外のシェル部における第1の加水分解性ケイ素化合物に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比が0.1〜5.0であってもよい。コア部における第1の加水分解性ケイ素化合物に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比を1.0以下にすること、最外のシェル部における第1の加水分解性ケイ素化合物に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比を0.1以上にすることにより、さらには、最外のシェル部における第1の加水分解性ケイ素化合物に対する第1の2級及び/又は3級アミド基を有するビニル単量体の質量比を5.0以下とすることにより、更に高い耐水性及び耐候性が認められる。   When the polymer emulsion particles according to the present embodiment have a core / shell structure including a core portion and one or more shell portions covering the core portion, the outermost shell portion of the shell portions and The core part is obtained by copolymerizing at least a first hydrolyzable silicon compound and a vinyl monomer having a first secondary and / or tertiary amide group. The mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to the hydrolyzable silicon compound is 1.0 or less, and the first hydrolyzable silicon compound in the outermost shell part The mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to may be 0.1 to 5.0. The mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to the first hydrolyzable silicon compound in the core portion is 1.0 or less, the first in the outermost shell portion. By making the mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to the hydrolyzable silicon compound of 0.1 or more, further, the first in the outermost shell portion When the mass ratio of the vinyl monomer having the first secondary and / or tertiary amide group to the hydrolyzable silicon compound is 5.0 or less, higher water resistance and weather resistance are recognized.

本実施形態に係るコア/シェル構造を有する重合体エマルジョン粒子は、上述の材料を用いる他は、公知の2段階以上の乳化重合により調製される。得られた重合体エマルジョン粒子において、上記シード粒子がコア部となる。   The polymer emulsion particles having a core / shell structure according to this embodiment are prepared by two or more known emulsion polymerizations except that the above-described materials are used. In the obtained polymer emulsion particles, the seed particles become a core part.

本実施形態に係るコア/シェル構造を有する又は有しない重合体エマルジョン粒子は、その数平均粒子径が1〜400nmであると好ましく、1〜200nmであるとより好ましい。この数平均粒子径が400nm以下であると、金属酸化物粒子との水素結合力が高まり、強度や硬度、耐久性に一層優れる塗膜が形成できる。ここで、重合体エマルジョン粒子の数平均粒子径は、動的光散乱方式の湿式粒子径測定装置によって測定される。この数平均粒子径は、動的光散乱方式の湿式粒子径測定装置によるものとレーザー回折/散乱式の湿式粒子径測定装置によるものとの間で検量線を作成し、レーザー回折/散乱式の測定装置で測定した数平均粒子径を動的光散乱方式の測定装置で測定したものに換算することで決定されてもよい。   The number average particle diameter of the polymer emulsion particles having or not having the core / shell structure according to this embodiment is preferably 1 to 400 nm, and more preferably 1 to 200 nm. When the number average particle diameter is 400 nm or less, the hydrogen bonding force with the metal oxide particles is increased, and a coating film having further excellent strength, hardness, and durability can be formed. Here, the number average particle size of the polymer emulsion particles is measured by a wet particle size measuring apparatus of a dynamic light scattering method. This number average particle size is determined by creating a calibration curve between the dynamic light scattering wet particle size measuring device and the laser diffraction / scattering wet particle size measuring device. You may determine by converting the number average particle diameter measured with the measuring apparatus into what was measured with the measuring apparatus of the dynamic light scattering system.

本実施形態の光触媒組成物中の各成分の含有割合は、これを用いて得られる光触媒塗膜が上記式(1)で表される条件を満足し、好ましくはルチル型酸化チタンに対する高い光触媒能を示す化合物の質量比が上記数値範囲内にあり、本発明の目的を達成できる範囲であれば特に限定されない。ただし、重合体エマルジョン粒子100質量部に対し、ルチル型酸化チタンを含む光触媒の粒子及び光触媒能を有しない金属酸化物粒子が、各々5〜900質量部であると好ましく、0.1〜50質量部であるとより好ましく、10〜800質量部であると更に好ましく、0.5〜30質量部であると特に好ましい。これにより、塗膜の成膜性に優れ、欠陥が少なく透明性が高い膜を更に高いレベルで形成できる。さらには、耐水性と親水性とのバランス、酸化チタンを始めとする光触媒の光触媒活性の観点からも当該範囲が好ましい。   The content ratio of each component in the photocatalyst composition of the present embodiment is such that the photocatalyst coating film obtained using the composition satisfies the condition represented by the above formula (1), and preferably has a high photocatalytic ability for rutile titanium oxide. If the mass ratio of the compound which shows is in the said numerical range and can achieve the objective of this invention, it will not specifically limit. However, with respect to 100 parts by mass of the polymer emulsion particles, the photocatalyst particles containing rutile titanium oxide and the metal oxide particles having no photocatalytic ability are each preferably 5 to 900 parts by mass, and 0.1 to 50 parts by mass. Part is more preferable, 10 to 800 parts by mass is further preferable, and 0.5 to 30 parts by mass is particularly preferable. As a result, it is possible to form a film having excellent coating film formability and few defects and high transparency at a higher level. Furthermore, this range is preferable from the viewpoint of the balance between water resistance and hydrophilicity and the photocatalytic activity of photocatalysts including titanium oxide.

また、本実施形態の光触媒組成物は、特にルチル型酸化チタン及び高い光触媒能を示す化合物の分散安定性の観点から、上記第1、第2の乳化剤とは別に、更に乳化剤を含んでもよい。この乳化剤としては、第1、第2の乳化剤と同様のものが例示される。この乳化剤は、第1、第2の乳化剤と互いに同一であっても異なっていてもよい。   In addition, the photocatalyst composition of the present embodiment may further contain an emulsifier in addition to the first and second emulsifiers, particularly from the viewpoint of dispersion stability of rutile titanium oxide and a compound exhibiting high photocatalytic ability. Examples of the emulsifier include those similar to the first and second emulsifiers. This emulsifier may be the same as or different from the first and second emulsifiers.

更に本実施形態の光触媒組成物は、各粒子の分散安定性の観点から、分散安定剤を含んでもよい。分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群より選ばれる各種の水溶性オリゴマー類、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、水溶性若しくは水分散性アクリル樹脂に代表される合成若しくは天然の水溶性又は水分散性の各種の水溶性高分子物質が挙げられる。これらの乳化剤や分散安定剤は、1種を単独で又は2種以上を混合して用いられる。   Furthermore, the photocatalyst composition of the present embodiment may contain a dispersion stabilizer from the viewpoint of dispersion stability of each particle. Examples of the dispersion stabilizer include various water-soluble oligomers selected from the group consisting of polycarboxylic acids and sulfonates, polyvinyl alcohol, hydroxyethyl cellulose, starch, maleated polybutadiene, maleated alkyd resin, polyacrylic acid (salt ), Synthetic or natural water-soluble or water-dispersible various water-soluble polymer substances typified by polyacrylamide, water-soluble or water-dispersible acrylic resins. These emulsifiers and dispersion stabilizers are used singly or in combination of two or more.

また、本実施形態の光触媒組成物は、本発明の目的の達成を阻害しない範囲において、その他の成分を含んでもよい。例えば、光触媒と水系バインダーとの相互作用を制御する目的で、アルコール類などの有機溶剤を少量含んでもよい。また、本実施形態の光触媒組成物は、その用途及び使用方法などに応じて、通常の塗料や成型用樹脂に添加配合される成分、例えば、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調製剤等をそれぞれの目的に応じて選択、組み合わせて配合してもよい。   Moreover, the photocatalyst composition of this embodiment may contain another component in the range which does not inhibit achievement of the objective of this invention. For example, a small amount of an organic solvent such as alcohols may be included for the purpose of controlling the interaction between the photocatalyst and the aqueous binder. In addition, the photocatalyst composition of the present embodiment is a component added and blended with a normal paint or molding resin, for example, a thickener, a leveling agent, a thixotropic agent, an antifoaming agent, depending on its use and usage method. Agent, freezing stabilizer, matting agent, crosslinking reaction catalyst, pigment, curing catalyst, crosslinking agent, filler, anti-skinning agent, dispersant, wetting agent, light stabilizer, antioxidant, UV absorber, rheology control Agent, antifoaming agent, film-forming aid, rust preventive agent, dye, plasticizer, lubricant, reducing agent, antiseptic agent, antifungal agent, deodorant agent, yellowing preventive agent, antistatic agent or charge preparation agent Etc. may be selected and combined in accordance with each purpose.

本実施形態の光触媒組成物は、上記各成分を常法により添加、混合することにより得られる。よって、ルチル型酸化チタン及び高い光触媒能を示す化合物を混合する方法も特に限定されない。ただし、予めルチル型酸化チタン及び高い光触媒能を示す化合物を別個に合成した後、それらを混合することが最も簡便である。この混合は、合成により得られるルチル型酸化チタンや高い光触媒能を示す化合物のゾル同士を混合してもよく、ゾルを乾燥して得られたそれらの粒子同士を混合してもよい。これらのうち、より均一に分散させるためには、ゾル同士を混合することが好ましい。ゾルはオルガノゾル、ヒドロゾルのどちらであってもよいが、環境負荷を低減する観点から、ヒドロゾルが好ましい。   The photocatalyst composition of the present embodiment can be obtained by adding and mixing the above-described components by a conventional method. Therefore, the method of mixing the rutile titanium oxide and the compound exhibiting high photocatalytic ability is not particularly limited. However, it is most convenient to synthesize rutile titanium oxide and a compound exhibiting high photocatalytic ability separately before mixing them. In this mixing, sols of rutile-type titanium oxide obtained by synthesis or a compound exhibiting high photocatalytic ability may be mixed, or those particles obtained by drying the sol may be mixed. Among these, in order to disperse more uniformly, it is preferable to mix sols. The sol may be either an organosol or a hydrosol, but a hydrosol is preferable from the viewpoint of reducing the environmental burden.

ルチル型酸化チタン及び高い光触媒能を示す化合物の混合時には、撹拌装置を用いるとより均一に混合することができる。混合装置は公知のものであってもよく、例えば、マグネチックスターラー、ボールミル、サンドグライダー、高速強せん断分散機、コロイドミル、超音波分散機、ホモジナイザー等を用いればよい。また、予め高い光触媒能を示す化合物又はルチル型酸化チタンを合成しておき、その粒子表面にルチル型酸化チタン又は高い光触媒能を示す化合物を被着させる方法も有効である。あるいは、高い光触媒能を示す化合物としてアナターゼ型酸化チタンを用いる場合、ルチル−アナターゼ混晶型の酸化チタンを常法により合成してもよい。   When the rutile titanium oxide and the compound exhibiting high photocatalytic activity are mixed, it can be mixed more uniformly by using a stirring device. The mixing device may be a known one, and for example, a magnetic stirrer, ball mill, sand glider, high-speed high shear disperser, colloid mill, ultrasonic disperser, homogenizer or the like may be used. It is also effective to synthesize a compound showing high photocatalytic ability or rutile type titanium oxide in advance and depositing rutile type titanium oxide or a compound showing high photocatalytic ability on the particle surface. Or when using anatase type titanium oxide as a compound which shows high photocatalytic ability, you may synthesize | combine rutile-anatase mixed crystal type titanium oxide by a conventional method.

本実施形態の光触媒組成物を基体又は基体を被覆するコーティングの表面に塗布して乾燥することにより、基体上に形成された上記光触媒塗膜が得られる。光触媒組成物を塗布する基体材料としては、例えば合成樹脂、天然樹脂、繊維に代表される有機基材、金属、セラミックス、ガラス、石、セメント、コンクリートに代表される無機基材や、それらの組み合わせが挙げられる。   By applying the photocatalyst composition of the present embodiment to the surface of the substrate or the coating covering the substrate and drying, the photocatalyst coating film formed on the substrate can be obtained. Examples of the base material on which the photocatalyst composition is applied include organic substrates represented by synthetic resins, natural resins, fibers, inorganic substrates represented by metals, ceramics, glass, stone, cement, concrete, and combinations thereof. Is mentioned.

上記合成樹脂としては、熱可塑性樹脂及び硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)が挙げられる。その具体例としては、例えばシリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルフォン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂が挙げられる。また、上記天然樹脂としては、例えば、セルロース系樹脂、天然ゴムに代表されるイソプレン系樹脂、カゼインに代表されるタンパク質系樹脂が挙げられる。   Examples of the synthetic resin include thermoplastic resins and curable resins (thermosetting resins, photocurable resins, moisture curable resins, and the like). Specific examples include silicone resin, acrylic resin, methacrylic resin, fluorine resin, alkyd resin, aminoalkyd resin, vinyl resin, polyester resin, styrene-butadiene resin, polyolefin resin, polystyrene resin, polyketone resin, polyamide resin, polycarbonate. Resin, polyacetal resin, polyether ether ketone resin, polyphenylene oxide resin, polysulfone resin, polyphenylene sulfone resin, polyether resin, polyvinyl chloride resin, polyvinylidene chloride resin, urea resin, phenol resin, melamine resin, epoxy resin, urethane resin And silicone-acrylic resin. Examples of the natural resin include cellulose resins, isoprene resins typified by natural rubber, and protein resins typified by casein.

基体が樹脂板や繊維である場合、その表面は、コロナ放電処理やフレーム処理、プラズマ処理等の表面処理がされていてもよいが、これらの表面処理は必須ではない。
上記基体材料の種類や膜厚は用途に応じて使い分けることができる。
When the substrate is a resin plate or fiber, the surface thereof may be subjected to a surface treatment such as a corona discharge treatment, a flame treatment, or a plasma treatment, but these surface treatments are not essential.
The kind and film thickness of the base material can be properly used according to the application.

本実施形態の光触媒組成物は、その用途等に応じて、任意の方法で塗布され得る。塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法が挙げられる。   The photocatalyst composition of the present embodiment can be applied by any method depending on its use and the like. Examples of the application method include spray spraying, flow coating, roll coating, brush coating, dip coating, spin coating, screen printing, casting, gravure printing, and flexographic printing.

本実施形態の光触媒組成物を塗布した後、乾燥して揮発分を除去することにより光触媒塗膜が得られる。この際、例えば、20℃〜80℃の低温で乾燥した後、所望により好ましくは20℃〜500℃、より好ましくは40℃〜250℃の熱処理を行ってもよく、紫外線照射等を行ってもよい。   After apply | coating the photocatalyst composition of this embodiment, a photocatalyst coating film is obtained by drying and removing a volatile matter. In this case, for example, after drying at a low temperature of 20 ° C. to 80 ° C., heat treatment at 20 ° C. to 500 ° C., more preferably 40 ° C. to 250 ° C. may be performed as desired, or ultraviolet irradiation or the like may be performed. Good.

本実施形態において、光触媒塗装製品は、基体と、その基体上に形成された上記光触媒塗膜とを備えるものである。この光触媒塗装製品は、本実施形態の光触媒塗膜を備える他は公知の態様と同様であればよい。本実施形態の光触媒塗装製品の具体例としては、例えば、建材、建物外装、建物内装、窓枠、窓ガラス、構造部材、住宅等建築設備、車両用照明灯のカバー、窓ガラス、機械装置や物品の外装、防塵カバー及び塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用、鉄道用等の遮音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等外部で用いられる電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装が挙げられる。この光触媒塗装製品は、基体の表面に本実施形態の光触媒組成物を塗布し乾燥し、基体上に光触媒塗膜を形成することによって得られてもよいが、その製造方法はこれに限定されない。例えば、基体と光触媒塗膜とを同時に成形してもよく、より具体的には一体成形してもよい。また、本実施形態の光触媒塗膜をある基体上に成形した後、その光触媒塗膜をその基体から剥離させた又はその基体と密着させた状態で、別の基体に接着、融着等により密着させてもよい。   In this embodiment, a photocatalyst-coated product includes a substrate and the photocatalyst coating film formed on the substrate. The photocatalyst-coated product may be the same as the known embodiment except that the photocatalyst coating film of the present embodiment is provided. Specific examples of the photocatalyst-coated product of the present embodiment include, for example, building materials, building exteriors, building interiors, window frames, window glass, structural members, building facilities such as houses, vehicle illumination lamp covers, window glass, mechanical devices, Exterior of goods, dustproof cover and painting, display equipment, its covers, traffic signs, various display devices, display objects such as advertising towers, sound insulation walls for roads and railways, bridges, exterior and painting of guardrails, tunnel interior and painting Examples include exterior parts such as insulators, solar battery covers, solar water heater heat collection covers, etc., and exterior parts of electronic and electrical equipment, especially transparent members, greenhouses, greenhouses, and the like. This photocatalyst-coated product may be obtained by applying the photocatalyst composition of the present embodiment on the surface of the substrate and drying to form a photocatalyst coating film on the substrate, but the production method is not limited thereto. For example, the substrate and the photocatalyst coating film may be molded at the same time, and more specifically, may be integrally molded. In addition, after the photocatalyst coating film of the present embodiment is formed on a substrate, the photocatalyst coating film is adhered to another substrate by adhesion, fusion, or the like in a state where the photocatalyst coating film is peeled off or adhered to the substrate. You may let them.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例及び比較例において、各種物性を下記の方法で測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In Examples and Comparative Examples, various physical properties were measured by the following methods.

1.塗膜表面に対する水の接触角
接触角は、光触媒塗膜の表面に脱イオン水の滴を載せ、23℃で1分間放置した後、協和界面科学社製、CA−X150型接触角計を用いて測定した。塗膜に対する水の接触角が小さいほど、塗膜表面は親水性が高い。
2.透明性
光触媒塗膜の透明性は、後述のようにしてPETフィルム上に光触媒塗膜を形成し、その状態で日本電色工業社製濁度計(商品名「NDH2000」)を用いて、JIS−K7105に準じてヘイズ値を測定して評価した。
1. Contact angle of water with respect to coating film surface The contact angle was measured by placing a drop of deionized water on the surface of the photocatalyst coating film and leaving it at 23 ° C. for 1 minute, and then using a CA-X150 contact angle meter manufactured by Kyowa Interface Science Co., Ltd. Measured. The smaller the contact angle of water with the coating film, the higher the hydrophilicity of the coating film surface.
2. Transparency The transparency of the photocatalyst coating film is determined by forming a photocatalyst coating film on a PET film as described later, and using a turbidimeter (trade name “NDH2000”) manufactured by Nippon Denshoku Industries Co., Ltd. The haze value was measured and evaluated according to -K7105.

3.耐光性
オーク製作所製の紫外線照射装置(商品名「HandyUV300」)を用いて高圧水銀灯の光を光触媒塗膜に照射した。照射を開始してから15時間経過後の塗膜及びPETフィルムの積層体のヘイズ値を上記2と同様に測定して、PETフィルム及び光触媒塗膜の耐久性を評価した。耐久性に劣るとヘイズ値が上昇し、さらに劣化が進行することによって、光触媒塗膜が剥離する。
4.光触媒活性(分解指数)
JIS R 1703−2に準拠して光触媒塗膜の湿式分解性能試験を実施し、波長664nmの吸光度から分解指数を求めた。このとき、メチレンブルーとして、和光純薬工業社製のメチレンブルー三水和物を用いた。吸光度の測定には、日本分光社製紫外・可視分光光度計(商品名「V−550」)を用いた。
3. Light resistance The photocatalyst coating film was irradiated with light from a high-pressure mercury lamp using an ultraviolet irradiation device (trade name “HandyUV300”) manufactured by Oak Seisakusho. The haze value of the laminate of the coating film and the PET film after 15 hours from the start of irradiation was measured in the same manner as in 2 above, and the durability of the PET film and the photocatalyst coating film was evaluated. If the durability is inferior, the haze value is increased, and the photocatalytic coating film is peeled off as the deterioration further proceeds.
4). Photocatalytic activity (decomposition index)
A wet decomposition performance test of the photocatalyst coating film was performed in accordance with JIS R 1703-2, and a decomposition index was obtained from the absorbance at a wavelength of 664 nm. At this time, methylene blue trihydrate manufactured by Wako Pure Chemical Industries, Ltd. was used as methylene blue. For the measurement of absorbance, an ultraviolet / visible spectrophotometer (trade name “V-550”) manufactured by JASCO Corporation was used.

[製造例1]
(水系バインダーの作成)
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水400g、10質量%のドデシルベンゼンスルホン酸水溶液2.57gを投入した後、撹拌下で温度を80℃に加温した。この反応器中に、ジメチルジメトキシシラン54.5g、フェニルトリメトキシシラン34.4g及びメチルトリメトキシシラン1.0gの混合液と、過硫酸アンモニウムの2質量%水溶液15.0gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。その後、反応器中の温度を80℃に維持した状態で約1時間撹拌を続行した。次に、アクリル酸ブチル12.3g、フェニルトリメトキシシラン13。5g、テトラエトキシシラン31.4g及び3−メタクリロキシプロピルトリメトキシシラン1.2gの混合液と、ジエチルアクリルアミド24.6g、アクリル酸1g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25%水溶液)1.2g、反応性乳化剤(商品名「アクアロンKH−1025」、第一工業製薬(株)製、固形分25%水溶液)0.7g、過硫酸アンモニウムの2質量%水溶液8.5g及びイオン交換水255gの混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに、反応器中の温度を80℃に維持した状態で約2時間撹拌を続行した。その後、反応器中の液を室温まで冷却し、100メッシュの金網で濾過して、固形分12.8質量%の重合体エマルジョン水分散体を得た。そして、イオン交換水で固形分が10.0質量%となるように調整して重合体エマルジョン水分散体(a)を得た。重合体エマルジョン粒子の数平均粒子径は183nmであった。
[Production Example 1]
(Create water-based binder)
A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirring device was charged with 400 g of ion-exchanged water and 2.57 g of a 10% by mass dodecylbenzenesulfonic acid aqueous solution, and then heated to 80 ° C. with stirring. did. In this reactor, 54.5 g of dimethyldimethoxysilane, 34.4 g of phenyltrimethoxysilane, and 1.0 g of methyltrimethoxysilane and 15.0 g of a 2% by weight aqueous solution of ammonium persulfate were added to the reactor. It was dripped simultaneously over about 2 hours in the state which maintained temperature at 80 degreeC. Thereafter, stirring was continued for about 1 hour while maintaining the temperature in the reactor at 80 ° C. Next, 12.3 g of butyl acrylate, 13.5 g of phenyltrimethoxysilane, 31.4 g of tetraethoxysilane and 1.2 g of 3-methacryloxypropyltrimethoxysilane, 24.6 g of diethylacrylamide, and 1 g of acrylic acid , Reactive emulsifier (trade name “Adekaria Soap SR-1025”, manufactured by Asahi Denka Co., Ltd., 25% solids aqueous solution), reactive emulsifier (trade name “AQUALON KH-1025”, Daiichi Kogyo Seiyaku Co., Ltd. (Made by Co., Ltd., 25% solid content aqueous solution) 0.7 g, a mixed solution of 2% by weight ammonium persulfate aqueous solution 8.5 g and ion-exchanged water 255 g, with the temperature in the reactor kept at 80 ° C. It was dripped simultaneously over 2 hours. Further, stirring was continued for about 2 hours while maintaining the temperature in the reactor at 80 ° C. Thereafter, the liquid in the reactor was cooled to room temperature and filtered through a 100-mesh wire mesh to obtain a polymer emulsion aqueous dispersion having a solid content of 12.8% by mass. And it adjusted so that solid content might be 10.0 mass% with ion-exchange water, and obtained the polymer emulsion water dispersion (a). The number average particle diameter of the polymer emulsion particles was 183 nm.

得られた重合体エマルジョン分散体(a)100gと水分散コロイダルシリカ(日産化学工業社製、商品名「スノーテックスO」、固形分20質量%)50gとを混合し、水系バインダー水分散体(A)を調製した。   100 g of the obtained polymer emulsion dispersion (a) and 50 g of water-dispersed colloidal silica (manufactured by Nissan Chemical Industries, trade name “Snowtex O”, solid content 20% by mass) are mixed, and an aqueous binder aqueous dispersion ( A) was prepared.

[実施例1]
水系バインダー水分散体(A)に対して、ルチル型酸化チタン(石原産業社製、商品名「TTO−W−05」、固形分30質量%)1.67gとアナターゼ型酸化チタン(石原産業社製、商品名「MPT−422」、固形分20質量%)2.5gとを混合し、光触媒組成物を調製した。この光触媒組成物を20cm四方のPETフィルム(膜厚:90μm)の表面にバーコート法により塗布し、70℃で10分間乾燥して、膜厚2.1μmの光触媒塗膜を得た。各種評価結果を表1に示す。なお、表1中、「ルチル型酸化チタン量(%)」は、光触媒塗膜の総量に対するルチル型酸化チタンの含有割合(単位:質量%)を示し、「アナターゼ型酸化チタン量(%)」は、光触媒塗膜の総量に対するアナターゼ型酸化チタンの含有割合(単位:質量%)を示す。また、「透明性」、「耐光性試験後の透明性」はいずれもヘイズ値を示す。
[Example 1]
1.67 g of rutile type titanium oxide (made by Ishihara Sangyo Co., Ltd., trade name “TTO-W-05”, solid content 30% by mass) and anatase type titanium oxide (Ishihara Sangyo Co., Ltd.) with respect to the aqueous binder aqueous dispersion (A) (Product name “MPT-422”, solid content 20 mass%) 2.5 g was mixed to prepare a photocatalyst composition. This photocatalyst composition was applied to the surface of a 20 cm square PET film (film thickness: 90 μm) by a bar coating method and dried at 70 ° C. for 10 minutes to obtain a photocatalyst coating film having a film thickness of 2.1 μm. Various evaluation results are shown in Table 1. In Table 1, “rutile-type titanium oxide amount (%)” indicates the content ratio (unit: mass%) of rutile-type titanium oxide with respect to the total amount of the photocatalytic coating film, and “anatase-type titanium oxide amount (%)”. Indicates the content ratio (unit: mass%) of anatase-type titanium oxide with respect to the total amount of the photocatalytic coating film. “Transparency” and “transparency after light resistance test” both indicate haze values.

[実施例2〜6、比較例1〜5]
光触媒塗膜の総量に対するルチル型酸化チタン及びアナターゼ型酸化チタンの含有割合を表1に示すように変更した以外は実施例1と同様にして、光触媒塗膜を得た。各種評価結果を表1に示す。なお、表1中「−」は、光触媒塗膜中にルチル型酸化チタン及び/又はアナターゼ型酸化チタンを含まないことを意味する。また、「剥離」は光触媒塗膜がPETフィルムから剥離したことを示す。
[Examples 2-6, Comparative Examples 1-5]
A photocatalyst coating film was obtained in the same manner as in Example 1 except that the content ratio of rutile type titanium oxide and anatase type titanium oxide with respect to the total amount of the photocatalyst coating film was changed as shown in Table 1. Various evaluation results are shown in Table 1. In Table 1, “-” means that the photocatalyst coating film does not contain rutile titanium oxide and / or anatase titanium oxide. “Peeling” indicates that the photocatalyst coating film was peeled from the PET film.

Figure 2009221362
Figure 2009221362

本実施形態の光触媒塗膜は、光触媒活性と基体等の耐久性とを両立する光触媒塗膜であって、少ない環境負荷で硬化可能であるため、建築外装、外装表示用途、自動車、ディスプレイ、レンズ等に塗布して用いるのに有用である。   The photocatalyst coating film of the present embodiment is a photocatalyst coating film that achieves both photocatalytic activity and durability of the substrate, and can be cured with a small environmental load. It is useful to be applied to the like.

Claims (7)

ルチル型酸化チタン及び高い光触媒能を示す化合物を含む光触媒塗膜であって、前記ルチル型酸化チタンの含有割合が下記式(1)で表される条件を満足する、光触媒塗膜。
4/X≦a≦100/X (1)
(式中、Xは前記光触媒塗膜の膜厚(単位:μm)を示し、aは前記ルチル型酸化チタンの前記光触媒塗膜の総量に対する含有割合(単位:質量%)を示す。)
A photocatalytic coating film comprising a rutile type titanium oxide and a compound exhibiting high photocatalytic activity, wherein the content ratio of the rutile type titanium oxide satisfies a condition represented by the following formula (1).
4 / X ≦ a ≦ 100 / X (1)
(In the formula, X represents the film thickness (unit: μm) of the photocatalytic coating film, and a represents the content ratio (unit: mass%) of the rutile-type titanium oxide with respect to the total amount of the photocatalytic coating film.)
前記ルチル型酸化チタンの含有割合が下記式(1a)で表される条件を満足する、請求項1記載の光触媒塗膜。
4/X≦a≦60/X (1a)
(式中、Xは前記光触媒塗膜の膜厚(単位:μm)を示し、aは前記ルチル型酸化チタンの前記光触媒塗膜の総量に対する含有割合(単位:質量%)を示す。)
The photocatalyst coating film of Claim 1 with which the content rate of the said rutile type titanium oxide satisfies the conditions represented by a following formula (1a).
4 / X ≦ a ≦ 60 / X (1a)
(In the formula, X represents the film thickness (unit: μm) of the photocatalytic coating film, and a represents the content ratio (unit: mass%) of the rutile-type titanium oxide with respect to the total amount of the photocatalytic coating film.)
前記ルチル型酸化チタンに対する前記高い光触媒能を示す化合物の質量比が0.10〜2.0である、請求項1又は2に記載の光触媒塗膜。   The photocatalyst coating film of Claim 1 or 2 whose mass ratio of the compound which shows the said high photocatalytic ability with respect to the said rutile type titanium oxide is 0.10-2.0. 前記ルチル型酸化チタン及び前記高い光触媒能を示す化合物の粒子径が、一次粒子径で共に100nm以下である、請求項1〜3のいずれか一項に記載の光触媒塗膜。   The photocatalyst coating film as described in any one of Claims 1-3 whose particle diameter of the compound which shows the said rutile type titanium oxide and the said high photocatalytic ability is 100 nm or less in both primary particle diameters. 前記高い光触媒能を示す化合物がアナターゼ型酸化チタンである、請求項1〜4のいずれか一項に記載の光触媒塗膜。   The photocatalyst coating film as described in any one of Claims 1-4 whose compound which shows the said high photocatalytic capability is anatase type titanium oxide. 水系バインダーを含む、請求項1〜5のいずれか一項に記載の光触媒塗膜。   The photocatalyst coating film as described in any one of Claims 1-5 containing an aqueous binder. 請求項1〜6のいずれか一項に記載の光触媒塗膜を形成するために用いられる光触媒組成物。   The photocatalyst composition used in order to form the photocatalyst coating film as described in any one of Claims 1-6.
JP2008067792A 2008-03-17 2008-03-17 Photocatalyst coating film and photocatalyst composition Active JP5368720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008067792A JP5368720B2 (en) 2008-03-17 2008-03-17 Photocatalyst coating film and photocatalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008067792A JP5368720B2 (en) 2008-03-17 2008-03-17 Photocatalyst coating film and photocatalyst composition

Publications (2)

Publication Number Publication Date
JP2009221362A true JP2009221362A (en) 2009-10-01
JP5368720B2 JP5368720B2 (en) 2013-12-18

Family

ID=41238476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008067792A Active JP5368720B2 (en) 2008-03-17 2008-03-17 Photocatalyst coating film and photocatalyst composition

Country Status (1)

Country Link
JP (1) JP5368720B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246293A (en) * 2010-05-24 2011-12-08 Ohbayashi Corp Surface treatment material, surface treatment method, and surface treatment glass
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP2012092264A (en) * 2010-10-28 2012-05-17 Fujikura Kasei Co Ltd One liquid type active energy ray-curable coating material composition and composite coating film
JP2015205254A (en) * 2014-04-22 2015-11-19 昭和電工株式会社 Photocatalyst composition, antiviral agent and antibacterial agent
JP2019011417A (en) * 2017-06-29 2019-01-24 日本ペイント株式会社 Coating Composition
JP2019011418A (en) * 2017-06-29 2019-01-24 日本ペイント株式会社 Coating Composition
JP2020076017A (en) * 2018-11-08 2020-05-21 荒川化学工業株式会社 Aqueous binder solution for photocatalytic coating agent, photocatalytic coating agent, cured product and article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040245A (en) * 1999-07-30 2001-02-13 Toto Ltd Photocatalytic hydrophilic coating composition and photocatalytic hydrophilic coating film
JP2002191984A (en) * 2000-12-27 2002-07-10 Nippon Zeon Co Ltd Photocatalyst composition and thermoplastic resin composition containing the same
JP2002265802A (en) * 2001-03-14 2002-09-18 Mitsubishi Plastics Ind Ltd Photocatalyst-compounded resin composition and molded product thereof
JP2005125164A (en) * 2003-10-22 2005-05-19 Dainippon Toryo Co Ltd Functional coating film forming method
WO2007069596A1 (en) * 2005-12-13 2007-06-21 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040245A (en) * 1999-07-30 2001-02-13 Toto Ltd Photocatalytic hydrophilic coating composition and photocatalytic hydrophilic coating film
JP2002191984A (en) * 2000-12-27 2002-07-10 Nippon Zeon Co Ltd Photocatalyst composition and thermoplastic resin composition containing the same
JP2002265802A (en) * 2001-03-14 2002-09-18 Mitsubishi Plastics Ind Ltd Photocatalyst-compounded resin composition and molded product thereof
JP2005125164A (en) * 2003-10-22 2005-05-19 Dainippon Toryo Co Ltd Functional coating film forming method
WO2007069596A1 (en) * 2005-12-13 2007-06-21 Asahi Kasei Chemicals Corporation Aqueous organic-inorganic hybrid composition

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011246293A (en) * 2010-05-24 2011-12-08 Ohbayashi Corp Surface treatment material, surface treatment method, and surface treatment glass
JP2012086104A (en) * 2010-10-15 2012-05-10 Asahi Kasei Chemicals Corp Photocatalyst composition
JP2012092264A (en) * 2010-10-28 2012-05-17 Fujikura Kasei Co Ltd One liquid type active energy ray-curable coating material composition and composite coating film
JP2015205254A (en) * 2014-04-22 2015-11-19 昭和電工株式会社 Photocatalyst composition, antiviral agent and antibacterial agent
JP2019011417A (en) * 2017-06-29 2019-01-24 日本ペイント株式会社 Coating Composition
JP2019011418A (en) * 2017-06-29 2019-01-24 日本ペイント株式会社 Coating Composition
JP7080592B2 (en) 2017-06-29 2022-06-06 日本ペイント株式会社 Paint composition
JP7080593B2 (en) 2017-06-29 2022-06-06 日本ペイント株式会社 Paint composition
JP2020076017A (en) * 2018-11-08 2020-05-21 荒川化学工業株式会社 Aqueous binder solution for photocatalytic coating agent, photocatalytic coating agent, cured product and article
JP7147492B2 (en) 2018-11-08 2022-10-05 荒川化学工業株式会社 Binder aqueous solution for photocatalyst coating agent, photocatalyst coating agent, cured product, and article

Also Published As

Publication number Publication date
JP5368720B2 (en) 2013-12-18

Similar Documents

Publication Publication Date Title
JP5137352B2 (en) Aqueous pollution control composition and painted product
JP4785865B2 (en) Water-based organic / inorganic composite composition
JP5599134B2 (en) Organic / inorganic composite composition using polyfunctional silane
JP5411574B2 (en) Composite, functional structure and coating agent
JP4964021B2 (en) Method for forming antifouling layer
JP5368720B2 (en) Photocatalyst coating film and photocatalyst composition
JP2009019072A (en) Aqueous organic-inorganic composite composition
JP2009279566A (en) Composition containing photocatalyst
JP4823045B2 (en) Water-based photocatalytic composition
JP2009253203A (en) Coating composition for solar cell
JP5415014B2 (en) Coating composition
JP4738367B2 (en) Water-based organic / inorganic composite composition
JP5518299B2 (en) Coating composition for solar cell
JP2009280706A (en) Organic-inorganic composite material
JP5366440B2 (en) Cover material for solar cells
JP5692892B2 (en) Coating film and water-based organic / inorganic composite composition
JP5514463B2 (en) Heat-resistant coating composition
JP5466868B2 (en) Anti-reflection coating composition
JP2011111485A (en) Composition, coating film and coated product
JP2011131211A (en) Photocatalytic metal compound, photocatalytic composition, and photocatalytic coating film
JP5280120B2 (en) Multilayer coating
JP2009280770A (en) Organic-inorganic composite composition, organic-inorganic complex using it, and functional complex
JP2009101287A (en) Modified photocatalyst sol and its manufacturing method
JP2008031299A (en) Functional aluminum building material
JP5650394B2 (en) Multi-layer coating film and method for producing multi-layer coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130913

R150 Certificate of patent or registration of utility model

Ref document number: 5368720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350