JP2009220190A - Positioning method and device of installation facility - Google Patents
Positioning method and device of installation facility Download PDFInfo
- Publication number
- JP2009220190A JP2009220190A JP2008064280A JP2008064280A JP2009220190A JP 2009220190 A JP2009220190 A JP 2009220190A JP 2008064280 A JP2008064280 A JP 2008064280A JP 2008064280 A JP2008064280 A JP 2008064280A JP 2009220190 A JP2009220190 A JP 2009220190A
- Authority
- JP
- Japan
- Prior art keywords
- installation
- axis robot
- laser
- installation equipment
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manipulator (AREA)
Abstract
Description
本発明は、例えば、多軸ロボットの周りに複数配置され、ワークが該多軸ロボットにより搬送されて配置される各据付設備の多軸ロボットに対する据付位置の位置決め方法及び位置決め装置に関するものである。 The present invention relates to, for example, a method and an apparatus for positioning an installation position with respect to a multi-axis robot of each installation facility in which a plurality of arrangements are arranged around a multi-axis robot and a work is conveyed and arranged by the multi-axis robot.
一般に、自動車等の製造工場内には、多軸ロボットの周りに複数の据付設備が配置されており、部品等のワークが多軸ロボットにより把持されて搬送され各据付設備の所定位置に配置される。そして、ある据付設備にてワークに対して作業が行われ、作業終了後にワークが多軸ロボットにより把持されて搬送され、次の工程の据付設備の所定位置に配置される。 In general, in a manufacturing plant such as an automobile, a plurality of installation facilities are arranged around a multi-axis robot, and workpieces such as parts are gripped and transported by the multi-axis robot and arranged at predetermined positions of each installation facility. The Then, the work is performed on the workpiece at a certain installation facility, and after the operation is completed, the workpiece is gripped and transported by the multi-axis robot, and is arranged at a predetermined position of the installation facility in the next process.
多軸ロボットは、そのアームが6軸にて動作可能である。ところで、ワークは多軸ロボットのアームに把持されて搬送されるため、据付設備に配置されるワークの位置が大変重要になり、ひいては、各据付設備の多軸ロボットに対する据付位置の位置精度が大きな問題となる。 The multi-axis robot has an arm that can operate with six axes. By the way, since the work is gripped and transported by the arm of the multi-axis robot, the position of the work placed in the installation equipment becomes very important. As a result, the positional accuracy of the installation position of each installation equipment relative to the multi-axis robot is large. It becomes a problem.
そこで、従来の据付設備の位置決め方法を説明する。
まず、オフラインにおいて、シミュレーションソフトによって、多軸ロボットに対する据付設備の床面上の据付位置、すなわち、配置のための基準ラインの位置を算出する。
そして、作業者が、シミュレーション結果に基いて、製造工場の床面に、基準となる互いに直交する基準ラインをマーキングし、各基準ライン及び該各基準ラインの交差ポイントに、据付設備の対応する据付基準をそれぞれ一致させて、据付設備を据付位置に位置決めして設置していた。
しかしながら、従来の据付設備の位置決め方法では、作業者によるマーキング作業や設置される床面の状況等により、据付設備をシミュレーション結果に基いて正確に床面の据付位置に位置決めして設置することができず、実際の設置では、シミュレーション結果に対して±1.0mm程度の誤差が生じており据付位置の位置精度が非常に悪く、再現性も低い。しかも、床面へのマーキング作業を作業者の手作業で行っているために、作業効率が非常に悪い。
Therefore, a conventional method for positioning the installation equipment will be described.
First, off-line, the installation position on the floor surface of the installation equipment for the multi-axis robot, that is, the position of the reference line for the arrangement is calculated offline.
Then, based on the simulation result, the operator marks the reference lines that are orthogonal to each other on the floor of the manufacturing plant, and the installation equipment corresponding to each reference line and the intersection of each reference line is installed. The installation equipment was positioned and installed at the installation position by matching the respective standards.
However, in the conventional installation equipment positioning method, the installation equipment can be accurately positioned and installed at the installation position on the floor surface based on the simulation results, depending on the marking work by the operator and the situation of the floor surface to be installed. However, in actual installation, an error of about ± 1.0 mm is generated with respect to the simulation result, the position accuracy of the installation position is very poor, and the reproducibility is low. Moreover, since the marking work on the floor surface is performed manually by the operator, the work efficiency is very poor.
また、従来の据付設備の位置決め方法では、作業者が床面に引いた各基準ラインを基準として据付設備を据付位置に位置決めして設置しているだけで、多軸ロボットが直接把持するワークの位置を基準に据付設備の据付位置を微調整しておらず、据付設備の多軸ロボットに対する据付位置の位置精度を向上させることができない。 In addition, with the conventional installation equipment positioning method, the multi-axis robot directly grips the workpiece that the multi-axis robot directly grips by installing the installation equipment at the installation position based on each reference line drawn by the operator on the floor. The installation position of the installation equipment is not finely adjusted based on the position, and the position accuracy of the installation position relative to the multi-axis robot of the installation equipment cannot be improved.
なお、特許文献1には、施工現場において、設置物を据付けるための据付位置として三次元計測器により提示されたマークポイントPに対して、マーキングロボットによりマーキングを行い、マーキングロボットは、台車部及び支持部により支持されたマーキング部を備えており、そのマーキング部のスタンプをマークポイントPの位置に押し当て、その際、スタンプの先端からレーザ光線が出射されており、そのレーザ光線が照射されている位置がマークポイントPに一致するようにスタンプの支持位置を調整することによって正確にマークポイントPの位置にマーキングを行うことができる墨位置記録装置が開示されている。
上述したように、従来の据付設備の位置決め方法では、据付設備の多軸ロボットに対する据付位置の位置精度が悪く、さらに、据付設備を設置する際の作業効率が非常に悪かった。
また、特許文献1に開示された墨位置記録装置の発明は、その構造が非常に複雑であり、到底採用することはできない。
As described above, in the conventional installation equipment positioning method, the position accuracy of the installation position relative to the multi-axis robot of the installation equipment is poor, and the work efficiency when installing the installation equipment is very poor.
Further, the invention of the black position recording apparatus disclosed in Patent Document 1 has a very complicated structure and cannot be adopted at all.
本発明は、かかる点に鑑みてなされたものであり、据付設備を多軸ロボットに対して精度良く据付位置に位置決めして設置することができ、しかも、設置の際の作業効率を向上させる据付設備の位置決め方法及び位置決め装置を提供することを目的とする。 The present invention has been made in view of such points, and the installation facility can be positioned and installed with high accuracy with respect to the multi-axis robot, and the installation efficiency can be improved at the time of installation. It is an object of the present invention to provide an equipment positioning method and positioning apparatus.
上記課題を解決するために、本発明の据付設備の位置決め方法は、多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように据付設備が設置される平面に向かって照射して、該平面上に互いに直交するレーザラインを映し出し、該各レーザラインに基いて、前記据付設備を据付位置に位置決めして設置することを特徴としている。
また、本発明の据付設備の位置決め装置は、多軸ロボットのアーム先端に、略同一平面上に拡散するレーザ拡散光を、互いに直交するように照射するレーザ照射源を備えて構成されることを特徴としている。
これにより、据付設備を多軸ロボットに対して精度良く据付位置に位置決めして設置することができ、しかも、据付設備の設置の際の作業効率を向上させることができる。
なお、本発明の据付設備の位置決め方法及び位置決め装置の各種態様およびそれらの作用については、以下の発明の態様の項において詳しく説明する。
In order to solve the above-mentioned problems, the positioning method of the installation equipment according to the present invention is directed to a plane on which the installation equipment is installed so that laser diffused light diffusing on substantially the same plane from a multi-axis robot is orthogonal to each other. Irradiation is performed to project laser lines orthogonal to each other on the plane, and the installation equipment is positioned and installed at the installation position based on the laser lines.
In addition, the positioning apparatus for installation equipment according to the present invention is configured to include a laser irradiation source that irradiates laser diffused light that diffuses in substantially the same plane at an arm tip of a multi-axis robot so as to be orthogonal to each other. It is a feature.
As a result, the installation equipment can be accurately positioned and installed with respect to the multi-axis robot, and the work efficiency at the time of installation of the installation equipment can be improved.
In addition, the various aspects of the positioning method of the installation equipment of this invention, the positioning apparatus, and those effect | actions are demonstrated in detail in the item of the aspect of the following invention.
(発明の態様)
以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある。)の態様をいくつか例示し、それらについて説明する。なお、各態様は、請求項と同様に、項に区分し、各項に番号を付して、必要に応じて他の項を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、請求可能発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、各項に付随する記載、実施の形態等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要件を付加した態様も、また、各項の態様から構成要件を削除した態様も、請求可能発明の一態様となり得るのである。なお、以下の各項において、(1)項、(2)項、(4)項、(5)項の各々が、請求項1乃至4の各々に相当する。
(Aspect of the Invention)
In the following, some aspects of the invention that can be claimed in the present application (hereinafter sometimes referred to as “claimable invention”) will be exemplified and described. In addition, each aspect is divided into a term like a claim, it attaches | subjects a number to each term, and is described in the format which quotes another term as needed. This is for the purpose of facilitating the understanding of the claimable invention, and is not intended to limit the combinations of the constituent elements constituting the claimable invention to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description, embodiments, etc. accompanying each section, and as long as the interpretation is followed, there may be embodiments in which other constituent elements are added to the aspects of each section. In addition, an aspect in which the constituent elements are deleted from the aspect of each item can be an aspect of the claimable invention. In the following items, each of the items (1), (2), (4), and (5) corresponds to each of claims 1 to 4.
(1)据付設備の多軸ロボットに対する据付位置の位置決め方法であって、前記多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように前記据付設備が設置される平面に向かって照射して、該平面上に互いに直交するレーザラインを映し出し、該各レーザラインに基いて、前記据付設備を据付位置に位置決めして設置することを特徴とする据付設備の位置決め方法。
従って、(1)項の据付設備の位置決め方法では、まず、オフラインにおいて、シミュレーションソフトにより、据付設備の基準及び多軸ロボットの基準から、据付設備が平面へ設置される据付位置を特定するための基準ラインとして利用する、多軸ロボットから照射されるレーザ拡散光の仕様を算出する。続いて、この算出された各レーザ拡散光の仕様を多軸ロボットに入力する。
そして、インラインにおいて、多軸ロボットに備えたレーザ照射源からレーザ拡散光を、互いに直交するように据付設備が設置される平面に向かって照射し、該平面上に互いに直交するレーザラインを映し出す。続いて、平面に映し出された各レーザライン及び各レーザラインの交差ポイントに、据付設備の対応する据付基準をそれぞれ一致させて据付設備を据付位置に位置決めして設置する。これにより、据付設備を多軸ロボットに対して、特に、平面上の2次元にて精度良く位置決めして設置することができる。
(1) A method for positioning an installation position of an installation facility with respect to a multi-axis robot, in which the installation facility is installed so that laser diffused light diffused on substantially the same plane from the multi-axis robot is orthogonal to each other. The installation equipment positioning method is characterized by projecting laser beams orthogonal to each other on the plane, and positioning and installing the installation equipment at the installation position based on the laser lines.
Therefore, in the positioning method of the installation equipment of the item (1), first, in order to specify the installation position where the installation equipment is installed on the plane from the reference of the installation equipment and the reference of the multi-axis robot by the offline simulation software. The specification of the laser diffused light emitted from the multi-axis robot used as the reference line is calculated. Subsequently, the calculated specifications of each laser diffused light are input to the multi-axis robot.
Then, in-line, laser diffused light is irradiated from a laser irradiation source provided in the multi-axis robot toward a plane on which installation equipment is installed so as to be orthogonal to each other, and laser lines orthogonal to each other are projected on the plane. Subsequently, the installation equipment is positioned and installed at the installation position by matching the installation standards corresponding to the installation equipment at the laser lines projected on the plane and the intersections of the laser lines. Thereby, it is possible to position and install the installation equipment with respect to the multi-axis robot with high accuracy, particularly in two dimensions on a plane.
(2)据付設備の多軸ロボットに対する据付位置の位置決め方法であって、前記多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように前記据付設備の空間上の据付基準に向かって照射して、該空間上の据付基準に互いに直交するレーザラインを映し出すと共に前記多軸ロボットから前記空間上の据付基準までの距離を測定し、前記空間上の据付基準に映し出された互いに直交するレーザライン及び前記多軸ロボットから前記空間上の据付基準までの距離の測定値に基いて、前記据付設備を据付位置に位置決めして設置することを特徴とする据付設備の位置決め方法。
従って、(2)項の据付設備の位置決め方法では、まず、オフラインにおいて、シミュレーションソフトにより、据付設備の基準及び多軸ロボットの基準から、据付設備の空間上の据付基準(例えば、据付設備の所定位置に配置されたワークの位置)を特定するための基準ラインとして利用する、多軸ロボットから照射されるレーザ拡散光の仕様及び多軸ロボットから空間上の据付基準までの距離を算出する。続いて、この算出された各レーザ拡散光の仕様及び多軸ロボットから空間上の据付基準までの距離を多軸ロボットに入力する。
そして、インラインにおいて、多軸ロボットのアーム先端に備えたレーザ照射源からレーザ拡散光を、互いに直交するように仮設置された据付設備の空間上の据付基準(例えば、据付設備の所定位置に配置されたワーク)に照射して、該空間上の据付基準(例えば、ワーク)に互いに直交するレーザラインを映し出すと共にアーム先端から空間上の据付基準までの距離を測定する。続いて、空間上の据付基準に映し出された互いに直交するレーザライン及びアーム先端から空間上の据付基準までの距離の測定値に基いて、据付設備を据付位置に位置決めして設置する。これにより、据付設備を多軸ロボットに対して、3次元にて精度良く位置決めして設置することができる。
(2) A method for positioning the installation position of the installation equipment with respect to the multi-axis robot, wherein the laser diffused light diffused in substantially the same plane from the multi-axis robot is installed in the space of the installation equipment so as to be orthogonal to each other. Irradiate toward the reference, project laser lines orthogonal to the installation reference in the space, measure the distance from the multi-axis robot to the installation reference in the space, and display it on the installation reference in the space The installation equipment positioning method is characterized in that the installation equipment is positioned at the installation position based on the measured values of the laser lines orthogonal to each other and the distance from the multi-axis robot to the installation reference in the space. .
Accordingly, in the positioning method of the installation equipment in (2), first, the offline installation of the installation equipment standard and the multi-axis robot reference using the simulation software is performed offline. The specification of the laser diffused light emitted from the multi-axis robot and the distance from the multi-axis robot to the installation reference in space are used as a reference line for specifying the position of the work placed at the position). Subsequently, the calculated specifications of each laser diffused light and the distance from the multi-axis robot to the installation reference in space are input to the multi-axis robot.
Then, in-line, the laser diffusion light from the laser irradiation source provided at the tip of the arm of the multi-axis robot is placed at a predetermined position in the space of the installation equipment temporarily installed so as to be orthogonal to each other (for example, at a predetermined position of the installation equipment The laser beam that is orthogonal to the installation reference (for example, the workpiece) in the space is projected, and the distance from the tip of the arm to the installation reference in the space is measured. Subsequently, the installation equipment is positioned and installed at the installation position based on the laser lines orthogonal to each other reflected on the installation reference in space and the measured value of the distance from the tip of the arm to the installation reference in space. Thereby, it is possible to accurately position and install the installation equipment with respect to the multi-axis robot in three dimensions.
(3)据付設備の多軸ロボットに対する据付位置の位置決め方法であって、前記多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように前記据付設備が設置される平面に向かって照射して、該平面上に互いに直交するレーザラインを映し出し、該各レーザラインに基いて、前記据付設備を据付位置に位置決めして仮設置する第1工程と、次に、前記多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように前記据付設備の空間上の据付基準に向かって照射して、該空間上の据付基準に互いに直交するレーザラインを映し出すと共に前記多軸ロボットから前記空間上の据付基準までの距離を測定し、前記空間上の据付基準に映し出された互いに直交するレーザライン及び前記多軸ロボットから前記空間上の据付基準までの距離の測定値に基いて、前記据付設備の据付位置を微調整する第2工程とを備えたことを特徴とする据付設備の位置決め方法。
従って、(3)項の据付設備の位置決め方法では、まず、第1工程において、据付設備を、特に、平面上の2次元にて位置決めして仮設置することができ、その後、第2工程において、据付設備の据付位置を微調整することができるので、据付設備を多軸ロボットに対して、3次元にて精度良く位置決めして設置することができる。
(3) A method for positioning the installation position of the installation equipment with respect to the multi-axis robot, wherein the installation equipment is installed so that laser diffused light diffusing from the multi-axis robot on substantially the same plane is orthogonal to each other. A first step of projecting laser lines orthogonal to each other on the plane, positioning the installation equipment at the installation position based on the laser lines, and then temporarily installing the installation facility; A laser beam that diffuses in substantially the same plane is irradiated from the axial robot toward the installation reference in the space of the installation equipment so as to be orthogonal to each other, and laser lines that are orthogonal to the installation reference in the space are irradiated. And projecting the distance from the multi-axis robot to the installation reference in the space, the laser lines orthogonal to each other displayed on the installation reference in the space, and the multi-axis robot Based on measurements of the distance to the installation standards on al the space, a method of positioning installation equipment, characterized in that a second step of fine-adjusting the mounting position of the mounting equipment.
Accordingly, in the positioning method of the installation equipment of the item (3), first, in the first step, the installation equipment can be positioned and temporarily installed, particularly in two dimensions on a plane, and then in the second step. Since the installation position of the installation facility can be finely adjusted, the installation facility can be accurately positioned and installed in a three-dimensional manner with respect to the multi-axis robot.
(4)据付設備の多軸ロボットに対する据付位置の位置決め装置であって、該位置決め装置は、前記多軸ロボットのアーム先端に、略同一平面上に拡散するレーザ拡散光を、互いに直交するように照射するレーザ照射源を備えて構成されることを特徴とする据付設備の位置決め装置。
従って、(4)項の据付設備の位置決め装置では、多軸ロボットに備えたレーザ照射源からレーザ拡散光を、互いに直交するように据付設備が設置される平面に向かって照射し、該平面上に映し出された互いに直交するレーザライン及び各レーザラインの交差ポイントに、据付設備の対応する据付基準をそれぞれ一致させて据付設備を据付位置に位置決めして設置する。これにより、据付設備を多軸ロボットに対して、特に、平面上の2次元にて精度良く位置決めして設置することができる。
(4) A positioning device for the installation position of the installation equipment with respect to the multi-axis robot, wherein the positioning device is arranged so that laser diffused light diffused on substantially the same plane is orthogonal to each other at the arm tip of the multi-axis robot. A positioning apparatus for installation equipment, comprising a laser irradiation source for irradiation.
Accordingly, in the positioning apparatus positioning apparatus of (4), the laser diffused light is irradiated from the laser irradiation source provided in the multi-axis robot toward the plane on which the installation equipment is installed so as to be orthogonal to each other. The installation equipment is positioned and installed at the installation position by making the installation standards corresponding to the installation equipment coincide with the laser lines orthogonal to each other and the crossing points of the laser lines shown in FIG. Thereby, it is possible to position and install the installation equipment with respect to the multi-axis robot with high accuracy, particularly in two dimensions on a plane.
(5)前記レーザ照射源は、前記多軸ロボットのアーム先端からの、前記据付設備の据付基準までの距離を測定可能であることを特徴とする(4)項に記載の据付設備の位置決め装置。
従って、(5)項の据付設備の位置決め装置では、レーザ照射源からレーザ拡散光を、互いに直交するように据付設備の空間上の据付基準(例えば、据付設備の所定位置に配置されたワーク)に照射すると共にアーム先端から空間上の据付基準までの距離を測定し、空間上の据付基準に映し出された互いに直交するレーザライン及びアーム先端から空間上の据付基準までの距離の測定値に基いて据付設備を据付位置に位置決めして設置する。これにより、据付設備を多軸ロボットに対して、3次元にて精度良く位置決めして設置することができる。
(5) The installation apparatus positioning apparatus according to (4), wherein the laser irradiation source is capable of measuring a distance from an arm tip of the multi-axis robot to an installation reference of the installation equipment. .
Therefore, in the installation equipment positioning apparatus of item (5), the installation reference in the space of the installation equipment so that the laser diffused light from the laser irradiation source is orthogonal to each other (for example, a work placed at a predetermined position of the installation equipment). The distance from the arm tip to the installation reference in space is measured, and based on the measured laser line and the distance from the arm tip to the installation reference in space projected on the space installation reference. The installation equipment is positioned and installed at the installation position. Thereby, it is possible to accurately position and install the installation equipment with respect to the multi-axis robot in three dimensions.
本発明によれば、据付設備を多軸ロボットに対して精度良く据付位置に位置決めして設置することができ、しかも、設置の際の作業効率を向上させる据付設備の位置決め方法及び位置決め装置を提供することができる。 According to the present invention, there is provided a positioning method and a positioning apparatus for an installation facility that can install the installation facility at a precise installation position with respect to a multi-axis robot and improve work efficiency during the installation. can do.
以下、本発明を実施するための最良の形態を図1に基いて詳細に説明する。
本発明の実施の形態に係る据付設備の位置決め装置1は、ワークWが多軸ロボット2により搬送されて配置される据付設備3を、該多軸ロボット2に対して正確に据付位置に位置決めして設置できるものであり、本位置決め装置1は、多軸ロボット2のアーム2a先端に、略同一平面上に拡散する第1及び第2レーザ拡散光5、6を照射するレーザ照射源4を備えて構成される。
該レーザ照射源4は、図1(a)に示すような、略同一平面上に拡散する第1レーザ拡散光5、5を、互いに直交するように床面Fに向かって照射する第1レーザ照射源と、図1(c)に示すような、略同一平面上に拡散する第2レーザ拡散光6、6を、互いに直交するようにワークWに向かって照射すると共に多軸ロボット2のアーム2a先端からのワークWの距離Lを測定可能な第2レーザ照射源とを別体にまたは一体的に備えている。
Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to FIG.
An installation equipment positioning apparatus 1 according to an embodiment of the present invention accurately positions an installation equipment 3 in which a workpiece W is transported and arranged by a multi-axis robot 2 with respect to the multi-axis robot 2 at an installation position. The positioning apparatus 1 includes a laser irradiation source 4 that irradiates the first and second laser diffused lights 5 and 6 diffusing on substantially the same plane at the tip of the arm 2a of the multi-axis robot 2. Configured.
As shown in FIG. 1A, the laser irradiation source 4 emits first laser diffused light 5 and 5 diffusing on substantially the same plane toward the floor surface F so as to be orthogonal to each other. The irradiation source and second laser diffused light 6 and 6 diffusing on substantially the same plane as shown in FIG. 1C are irradiated toward the workpiece W so as to be orthogonal to each other and the arm of the multi-axis robot 2 2a A second laser irradiation source capable of measuring the distance L of the workpiece W from the tip is provided separately or integrally.
次に、本位置決め装置1を使用した据付設備3の位置決め方法を説明する。
まず、オフラインにおいて、シミュレーションソフトにより、据付設備3の基準及び多軸ロボット2の基準から、据付設備3が床面Fへ設置される据付位置を特定するための基準ラインとして利用する、多軸ロボット2のアーム2a先端から照射される第1レーザ拡散光5、5を算出する。
また、シミュレーションソフトにより、据付設備3の基準及び多軸ロボット2の基準から、据付設備3の所定位置に配置されるワークW(据付設備3の空間上の据付基準)の位置を特定するための基準ラインとして利用する、多軸ロボット2から照射される第2レーザ拡散光6、6及び多軸ロボット2のアーム2a先端からのワークWの距離Lを算出する(以下、正常値という)。
Next, a method for positioning the installation equipment 3 using the positioning device 1 will be described.
First, the multi-axis robot is used as a reference line for specifying the installation position where the installation facility 3 is installed on the floor F from the reference of the installation facility 3 and the reference of the multi-axis robot 2 by simulation software offline. The first laser diffused lights 5 and 5 irradiated from the tip of the two arms 2a are calculated.
In addition, the position of the workpiece W (installation standard in the space of the installation equipment 3) placed at a predetermined position of the installation equipment 3 is specified by the simulation software from the standard of the installation equipment 3 and the reference of the multi-axis robot 2. The distance L of the workpiece W from the second laser diffused light 6 and 6 irradiated from the multi-axis robot 2 and the tip of the arm 2a of the multi-axis robot 2 used as a reference line is calculated (hereinafter referred to as a normal value).
次に、オフラインで算出された各第1レーザ拡散光5、5の仕様、各第2レーザ拡散光6、6の仕様及び多軸ロボット2のアーム2a先端からのワークWの距離Lの正常値を多軸ロボット2に入力する。
次に、インラインにおいて、図1(a)に示すように、多軸ロボット2のアーム2a先端に備えたレーザ照射源4の第1レーザ照射源から第1レーザ拡散光5、5を、互いに直交するように床面F(据付設備3が設置される平面)に向かって照射し、該床面F上に互いに直交する第1レーザライン5a、5aを映し出す。続いて、図1(b)に示すように、床面Fに映し出された、互いに直交する第1レーザライン5a、5a及び各第1レーザライン5a、5aの交差ポイントに、据付設備3の対応する据付基準をそれぞれ一致させて、据付設備3を床面Fに仮設置する(第1工程)。
次に、図1(c)に示すように、仮設置された据付設備3の所定位置にワークWを配置する。続いて、多軸ロボット2のアーム2a先端に備えたレーザ照射源4の第2レーザ照射源から第2レーザ拡散光6、6を、互いに直交するように据付設備3の所定位置に配置されたワークW(据付設備3の空間上の据付基準)に向かって照射して、ワークW上に互いに直交する第2レーザライン6a、6aを映し出すと共に各第2レーザ拡散光6、6によりアーム2a先端からのワークWの距離Lを測定する。続いて、ワークWに映し出された互いに直交する第2レーザライン6a、6aに、ワークWの対応する基準をそれぞれ一致させるように、且つアーム2a先端からのワークWの距離Lの測定値とオフラインで予め算出した正常値とが一致するように据付設備3の据付位置を微調整して、最終的に据付設備3を3次元的に位置決めして設置する(第2工程)。
Next, the normal values of the specifications of the first laser diffused lights 5 and 5, the specifications of the second laser diffused lights 6 and 6, and the distance L of the workpiece W from the tip of the arm 2 a of the multi-axis robot 2 calculated offline. Is input to the multi-axis robot 2.
Next, in line, as shown in FIG. 1A, the first laser diffused lights 5 and 5 from the first laser irradiation source of the laser irradiation source 4 provided at the tip of the arm 2a of the multi-axis robot 2 are orthogonal to each other. In this way, irradiation is performed toward the floor surface F (a plane on which the installation equipment 3 is installed), and the first laser lines 5a and 5a orthogonal to each other are projected on the floor surface F. Subsequently, as shown in FIG. 1B, the installation facility 3 corresponds to the first laser lines 5a and 5a that are projected on the floor surface F and intersecting each other and the first laser lines 5a and 5a. The installation standards 3 are made to coincide with each other, and the installation equipment 3 is temporarily installed on the floor surface F (first step).
Next, as shown in FIG.1 (c), the workpiece | work W is arrange | positioned in the predetermined position of the installation equipment 3 temporarily installed. Subsequently, the second laser diffused lights 6 and 6 from the second laser irradiation source of the laser irradiation source 4 provided at the tip of the arm 2a of the multi-axis robot 2 were arranged at predetermined positions of the installation equipment 3 so as to be orthogonal to each other. Irradiation toward the workpiece W (installation standard in the space of the installation equipment 3), the second laser lines 6a and 6a orthogonal to each other are projected on the workpiece W, and the end of the arm 2a is projected by the second laser diffused lights 6 and 6. Measure the distance L of the workpiece W from. Subsequently, the measured value of the distance L of the workpiece W from the tip of the arm 2a and the off-line are set offline so that the second laser lines 6a, 6a orthogonal to each other projected on the workpiece W are matched with the corresponding reference of the workpiece W. Then, the installation position of the installation equipment 3 is finely adjusted so that the normal value calculated in advance matches, and the installation equipment 3 is finally positioned and installed three-dimensionally (second step).
以上説明したように、本発明の実施の形態では、第1工程として、多軸ロボット2のアーム2a先端に備えたレーザ照射源4の第1レーザ照射源から、予め入力された略同一平面上に拡散する第1レーザ拡散光5、5を、互いに直交するように床面Fに向かって照射する。続いて、該床面Fに映し出された互いに直交する第1レーザライン5a、5aに、据付設備3の対応する据付基準をそれぞれ一致させて据付設備3を仮設置する。次に、第2工程として、多軸ロボット2のアーム2a先端に備えたレーザ照射源4の第2レーザ照射源から、予め入力された略同一平面上に拡散する第2レーザ拡散光6、6を、互いに直交するように仮設置された据付設備3の所定位置に配置されたワークW(据付設備3の空間上の据付基準)に向かって照射すると共に各第2レーザ拡散光6、6によりアーム2a先端からのワークWの距離Lを測定する。続いて、ワークWに映し出された互いに直交する第2レーザライン6a、6aに、ワークWの対応する基準をそれぞれ一致させるように、且つアーム2a先端からのワークWの距離Lの測定値とオフラインで算出した正常値とが一致するように据付設備3の据付位置を微調整する。 As described above, in the embodiment of the present invention, as the first step, the first laser irradiation source of the laser irradiation source 4 provided at the tip of the arm 2a of the multi-axis robot 2 is on the substantially same plane input in advance. Are irradiated toward the floor surface F so as to be orthogonal to each other. Subsequently, the installation equipment 3 is temporarily installed by making the corresponding installation standards of the installation equipment 3 coincide with the first laser lines 5 a and 5 a that are orthogonal to each other and projected on the floor surface F. Next, as a second step, second laser diffused light 6 and 6 diffused on substantially the same plane previously input from the second laser irradiation source of the laser irradiation source 4 provided at the tip of the arm 2a of the multi-axis robot 2. To the workpiece W (installation standard in the space of the installation equipment 3) placed at a predetermined position of the installation equipment 3 temporarily installed so as to be orthogonal to each other, and by the second laser diffused lights 6 and 6 The distance L of the workpiece W from the tip of the arm 2a is measured. Subsequently, the measured value of the distance L of the workpiece W from the tip of the arm 2a and the off-line are set offline so that the second laser lines 6a, 6a orthogonal to each other projected on the workpiece W are matched with the corresponding reference of the workpiece W, respectively. The installation position of the installation equipment 3 is finely adjusted so that the normal value calculated in step 1 matches.
これにより、作業者によるマーキング作業や設置される床面Fの状況等に左右されることなく、据付設備3をシミュレーション結果に基いて正常な据付位置に位置決めして設置することが可能になる。さらに、本発明の実施の形態では、第1工程にて、第1レーザ拡散光5、5の照射により床面Fに第1レーザライン5a、5aを映し出し、該第1レーザライン5a、5aを、従来、作業者が床面Fに手作業でマーキングしていた基準ラインとしているので、作業効率が大幅に向上されると共に基準ラインの位置精度が格段に向上する。
しかも、本発明の実施の形態では、第2工程において、多軸ロボット2が直接把持するワークWの位置に基いて据付設備3の据付位置を細かく微調整することができるので、多軸ロボット2に対する据付設備3の据付位置の位置精度がさらに向上する。
Thereby, it becomes possible to position and install the installation equipment 3 at a normal installation position based on the simulation result without being influenced by the marking work by the worker or the situation of the floor surface F to be installed. Further, in the embodiment of the present invention, in the first step, the first laser lines 5a and 5a are projected on the floor surface F by the irradiation of the first laser diffused lights 5 and 5, and the first laser lines 5a and 5a are displayed. Conventionally, since the reference line has been manually marked on the floor surface F by the operator, the work efficiency is greatly improved and the position accuracy of the reference line is remarkably improved.
Moreover, in the embodiment of the present invention, in the second step, the installation position of the installation equipment 3 can be finely adjusted based on the position of the workpiece W directly gripped by the multi-axis robot 2. The positional accuracy of the installation position of the installation equipment 3 with respect to the is further improved.
なお、本発明の実施の形態では、各第1レーザ拡散光5、5を床面Fに向かって照射して、据付設備3を仮設置する第1工程と、該第1工程により仮設置された据付設備3の所定位置にワークWを配置し、各第2レーザ拡散光6、6をワークWに向かって照射して、据付設備3の据付位置を微調整する第2工程とを備えているが、第1及び第2工程の両方を実行する必要はなく、据付設備3の設置環境により、適宜第1または第2工程のいずれかを選択して実行してもよい。
つまり、据付設備3を第1工程により床面Fに仮設置した際、その設置がシミュレーション結果と同一であると確証できる場合には、第2工程は省略してもよい。
一方、据付設備3が既に床面Fの所定位置に仮設置されている場合等は、第2工程だけを行い、据付設備3の据付位置の微調整を行えばよい。
In the embodiment of the present invention, the first laser diffused light 5 and 5 are irradiated toward the floor surface F to temporarily install the installation equipment 3, and the temporary installation is performed by the first process. And a second step of finely adjusting the installation position of the installation equipment 3 by arranging the work W at a predetermined position of the installation equipment 3 and irradiating the second laser diffused light 6 and 6 toward the work W. However, it is not necessary to execute both the first and second steps. Depending on the installation environment of the installation facility 3, either the first or second step may be selected and executed as appropriate.
That is, when the installation facility 3 is temporarily installed on the floor F in the first step, the second step may be omitted if it can be confirmed that the installation is the same as the simulation result.
On the other hand, when the installation equipment 3 has already been temporarily installed at a predetermined position on the floor surface F, only the second step may be performed to finely adjust the installation position of the installation equipment 3.
なお、本据付設備3の位置決め方法において、原則的に第1工程しか採用しないのであれば、本位置決め装置1のレーザ照射源4には、略同一平面上に拡散する第1レーザ拡散光5、5を、互いに直交するように床面Fに向かって照射する第1レーザ照射源だけを備えればよいし、第2工程しか採用しないのであれば、本位置決め装置1のレーザ照射源4には、略同一平面上に拡散する第2レーザ拡散光6、6を、互いに直交するようにワークWに向かって照射すると共にワークWとの距離Lを測定可能な第2レーザ照射源だけを備えればよい。 In the positioning method of the main installation equipment 3, if only the first step is adopted in principle, the laser irradiation source 4 of the positioning apparatus 1 has a first laser diffused light 5 diffusing on substantially the same plane, 5 may be provided with only the first laser irradiation source that irradiates the floor surface F so as to be orthogonal to each other. If only the second step is employed, the laser irradiation source 4 of the positioning device 1 includes The second laser diffused light 6, 6 diffusing on substantially the same plane is irradiated toward the workpiece W so as to be orthogonal to each other, and only the second laser irradiation source capable of measuring the distance L to the workpiece W is provided. That's fine.
また、本発明の実施の形態では、据付設備3の多軸ロボット2に対する据付位置を位置決めする際、据付設備3の空間上の据付基準を、据付設備3の所定位置に配置されたワークWとしているが、据付設備3の空間上(3次元)に位置する適宜部位を空間上の据付基準としてもよい。 Further, in the embodiment of the present invention, when positioning the installation position of the installation equipment 3 with respect to the multi-axis robot 2, the installation reference in the space of the installation equipment 3 is set as a work W arranged at a predetermined position of the installation equipment 3. However, an appropriate part located on the space (three-dimensional) of the installation facility 3 may be used as the installation reference on the space.
1 位置決め装置,2 多軸ロボット,2a アーム,3 据付設備,4 レーザ照射源,5 第1レーサ拡散光,5a 第1レーザライン,6 第2レーザ拡散光,6a 第2レーザライン,F 床面,W ワーク DESCRIPTION OF SYMBOLS 1 Positioning device, 2 Multi-axis robot, 2a arm, 3 Installation equipment, 4 Laser irradiation source, 5 1st laser diffused light, 5a 1st laser line, 6 2nd laser diffused light, 6a 2nd laser line, F floor surface , W Work
Claims (4)
前記多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように前記据付設備が設置される平面に向かって照射して、該平面上に互いに直交するレーザラインを映し出し、該各レーザラインに基いて、前記据付設備を据付位置に位置決めして設置することを特徴とする据付設備の位置決め方法。 A method for positioning an installation position with respect to a multi-axis robot of installation equipment,
From the multi-axis robot, irradiate laser diffused light that diffuses in substantially the same plane toward the plane where the installation equipment is installed so as to be orthogonal to each other, and project laser lines orthogonal to each other on the plane, A method for positioning an installation facility, wherein the installation facility is positioned and installed at an installation position based on each laser line.
前記多軸ロボットから、略同一平面上に拡散するレーザ拡散光を、互いに直交するように前記据付設備の空間上の据付基準に向かって照射して、該空間上の据付基準に互いに直交するレーザラインを映し出すと共に前記多軸ロボットから前記空間上の据付基準までの距離を測定し、前記空間上の据付基準に映し出された互いに直交するレーザライン及び前記多軸ロボットから前記空間上の据付基準までの距離の測定値に基いて、前記据付設備を据付位置に位置決めして設置することを特徴とする据付設備の位置決め方法。 A method for positioning an installation position with respect to a multi-axis robot of installation equipment,
Laser beams diffusing in substantially the same plane from the multi-axis robot are irradiated toward the installation reference in the space of the installation equipment so as to be orthogonal to each other, and lasers orthogonal to the installation reference in the space The line is projected and the distance from the multi-axis robot to the installation reference in the space is measured, and the laser lines and the multi-axis robot projected from the multi-axis robot to the installation reference in the space are projected from the multi-axis robot. A positioning method for installation equipment, characterized in that the installation equipment is positioned and installed at an installation position based on a measured value of the distance.
該位置決め装置は、前記多軸ロボットのアーム先端に、略同一平面上に拡散するレーザ拡散光を、互いに直交するように照射するレーザ照射源を備えて構成されることを特徴とする据付設備の位置決め装置。 An installation position positioning device for a multi-axis robot of installation equipment,
The positioning apparatus includes a laser irradiation source configured to irradiate laser diffused light diffusing on substantially the same plane at an arm tip of the multi-axis robot so as to be orthogonal to each other. Positioning device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008064280A JP5170402B2 (en) | 2008-03-13 | 2008-03-13 | Installation equipment positioning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008064280A JP5170402B2 (en) | 2008-03-13 | 2008-03-13 | Installation equipment positioning method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009220190A true JP2009220190A (en) | 2009-10-01 |
JP5170402B2 JP5170402B2 (en) | 2013-03-27 |
Family
ID=41237546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008064280A Expired - Fee Related JP5170402B2 (en) | 2008-03-13 | 2008-03-13 | Installation equipment positioning method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5170402B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109434792A (en) * | 2018-11-08 | 2019-03-08 | 广州厚邦木业制造有限公司 | The equipment of composite floor board veneer scribing line |
JP2020049594A (en) * | 2018-09-27 | 2020-04-02 | 株式会社安川電機 | Robot, robot system and robot position adjustment method |
DE102019119484A1 (en) * | 2019-07-18 | 2021-01-21 | Benedikt Pfaff | Laser positioning system for arrangement on perforated tables |
CN112548979A (en) * | 2020-12-01 | 2021-03-26 | 四川航天长征装备制造有限公司 | Marking method of melon petal chemical milling sample plate |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10296669A (en) * | 1997-05-02 | 1998-11-10 | Kawasaki Heavy Ind Ltd | Position detecting method and position detecting device for object |
JPH1144535A (en) * | 1997-06-30 | 1999-02-16 | Laser Techno Kk | Laser unit for marking |
JPH11257963A (en) * | 1998-03-11 | 1999-09-24 | Yasaka:Kk | Laser light projection image apparatus |
JP2005283580A (en) * | 2004-03-26 | 2005-10-13 | Stabila Messgeraete Gustav Ullrich Gmbh | Device for drawing linear optical marking |
JP2007118165A (en) * | 2005-10-31 | 2007-05-17 | Hitachi Plant Technologies Ltd | Ink position recording device |
-
2008
- 2008-03-13 JP JP2008064280A patent/JP5170402B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10296669A (en) * | 1997-05-02 | 1998-11-10 | Kawasaki Heavy Ind Ltd | Position detecting method and position detecting device for object |
JPH1144535A (en) * | 1997-06-30 | 1999-02-16 | Laser Techno Kk | Laser unit for marking |
JPH11257963A (en) * | 1998-03-11 | 1999-09-24 | Yasaka:Kk | Laser light projection image apparatus |
JP2005283580A (en) * | 2004-03-26 | 2005-10-13 | Stabila Messgeraete Gustav Ullrich Gmbh | Device for drawing linear optical marking |
JP2007118165A (en) * | 2005-10-31 | 2007-05-17 | Hitachi Plant Technologies Ltd | Ink position recording device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020049594A (en) * | 2018-09-27 | 2020-04-02 | 株式会社安川電機 | Robot, robot system and robot position adjustment method |
CN109434792A (en) * | 2018-11-08 | 2019-03-08 | 广州厚邦木业制造有限公司 | The equipment of composite floor board veneer scribing line |
DE102019119484A1 (en) * | 2019-07-18 | 2021-01-21 | Benedikt Pfaff | Laser positioning system for arrangement on perforated tables |
CN112548979A (en) * | 2020-12-01 | 2021-03-26 | 四川航天长征装备制造有限公司 | Marking method of melon petal chemical milling sample plate |
Also Published As
Publication number | Publication date |
---|---|
JP5170402B2 (en) | 2013-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10328411B2 (en) | Apparatuses and methods for accurate structure marking and marking-assisted structure locating | |
US6812665B2 (en) | In-process relative robot workcell calibration | |
US20080265158A1 (en) | Charged particle beam apparatus | |
JP5170402B2 (en) | Installation equipment positioning method | |
US9302345B2 (en) | Laser machining calibration method | |
JP2019063955A (en) | Robot system, operation control method and operation control program | |
US9170099B2 (en) | Laser positioner for punching machines | |
KR101122256B1 (en) | Zig for replicating end shape of pipe and method for marking cutting line on pipe using the same | |
KR101395660B1 (en) | Method for aligning of three-dimension coordinate using normal vector, and storage medium storing computer readable program for processing it | |
JP2002032107A (en) | Method for machining work | |
US7003871B2 (en) | Solder paste stencil manufacturing system | |
WO2006119703A2 (en) | Laser coordinate drilling machine | |
JP4717279B2 (en) | Work positioning method | |
JP5724236B2 (en) | Method for setting virtual line parallel to core line of construction member, pair of virtual line setting jig for setting virtual line, and installation method for installing linearity measuring device on construction member | |
US7489411B2 (en) | Apparatus and methods for calibrating a laser projection device | |
CN210198327U (en) | 2D and 3D measuring device | |
JP2005271103A (en) | Working robot and calibration method thereof | |
KR20130029883A (en) | Laser vision system calibration method using working joint | |
CN216939758U (en) | Device for rapidly positioning measuring point of S-shaped test piece serving as standard piece | |
CN113182738A (en) | Welding spot positioning system and method | |
KR20120038086A (en) | Method of aligning a wafer stage, apparatus for performing the method, and an exposing apparatus including the aligning apparatus | |
CN116520768B (en) | Processing path debugging method and device, electronic equipment and storage medium | |
CN112077453B (en) | Linearity correction method, laser marking apparatus, and storage medium | |
JP2014087904A (en) | Positioning jig | |
KR100325238B1 (en) | Apparatus for setting wire rope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100723 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121218 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5170402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160111 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |