[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009221258A - Pre-expanded polypropylene resin particle - Google Patents

Pre-expanded polypropylene resin particle Download PDF

Info

Publication number
JP2009221258A
JP2009221258A JP2008064697A JP2008064697A JP2009221258A JP 2009221258 A JP2009221258 A JP 2009221258A JP 2008064697 A JP2008064697 A JP 2008064697A JP 2008064697 A JP2008064697 A JP 2008064697A JP 2009221258 A JP2009221258 A JP 2009221258A
Authority
JP
Japan
Prior art keywords
polypropylene resin
particles
pressure
resin particles
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008064697A
Other languages
Japanese (ja)
Other versions
JP5358106B2 (en
Inventor
Tetsuya Shibata
哲也 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008064697A priority Critical patent/JP5358106B2/en
Publication of JP2009221258A publication Critical patent/JP2009221258A/en
Application granted granted Critical
Publication of JP5358106B2 publication Critical patent/JP5358106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide pre-expanded polypropylene resin particles which can give a high-fusion rate (≥75%) in-mold expanded molding at a low molding heating steam pressure in performing the in-mold molding of pre-expanded polypropylene resin particles comprising polypropylene resin particles produced by an underwater cutting system. <P>SOLUTION: Provided are pre-expanded polypropylene resin particles characterized by having a surface melting temperature of 130°C or lower and being particles obtained by feeding polypropylene resin particles obtained by melt-kneading a polypropylene resin composition with an extruder, extruding the resulting mixture into water through a die nozzle fitted on the front end of the extruder, and cutting the extrudate with a cutter edge rotating in the water, water, a dispersant, and blowing agent into a pressure vessel, heating the contents to a temperature not less than the softening point of the polypropylene resin particles to infiltrate the blowing agent into the polypropylene resin particles under elevated pressure, and releasing the resultant mixture into an atmosphere of a pressure lower than that inside the pressure-resistant vessel. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、緩衝包材、通箱、自動車内装部材、自動車バンパー用芯材、断熱材などに用いられるポリプロピレン系樹脂予備発泡粒子の製造方法に関する。   The present invention relates to a method for producing polypropylene resin pre-expanded particles used for buffer packaging materials, pass boxes, automobile interior members, automobile bumper core materials, heat insulating materials, and the like.

ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、型内発泡成形体の長所である形状の任意性、軽量性、断熱性などの特徴をもつ。また同様の型内発泡成形体と比較しても、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、またポリエチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、寸法精度、耐熱性、圧縮強度が優れている。これらの特徴により、ポリプロピレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。   The in-mold foam molded article obtained by using the polypropylene resin pre-expanded particles has characteristics such as shape flexibility, light weight, and heat insulation, which are advantages of the in-mold foam molded article. Compared to similar in-mold foam moldings, it is superior in chemical resistance, heat resistance and strain recovery after compression compared to in-mold foam moldings obtained using polystyrene resin pre-expanded particles. In addition, the dimensional accuracy, heat resistance, and compressive strength are excellent as compared with the in-mold foam molded body obtained using the polyethylene resin pre-expanded particles. Due to these characteristics, in-mold foam molded articles obtained using polypropylene resin pre-expanded particles are used in various applications such as automotive interior members, automotive bumper core materials, heat insulating materials, and cushioning packaging materials. .

ポリプロピレン系樹脂予備発泡粒子の製造方法としては、原料となるポリプロピレン系樹脂を種々添加剤と共に押出機にて溶融混錬し、ストランドカット方式、アンダーウォーターカット方式、ホットカット方式等により任意の粒の大きさのポリプロピレン系樹脂粒子を得、該ポリプロピレン系樹脂粒子を水、分散剤、発泡剤などと共に耐圧容器内に仕込み、該ポリプロピレン系樹脂粒子の軟化点以上の温度に加熱し、加圧下で該ポリプロピレン系樹脂粒子に発泡剤を含浸したのち、前記耐圧容器内よりも低圧の雰囲気下に放出することによって得られることが知られている。   As a method for producing polypropylene resin pre-expanded particles, polypropylene resin as a raw material is melt kneaded with various additives in an extruder, and any particle can be formed by a strand cut method, an underwater cut method, a hot cut method, or the like. A polypropylene resin particle having a size is obtained, and the polypropylene resin particle is charged into a pressure vessel together with water, a dispersant, a foaming agent, etc., heated to a temperature equal to or higher than the softening point of the polypropylene resin particle, and the pressure is increased under pressure. It is known that it is obtained by impregnating a polypropylene resin particle with a foaming agent and then releasing it in an atmosphere at a lower pressure than in the pressure vessel.

ポリプロピレン系樹脂予備発泡粒子を得るための該ポリプロピレン系樹脂粒子を製造する方法としては、ストランドカット方式が広く用いられている。ストランドカット方式では、比較的安価な設備で均一な円柱形状の樹脂粒子を得ることができるが、型内成形での充填性向上のために粒重量が小さいものが要求されることが多く、粒重量が比較的小さいポリプロピレン系樹脂粒子を得ようとする場合、ミスカットの発生、ストランド切れの発生が多くなり生産性が悪くなる傾向がある。又、ペレタイザーへストランドを導入する生産スタートの際のハンドリングの問題からストランド本数を増すには限界があるため比較的生産性が低い等の課題があった。また、ポリプロピレン系樹脂ストランドの冷却工程から残留ひずみが大きく、予備発泡粒子製造時に樹脂粒子の押出方向に大きな収縮が起こり、予備発泡粒子の形状が大きく変化する場合がある。この形状変形を正確に把握して、厳密に管理することが要求される。   As a method for producing the polypropylene resin particles for obtaining polypropylene resin pre-expanded particles, a strand cut method is widely used. In the strand cut method, uniform cylindrical resin particles can be obtained with relatively inexpensive equipment. However, in order to improve the filling property in the in-mold molding, particles having a small particle weight are often required. When trying to obtain polypropylene resin particles having a relatively small weight, the occurrence of miscuts and the occurrence of strand breakage tends to increase, and the productivity tends to deteriorate. In addition, there are problems such as relatively low productivity because there is a limit to increasing the number of strands due to handling problems at the start of production when introducing strands into the pelletizer. Further, the residual strain is large from the cooling step of the polypropylene resin strands, and when the pre-foamed particles are produced, the resin particles are greatly contracted in the extrusion direction, and the shape of the pre-foamed particles may be greatly changed. It is required to accurately grasp and precisely manage this shape deformation.

一方、アンダーウォーターカット方式では、ストランドを操作する必要がない為、造粒のスタートが容易であり、ミスカットの発生等が少なく均質なポリプロピレン系樹脂粒子を生産性良く得ることができることが知られている。充填性などが要求される型内成形体用に予備発泡粒子を製造する場合、より小さい粒である粒重量2.0mg以下の樹脂粒子を生産することになるが、前記のとおり、ストランドカット方式では、ミスカットや操作性の低下から生産性が著しく低下し、アンダーウォーターカット方式の易造粒性が生産性の点で優位となる。しかしながら、この方式で製造したポリプロピレン系樹脂粒子を用いたポリプロピレン系樹脂予備発泡粒子は、広く用いられているストランドカット方式によって製造されたポリプロピレン系樹脂粒子によるポリプロピレン系樹脂予備発泡粒子は、型内成形に用いると、成形時の融着性が著しく低下する。原因は明らかではないが、この品質課題のために、アンダーウォーターカット方式は型内成形用ポリプロピレン系樹脂予備発泡粒子の製造に用いられていないのが現状である。   On the other hand, in the underwater cut method, since it is not necessary to operate the strand, it is easy to start granulation, and it is known that homogeneous polypropylene resin particles with less miscuts can be obtained with high productivity. ing. When pre-expanded particles are produced for in-mold molded products that require filling properties, etc., resin particles having a particle weight of 2.0 mg or less, which are smaller particles, will be produced. Therefore, productivity is remarkably lowered due to miscutting and operability deterioration, and easy granulation by the underwater cut method is advantageous in terms of productivity. However, the polypropylene resin pre-expanded particles using the polypropylene resin particles produced by this method are the same as the polypropylene resin pre-expanded particles produced by the widely used strand cut method. If it is used, the fusing property at the time of molding is significantly reduced. The cause is not clear, but due to this quality problem, the underwater cut method is not currently used for producing polypropylene resin pre-expanded particles for in-mold molding.

特許文献1には、アンダーウォーターカット方式のポリプロピレン系樹脂予備発泡粒子用ポリプロピレン系樹脂粒子の製造方法で、ポリプロピレン系樹脂予備発泡粒子の型内成形時の融着性が不良となりやすい課題が記述されており、その対策として溶融樹脂がダイノズルから押し出され、回転するカッターにより切断されるウォーターボックス内の循環水に難水溶性無機物および界面活性剤を添加する技術が開示されている。しかしながら、水質汚染が発生するという問題がある。   Patent Document 1 describes a problem in which the meltability of the polypropylene resin pre-expanded particles during molding in the mold tends to be poor in the method for producing polypropylene resin particles for the polypropylene resin pre-expanded particles of the underwater cut method. As a countermeasure, a technique for adding a poorly water-soluble inorganic substance and a surfactant to circulating water in a water box that is extruded from a die nozzle and cut by a rotating cutter is disclosed. However, there is a problem that water pollution occurs.

特許文献2には、熱可塑性樹脂を多量の循環水を用いたアンダーウォーターカット方式で造粒する型内発泡成形用予備発泡粒子の製造に供する良好な形状の微細粒子の製造方法が開示されている。製造したポリプロピレン系樹脂粒子により製造された予備発泡粒子で型内成形を行う場合、高生産性で製造できないストランドカット方式で製造したポリプロピレン系樹脂粒子を用いるのと比較して、樹脂粒子および予備発泡粒子自体の形状は良化するが、型内成形時の融着性が不良となりやすく、そのため成形加熱蒸気圧を高くする必要があることを言及しておらず、相対的に低品質なものしか生産できない。   Patent Document 2 discloses a method for producing fine particles having a good shape to be used for producing pre-foamed particles for in-mold foam molding in which a thermoplastic resin is granulated by an underwater cut method using a large amount of circulating water. Yes. When performing in-mold molding with pre-expanded particles manufactured with the manufactured polypropylene-based resin particles, resin particles and pre-expanded compared to using polypropylene-based resin particles manufactured with a strand cut method that cannot be manufactured with high productivity Although the shape of the particles themselves is improved, it does not mention that the fusion property at the time of in-mold molding tends to be poor, and therefore it is necessary to increase the molding heating vapor pressure. It cannot be produced.

特許文献3には、優れた緩衝性能を持ち、かつ耐衝撃性も大きく、さらに耐熱性の優れたポリオレフィン系樹脂型内発泡成形体を提供することを目的として、特定の曲げ剛性を有するα−オレフィン・プロピレン共重合体55〜95重量%と、直鎖状ポリエチレン樹脂5〜45重量%との混合物を基材樹脂とする予備発泡粒子が開示されている。ポリプロピレン系樹脂がポリエチレン系樹脂を含有した場合、成形体収縮が大きくなる場合があり、単純に直鎖状ポリエチレン樹脂を含有するのみでは、成形体製造で不具合が生じる場合がある。
特開平10−119037号公報 特開平1−234212号公報 特開平4−253741号公報
In Patent Document 3, α--having a specific bending rigidity is provided for the purpose of providing a polyolefin resin-in-mold foam-molded article having excellent buffering performance, high impact resistance, and excellent heat resistance. Pre-expanded particles using a mixture of 55 to 95% by weight of an olefin / propylene copolymer and 5 to 45% by weight of a linear polyethylene resin as a base resin are disclosed. When the polypropylene resin contains a polyethylene resin, the shrinkage of the molded product may increase, and when the linear polyethylene resin is simply contained, a problem may occur in the production of the molded product.
Japanese Patent Laid-Open No. 10-119037 JP-A-1-234212 Japanese Patent Laid-Open No. 4-253741

本発明者が、ポリプロピレン系樹脂をアンダーウォーターカット方式でポリプロピレン系樹脂粒子を作製し、該ポリプロピレン系樹脂粒子を水、分散剤、発泡剤を耐圧容器内に仕込み、ポリプロピレン系樹脂粒子の軟化点以上の温度まで加熱し、加圧下で該ポリプロピレン系樹脂粒子に発泡剤を含浸したのち、前記耐圧容器内よりも低圧の雰囲気下に放出することによって得られるポリプロピレン系樹脂予備発泡粒子を用いて型内発泡成形体を得ようとすると、ストランドカット方式より製造したポリプロピレン系樹脂粒子から得られるポリプロピレン系樹脂予備発泡粒子を用いた型内発泡成形体と比較して、型内発泡成形時に同等の予備発泡粒子同士の融着性の型内発泡成形体を得るには、高い成形加熱蒸気圧力が必要であるという問題を有しており、さらに、実際に得られる型内発泡成形体の引張強度および引張伸びは低下した型内発泡成形体しか得られないという問題が確認された。   The present inventor made polypropylene resin particles by using an underwater cut method for the polypropylene resin, charged the polypropylene resin particles with water, a dispersant, and a foaming agent in a pressure resistant container, and the softening point of the polypropylene resin particles or higher. In the mold using the polypropylene resin pre-expanded particles obtained by impregnating the polypropylene resin particles with a foaming agent under pressure and then releasing them under a lower pressure atmosphere than in the pressure vessel When trying to obtain a foamed molded product, it is equivalent to pre-foaming at the time of in-mold foam molding compared to in-mold foam molded product using polypropylene resin pre-foamed particles obtained from polypropylene-based resin particles produced by the strand cut method In order to obtain an in-mold foam-molded product that can be fused with each other, a problem is that high molding heating steam pressure is required. And which, furthermore, a problem that actually tensile strength and tensile elongation of the resulting mold expansion molded article give only mold expansion molded article having a reduced was confirmed.

このような課題に鑑み、本発明の目的は、アンダーウォーターカット方式により良好な生産性で製造したポリプロピレン系樹脂粒子より成るポリプロピレン系樹脂予備発泡粒子を型内発泡成形する際において、低成形圧で充分な融着性を得ることができ、得られた型内発泡成形体の引張強度および引張伸びが得られるポリプロピレン系樹脂予備発泡粒子を提供することにある。   In view of such problems, the object of the present invention is to achieve low molding pressure when in-mold foam molding of polypropylene resin pre-expanded particles made of polypropylene resin particles manufactured with good productivity by an underwater cut method. It is an object of the present invention to provide polypropylene resin pre-expanded particles that can obtain sufficient fusing property and can obtain the tensile strength and tensile elongation of the obtained in-mold foam molded article.

本発明者らは前記実情に鑑み、鋭意研究を重ねた結果、次のような知見が得られた。
即ち、ポリプロピレン系樹脂組成物を押出機にて溶融混錬し、押出機の先端に装着されたダイノズルより水中に押し出し、該水中にて回転するカッター刃により切断して得られる、所謂アンダーウォーターカット方式によって製造されるポリプロピレン系樹脂粒子を水、分散剤、発泡剤等と耐圧容器内に仕込み、該ポリプロピレン系樹脂粒子の軟化点以上の温度に加熱し、加圧下で該ポリプロピレン系樹脂粒子に発泡剤を含浸したのち、前記耐圧容器内よりも低圧の雰囲気下に放出することによって得られるポリプロピレン系樹脂予備発泡粒子であって、表面融解温度が130℃以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子は低圧成形でも融着性に優れ、得られた型内発泡成形体の引張強度および引張伸びが良好であることを見いだした。
In view of the above circumstances, the present inventors have made extensive studies and as a result, obtained the following knowledge.
That is, a so-called underwater cut obtained by melting and kneading a polypropylene resin composition with an extruder, extruding into a water from a die nozzle attached to the tip of the extruder, and cutting with a cutter blade rotating in the water. Polypropylene resin particles produced by the method are charged into a pressure vessel with water, a dispersant, a foaming agent, etc., heated to a temperature above the softening point of the polypropylene resin particles, and expanded into the polypropylene resin particles under pressure. Polypropylene resin pre-expanded particles obtained by impregnating with an agent and then released into an atmosphere at a pressure lower than that in the pressure vessel, wherein the surface melting temperature is 130 ° C. or less. The pre-expanded particles are excellent in fusion property even in low-pressure molding, and the tensile strength and tensile elongation of the obtained in-mold foam molded product are good. It was found.

すなわち、本発明の第1は、ポリプロピレン系樹脂組成物を押出機にて溶融混錬し、押出機の先端に装着されたダイノズルより水中に押し出し、該水中にて回転するカッター刃により切断して得られるポリプロピレン系樹脂粒子、及び、水、分散剤、発泡剤を耐圧容器内に仕込み、該ポリプロピレン系樹脂粒子の軟化点以上の温度に加熱し、加圧下で該ポリプロピレン系樹脂粒子に発泡剤を含浸したのち、前記耐圧容器内よりも低圧の雰囲気下に放出することによって得られるポリプロピレン系樹脂予備発泡粒子であって、表面融解温度が130℃以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子に関する。   That is, in the first aspect of the present invention, a polypropylene resin composition is melt-kneaded with an extruder, extruded into water from a die nozzle attached to the tip of the extruder, and cut with a cutter blade that rotates in the water. The obtained polypropylene resin particles, water, a dispersant, and a foaming agent are charged in a pressure vessel, heated to a temperature equal to or higher than the softening point of the polypropylene resin particles, and the foaming agent is applied to the polypropylene resin particles under pressure. Polypropylene resin pre-foamed particles obtained by impregnating and releasing the polypropylene-based resin pre-foamed particles in an atmosphere at a pressure lower than that in the pressure vessel, and having a surface melting temperature of 130 ° C. or lower. Concerning particles.

好ましい態様としては、ポリプロピレン系樹脂予備発泡粒子の粒重量が0.5〜2.0mg/粒である前記記載のポリプロピレン系樹脂予備発泡粒子に関する。   As a preferred embodiment, the present invention relates to the polypropylene resin pre-expanded particles described above, wherein the polypropylene resin pre-expanded particles have a particle weight of 0.5 to 2.0 mg / particle.

本発明の第2は、前記記載のポリプロピレン系樹脂予備発泡粒子を用いて成形してなる型内発泡成形体に関する。   The second of the present invention relates to an in-mold foam-molded product formed by using the polypropylene resin pre-foamed particles described above.

本発明によれば、アンダーウォーターカット方式で得られるポリプロピレン系樹脂粒子を用いたポリプロピレン系樹脂予備発泡粒子であって、表面融解温度が130℃以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子は、良好な融着性を得るための、成形時に必要な成形加熱蒸気圧力を低下させることができる。また、得られた型内発泡成形体の引張強度および引張伸びが良好である。   According to the present invention, a polypropylene resin pre-expanded particle using polypropylene resin particles obtained by an underwater cut method, wherein the surface melting temperature is 130 ° C. or less. Can reduce the molding heating steam pressure required at the time of molding in order to obtain good fusing property. Moreover, the tensile strength and tensile elongation of the obtained in-mold foam molded article are good.

本発明において用いるポリプロピレン系樹脂は、プロピレンモノマー単位が50重量%以上、好ましくは80重量%以上、更に好ましくは90重量%以上からなる重合体であり、チーグラー型塩化チタン系触媒、メタロセン触媒、ポストメタロセン触媒等で重合された、立体規則性の高いものが好ましい。具体例としては、例えば、プロピレン単独重合体、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体、エチレン−プロピレンブロック共重合体、無水マレイン酸−プロピレンランダム共重合体、無水マレイン酸−プロピレンブロック共重合体、プロピレン−無水マレイン酸グラフト共重合体等が挙げられ、それぞれ単独あるいは2種以上を混合して用いることができる。特に、エチレン−プロピレンランダム共重合体、プロピレン−ブテンランダム共重合体、エチレン−プロピレン−ブテンランダム共重合体が好適に使用し得る。また、これらのポリプロピレン系樹脂は無架橋のものが好ましいが、架橋したものも使用できる。   The polypropylene resin used in the present invention is a polymer comprising propylene monomer units of 50% by weight or more, preferably 80% by weight or more, more preferably 90% by weight or more, and is a Ziegler type titanium chloride catalyst, metallocene catalyst, post Those having high stereoregularity polymerized with a metallocene catalyst or the like are preferred. Specific examples include, for example, propylene homopolymer, ethylene-propylene random copolymer, propylene-butene random copolymer, ethylene-propylene-butene random copolymer, ethylene-propylene block copolymer, maleic anhydride- A propylene random copolymer, a maleic anhydride-propylene block copolymer, a propylene-maleic anhydride graft copolymer and the like can be mentioned, and each can be used alone or in admixture of two or more. In particular, an ethylene-propylene random copolymer, a propylene-butene random copolymer, and an ethylene-propylene-butene random copolymer can be suitably used. Further, these polypropylene resins are preferably non-crosslinked, but crosslinked resins can also be used.

本発明に使用するポリプロピレン系樹脂は、JIS K7210に準拠し、温度230℃、荷重2.16kgで測定したメルトインデックス(以下、MI)が0.1〜15g/10分であることが好ましく、更に好ましくは2〜12g/10分である。MIが、0.1g/10分未満では、ポリプロピレン系樹脂予備発泡粒子を製造する際の発泡力が低く、高発泡倍率のポリプロピレン系樹脂予備発泡粒子を効率的に得るのが難しくなる場合がある。またMIが15g/10分を越えるとポリプロピレン系樹脂予備発泡粒子を製造する際にセルが破泡する場合がある。   The polypropylene resin used in the present invention preferably has a melt index (hereinafter referred to as MI) of 0.1 to 15 g / 10 minutes measured at a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210. Preferably it is 2-12 g / 10min. When the MI is less than 0.1 g / 10 min, the foaming power when producing the polypropylene resin pre-expanded particles is low, and it may be difficult to efficiently obtain the polypropylene resin pre-expanded particles having a high expansion ratio. . On the other hand, if the MI exceeds 15 g / 10 minutes, the cell may break when producing the pre-expanded polypropylene resin particles.

本発明に使用するポリプロピレン系樹脂は、機械的強度、耐熱性に優れた型内発泡成形体を得るために、融点は、好ましくは130〜168℃、更に好ましくは135〜160℃、特に好ましくは135〜155℃である。融点が当該範囲内であると、成形性と機械的強度、耐熱性のバランスが取り易い傾向が強い。   The polypropylene resin used in the present invention has a melting point of preferably 130 to 168 ° C., more preferably 135 to 160 ° C., particularly preferably in order to obtain an in-mold foam molded article excellent in mechanical strength and heat resistance. 135-155 ° C. If the melting point is within this range, the moldability, mechanical strength, and heat resistance tend to be easily balanced.

尚、本発明で、前記ポリプロピレン系樹脂の融点(以下、「Tm」という場合がある。)とは、示差走査熱量計によって、1〜10mgのポリプロピレン系樹脂を、40℃から220℃まで10℃/分の速度で昇温し、その後40℃まで10℃/分の速度で冷却し、再度220℃まで10℃/分の速度で昇温した時に得られるDSC曲線における吸熱曲線のピーク温度をいう。   In the present invention, the melting point of the polypropylene resin (hereinafter sometimes referred to as “Tm”) is 10 ° C. from 40 ° C. to 220 ° C. from 1 to 10 mg of polypropylene resin by a differential scanning calorimeter. The peak temperature of the endothermic curve in the DSC curve obtained when the temperature is raised at a rate of 10 ° C / minute, then cooled to 40 ° C at a rate of 10 ° C / minute, and again raised to 220 ° C at a rate of 10 ° C / minute. .

本発明では、ポリエチレン系組成物をポリプロピレン系樹脂に混合して本発明のポリプロピレン系樹脂組成物として使用することができる。ポリエチレン系組成物を混合することで、得られるポリプロピレン系樹脂予備発泡粒子の表面融解温度が130℃以下としやすい傾向があり、換言すれば、本発明のポリプロピレン系樹脂は、ポリエチレン系組成物を混合しない場合よりも弾性率や機械強度が低下する場合があるが、成形時の融着を良化する効果を発現しやすくなる。   In the present invention, a polyethylene composition can be mixed with a polypropylene resin and used as the polypropylene resin composition of the present invention. By mixing the polyethylene composition, the surface melting temperature of the resulting polypropylene resin pre-expanded particles tends to be 130 ° C. or less, in other words, the polypropylene resin of the present invention is mixed with the polyethylene composition. In some cases, the elastic modulus and mechanical strength may be lower than in the case of not performing the process, but the effect of improving the fusion at the time of molding is easily exhibited.

具体的な混合できるポリエチレン系組成物の種類としては、たとえば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(L−LDPE)、などのエチレン単独重合体、エチレン−ブテン共重合体、エチレン−酢酸ビニル共重合体等が挙げられ、これらは単独または2種類以上混合して用いることができる。これらの樹脂の中でも、低密度ポリエチレン(LDPE)が好ましく、直鎖状低密度ポリエチレン(LLDPE)がより好ましい。また、ポリプロピレン系樹脂におけるポリエチレン系組成物の含有量としては、ポリプロピレン系樹脂100重量部に対して1重量部以上20重量部以下であることが好ましく、より好ましくは3重量部以上10重量部以下である。ポリエチレン系組成物の含有量が1重量部未満であると低蒸気圧力での型内成形で充分な融着性を得る事が難しい場合がある。また20重量部を超えると得られる型発泡成形体はヒケが発生し易くなり、対金型収縮率が大きくなる傾向がある。   Specific types of polyethylene compositions that can be mixed include, for example, high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (L-LDPE), and the like. Ethylene homopolymer, ethylene-butene copolymer, ethylene-vinyl acetate copolymer, and the like. These can be used alone or in combination of two or more. Among these resins, low density polyethylene (LDPE) is preferable, and linear low density polyethylene (LLDPE) is more preferable. Further, the content of the polyethylene composition in the polypropylene resin is preferably 1 part by weight or more and 20 parts by weight or less, more preferably 3 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of the polypropylene resin. It is. If the content of the polyethylene composition is less than 1 part by weight, it may be difficult to obtain sufficient fusing property by in-mold molding at a low steam pressure. On the other hand, if the amount exceeds 20 parts by weight, the resulting molded foam molded product tends to cause sink marks, and the mold shrinkage rate tends to increase.

混合できるポリエチレン系組成物の140℃での溶融粘度は50mPa・s以上1000mPa・s以下が好ましく、より好ましくは、50mPa・s以上500mPa・s以下が好ましい。アンダーウォーターカット方式で2.0mg/粒の微小粒子を造粒する場合、上記範囲のポリエチレン系組成物である場合、ポリプロピレン系樹脂予備発泡粒子表面にポリエチレン系組成物が多く存在しやすく、なおかつ基材となるポリプロピレン系樹脂の剛性を低下させにくい。ポリエチレン系組成物の溶融粘度が50mPa・s未満である場合、ポリプロピレン系樹脂予備発泡粒子表面やポリプロピレン系樹脂予備発泡粒子型内発泡成形体表面から溶出しやすくなり、緩衝包材成形体などの場合、内包物に付着・汚染する場合がある。ポリエチレン系組成物の溶融粘度が1000mPa・sを超える場合、成形時の加熱による二次発泡性を低下させたり、破泡しやすくなるなどの不良なポリプロピレン系樹脂予備発泡粒子、型内発泡成形体となりやすい。また、1000mPa・s超える場合、ポリエチレン組成物とポリプロピレン組成物が相分離しやすく、ポリプロピレン系樹脂予備発泡粒子が破泡しやすくなる他、得られる型内発泡成形体の収縮率が大きくなりやすい。本発明においてポリエチレン系組成物の溶融粘度は、ポリエチレン系組成物を加熱溶融し、140℃の溶融粘度を、ブルックフィールド粘度計により測定した値を言う。   The melt viscosity at 140 ° C. of the polyethylene composition that can be mixed is preferably 50 mPa · s to 1000 mPa · s, more preferably 50 mPa · s to 500 mPa · s. When granulating fine particles of 2.0 mg / grain by the underwater cut method, when the polyethylene composition is in the above range, a large amount of the polyethylene composition tends to exist on the surface of the polypropylene resin pre-foamed particles, and It is difficult to reduce the rigidity of the polypropylene resin used as a material. When the melt viscosity of the polyethylene composition is less than 50 mPa · s, it becomes easier to elute from the surface of the polypropylene resin pre-foamed particles or from the surface of the polypropylene resin pre-foamed particles in the mold, and in the case of a buffer packaging molding , It may adhere to or contaminate the inclusions. When the melt viscosity of the polyethylene-based composition exceeds 1000 mPa · s, poorly expanded polypropylene resin pre-expanded particles and in-mold expanded molded articles such as reduced secondary foamability due to heating during molding and easy breakage It is easy to become. On the other hand, when it exceeds 1000 mPa · s, the polyethylene composition and the polypropylene composition are easily phase-separated, the polypropylene resin pre-expanded particles are easily broken, and the shrinkage rate of the obtained in-mold foam molded product is likely to be large. In the present invention, the melt viscosity of the polyethylene composition refers to a value obtained by heating and melting the polyethylene composition and measuring the melt viscosity at 140 ° C. with a Brookfield viscometer.

本発明において、ポリプロピレン系樹脂粒子の製造の際、必要により種々の添加剤を、ポリプロピレン系樹脂組成物の特性を損なわない範囲内で添加することができる。添加剤としては、例えば酸化防止剤、紫外線吸収剤、滑剤、帯電防止剤、難燃剤、充填材、核剤、着色剤等があげられる。   In the present invention, when the polypropylene resin particles are produced, various additives can be added as necessary within a range not impairing the properties of the polypropylene resin composition. Examples of the additive include an antioxidant, an ultraviolet absorber, a lubricant, an antistatic agent, a flame retardant, a filler, a nucleating agent, and a colorant.

本発明において、ポリプロピレン系樹脂組成物は押出機にて溶融混練させる。押出機としては、単軸押出機、二軸押出機、単軸もしくは二軸押出機2台を連結したタンデム押出機等が挙げられ、なかでも二軸押出機を使用して行うことが好ましい。さらに押出機から出たポリプロピレン系樹脂組成物はギヤポンプなどの設備を用いて吐出圧力を安定化させることが好ましい。ギヤポンプを通過した後の樹脂温度は好ましくは200〜280℃である。200℃未満であるとノズルの目詰まりを生じ易くなり、安定生産できない場合があり、280℃を越えるとポリプロピレン系樹脂の熱劣化が起こり、物性が低下する場合がある。   In the present invention, the polypropylene resin composition is melt kneaded with an extruder. Examples of the extruder include a single-screw extruder, a twin-screw extruder, a tandem extruder in which two single-screw or two-screw extruders are connected, and it is preferable to use a twin-screw extruder. Furthermore, it is preferable to stabilize the discharge pressure of the polypropylene resin composition discharged from the extruder using equipment such as a gear pump. The resin temperature after passing through the gear pump is preferably 200 to 280 ° C. When the temperature is lower than 200 ° C., nozzle clogging is likely to occur, and stable production may not be possible. When the temperature exceeds 280 ° C., thermal degradation of the polypropylene resin may occur and physical properties may decrease.

本発明において、押出機の先端に装着されたダイノズル径は0.2〜1.0mmであることが好ましく、より好ましくは0.4〜0.7mmである。ダイノズル径が0.2mm未満であるとノズルの目詰まりを生じ易くなり、生産性が低下する場合がある。1.0mmを超えると、このようなダイノズル径で粒重量2.0mg/粒以下のポリプロピレン系樹脂粒子を作製し、ポリプロピレン系樹脂予備発泡粒子とした場合、形状が扁平になりやすく、型内発泡成形時の充填性が悪化する場合がある。本発明において、ポリプロピレン系樹脂組成物は、ダイノズルから押し出され、ウォーターボックスにてカッターによって切断されるが、ウォーターボックスに導入される循環水温度は30〜100℃であることが好ましい。循環水温度が30℃未満ではノズルの目詰まりが生じ易くなり、生産性が低下する場合がある。100℃を超えるとポリプロピレン系樹脂粒子同士の結粒が生じ易くなる。循環水温度80℃〜100℃がより好ましく、さらに好ましくは90〜100℃である。当該範囲内の温度であると、前記ポリエチレン系組成物を含まなくとも、充分な融着性を得やすい傾向がある。また、そのウォーターボックス内の循環水圧は0.1〜2.0MPaであることが好ましい。循環水圧が0.1MPa未満の場合、ダイノズルから吐出されるポリプロピレン系樹脂組成物を切断する際に、回転するカッターの刃近傍で真空状態となり水蒸気泡を発生しやすく、互着や粒形状のバラツキを発生しやすくなる。水圧が2.0MPaを超えると、設備が大がかりになるため、簡便性を損なう場合がある。循環水にポリプロピレン系樹脂粒子同士の相互に融着することを防ぐための難水溶性無機化合物などの分散剤や界面活性剤を添加しても良い。また、カッター刃の周速度は10m/sec以上であることが好ましく、より好ましくは15m/sec以上である。10m/sec未満の場合、樹脂粒子形状が不定形となりやすく、また、樹脂粒子同士が相互に融着する場合もある。   In the present invention, the diameter of the die nozzle attached to the tip of the extruder is preferably 0.2 to 1.0 mm, more preferably 0.4 to 0.7 mm. If the die nozzle diameter is less than 0.2 mm, nozzle clogging is likely to occur, and productivity may be reduced. When the thickness exceeds 1.0 mm, polypropylene resin particles having a particle weight of 2.0 mg / grain or less with such a die nozzle diameter are produced. Fillability at the time of molding may deteriorate. In the present invention, the polypropylene resin composition is extruded from a die nozzle and cut by a cutter in a water box, and the circulating water temperature introduced into the water box is preferably 30 to 100 ° C. If the circulating water temperature is less than 30 ° C., nozzle clogging is likely to occur, and productivity may be reduced. If the temperature exceeds 100 ° C., agglomeration between polypropylene resin particles tends to occur. The circulating water temperature is more preferably 80 ° C to 100 ° C, still more preferably 90 to 100 ° C. When the temperature is within this range, sufficient fusibility tends to be easily obtained without including the polyethylene composition. Moreover, it is preferable that the circulating water pressure in the water box is 0.1 to 2.0 MPa. When the circulating water pressure is less than 0.1 MPa, when the polypropylene resin composition discharged from the die nozzle is cut, a vacuum is generated in the vicinity of the rotating cutter blade, and water vapor bubbles are likely to be generated. It becomes easy to generate. If the water pressure exceeds 2.0 MPa, the facility becomes large, and the convenience may be impaired. You may add dispersing agents and surfactant, such as a slightly water-soluble inorganic compound for preventing the fusion | melting of polypropylene-type resin particles mutually to circulating water. Moreover, it is preferable that the peripheral speed of a cutter blade is 10 m / sec or more, More preferably, it is 15 m / sec or more. If it is less than 10 m / sec, the resin particle shape tends to be indefinite, and the resin particles may be fused to each other.

一般的に、アンダーウォーターカット方式で作製されたポリプロピレン系樹脂粒子は、ストランドカット方式で作製されたポリプロピレン系樹脂粒子と比べて、粒子の形状が球形に近い。ストランドカット方式で作製されたポリプロピレン系樹脂粒子は円柱形状であり、該ポリプロピレン系樹脂粒子からなるポリプロピレン系樹脂予備発泡粒子も、円柱形状に近い。一方、アンダーウォーターカット方式で作製されたポリプロピレン系樹脂粒子は球形に近く、該ポリプロピレン系樹脂粒子からなるポリプロピレン系樹脂予備発泡粒子も球形に近いという特徴を有しているため、ポリプロピレン系樹脂粒子の製造方法をポリプロピレン系樹脂粒子や、該ポリプロピレン系樹脂粒子から得られたポリプロピレン系樹脂予備発泡粒子から判別することは可能である。   Generally, the polypropylene resin particles produced by the underwater cut method have a nearly spherical shape as compared to the polypropylene resin particles produced by the strand cut method. The polypropylene resin particles produced by the strand cut method have a cylindrical shape, and the polypropylene resin pre-expanded particles made of the polypropylene resin particles are also close to a cylindrical shape. On the other hand, the polypropylene resin particles produced by the underwater cut method are close to spherical, and the polypropylene resin pre-expanded particles made of the polypropylene resin particles are also close to spherical. It is possible to discriminate the production method from polypropylene resin particles and polypropylene resin pre-expanded particles obtained from the polypropylene resin particles.

本発明に係るポリプロピレン系樹脂予備発泡粒子は、上記のポリプロピレン系樹脂粒子と、水、分散剤および発泡剤を含んでなる分散物を耐圧容器内に仕込み、該ポリプロピレン系樹脂粒子の軟化点以上の温度まで加熱し、加圧下で該ポリプロピレン系樹脂粒子に発泡剤を含浸したのち、前記ポリプロピレン系樹脂粒子と水との混合物を前記耐圧容器内よりも低圧の雰囲気下に放出して前記ポリプロピレン系樹脂粒子を発泡させることで得られる。具体的には、耐圧容器内に、ポリプロピレン系樹脂粒子、水、発泡剤、分散剤および分散助剤を含む分散物を仕込み、攪拌しながら昇温して該ポリプロピレン系樹脂粒子の軟化点以上の温度(以下、発泡温度という場合がある。)まで加熱し、加圧下で前記ポリプロピレン系樹脂粒子に発泡剤を含浸させたのち、必要に応じて発泡剤を追加添加して、耐圧容器内を一定圧力(以下、発泡圧力という場合がある。)に保持した後、耐圧容器下部から内容物を、該耐圧容器内圧より低圧雰囲気下に放出する方法が例示される。使用する耐圧容器には特に限定はなく、予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよいが、例えばオートクレーブ型の耐圧容器が挙げられる。   The polypropylene resin pre-expanded particles according to the present invention are charged with a dispersion containing the above-mentioned polypropylene resin particles and water, a dispersing agent and a foaming agent in a pressure-resistant container, and the softening point of the polypropylene resin particles is higher than the softening point. After heating up to a temperature and impregnating the polypropylene resin particles with a foaming agent under pressure, the polypropylene resin is released by releasing the mixture of the polypropylene resin particles and water into an atmosphere at a lower pressure than in the pressure vessel. Obtained by foaming the particles. Specifically, in a pressure-resistant container, a dispersion containing polypropylene resin particles, water, a foaming agent, a dispersing agent and a dispersion aid is charged, and the temperature is increased while stirring to a temperature equal to or higher than the softening point of the polypropylene resin particles. After heating to a temperature (hereinafter sometimes referred to as the foaming temperature) and impregnating the polypropylene resin particles with a foaming agent under pressure, an additional foaming agent is added as necessary to keep the inside of the pressure-resistant container constant. An example is a method in which the content is released from the lower part of the pressure-resistant container to a lower pressure atmosphere than the pressure inside the pressure-resistant container after being held at a pressure (hereinafter sometimes referred to as foaming pressure). The pressure vessel to be used is not particularly limited, and any pressure vessel that can withstand the pressure in the vessel and the temperature in the vessel at the time of producing the pre-foamed particles may be used. For example, an autoclave type pressure vessel may be mentioned.

発泡剤としては、公知のものでよく、例えば、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の脂肪族炭化水素およびそれらの混合物;空気、窒素、二酸化炭素等の無機ガス、水などが挙げられる。前記発泡剤の使用量は、使用するポリプロピレン系樹脂の種類、基材樹脂の組成、発泡剤の種類、目的とするポリプロピレン系樹脂予備発泡粒子の発泡倍率等により異なり、一概には規定できないが、ポリプロピレン系樹脂粒子100重量部に対して、概ね2〜60重量部であることが好ましい。また、発泡剤として水を使用する場合、分散媒として使用している水を利用できる。   The blowing agent may be a known one, and examples thereof include aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane, and mixtures thereof; air, inorganic gases such as nitrogen and carbon dioxide, and water. It is done. The amount of the foaming agent used varies depending on the type of polypropylene resin used, the composition of the base resin, the type of foaming agent, the expansion ratio of the target polypropylene resin pre-foamed particles, etc. It is preferably about 2 to 60 parts by weight with respect to 100 parts by weight of the polypropylene resin particles. Moreover, when using water as a foaming agent, the water currently used as a dispersion medium can be utilized.

分散剤としては、例えば、塩基性第三リン酸カルシウム、塩基性炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、カオリン等の難水溶性無機化合物を使用することが好ましい。また、分散助剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、直鎖アルキルフィンスルホン酸ソーダ等のアニオン系界面活性剤を使用することが好ましい。これら分散剤及び分散助剤の使用量は、通常、水100重量部に対して、分散剤0.1〜3重量部、分散助剤0.0001〜0.1重量部であることが好ましい。   As the dispersant, for example, it is preferable to use a poorly water-soluble inorganic compound such as basic tricalcium phosphate, basic magnesium carbonate, calcium carbonate, aluminum oxide, and kaolin. In addition, as the dispersion aid, it is preferable to use an anionic surfactant such as sodium dodecylbenzene sulfonate or sodium linear alkyl fin sulfonate. The amount of the dispersant and the dispersion aid used is preferably 0.1 to 3 parts by weight of the dispersant and 0.0001 to 0.1 parts by weight of the dispersion aid with respect to 100 parts by weight of water.

また、ポリプロピレン系樹脂予備発泡粒子に付着する分散剤量を低減する目的で、ポリプロピレン系樹脂を分散させている水に酸を混合して、分散物を酸性にする場合もある。   Further, for the purpose of reducing the amount of the dispersant adhering to the polypropylene resin pre-expanded particles, an acid may be mixed with water in which the polypropylene resin is dispersed to make the dispersion acidic.

前記のようにして耐圧容器内に調製されたポリプロピレン系樹脂粒子を含んでなる分散物は、攪拌下、所定の発泡温度まで昇温され、一定時間、通常5〜180分間、好ましくは10〜60分間、その温度で保持されるとともに、耐圧容器内の圧力が上昇し、発泡剤がポリプロピレン系樹脂粒子に含浸される。この後、所定の発泡圧力になるまで発泡剤が追加供給され、一定時間、通常5〜180分間、好ましくは10〜60分間、そのままで保持される。こうして発泡温度、発泡圧力で保持されたポリプロピレン系樹脂粒子を含んでなる分散物を、耐圧容器下部に設けられたバルブを開放して低圧雰囲気下、通常は大気圧下に放出することにより、ポリプロピレン系樹脂予備発泡粒子が得られる。   The dispersion containing the polypropylene resin particles prepared in the pressure vessel as described above is heated to a predetermined foaming temperature under stirring, and is for a fixed time, usually 5 to 180 minutes, preferably 10 to 60. While being held at that temperature for a minute, the pressure in the pressure vessel rises, and the foaming agent is impregnated into the polypropylene resin particles. Thereafter, the foaming agent is additionally supplied until a predetermined foaming pressure is reached, and is maintained for a certain period of time, usually 5 to 180 minutes, preferably 10 to 60 minutes. Thus, the dispersion containing the polypropylene resin particles held at the foaming temperature and the foaming pressure is released by opening the valve provided at the lower part of the pressure vessel and releasing it under a low pressure atmosphere, usually at atmospheric pressure. -Based resin pre-expanded particles are obtained.

前記分散物を低圧雰囲気に放出する際、流量調整、倍率バラツキ低減などの目的で直径2〜10mmの開口オリフィスを通して放出することもできる。また、発泡倍率を高くする目的で、前記低圧雰囲気を飽和水蒸気で満たす場合もある。   When the dispersion is discharged into a low-pressure atmosphere, it can be discharged through an opening orifice having a diameter of 2 to 10 mm for the purpose of adjusting the flow rate and reducing variation in magnification. In some cases, the low-pressure atmosphere is filled with saturated steam for the purpose of increasing the expansion ratio.

発泡温度は、用いるポリプロピレン系樹脂の融点[Tm(℃)]、発泡剤の種類等により異なり、一概には規定できないが、概ね(Tm−30)〜(Tm+10)℃の範囲から決定される。また、発泡圧力は、用いるポリプロピレン系樹脂の種類、発泡剤の種類、所望のポリプロピレン系樹脂予備発泡粒子の発泡倍率等によって異なり、一概には規定できないが、概ね1〜8MPa(ゲージ圧)の範囲から決定される。   The foaming temperature varies depending on the melting point [Tm (° C.)] of the polypropylene-based resin to be used, the type of foaming agent, etc., and cannot be defined unconditionally, but is generally determined from the range of (Tm−30) to (Tm + 10) ° C. The foaming pressure varies depending on the type of polypropylene resin used, the type of foaming agent, the expansion ratio of the desired polypropylene resin pre-foamed particles, etc., and cannot be specified unconditionally, but is generally in the range of 1 to 8 MPa (gauge pressure). Determined from.

本発明のポリプロピレン系樹脂予備発泡粒子は、表面融解温度が130℃以下である。好ましくは128℃以下、より好ましくは126℃以下である。ここで表面融解温度の測定方法を説明する。ポリプロピレン系樹脂予備発泡粒子にサーマルプローブを接触させ先端を表層より深さ10nm未満の位置に配置させた状態で、加熱し、樹脂融解と共にプローブの高さ方向の変位を検知する。検知した変位曲線から表面融解温度を測定する。たとえば、(株)日本サーマルコンサルティング社製nano−TA2(サーマルプローブ先端径φ30nm)を用い、任意のポリプロピレン系樹脂予備発泡粒子表面を40℃から5℃/secで200℃まで加熱する。その際の温度−変位スペクトルの融解による高さ位置の変曲点を2本の接線の交点から算出し、その変曲点温度を30μm以上離れた位置で5点測定し、算出される変曲点温度を平均化し、本発明の表面融解温度とする。示差走査熱量測定(DSC)などの一般的な熱分析装置では試料全体を加熱することで、平均融解挙動の熱量を分析するのに対し、本発明の表面融解温度を測定するサーマルプローブは、表面という極めて局所的な融解挙動を測定することができる。したがって、本発明の表面融解温度は、DSCで測定される融解温度ピークとは異なったものとなることが多い。また、本発明の表面融解温度は型内成形時の水蒸気加熱によってポリプロピレン系樹脂予備発泡粒子同士の融着を得るための融解温度と強く相関しており、一般的に0.20〜0.30MPaの水蒸気加熱によって融着を得るが、特に0.20〜0.24MPaの比較的低圧での加熱によりポリプロピレン系樹脂予備発泡粒子同士の充分な融着性を確保するために表面融解温度は130℃以下であることが必要である。   The polypropylene resin pre-expanded particles of the present invention have a surface melting temperature of 130 ° C. or lower. Preferably it is 128 degrees C or less, More preferably, it is 126 degrees C or less. Here, a method for measuring the surface melting temperature will be described. A thermal probe is brought into contact with the polypropylene resin pre-expanded particles, and the tip is disposed at a position less than 10 nm deep from the surface layer. Heating is performed, and displacement in the height direction of the probe is detected along with resin melting. The surface melting temperature is measured from the detected displacement curve. For example, nano-TA2 (thermal probe tip diameter φ 30 nm) manufactured by Nippon Thermal Consulting Co., Ltd. is used, and the surface of any polypropylene resin pre-expanded particles is heated from 40 ° C. to 200 ° C. at 5 ° C./sec. The inflection point at the height position due to melting of the temperature-displacement spectrum at that time is calculated from the intersection of two tangents, and the inflection point temperature is measured at five points at a distance of 30 μm or more, and the inflection calculated The point temperatures are averaged to obtain the surface melting temperature of the present invention. In a general thermal analyzer such as differential scanning calorimetry (DSC), the entire sample is heated to analyze the calorific value of the average melting behavior, whereas the thermal probe for measuring the surface melting temperature of the present invention is a surface probe. The extremely local melting behavior can be measured. Therefore, the surface melting temperature of the present invention is often different from the melting temperature peak measured by DSC. Further, the surface melting temperature of the present invention strongly correlates with the melting temperature for obtaining fusion of polypropylene resin pre-expanded particles by steam heating during in-mold molding, and generally 0.20 to 0.30 MPa. The surface melting temperature is 130 ° C. in order to obtain sufficient fusion property between the polypropylene resin pre-expanded particles by heating at a relatively low pressure of 0.20 to 0.24 MPa. It is necessary that:

表面融解温度を130℃以下とするための方法は、一概には既定し難いが、たとえば、ポリプロピレン系組成物よりも融解温度が低く、前記の溶融粘度特性を有するポリエチレン系組成物などを含有させ基材樹脂の表面融解温度を低下させることができる。また、アンダーウォーターカット方式で造粒する際の循環水温度を80℃〜100℃とすることで前記のように粒子表面の受ける結晶化履歴を制御して、ポリプロピレン系樹脂予備発泡粒子表面の結晶状態もしくは結晶化度を低下させ、表面融解温度を低下させることが出来る。これらの方法や、樹脂温度、押出速度等の諸条件を適宜調整することで、表面融解温度を130℃以下とすることが出来る。   A method for setting the surface melting temperature to 130 ° C. or lower is generally difficult to determine, but, for example, a polyethylene-based composition having a melting temperature lower than that of the polypropylene-based composition and having the above-described melt viscosity characteristics is included. The surface melting temperature of the base resin can be lowered. In addition, by controlling the crystallization history received on the particle surface as described above by setting the circulating water temperature at 80 ° C. to 100 ° C. when granulating by the underwater cut method, The state or crystallinity can be reduced and the surface melting temperature can be reduced. By appropriately adjusting these methods and various conditions such as the resin temperature and the extrusion speed, the surface melting temperature can be made 130 ° C. or lower.

本発明のポリプロピレン系樹脂予備発泡粒子は、示差走査熱量測定(DSC)において、試料4〜10mgを40℃から200℃まで10℃/分の速度で昇温した時に得られるDSC曲線において、2つまたは3つの融解ピークを示し、この融解ピークが示す2つまたは3つの融点があることが好ましい。DSC曲線においてあらわれる2つ又は3つの融解ピークにおいて、DSC曲線の最も高温側ピークと、高温側ピークと隣のピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量Qh、高温側融解ピークより低温側に現れる1つ又は2つの融解ピークと、高温側ピークと隣のピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量Qlから算出した、最も高温側の融解ピークの比率Qh/(Ql+Qh)×100をDSCピーク比(%)と呼ぶ。DSCピーク比が、10%以上50%以下となるように調整することが好ましく、さらに15%以上45%以下となるように調整することがより好ましい。DSCピーク比が10%未満である場合、成形体の収縮が発生しやすく。DSCピーク比が50%以上である場合、本発明の効果である低成形圧力での融着性が得られ難い。   In the differential scanning calorimetry (DSC), the polypropylene resin pre-expanded particles of the present invention have two DSC curves obtained when the temperature of a sample of 4 to 10 mg is increased from 40 ° C. to 200 ° C. at a rate of 10 ° C./min. Alternatively, it is preferred that there are three melting peaks and that there are two or three melting points indicated by the melting peaks. In two or three melting peaks appearing in the DSC curve, the high temperature that is the amount of heat surrounded by the hottest peak of the DSC curve and the tangent line from the maximum point between the hot peak and the adjacent peak to the melting end baseline Side melting peak calorie Qh, one or two melting peaks appearing on the lower temperature side than the high temperature side melting peak, and the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the high temperature side peak and the adjacent peak The ratio Qh / (Ql + Qh) × 100 of the melting peak on the highest temperature side calculated from the melting peak heat quantity Ql on a certain low temperature side is called the DSC peak ratio (%). The DSC peak ratio is preferably adjusted so as to be 10% or more and 50% or less, and more preferably adjusted so as to be 15% or more and 45% or less. When the DSC peak ratio is less than 10%, the compact tends to shrink. When the DSC peak ratio is 50% or more, it is difficult to obtain a fusion property at a low molding pressure, which is an effect of the present invention.

本発明のポリプロピレン系樹脂予備発泡粒子の嵩密度は10〜200g/Lであることが好ましく、より好ましくは15〜150g/Lである。尚、ここでの嵩密度とは一定容積の容器に一定の高さから、該容器中にポリプロピレン系樹脂予備発泡粒子を自由落下させ、該容器が、ポリプロピレン系樹脂予備発泡粒子で完全に充填されたときの全重量(X)から容器の重量(Y)を差し引いた値(X−Y)を、該容器の容積(V)で割った値(X−Y/V)のことである。   The bulk density of the pre-expanded polypropylene resin particles of the present invention is preferably 10 to 200 g / L, more preferably 15 to 150 g / L. In addition, the bulk density here means that the polypropylene resin pre-expanded particles are allowed to freely fall into the container of a certain volume from a certain height, and the container is completely filled with the polypropylene resin pre-expanded particles. It is a value (XY / V) obtained by subtracting the weight (Y) of the container from the total weight (X) at that time and dividing the value (XY) by the volume (V) of the container.

以上のようにして得たポリプロピレン系樹脂予備発泡粒子は、公知の成形方法により、型内発泡成形体にすることができる。例えば、A)予備発泡粒子を金型に充填した後、予備発泡粒子の体積を15〜50%減ずるように圧縮し、水蒸気で加熱融着させる方法、B)予備発泡粒子をガス圧力で圧縮して金型に充填し、予備発泡粒子の回復力を利用して、水蒸気で加熱融着させる方法、C)予備発泡粒子を無機ガスで加圧処理して予備発泡粒子内に無機ガスを含浸させ、予備発泡粒子内圧を付与した後、金型に充填し、水蒸気で加熱融着させる方法、D)特に前処理することなく、予備発泡粒子を金型に充填し、水蒸気で加熱融着させる方法などの方法を利用することができる。   The polypropylene resin pre-expanded particles obtained as described above can be formed into an in-mold expanded molded article by a known molding method. For example, A) A method in which pre-expanded particles are filled in a mold and then compressed so that the volume of the pre-expanded particles is reduced by 15 to 50% and heated and fused with water vapor. B) The pre-expanded particles are compressed with gas pressure. A method of heating and fusing with water vapor using the recovery power of the pre-expanded particles, and C) impregnating the pre-expanded particles with inorganic gas by pressurizing the pre-expanded particles with an inorganic gas. , A method in which pre-expanded particle internal pressure is applied, and then filled in a mold and heat-sealed with water vapor, and D) a method in which pre-foamed particles are filled in a metal mold and heat-sealed with water vapor without any pretreatment. Etc. can be used.

前記無機ガスとしては、空気、窒素、酸素、ヘリウム、ネオン、アルゴン、炭酸ガスなどが使用できる。これらは単独で用いてもよいし、2種以上混合使用してもよい。これらの中でも、汎用性の高い空気、窒素が好ましい。   As the inorganic gas, air, nitrogen, oxygen, helium, neon, argon, carbon dioxide gas or the like can be used. These may be used alone or in combination of two or more. Among these, highly versatile air and nitrogen are preferable.

つぎに、本発明を実施例及び比較例に基づき説明するが、本発明はこれらの実施例のみに限定されるものではない。   Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited only to these examples.

また実施例及び比較例における評価は下記の方法で行った。   Moreover, the evaluation in an Example and a comparative example was performed with the following method.

〔ポリエチレン系組成物の溶融粘度の測定〕
ポリエチレン系組成物を加熱溶融し、140℃の溶融粘度を、ブルックフィールド粘度計により測定した。
[Measurement of melt viscosity of polyethylene-based composition]
The polyethylene composition was heated and melted, and the melt viscosity at 140 ° C. was measured with a Brookfield viscometer.

〔樹脂粒子粒重量〕
無作為に100粒を選定して総重量を測定し、100で除した値を樹脂粒子粒重量とした。
[Resin particle weight]
100 particles were selected at random and the total weight was measured, and the value divided by 100 was taken as the resin particle weight.

〔予備発泡粒子の表面融解温度〕
(株)日本サーマルコンサルティング社製nano−TA2(サーマルプローブ先端径φ30nm)を用い、無作為に選定した予備発泡粒子表面を40℃から5℃/secで200℃まで加熱する。その際の温度−変位スペクトルの融解による高さ位置の変曲点を2本の接線の交点から算出し、その変曲点温度を30μm以上離れた位置で5点測定し、算出される変曲点温度を平均化し、本発明の表面融解温度とした。
[Surface melting temperature of pre-expanded particles]
Using a nano-TA2 (thermal probe tip diameter φ30 nm) manufactured by Nippon Thermal Consulting Co., Ltd., the surface of randomly selected pre-expanded particles is heated from 40 ° C. to 200 ° C. at 5 ° C./sec. The inflection point at the height position due to melting of the temperature-displacement spectrum at that time is calculated from the intersection of two tangents, and the inflection point temperature is measured at five points at a distance of 30 μm or more, and the calculated inflection point. The point temperatures were averaged to obtain the surface melting temperature of the present invention.

〔予備発泡粒子の嵩密度〕
一定容積(10.74L)の容器に一定の高さ(30cm)から、該容器中に予備発泡粒子を自由落下させ、該容器が、予備発泡粒子で完全に充填されたときの全重量から容器の重量を差し引いた値を、該容器の容積で割った値をポリプロピレン系樹脂予備発泡粒子の嵩密度とした。
[Bulk density of pre-expanded particles]
A pre-expanded particle is allowed to fall freely into a container having a constant volume (10.74 L) from a certain height (30 cm), and the container is obtained from the total weight when the container is completely filled with the pre-expanded particles. The value obtained by subtracting the weight of the product and dividing the value by the volume of the container was used as the bulk density of the polypropylene resin pre-expanded particles.

〔DSCピーク比の測定〕
示差走査熱量計法において、予備発泡粒子2〜5mgを40℃から220℃まで10℃/分で昇温してDSC曲線を得、当該DSC曲線において、DSC曲線の最も高温側ピークと、高温側ピークと隣のピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量Qh、高温側融解ピークより低温側に現れる1つ又は2つの融解ピークと、高温側ピークと隣のピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量Qlを求め、Qh/(Ql+Qh)×100から算出した。
[Measurement of DSC peak ratio]
In differential scanning calorimetry, 2-5 mg of pre-expanded particles were heated from 40 ° C. to 220 ° C. at 10 ° C./min to obtain a DSC curve. In the DSC curve, the highest temperature side peak of the DSC curve and the high temperature side A high-temperature side melting peak calorie Qh that is the amount of heat surrounded by a tangent to the melting end baseline from the maximum point between the peak and the adjacent peak, one or two melting peaks that appear on the low-temperature side from the high-temperature side melting peak, The low-temperature side melting peak heat quantity Ql, which is the heat quantity surrounded by the tangent to the melting start baseline from the maximum point between the high-temperature side peak and the adjacent peak, was obtained and calculated from Qh / (Ql + Qh) × 100.

〔型内発泡成形体の融着率〕
型内発泡成形体の表面にカッターで入れた約5mmの深さのクラックに沿って型内発泡成形体を割り、破断面を観察して、予備発泡粒子の全個数に対する破壊粒子の割合を融着率として求めた。本実施例においては、縦400mm×横300mm×厚み40mmの型内発泡成形体を作製し、融着率を評価した。
[Fusion rate of in-mold foam moldings]
The in-mold foam molded body is divided along a crack with a depth of about 5 mm put on the surface of the in-mold foam molded body with a cutter, and the fracture surface is observed to melt the ratio of the fractured particles to the total number of pre-foamed particles. It calculated | required as a dressing rate. In this example, an in-mold foam molded body having a length of 400 mm, a width of 300 mm, and a thickness of 40 mm was produced, and the fusion rate was evaluated.

〔最低成形加熱蒸気圧力〕
DAISEN株式会社製KD−345を用い、ブロック金型にポリプロピレン系樹脂予備発泡粒子を充填した後、金型内の体積を27%減ずるように圧縮し、まず0.1MPaの水蒸気で金型内の空気を追い出し、その後0.20〜0.40MPa(ゲージ圧)の任意の圧力の加熱蒸気を用いて10秒間加熱成形させた。えられた型内発泡成形体の融着率が75%以上となった最低の圧力を最低成形加熱蒸気圧力とした。本実施例においては、縦400mm×横300mm×厚み40mmの型内発泡成形体を作製し、最低成形加熱蒸気圧力を評価した。
[Minimum molding heating steam pressure]
After filling the block mold with polypropylene resin pre-expanded particles using DAISEN KD-345, the volume in the mold was compressed so as to reduce by 27%. The air was expelled, and then heat-molded for 10 seconds using heating steam at an arbitrary pressure of 0.20 to 0.40 MPa (gauge pressure). The lowest pressure at which the fusion rate of the obtained in-mold foam molded product was 75% or more was defined as the lowest molding heating steam pressure. In this example, an in-mold foam-molded body having a length of 400 mm, a width of 300 mm, and a thickness of 40 mm was produced, and the minimum molding heating steam pressure was evaluated.

〔型内発泡成形体の対金型収縮率〕
縦400mm×横300mm×厚み40mmのブロック金型内で発泡成型した直後の直方体形状である型内発泡成形体を75℃で15時間乾燥させた後、23±2℃で24時間放置した後、縦、横、厚みの寸法測定し、縦400mm×横300mm×厚み40mmのブロック金型の寸法に対する、収縮率を求め、縦、横、厚みそれぞれの収縮率を平均化した値を対金型収縮率として求めた。
[Mold shrinkage ratio of in-mold foamed molded product]
After drying the in-mold foam-molded body in the shape of a rectangular parallelepiped immediately after foam molding in a block mold of length 400 mm × width 300 mm × thickness 40 mm at 75 ° C. for 15 hours, then left at 23 ± 2 ° C. for 24 hours, Measure the vertical, horizontal, and thickness dimensions, determine the shrinkage ratio for the dimensions of the block mold (length 400 mm x width 300 mm x thickness 40 mm), and average the shrinkage ratios for length, width, and thickness. Calculated as a rate.

(実施例1)
エチレン−プロピレンランダム共重合体(Tm:146℃、MI:6g/10分、コモノマー量:3重量%)90重量部とポリエチレン系組成物(エチレン−ブテン共重合体、溶融粘度265mPa・s)10重量部、造核剤としてタルク0.01重量部を含んでなる組成物を一時間あたり150kg、φ40mm二軸押出機に投入し、溶融混練の後、押出機の先端に装着したダイノズル径0.6mmのダイ(穴数56)より、一時間あたり25mの速度で循環させる60℃、0.2MPa循環水(難水溶性無機化合物からなる分散剤や界面活性剤を添加していない水道水を使用)中に押し出し、回転するカッター刃(10枚刃)により切断し、粒重量1.2mg/粒のポリプロピレン系樹脂粒子を製造した。尚、押出機に取り付けられた樹脂温度計の指示は232℃であった。続いて、得られたポリプロピレン系樹脂粒子100重量部、水150重量部、塩基性第三リン酸カルシウム1.21重量部、ドデシルベンゼンスルホン酸ソーダ0.03重量部を耐圧オートクレーブ中に仕込み、攪拌下、発泡剤としてイソブタンを11部添加した後、オートクレーブ内容物を昇温し、142.9℃の発泡温度まで加熱した。その後、イソブタンを追加圧入して1.65MPa(ゲージ圧)の発泡圧力まで昇圧し、該発泡温度、発泡圧力で30分間保持した後、オートクレーブ下部のバルブを開き、直径4.0mmの開口オリフィスを通して、オートクレーブ内容物を大気圧下に放出した。このようにして得られたポリプロピレン系樹脂予備発泡粒子の表面融解温度は、123℃、嵩密度が35g/L、DSCピーク比が26%であった。
Example 1
90 parts by weight of an ethylene-propylene random copolymer (Tm: 146 ° C., MI: 6 g / 10 min, comonomer amount: 3% by weight) and a polyethylene composition (ethylene-butene copolymer, melt viscosity 265 mPa · s) 10 A composition comprising 150 parts by weight of talc as a part by weight and 150 parts by weight of talc as a nucleating agent was charged into a twin screw extruder of 150 kg per hour, φ40 mm, and after melt kneading, a die nozzle diameter of 0. Circulating water at a rate of 25 m 3 per hour from a 6 mm die (number of holes: 56), 60 ° C., 0.2 MPa circulating water (tap water not added with a dispersant or a surfactant composed of a poorly water-soluble inorganic compound) Used) and extruded with a rotating cutter blade (10 blades) to produce polypropylene resin particles having a particle weight of 1.2 mg / particle. In addition, the instruction | indication of the resin thermometer attached to the extruder was 232 degreeC. Subsequently, 100 parts by weight of the obtained polypropylene resin particles, 150 parts by weight of water, 1.21 parts by weight of basic tribasic calcium phosphate and 0.03 parts by weight of sodium dodecylbenzenesulfonate were charged into a pressure-resistant autoclave, After adding 11 parts of isobutane as a foaming agent, the autoclave contents were heated and heated to a foaming temperature of 142.9 ° C. Thereafter, isobutane was additionally injected and the pressure was increased to a foaming pressure of 1.65 MPa (gauge pressure). After maintaining at the foaming temperature and the foaming pressure for 30 minutes, the valve at the bottom of the autoclave was opened and passed through an opening orifice having a diameter of 4.0 mm. The autoclave contents were released under atmospheric pressure. The polypropylene resin pre-expanded particles thus obtained had a surface melting temperature of 123 ° C., a bulk density of 35 g / L, and a DSC peak ratio of 26%.

得られたポリプロピレン系樹脂予備発泡粒子を縦400mm×横300mm×厚み60mmのブロック金型に充填した後、ポリプロピレン系樹脂予備発泡粒子の体積を27%減ずるように圧縮し、次いで0.20〜0.40MPa(ゲージ圧)の成形加熱蒸気圧力で加熱、融着させて型内発泡成形体を得た。このようにして得られたポリプロピレン系樹脂予備発泡粒子および型内発泡成形体についての評価結果を、表1に示す。   After filling the obtained polypropylene resin pre-expanded particles in a block mold having a length of 400 mm × width of 300 mm × thickness of 60 mm, the volume of the polypropylene resin pre-expanded particles is compressed to reduce by 27%, and then 0.20-0. It was heated and fused at a molding heating steam pressure of 40 MPa (gauge pressure) to obtain an in-mold foam molded article. Table 1 shows the evaluation results of the polypropylene resin pre-foamed particles and the in-mold foam molded product thus obtained.

(実施例2)
ポリエチレン系樹脂を添加せず、エチレン−プロピレンランダム共重合体(Tm:146℃、MI:6g/10min,コモノマー量:3重量%)100重量部と造核剤としてタルク0.01重量部を含んでなる組成物を押出機に投入し、樹脂温度250℃の溶融樹脂を96℃、0.4MPaの循環水中に押し出した以外は、実施例1と同様にしてポリプロピレン系樹脂粒子を製造し、該ポリプロピレン系樹脂粒子を、オートクレーブ内容物を142.2℃の発泡温度まで加熱し、イソブタンの追加圧入で1.80MPa(ゲージ圧)の発泡圧力まで昇圧した以外は実施例1と同様にしてポリプロピレン系樹脂予備発泡粒子および型内発泡成形体を得た。このようにして得られたポリプロピレン系樹脂予備発泡粒子の表面融解温度は126℃、嵩密度が35g/L、DSCピーク比が24%であった。このようにして得られたポリプロピレン系発泡樹脂粒子および型内発泡成形体についての評価結果を、表1に示す。
(Example 2)
Without adding polyethylene resin, 100 parts by weight of ethylene-propylene random copolymer (Tm: 146 ° C., MI: 6 g / 10 min, comonomer amount: 3% by weight) and 0.01 part by weight of talc as a nucleating agent A polypropylene resin particle was produced in the same manner as in Example 1 except that the composition consisting of the following was introduced into an extruder and the molten resin having a resin temperature of 250 ° C. was extruded into circulating water at 96 ° C. and 0.4 MPa, The polypropylene resin particles were heated in the same manner as in Example 1 except that the autoclave contents were heated to a foaming temperature of 142.2 ° C. and the pressure was increased to 1.80 MPa (gauge pressure) by additional press-fitting of isobutane. Resin pre-expanded particles and in-mold expanded molded articles were obtained. The polypropylene resin pre-expanded particles thus obtained had a surface melting temperature of 126 ° C., a bulk density of 35 g / L, and a DSC peak ratio of 24%. Table 1 shows the evaluation results of the polypropylene-based foamed resin particles and the in-mold foam-molded product thus obtained.

(実施例3)
エチレン−プロピレンランダム共重合体(Tm:146℃、MI:6g/10min,コモノマー量:3重量%)95重量部と溶融粘度60mPa・sのエチレン単独共重合体5重量部を用い、表1記載の条件以外は、実施例1と同様にしてポリプロピレン系樹脂粒子を製造し、該ポリプロピレン系樹脂粒子よりポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。このようにして得られたポリプロピレン系樹脂予備発泡粒子の表面融解温度は128℃、嵩密度が35g/L、DSC比が23%であった。このようにして得られたポリプロピレン系樹脂予備発泡樹脂粒子および型内発泡成形体についての評価結果を、表1に示す。
(Example 3)
Table 1 using 95 parts by weight of an ethylene-propylene random copolymer (Tm: 146 ° C., MI: 6 g / 10 min, comonomer amount: 3% by weight) and 5 parts by weight of an ethylene homopolymer having a melt viscosity of 60 mPa · s Except for the above conditions, polypropylene resin particles were produced in the same manner as in Example 1, and polypropylene resin pre-foamed particles were obtained from the polypropylene resin particles to obtain an in-mold foam molded article. The polypropylene resin pre-expanded particles thus obtained had a surface melting temperature of 128 ° C., a bulk density of 35 g / L, and a DSC ratio of 23%. Table 1 shows the evaluation results of the polypropylene resin pre-foamed resin particles and the in-mold foam molded product thus obtained.

(比較例1)
溶融樹脂を60℃、0.2MPaの循環水中に押し出した以外は、実施例2と同様にしてポリプロピレン系樹脂粒子を製造し、該ポリプロピレン系樹脂粒子よりポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。このようにして得られたポリプロピレン系樹脂予備発泡粒子の表面融解温度は145℃、嵩密度が35g/L、DSC比が22%であった。このようにして得られたポリプロピレン系発泡樹脂粒子および型内発泡成形体についての評価結果を、表1に示す。
(Comparative Example 1)
Polypropylene resin particles were produced in the same manner as in Example 2 except that the molten resin was extruded into circulating water at 60 ° C. and 0.2 MPa, and polypropylene resin pre-expanded particles were obtained from the polypropylene resin particles. A foamed molded product was obtained. The polypropylene resin pre-expanded particles thus obtained had a surface melting temperature of 145 ° C., a bulk density of 35 g / L, and a DSC ratio of 22%. Table 1 shows the evaluation results of the polypropylene-based foamed resin particles and the in-mold foam-molded product thus obtained.

(比較例2)
ポリエチレン系樹脂を、溶融粘度10000mPa・sのエチレン単独重合体10重量部にし、表1記載の条件以外は、実施例1と同様にしてポリプロピレン系樹脂粒子を製造し、該ポリプロピレン系樹脂粒子よりポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。このようにして得られたポリプロピレン系樹脂予備発泡粒子は、嵩密度が31g/L、DSC比が24%であった。このようにして得られたポリプロピレン系樹脂予備発泡樹脂粒子および型内発泡成形体についての評価結果を、表1に示す。
(Comparative Example 2)
Polyethylene resin was changed to 10 parts by weight of an ethylene homopolymer having a melt viscosity of 10000 mPa · s, and polypropylene resin particles were produced in the same manner as in Example 1 except for the conditions described in Table 1. Polypropylene resin particles were obtained from the polypropylene resin particles. -Based resin pre-expanded particles were obtained, and an in-mold foam molded article was obtained. The polypropylene resin pre-expanded particles thus obtained had a bulk density of 31 g / L and a DSC ratio of 24%. Table 1 shows the evaluation results of the polypropylene resin pre-foamed resin particles and the in-mold foam molded product thus obtained.

(比較例3)
ポリエチレン系樹脂の添加量を0.5重量部にし、表1記載の条件以外は、実施例1と同様にしてポリプロピレン系樹脂粒子を製造し、該ポリプロピレン系樹脂粒子よりポリプロピレン系樹脂予備発泡粒子を得、型内発泡成形体を得た。このようにして得られたポリプロピレン系樹脂予備発泡粒子の表面融解温度は134℃、嵩密度が35g/L、DSC比が24%であった。このようにして得られたポリプロピレン系樹脂予備発泡樹脂粒子および型内発泡成形体についての評価結果を、表1に示す。
(Comparative Example 3)
Polypropylene resin particles were produced in the same manner as in Example 1 except that the amount of polyethylene resin added was 0.5 parts by weight, except for the conditions described in Table 1. Polypropylene resin pre-expanded particles were produced from the polypropylene resin particles. An in-mold foam molded article was obtained. The polypropylene resin pre-expanded particles thus obtained had a surface melting temperature of 134 ° C., a bulk density of 35 g / L, and a DSC ratio of 24%. Table 1 shows the evaluation results of the polypropylene resin pre-foamed resin particles and the in-mold foam molded product thus obtained.

表1に示すように、ポリプロピレン系樹脂予備発泡粒子の表面融解温度が130℃以下の場合、75%以上の融着率を持つ型内発泡成形体の成形時に必要な加熱蒸気圧力を0.24MPa以下という低成形圧で得ることができた。   As shown in Table 1, when the surface melting temperature of the polypropylene resin pre-expanded particles is 130 ° C. or less, the heating steam pressure required for molding an in-mold foam molded product having a fusion rate of 75% or more is 0.24 MPa. It was possible to obtain with the following low molding pressure.

本発明記載のポリプロピレン系樹脂予備発泡粒子の表面融解温度を算出するための温度−変位スペクトルの一例である。横軸は温度、縦軸はプローブ位置(高さ)を表しており、変曲点を挟む2つの接線の交点から算出される変曲点温度(Tmst)を算出する。It is an example of the temperature-displacement spectrum for calculating the surface melting temperature of the polypropylene resin pre-expanded particles according to the present invention. The horizontal axis represents temperature, and the vertical axis represents the probe position (height). The inflection point temperature (Tmst) calculated from the intersection of two tangents sandwiching the inflection point is calculated.

Claims (3)

ポリプロピレン系樹脂組成物を押出機にて溶融混錬し、押出機の先端に装着されたダイノズルより水中に押し出し、該水中にて回転するカッター刃により切断して得られるポリプロピレン系樹脂粒子、及び、水、分散剤、発泡剤を耐圧容器内に仕込み、該ポリプロピレン系樹脂粒子の軟化点以上の温度に加熱し、加圧下で該ポリプロピレン系樹脂粒子に発泡剤を含浸したのち、前記耐圧容器内よりも低圧の雰囲気下に放出することによって得られるポリプロピレン系樹脂予備発泡粒子であって、表面融解温度が130℃以下であることを特徴とするポリプロピレン系樹脂予備発泡粒子。   Polypropylene resin composition obtained by melting and kneading a polypropylene resin composition in an extruder, extruding into water from a die nozzle attached to the tip of the extruder, and cutting with a cutter blade rotating in the water, and Water, a dispersant, and a foaming agent are charged into a pressure vessel, heated to a temperature above the softening point of the polypropylene resin particles, and after impregnating the polypropylene resin particles with a foaming agent under pressure, from within the pressure vessel Polypropylene resin pre-expanded particles obtained by releasing in a low-pressure atmosphere, and having a surface melting temperature of 130 ° C. or lower. ポリプロピレン系樹脂予備発泡粒子の粒重量が0.5〜2.0mg/粒である請求項2記載のポリプロピレン系樹脂予備発泡粒子。   The polypropylene resin pre-expanded particles according to claim 2, wherein the polypropylene resin pre-expanded particles have a particle weight of 0.5 to 2.0 mg / particle. 請求項1または請求項2記載のポリプロピレン系樹脂予備発泡粒子を用いて成形してなる型内発泡成形体。   An in-mold foam-molded article formed by molding the polypropylene resin pre-foamed particles according to claim 1 or 2.
JP2008064697A 2008-03-13 2008-03-13 Polypropylene resin pre-expanded particles Active JP5358106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064697A JP5358106B2 (en) 2008-03-13 2008-03-13 Polypropylene resin pre-expanded particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064697A JP5358106B2 (en) 2008-03-13 2008-03-13 Polypropylene resin pre-expanded particles

Publications (2)

Publication Number Publication Date
JP2009221258A true JP2009221258A (en) 2009-10-01
JP5358106B2 JP5358106B2 (en) 2013-12-04

Family

ID=41238383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064697A Active JP5358106B2 (en) 2008-03-13 2008-03-13 Polypropylene resin pre-expanded particles

Country Status (1)

Country Link
JP (1) JP5358106B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927343B2 (en) * 2014-01-17 2016-06-01 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
CN107835832A (en) * 2015-07-15 2018-03-23 株式会社Jsp Propylene resin expanded particle and expanded particle formed body
GB2564534B (en) * 2017-05-18 2023-01-18 Wonderland Switzerland Ag Manufacturing method for a car safety seat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179050A (en) * 1991-12-26 1993-07-20 Mitsubishi Yuka Badische Co Ltd Polyolefin-based resin foam particle
JPH07316335A (en) * 1994-05-30 1995-12-05 Dainippon Ink & Chem Inc Production of expandable thermoplastic resin particle
JP2001198940A (en) * 2000-01-18 2001-07-24 Suzuki Sogyo Co Ltd Method for manufacturing thermoplastic resin in-mold foamed molded object
JP2003313353A (en) * 2002-02-22 2003-11-06 Jsp Corp Expanded polypropylene resin particle
JP2004176047A (en) * 2002-11-13 2004-06-24 Jsp Corp Polypropylene-based resin foamed particle and in-mold processed product by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05179050A (en) * 1991-12-26 1993-07-20 Mitsubishi Yuka Badische Co Ltd Polyolefin-based resin foam particle
JPH07316335A (en) * 1994-05-30 1995-12-05 Dainippon Ink & Chem Inc Production of expandable thermoplastic resin particle
JP2001198940A (en) * 2000-01-18 2001-07-24 Suzuki Sogyo Co Ltd Method for manufacturing thermoplastic resin in-mold foamed molded object
JP2003313353A (en) * 2002-02-22 2003-11-06 Jsp Corp Expanded polypropylene resin particle
JP2004176047A (en) * 2002-11-13 2004-06-24 Jsp Corp Polypropylene-based resin foamed particle and in-mold processed product by using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927343B2 (en) * 2014-01-17 2016-06-01 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
US10385178B2 (en) 2014-01-17 2019-08-20 Jsp Corporation Propylene-based resin foam particle and foam particle molded body
CN107835832A (en) * 2015-07-15 2018-03-23 株式会社Jsp Propylene resin expanded particle and expanded particle formed body
CN107835832B (en) * 2015-07-15 2019-05-14 株式会社Jsp Propylene resin expanded particle and expanded particle formed body
US10487188B2 (en) 2015-07-15 2019-11-26 Jsp Corporation Propylene resin foamed particle and foamed particle molded body
GB2564534B (en) * 2017-05-18 2023-01-18 Wonderland Switzerland Ag Manufacturing method for a car safety seat

Also Published As

Publication number Publication date
JP5358106B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5375613B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP5498162B2 (en) Polypropylene resin foamed particles and molded articles thereof
JP6757668B2 (en) Polypropylene resin foam particles, polypropylene resin in-mold foam molded article and its manufacturing method
JP2009144096A (en) Polypropylenic resin foamed particles and molded article from foamed particles
WO2017030124A1 (en) Polypropylene resin foamed particles, method for producing polypropylene resin foamed particles, method for producing polypropylene resin in-mold foam-molded article, and polypropylene resin in-mold foam-molded article
WO2015076306A1 (en) Polyethylene resin foam particles, polyethylene resin in-mold expansion-molded article, and methods respectively for producing those products
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
JP5281317B2 (en) Polypropylene resin pre-expanded particles
JP5358106B2 (en) Polypropylene resin pre-expanded particles
JP6637903B2 (en) Polypropylene resin foam particles
WO2016147919A1 (en) Polypropylene resin foamed particles and method for producing same
JP5253119B2 (en) Method for producing thermoplastic resin expanded particles
JP4023911B2 (en) Cylindrical polyolefin resin foam particles having through holes and a method for producing a polyolefin resin foam molded body having continuous voids
JP5295730B2 (en) Method for producing polypropylene resin pre-expanded particles
JP5347368B2 (en) Polypropylene resin foam particles and in-mold foam moldings
JP6670850B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article
JP5460227B2 (en) Polypropylene resin in-mold foam molding
JP2007217597A (en) Method for producing propylene-based resin pre-expanded particle
WO2024204000A1 (en) Polypropylene-based foamed particles, polypropylene-based foamed article, and methods for producing these
CN113544202B (en) Polyolefin resin particles and use thereof
JP5758586B2 (en) Polyethylene resin expanded particles and polyethylene resin in-mold expanded molding
JP5248939B2 (en) Polypropylene resin foam particles
JP2010241906A (en) Method for producing prfoamed particle of polypropylene-based resin
CN118974153A (en) Polypropylene resin foam particles, polypropylene resin foam molded article, and method for producing polypropylene resin foam particles
JP2009286899A (en) Polypropylene resin foamed particle and in-mold foaming molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250