[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009218302A - Method and device for electrolytic plating of semiconductor substrate - Google Patents

Method and device for electrolytic plating of semiconductor substrate Download PDF

Info

Publication number
JP2009218302A
JP2009218302A JP2008058871A JP2008058871A JP2009218302A JP 2009218302 A JP2009218302 A JP 2009218302A JP 2008058871 A JP2008058871 A JP 2008058871A JP 2008058871 A JP2008058871 A JP 2008058871A JP 2009218302 A JP2009218302 A JP 2009218302A
Authority
JP
Japan
Prior art keywords
hole
plating
plate
opening
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008058871A
Other languages
Japanese (ja)
Inventor
Masanobu Saruta
正暢 猿田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2008058871A priority Critical patent/JP2009218302A/en
Publication of JP2009218302A publication Critical patent/JP2009218302A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of filling plating in a through-hole of a silicon wafer having the through-hole without any overhang shape and any internal void. <P>SOLUTION: The plating is performed by arranging towards a plating electrode side a plate with an opening at the same place as a through-hole opening in the silicon wafer by keeping a fixed distance and by making a plate opening consistent with the through-hole opening in the silicon wafer. A diameter of the plate opening is made somewhat smaller than a diameter R of the through-hole opening. When x/R is 0.1 to 0.3 where a difference between the diameter of the plate opening and the diameter R of the through-hole opening is set to 2x, and when a distance between the silicon wafer and a plate is set to 0.05 mm to 1.0 mm, the above described problem can be achieved. It is desirable that the plate is made of an insulator such as a porosity ceramic and a porous material, and a plating growth of a silicon wafer surface can be also suppressed. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、貫通孔を有する半導体装置において貫通孔内の配線形成に関する。   The present invention relates to wiring formation in a through hole in a semiconductor device having a through hole.

近年、半導体デバイスは微細化、高集積化の技術が目覚ましく、次世代の技術として半導体デバイスの三次元積層技術の開発が行われている。特に三次元積層の要となる貫通配線形成技術の研究が盛んである。貫通配線形成は貫通孔を形成するプロセスと、貫通孔に配線を形成するプロセス各々の技術からなる。   In recent years, semiconductor devices have been remarkably miniaturized and highly integrated, and three-dimensional stacking technology for semiconductor devices has been developed as a next-generation technology. In particular, research on through wiring formation technology, which is the key to three-dimensional stacking, is active. The formation of the through wiring includes a technique for forming a through hole and a technique for forming a wiring in the through hole.

貫通孔を形成する方法として、たとえば半導体デバイスが形成された半導体基板の第1の面(以下、表面と呼ぶ)とは、反対側の第2の面(以下、裏面と呼ぶ)から表面のI/O(入出力)パッドに向けて貫通孔を形成する場合において、貫通孔の形成はたとえばドライエッチング装置を用いて行われる。   As a method of forming a through hole, for example, a first surface (hereinafter referred to as a front surface) of a semiconductor substrate on which a semiconductor device is formed is connected to a surface I from a second surface (hereinafter referred to as a back surface) opposite to the first surface. In the case where the through hole is formed toward the / O (input / output) pad, the through hole is formed using, for example, a dry etching apparatus.

貫通孔内に配線を形成する技術として、一般的には電解めっきによる方法が知られている。その手法として、めっきの促進・抑制をコントロールするような添加剤を調合する、電流値を多段階に変化させる、めっき液の攪拌速度を上げ貫通孔内への液循環を促進する、電流をパルス(リバース)にするなどがあり、これら単独でめっきを行なうか、或いは、これらを複数組み合わせてめっきを行うのが通常である。 As a technique for forming the wiring in the through hole, a method by electrolytic plating is generally known. As a method, additives that control the promotion and suppression of plating are prepared, the current value is changed in multiple stages, the plating solution is stirred up, the circulation of the solution into the through hole is promoted, and the current is pulsed. (Reverse), etc., and plating is usually performed alone, or plating is performed by combining a plurality of these.

添加剤の成分及び電流の流し方を組み合わせた例として特許文献1(特開2003-328185)、さらに発展させた方法として、特許文献2(特開2006-111896)や特許文献3(特開2006-351968)などがある。また、めっき液の攪拌を無くし装置サイズを小さくするために特許文献4(特開2007-231315)のようなものが提案されている。これらの特許文献において提案されているものは以下のような特長と問題点がある。 Patent Document 1 (Japanese Patent Application Laid-Open No. 2003-328185) is an example of combining additive components and current flow, and Patent Document 2 (Japanese Patent Application Laid-Open No. 2006-111896) and Patent Document 3 (Japanese Patent Application Laid-Open No. 2006-111896) are examples of further developed methods. -351968). Further, in order to eliminate stirring of the plating solution and reduce the size of the apparatus, a device such as Patent Document 4 (Japanese Patent Laid-Open No. 2007-231315) has been proposed. Those proposed in these patent documents have the following features and problems.

例えば特許文献1のようにめっき液に添加剤を加えて貫通孔内部にめっきさせる手法は一般的に行われているが、添加剤濃度のバラツキに対して貫通孔内の充填具合が大きく変動するため、頻繁な添加剤成分の調整が必要となり作業の手間がかかる欠点がある。さらにめっき電解を正電解、逆電解と反転させることを特長としているが、高価な電源購入が必要であるという欠点がある。特許文献2のように高電流密度用電源と低電流密度電源を必要とする装置形態の場合、電源が2種類必要となる点が欠点である。さらに、これらの技術では表面のめっき厚については特に制御していないので、貫通孔内を完全充填させた後に表面のめっき膜を研磨やエッチング等で除去する必要があるため、資源のムダ、作業工数の増加が欠点となる。さらにめっき厚が厚くなると被めっき物にかかる応力が大きくなるため、めっき膜の剥がれ、被めっき物の反りや破損等の発生する確率が高くなるという欠点がある。
特開2003-328185 特開2006-111896 特開2006-351968 特開2007-231315
For example, a technique of adding an additive to a plating solution and plating the inside of the through hole as in Patent Document 1 is generally performed, but the filling condition in the through hole varies greatly with respect to the variation in additive concentration. Therefore, frequent adjustment of the additive component is necessary, and there is a drawback that it takes labor. Furthermore, it is characterized in that the plating electrolysis is reversed between the positive electrolysis and the reverse electrolysis, but there is a drawback that an expensive power supply needs to be purchased. In the case of an apparatus configuration that requires a high current density power source and a low current density power source as in Patent Document 2, a disadvantage is that two types of power sources are required. Furthermore, since the surface plating thickness is not particularly controlled in these technologies, it is necessary to remove the surface plating film by polishing, etching, etc. after completely filling the inside of the through hole. An increase in man-hours is a drawback. Furthermore, since the stress applied to the object to be plated increases as the plating thickness increases, there is a disadvantage that the probability of occurrence of peeling of the plating film, warping or breakage of the object to be plated increases.
JP2003-328185 JP 2006-111896 JP 2006-351968 JP2007-231315

上述したように、従来から用いられ或いは提案されている上記特許文献によるめっき方法はそれぞれ特長を持つが欠点もある。さらに、これらのめっき方法のいずれかを用いてまたはこれらを複数組み合わせて貫通孔内にめっきを行なっても、貫通孔の深い部分や底部にはめっきが充分成長せず、貫通孔の開口部付近のめっき成長が速いため、図9(a) に示すような貫通孔92開口部の角部93が異常に成長しためっき形状、すなわちオーバーハング形状94となり、さらにめっき膜95を成長させると図9(b)に示すような貫通孔の開口部付近がめっきで塞がり貫通孔内部に大きなボイド(空洞)96が形成される。このようなオーバーハング形状や内部ボイドの形成は、開口部が狭いほど、貫通孔が深いほど、それらのアスペクト比(貫通孔の深さ/開口部径)が大きいほど顕著に発生する。   As described above, the plating methods according to the above-mentioned patent documents that have been used or proposed in the past have their respective features but also have drawbacks. Furthermore, even if plating is performed in the through hole using any one of these plating methods or a combination of these, the plating does not grow sufficiently in the deep part or bottom of the through hole, and the vicinity of the opening of the through hole 9 is fast, the corner 93 of the opening of the through-hole 92 shown in FIG. 9A becomes an abnormally grown plating shape, that is, an overhang shape 94, and when the plating film 95 is further grown, FIG. As shown in (b), the vicinity of the opening of the through hole is closed by plating, and a large void 96 is formed inside the through hole. Such overhang shapes and formation of internal voids are more prominent as the opening is narrower, the through hole is deeper, and the aspect ratio (depth of the through hole / opening diameter) is larger.

このようにオーバーハング形状またはボイドが形成された状態では、貫通孔底部97の電極と接続するめっき配線は非常に薄いので、充分なコンタクト(接触)抵抗が得られず、製品の大幅な歩留まり低下を引き起こす。また、めっき配線が貫通孔底部や貫通孔側面部で非常に薄いためわずかな電流密度で切断する可能性があるので、製品の信頼性に問題が発生する。さらに、貫通孔の開口部付近がめっきで塞がり貫通孔内部に大きなボイド(空洞)が形成された場合には、ボイド部にめっき液などが残留し製品の信頼性に悪影響を及ぼす。   In such a state where the overhang shape or void is formed, the plated wiring connected to the electrode of the through hole bottom 97 is very thin, so that sufficient contact resistance cannot be obtained, and the yield of the product is greatly reduced. cause. Further, since the plated wiring is very thin at the bottom of the through hole or the side surface of the through hole, there is a possibility of cutting with a slight current density, which causes a problem in product reliability. Further, when the vicinity of the opening of the through hole is blocked by plating and a large void (cavity) is formed inside the through hole, the plating solution remains in the void and adversely affects the reliability of the product.

本発明は、上述した問題点を解決し、オーバーハング形状や内部ボイドのないめっき形成方法を提供するものである。   The present invention solves the above-described problems and provides a plating forming method free from overhang shapes and internal voids.

本発明は、半導体基板に開けた貫通孔と同位置に開口部を有するプレートを半導体基板と電極との間に設置することを特長とする。プレートの開口部と半導体基板の貫通孔の開口部は正確に位置合わせされてめっき液中に浸漬され配置される。プレートの開口径は半導体デバイスの貫通孔の開口径より小さくなっている。また、プレートは半導体基板と接触はしないが近接している。プレートの材質は絶縁体が好適であり、めっき液が浸透する程度に多孔質である。   The present invention is characterized in that a plate having an opening at the same position as a through hole opened in a semiconductor substrate is disposed between the semiconductor substrate and the electrode. The opening of the plate and the opening of the through hole of the semiconductor substrate are accurately aligned and immersed in the plating solution. The opening diameter of the plate is smaller than the opening diameter of the through hole of the semiconductor device. The plate is not in contact with the semiconductor substrate but is close to it. The material of the plate is preferably an insulator, and is porous to such an extent that the plating solution can penetrate.

本発明においては、プレートを貫通孔の存在する側の半導体基板表面または裏面(平坦面)近傍に設置することで、貫通孔開口部の角部への電流集中を抑制することが可能となり孔底のめっき成長が促進される。この結果オーバーハング形状や貫通孔内部ボイドの発生がなくなる。さらに、半導体基板表面または裏面の貫通孔部以外の領域(主として平坦部となっている)はプレートにより遮蔽されているため、めっき成長が抑制されるので、めっき後に過剰めっき分を研磨する必要が無くなる。しかもプレートは多孔質の材料を用いているため、めっき液はプレートの孔質部を通り半導体基板表面(または裏面)に到達する。電流も同様のルートを通りめっき表面に到達するのでめっき成長は進むが、プレートの開口部と比較してその量は小さい。これによりめっき表面のめっき成長が大幅に抑制され、貫通孔内部がめっきにて充填された際にウエハ表面(または裏面)のめっき厚は配線形成に適当な厚さとなる。   In the present invention, by arranging the plate in the vicinity of the semiconductor substrate surface or back surface (flat surface) on the side where the through hole exists, current concentration at the corner of the through hole opening can be suppressed. The plating growth is promoted. As a result, the occurrence of an overhang shape or internal voids in the through hole is eliminated. Furthermore, since the region other than the through-hole portion on the front or back surface of the semiconductor substrate (mainly a flat portion) is shielded by the plate, plating growth is suppressed, so it is necessary to polish the excess plating after plating. Disappear. Moreover, since the plate uses a porous material, the plating solution passes through the porous portion of the plate and reaches the surface (or the back surface) of the semiconductor substrate. Since the current also passes through the same route and reaches the plating surface, the growth of plating proceeds, but the amount thereof is small compared to the opening of the plate. As a result, the plating growth on the plating surface is greatly suppressed, and when the inside of the through hole is filled with plating, the plating thickness on the wafer surface (or back surface) becomes an appropriate thickness for wiring formation.

以上のように本発明を用いることにより、貫通孔内部がめっき金属で完全充填されるので、I/Oパッド電極とのコンタクト抵抗も良好になり製品歩留まりが向上し、高電流が流れても貫通孔内部の配線断線という問題がなくなる。さらにボイドがないので貫通孔内部にめっき液が残留することもなく製品の信頼性が大幅に向上する。   As described above, by using the present invention, the inside of the through hole is completely filled with the plating metal, so that the contact resistance with the I / O pad electrode is improved, the product yield is improved, and the through hole is passed even if a high current flows. The problem of wiring disconnection inside the hole is eliminated. Furthermore, since there is no void, the plating solution does not remain inside the through hole, and the reliability of the product is greatly improved.

図1は貫通孔を形成した半導体基板を示す。半導体基板としては、シリコン(Si)、ゲルマニウムなどの単元素半導体材料、ガリウム砒素、インジウムリンなどの二元系化合物半導体材料、多元素の化合物からなる多元系化合物半導体材料が挙げられる。また、本発明は半導体基板ではないガラス基板やセラミック基板などの絶縁体基板、或いは導電体基板に形成した貫通孔にも適用できる。これからの説明においては、説明の便宜のためにこの基板はシリコン基板である「シリコンウエハ」として記載する。貫通孔は通常ドライエッチングを用いて形成されるが、ウエットエッチング、レーザーエッチング、イオンミリング、ドリル法などによって形成しても良い。貫通孔は、シリコンウエハ1の裏面からあけてシリコンウエハ1の表面のI/Oパッド2(実際は、その裏側)まで達する。(図1においては、シリコンウエハ1の裏面が上、シリコンウエハ1の表面が下になっている。)貫通孔5の底部においてシリコンウエハ1の表面のI/Oパッド2が露出している。I/Oパッドは電極であり、アルミニウム(Al)等で形成されている。貫通孔5の側壁(側面)およびシリコンウエハ1の裏面は絶縁膜6で被われている。(但し、一部窓開けされている部分も存在する場合がある。)絶縁膜6は化学気相成長(CVD)法やスパッター法などを用いて形成されたシリコン酸化膜(SiO膜)、シリコン窒化膜(SiN膜)やシリコン酸窒化膜(SiON膜)などであり、その形成後、貫通孔5底部のI/Oパッド2上に積層した絶縁膜は選択的に除去される。その後で、電解めっき用の金属膜、いわゆるシード層8を形成する。このシード層8は通常は銅(Cu)であるが、他の金属膜でも良く、やはりCVD法やスパッター法、或いは蒸着法で形成される。或いは無電解めっきで形成しても良い。絶縁膜6との密着性や拡散のバリア性を持たせるために、バリア膜7(いわゆるバリアメタル)としてチタン(Ti)、窒化チタン(TiN)、タンタル(Ta)、窒化タンタル(TaN)、タングステン(W)、クロム(Cr)などの金属膜をシード層8と絶縁膜6との間に形成してもよい。   FIG. 1 shows a semiconductor substrate in which a through hole is formed. Examples of the semiconductor substrate include single-element semiconductor materials such as silicon (Si) and germanium, binary compound semiconductor materials such as gallium arsenide and indium phosphide, and multi-element compound semiconductor materials composed of multi-element compounds. The present invention can also be applied to an insulating substrate such as a glass substrate or a ceramic substrate that is not a semiconductor substrate, or a through hole formed in a conductive substrate. In the following description, for convenience of description, this substrate is described as a “silicon wafer” which is a silicon substrate. The through-hole is usually formed by dry etching, but may be formed by wet etching, laser etching, ion milling, a drill method, or the like. The through hole is opened from the back surface of the silicon wafer 1 and reaches the I / O pad 2 (actually, the back side) of the surface of the silicon wafer 1. (In FIG. 1, the back surface of the silicon wafer 1 is up and the surface of the silicon wafer 1 is down.) The I / O pad 2 on the surface of the silicon wafer 1 is exposed at the bottom of the through hole 5. The I / O pad is an electrode and is formed of aluminum (Al) or the like. The side wall (side surface) of the through hole 5 and the back surface of the silicon wafer 1 are covered with an insulating film 6. (However, there may be a part where a part of the window is opened.) The insulating film 6 is a silicon oxide film (SiO film) formed by a chemical vapor deposition (CVD) method, a sputtering method, or the like. A nitride film (SiN film), a silicon oxynitride film (SiON film) or the like is formed. After the formation, the insulating film laminated on the I / O pad 2 at the bottom of the through hole 5 is selectively removed. Thereafter, a metal film for electrolytic plating, a so-called seed layer 8 is formed. The seed layer 8 is usually copper (Cu), but may be another metal film, and is also formed by CVD, sputtering, or vapor deposition. Alternatively, it may be formed by electroless plating. Titanium (Ti), titanium nitride (TiN), tantalum (Ta), tantalum nitride (TaN), tungsten as a barrier film 7 (so-called barrier metal) in order to provide adhesion with the insulating film 6 and diffusion barrier properties. A metal film such as (W) or chromium (Cr) may be formed between the seed layer 8 and the insulating film 6.

尚、I/Oパッドの下には通常絶縁膜3が存在するが、貫通孔形成時にI/Oパッド直下の絶縁膜3は除去される。また、I/Oパッドの表面やシリコンウエハの表面は保護膜4で保護されているが、I/Oパッド表面の一部は電気特性測定や外部電極と接続するために図1に示すように開口しているのが一般的であるが、半導体デバイスは多種多様化しており、I/Oパッド表面が開口していない基板もある。   Although the insulating film 3 normally exists under the I / O pad, the insulating film 3 directly under the I / O pad is removed when the through hole is formed. Further, the surface of the I / O pad and the surface of the silicon wafer are protected by the protective film 4, but a part of the surface of the I / O pad is used as shown in FIG. Although generally open, semiconductor devices are diversified, and there are some substrates in which the I / O pad surface is not open.

またシリコンウエハ1の表面には接合層を介してガラス基板などの支持(サポート)基板が接着している場合がある。このような支持基板がシリコンウエハ1に接着している場合には、シリコウエハ1の厚みをシリコウエハ単独の場合よりも薄くできるので貫通孔5の深さを小さくでき、貫通孔5のエッチングや貫通孔5の内部に絶縁膜6やバリアメタル7やシード層8を形成するときに被覆性が良好になり、種々の面で有利である。もちろん、後で述べる貫通孔内部へめっきすることもより容易になる。   In some cases, a support substrate such as a glass substrate is bonded to the surface of the silicon wafer 1 via a bonding layer. When such a support substrate is bonded to the silicon wafer 1, the thickness of the silicon wafer 1 can be made thinner than that of the silicon wafer alone, so that the depth of the through hole 5 can be reduced, and etching of the through hole 5 and through holes can be performed. When the insulating film 6, the barrier metal 7, and the seed layer 8 are formed inside 5, the coverage becomes good, which is advantageous in various aspects. Of course, it becomes easier to plate the inside of the through-hole described later.

次に、本発明を用いて図1に示した貫通孔を形成したシリコンウエハにめっきする方法について説明する。   Next, a method of plating the silicon wafer having the through holes shown in FIG. 1 using the present invention will be described.

図2は、シリコンウエハ1に形成した貫通孔5と同位置に開口のある本発明のプレート10を示す。プレート10は文字通り板状の物体であり、プレートの材質は特に規定しないが、少なくともめっき液と接触する部分でめっき液に耐性があり、さらには被めっき物と同位置の開口部以外の箇所からも液体が染み出す多孔質のようなものであることが望ましい。また、電気的に導通しないものが望ましい。さらに、シリコンウエハ1に形成した貫通孔5に正確にプレートの開口部11を合わせる必要があるため、プレート材料の寸法が精度良く正確に形成される材料でなければならない。これらの条件を満足するプレートとして、たとえば、多孔質セラミックス・プレートや多孔質ポリマー・プレートが挙げられる。図2は断面を示しているためプレートが分割しているように示されているが、実際にはシリコンウエハ1の貫通孔5の部分だけ開口しているプレート、すなわち板状のものに開口部11を形成させたものであるため、プレートは一体物としての取扱いが出来る。プレートへの開口はレーザー、ドリル、サンドブラスト、エッチングなどにより形成するが、精度よく形成できれば特に限定するものではない。また、プレートへの開口は、特にシリコンウエハ1の貫通孔5の位置に正確に形成すること、めっき液に浸漬したときに膨潤せず、めっき中は常時シリコンウエハ1の貫通孔5にプレート10の開口部11が合わさっていることが重要である。   FIG. 2 shows the plate 10 of the present invention having an opening at the same position as the through hole 5 formed in the silicon wafer 1. The plate 10 is literally a plate-like object, and the material of the plate is not particularly defined. However, the plate 10 is resistant to the plating solution at least at a portion in contact with the plating solution, and further from a position other than the opening at the same position as the object to be plated. It is also desirable that the liquid is a porous material that exudes liquid. Moreover, what does not conduct electrically is desirable. Furthermore, since it is necessary to accurately align the opening 11 of the plate with the through hole 5 formed in the silicon wafer 1, the plate material must be a material that can be accurately and accurately formed. Examples of the plate that satisfies these conditions include a porous ceramic plate and a porous polymer plate. Although FIG. 2 shows the cross section, the plate is shown as being divided. However, in actuality, the opening is formed in a plate that is open only through the through hole 5 of the silicon wafer 1, that is, a plate-like one. 11 is formed, the plate can be handled as an integral object. The opening to the plate is formed by laser, drill, sandblasting, etching or the like, but is not particularly limited as long as it can be formed with high accuracy. Further, the opening to the plate should be precisely formed especially at the position of the through hole 5 of the silicon wafer 1 and does not swell when immersed in the plating solution, and the plate 10 is always in the through hole 5 of the silicon wafer 1 during plating. It is important that the openings 11 of each other are joined together.

このような図2の状態、つまりシリコンウエハ1裏面の貫通孔5の開口部とプレートの開口部11との位置を一致させ、かつプレートとシリコンとの間に空間をもたせた状態で硫酸銅めっき液に浸漬させ、シリコンウエハ1の裏面及び貫通孔内に電解めっきを施す。すなわち、シリコンウエハ1を一方の電極(カソード)にして、プレート10をめっき電極(アノード)とシリコンウエハ1の間に配置し、電極間に電流を流すことにより電解めっきを行う。   In such a state as shown in FIG. 2, that is, in the state where the opening of the through hole 5 on the back surface of the silicon wafer 1 is aligned with the opening 11 of the plate and a space is provided between the plate and silicon, copper sulfate plating is performed. It is immersed in a liquid, and electroplating is performed on the back surface and through holes of the silicon wafer 1. That is, with the silicon wafer 1 as one electrode (cathode), the plate 10 is disposed between the plating electrode (anode) and the silicon wafer 1, and electrolytic plating is performed by passing a current between the electrodes.

尚、これから説明する図3〜6においては説明を分かりやすくするために図を簡略化し、図1および2に示したようなI/Oパッド2、絶縁膜3、保護膜4、絶縁膜6、バリア膜7、シード層8などは省略し、シリコンウエハ1内に貫通孔5だけが形成されて示されているが、実際に電解めっき前の貫通孔が形成されたシリコンウエハの構造は図1および図2と同様である。(図3〜6に示すようにシリコン1が貫通孔5内およびシリコンウエハ1の裏面で露出している場合は、シリコンウエハ自体も導電体であるから、図1および図2に示したようなシード層8で被われた状態と同じ状態となるので、図3〜6に示す貫通孔5内およびシリコンウエハ1の裏面にもシード層8で被われたシリコンウエハ1と同様に電解めっきが可能である。)   In FIGS. 3 to 6 to be described below, the illustration is simplified for easy understanding, and the I / O pad 2, the insulating film 3, the protective film 4, the insulating film 6, as shown in FIGS. The barrier film 7 and the seed layer 8 are omitted, and only the through holes 5 are formed in the silicon wafer 1, but the structure of the silicon wafer in which the through holes before electrolytic plating are actually formed is shown in FIG. And the same as FIG. (As shown in FIGS. 3 to 6, when the silicon 1 is exposed in the through hole 5 and on the back surface of the silicon wafer 1, the silicon wafer itself is also a conductor, and as shown in FIGS. 1 and 2. Since the state is the same as the state covered with the seed layer 8, electrolytic plating can be performed in the through hole 5 and the back surface of the silicon wafer 1 shown in FIGS. 3 to 6 in the same manner as the silicon wafer 1 covered with the seed layer 8. .)

図3は、貫通孔5を有するシリコンウエハ1に電解めっきを行ったときのめっきの成長具合を模式的に見たものである。貫通孔5は1個しか示していないが、他の貫通孔も同様である。電極間に電界をかけると電流が流れめっきが始まり、プレートの開口部11からめっき液が貫通孔5の内部へ供給されるとともに、貫通孔5の底部とプレートの上部にある電極との間で電界が均一にかかる。一方、シリコンウエハ1の裏面12はプレート10で被われているので、めっき液が充分供給されない。また、シリコンウエハ1の裏面12においてはプレート10により電界も緩和される。このプレートの遮蔽効果により、貫通孔底部13のめっき成長速度はシリコンウエハ1の裏面12のめっき成長速度よりかなり大きくなる。また貫通孔5の側面(貫通孔側面)14の電界は貫通孔底部13より弱いため、貫通孔側面14のめっき成長速度は、貫通孔底部13のめっき成長速度とシリコンウエハ1の裏面12のめっき成長速度との中間となる。この結果、図3(a)に示すように、貫通孔底部13からめっき膜15がボトムアップしていき、さらにめっきが進行していくと、図3(b)に示すように、貫通孔底部13がどんどん埋まっていき、また、貫通孔側面14からも貫通孔5の孔径も狭まってくる。さらにめっきを進行させると、図3(c)に示すように貫通孔5が完全に埋まってしまう。しかも貫通孔5を埋めためっき膜15にはボイド等の欠陥が残らないようにすることもできる。   FIG. 3 schematically shows the growth of plating when electrolytic plating is performed on the silicon wafer 1 having the through holes 5. Although only one through hole 5 is shown, the same applies to the other through holes. When an electric field is applied between the electrodes, current flows and plating starts, and the plating solution is supplied into the through hole 5 from the opening 11 of the plate, and between the bottom of the through hole 5 and the electrode at the top of the plate. An electric field is applied uniformly. On the other hand, since the back surface 12 of the silicon wafer 1 is covered with the plate 10, the plating solution is not sufficiently supplied. Further, the electric field is also relaxed by the plate 10 on the back surface 12 of the silicon wafer 1. Due to the shielding effect of the plate, the plating growth rate of the through-hole bottom 13 is considerably higher than the plating growth rate of the back surface 12 of the silicon wafer 1. Further, since the electric field on the side surface (through hole side surface) 14 of the through hole 5 is weaker than that of the through hole bottom portion 13, the plating growth rate on the through hole side surface 14 is the plating growth rate on the through hole bottom portion 13 and the plating on the back surface 12 of the silicon wafer 1. It is in the middle of the growth rate. As a result, as shown in FIG. 3 (a), when the plating film 15 bottoms up from the through hole bottom 13 and the plating proceeds further, as shown in FIG. 3 (b), the bottom of the through hole 13 is gradually buried, and the diameter of the through hole 5 is narrowed from the side surface 14 of the through hole. When the plating is further advanced, the through hole 5 is completely filled as shown in FIG. Moreover, it is possible to prevent defects such as voids from remaining in the plating film 15 filling the through holes 5.

一方、シリコンウエハ1の裏面12のめっき膜成長は緩慢なので、その成長速度は小さい。ただし、プレートは多孔質なので、プレートの外側から新鮮なめっき液がプレートの間隙を抜けて徐々に浸みだしてくるので、ある程度は成長する。   On the other hand, since the growth of the plating film on the back surface 12 of the silicon wafer 1 is slow, the growth rate is small. However, since the plate is porous, fresh plating solution from the outside of the plate gradually oozes through the gaps between the plates, and thus grows to some extent.

図3(c)に模式的に示すように、貫通孔5が完全に埋まった状態でめっきをストップさせることにより、シリコンウエハ1の裏面がほぼ平坦な状態を得ることも可能となる。また必要な用途に合わせて、たとえば図3(a)や(b)の状態でめっきをストップさせて電極として利用することも可能である。   As schematically shown in FIG. 3C, it is possible to obtain a substantially flat back surface of the silicon wafer 1 by stopping the plating with the through hole 5 completely filled. Moreover, according to a required use, it can also be used as an electrode by stopping plating in the state of FIG. 3 (a) or (b), for example.

上述したように、本発明のプレ−トを用いると貫通孔内部へのめっきが促進されるが、この理由は以下のように考えられる。   As described above, when the plate of the present invention is used, the plating inside the through hole is promoted. The reason for this is considered as follows.

まず、通常、電解めっきにおいてはめっき物の形状によって電流分布が均等にはならないため、場所により電流密度に差が生じる。たとえば、電流はめっき物の凸部に集中し、凹部には流れにくい。そのため、貫通孔部の電流分布は図4のようになり(電流の流れを模式的に矢印で示す。矢印の密度が電流密度と考えて良い)、貫通孔開口部の角部(凸部)に電流が集中しめっき成長が促進されるが、貫通孔内部は電流密度が疎になり、特に貫通孔底部ではかなり疎になり、めっき成長速度が遅くなる。この結果、開口部が異常成長しオーバーハング状になり、最終的には貫通孔の上部すなわち開口部で塞がってしまい図9(b)で示すような貫通孔内にボイド(空洞)が残った形状になってしまう。   First, usually, in electroplating, the current distribution is not uniform depending on the shape of the plated object, so that the current density varies depending on the location. For example, the current concentrates on the convex part of the plated product and hardly flows into the concave part. Therefore, the current distribution in the through hole portion is as shown in FIG. 4 (current flow is schematically indicated by arrows. The density of the arrows may be considered as the current density), and the corner portion (convex portion) of the through hole opening portion. However, the current density in the through hole becomes sparse, particularly at the bottom of the through hole, and the plating growth rate becomes slow. As a result, the opening grows abnormally and becomes an overhang, and eventually the upper part of the through hole, that is, the opening is closed, leaving a void (cavity) in the through hole as shown in FIG. 9B. It becomes a shape.

これに対して、本発明のプレートをめっき表面に設置することで、図5に示すように貫通孔の開口部の角部(凸部)はプレート10で(ある程度)覆われているため電流分布は疎になり、開口部の角部への電流集中を抑制することが可能となる。この結果開口角部のめっき成長は緩慢となる。一方、貫通孔内部においては、プレートが開口しているので、電界が貫通孔底部と直接にかかるので電流密度が密になり、特に貫通孔底部においてめっき速度が大きくなり、めっき成長が促進される。貫通孔側面部14では電流が曲がるので、余り電流密度は大きくならないが、プレート10で被われているシリコウエハ裏面12よりは電流密度が大きくめっき成長も速い。この結果、貫通孔においては、貫通孔底部13からめっきが急速に進みめっき膜がボトムアップしていき、貫通孔側面14からのめっき成長と組み合わさって貫通孔内部にボイド(空洞)のないめっきで充填された状態を得ることができる。図5から分かるように、プレートの開口径を貫通孔の開口径より幾分小さくすることが重要である。すなわち、プレート開口部を貫通孔に合わせたときに、上から見て貫通孔の角部がプレートで少し隠れるくらいにすると、電界が貫通孔角部に直接かからなくなる。(あるいは、電流が直接(直線的に)入らず、貫通孔角部に回りこむようになると、電流集中がかなり抑制される。)この結果貫通孔角部におけるめっきの異常成長をかなり防止できオーバーハング形状のめっきになることはなくなる。   On the other hand, by installing the plate of the present invention on the plating surface, the corners (convex parts) of the openings of the through holes are covered with the plate 10 (to some extent) as shown in FIG. Becomes sparse, and current concentration at the corners of the opening can be suppressed. As a result, the plating growth at the opening corner is slow. On the other hand, since the plate is open inside the through-hole, the electric field is directly applied to the bottom of the through-hole, so that the current density becomes dense. In particular, the plating speed is increased at the bottom of the through-hole and the plating growth is promoted. . Since the current is bent at the side surface portion 14 of the through hole, the current density is not increased so much, but the current density is larger than the back surface 12 of the silicon wafer covered with the plate 10 and the plating growth is faster. As a result, in the through hole, plating rapidly proceeds from the bottom 13 of the through hole, and the plating film bottoms up. In combination with the plating growth from the side 14 of the through hole, plating without voids (cavities) is formed inside the through hole. The state filled with can be obtained. As can be seen from FIG. 5, it is important to make the opening diameter of the plate somewhat smaller than the opening diameter of the through hole. That is, when the plate opening is aligned with the through-hole, if the corner of the through-hole is slightly hidden by the plate when viewed from above, the electric field is not directly applied to the corner of the through-hole. (Or, if current does not enter directly (linearly) and wraps around the corners of the through holes, current concentration is considerably suppressed.) As a result, abnormal growth of plating at the corners of the through holes can be prevented considerably and overhang There is no longer a plating of shape.

さらに、めっき表面(すなわち、シリコンウエハ1の裏面)はプレートにより遮蔽されているので、プレートが絶縁体である場合には電界が遮断され、かつめっき液の供給量も非常に少なくなるため、めっき成長がかなり抑制される。しかし、貫通配線のめっきプロセスにおいては、シリコウエハ裏面にもめっきをある程度成長させ、配線として利用できるようにすることが必要である。このために、本発明のプレートは多孔質の材料を用いている。すなわち、めっき液は図5の点線で示すようにプレート10の孔質部を通り表面(シリコンウエハ裏面12)に到達する。いわゆるめっき液はプレート10を滲みだしてシリコンウエハ裏面12に供給される。また、電流も同様のルートを通りめっき表面(シリコンウエハ裏面12)に到達する。この結果、めっき液供給量は少ないが新鮮なめっき液が常に供給され、電流密度も小さいので、緩慢ではあるがめっきが成長する。従って、プレートの開口部と比較してめっきの量は小さく、これによりめっき表面のめっき成長は大幅に抑制され、貫通孔内部がめっきにて充填された際にウエハ表面(シリコンウエハ裏面12)のめっき厚は配線形成に適当な厚さとなる。   Further, since the plating surface (that is, the back surface of the silicon wafer 1) is shielded by the plate, the electric field is cut off and the supply amount of the plating solution is very small when the plate is an insulator. Growth is considerably suppressed. However, in the through wiring plating process, it is necessary to grow the plating to some extent on the back surface of the silicon wafer so that it can be used as a wiring. For this reason, the plate of the present invention uses a porous material. That is, the plating solution passes through the porous portion of the plate 10 as shown by the dotted line in FIG. A so-called plating solution oozes out the plate 10 and is supplied to the back surface 12 of the silicon wafer. Further, the current also passes through the same route and reaches the plating surface (silicon wafer back surface 12). As a result, although the plating solution supply amount is small, a fresh plating solution is always supplied and the current density is small, so that the plating grows slowly. Therefore, the amount of plating is small compared to the opening of the plate, and thereby the plating growth on the plating surface is greatly suppressed, and when the inside of the through hole is filled with plating, the wafer surface (silicon wafer back surface 12) The plating thickness is appropriate for wiring formation.

プレートのない従来のめっき方法では、シリコンウエハ裏面のめっき厚みが大きく、研磨したり、エッチングを行なったりして(配線層としての)めっき厚みを調整していたが、本発明のめっき方法を用いることにより、このめっき厚み調整プロセスをなくすこともできる。   In the conventional plating method without a plate, the plating thickness on the back surface of the silicon wafer is large, and the plating thickness is adjusted (as a wiring layer) by polishing or etching, but the plating method of the present invention is used. Thus, this plating thickness adjustment process can be eliminated.

本発明のプレートの開口径とめっき成長の様子について調査を行った結果を次に示す。用いたサンプルは、これまでの説明において示した構造を有する8インチシリコンウエハを用いた。サンプルの作成方法はこれまで説明した通りであるが、概略説明すると、次の通りである。ガラス基板にシリコンウエハの表面を接着した後で、(当初のシリコンウエハの厚みは725umであったが)研磨によりシリコンウエハ裏面を薄くし、約200um(ミクロンメートル)とした。シリコンウエハの裏面から貫通孔を形成し、シリコンウエハの表面に存在するI/Oパッドまで貫通させた。その後シリコン酸化膜をCVD法により成長し、貫通孔内部のシリコン基板およびシリコンウエハ裏面を被覆した。その後貫通孔底部のシリコン酸化膜を選択的に除去し、貫通孔底部のI/Oパッドを露出させた。次にバリアメタルとしてチタン膜、シード層として銅膜を積層し、本発明のサンプルを得た。実験に用いたサンプルの貫通孔は開口径100um、貫通孔深さが200umで貫通孔底径が80umである。アスペクト比=貫通孔深さ/開口径=2.0である。種々の開口径を有するプレートを作成してめっきを成長させた後、貫通孔部の断面SEM観察を行い図6〜8に示すような評価を行なった。   The results of investigations on the opening diameter of the plate of the present invention and the state of plating growth are shown below. The sample used was an 8-inch silicon wafer having the structure shown in the above description. The method for preparing the sample is as described above, but a brief description is as follows. After bonding the surface of the silicon wafer to the glass substrate, the back surface of the silicon wafer was thinned by polishing (although the initial thickness of the silicon wafer was 725 μm) to about 200 μm (micron meter). A through hole was formed from the back surface of the silicon wafer and penetrated to the I / O pad existing on the surface of the silicon wafer. Thereafter, a silicon oxide film was grown by the CVD method to cover the silicon substrate inside the through hole and the back surface of the silicon wafer. Thereafter, the silicon oxide film at the bottom of the through hole was selectively removed to expose the I / O pad at the bottom of the through hole. Next, a titanium film as a barrier metal and a copper film as a seed layer were laminated to obtain a sample of the present invention. The through hole of the sample used in the experiment has an opening diameter of 100 μm, a through hole depth of 200 μm, and a through hole bottom diameter of 80 μm. Aspect ratio = through hole depth / opening diameter = 2.0. After producing plates having various opening diameters and growing the plating, cross-sectional SEM observation of the through-hole portion was performed and evaluation as shown in FIGS.

図6は、貫通孔に成長しためっき膜の形状を模式的に示したものである。前述したように説明の便宜のために積層膜を省略している。また、貫通孔底径と貫通孔開口径は実際は幾分異なり実際の貫通孔側面63は貫通孔底面62に対して傾斜しているが、図6においては垂直であるとして図示している。貫通孔65の開口径をR、貫通孔65の開口部端とプレート67の開口端との距離をxとする。プレートの開口径68は(R−2x)となるので、(x/R)が大きくなるにしたがって貫通孔65の開口径に対して、プレートの開口径68が小さくなることを表している。また、めっき後の銅厚みについて、シリコンウエハ裏面64の銅厚みをa(um)、貫通孔角部(凸部)の銅厚みをr(um)、貫通孔底面62上の銅厚みをc(um)と定義する。rは貫通孔開口部のめっき成長具合をみるための指標で、貫通孔開口端からの距離が一番遠い箇所までの距離を表すこととする。また、デバイス表面とプレートとの間隔をy(mm)とする。尚、シリコンウエハとプレートの位置合わせは通常のアライナーを用いて行い、シリコンウエハとプレートの固定は周辺で固定する固定治具を用いて行った。このときの位置合わせ精度は+−2umであった。固定治具は非導電性材料で被覆されたステンレス製材料である。   FIG. 6 schematically shows the shape of the plating film grown on the through hole. As described above, the laminated film is omitted for convenience of explanation. Further, the through hole bottom diameter and the through hole opening diameter are actually somewhat different, and the actual through hole side surface 63 is inclined with respect to the through hole bottom surface 62, but is shown as being vertical in FIG. The opening diameter of the through hole 65 is R, and the distance between the opening end of the through hole 65 and the opening end of the plate 67 is x. Since the opening diameter 68 of the plate is (R-2x), it indicates that the opening diameter 68 of the plate becomes smaller than the opening diameter of the through hole 65 as (x / R) increases. In addition, regarding the copper thickness after plating, the copper thickness of the silicon wafer back surface 64 is a (um), the copper thickness of the through hole corner portion (convex portion) is r (um), and the copper thickness on the through hole bottom surface 62 is c ( um). r is an index for checking the degree of plating growth in the through hole opening, and represents the distance to the farthest point from the through hole opening end. The distance between the device surface and the plate is y (mm). The alignment of the silicon wafer and the plate was performed using a normal aligner, and the silicon wafer and the plate were fixed using a fixing jig for fixing the periphery. The alignment accuracy at this time was + -2 um. The fixing jig is a stainless steel material coated with a non-conductive material.

図7に、貫通孔開口径に対するプレートの開口径(x/R)と、めっき成長の関係(2r/c)を示す。横軸(x/R)は大きくなるにつれてプレートの開口径が小さくなることを表し、0.5でプレート開口がなくなることを表す。縦軸(2r/c)は孔底のめっき成長と開口部のめっき成長速度の比率を表している。横軸(x/R)が負ということは、xが負、すなわちプレートの開口径68が貫通孔開口径Rより大きいということを示す。プレートの開口径68が貫通孔開口径Rより大きいときは、前述したように貫通孔角部に電流集中しめっき成長が非常に速くなることが分かる。プレートの開口径68が貫通孔開口径Rと等しいとき(x/R=0のとき)でも(2r/c)は4程度あり、貫通孔底部(底面)のめっきの成長速度が速くなったとしても、途中で貫通孔は塞がることが分かる。しかし、プレートの開口径68が貫通孔開口径Rより少し小さくなる(すなわち、xが少しプラスになる)と急激に(2r/c)が小さくなり、(x/R)が0.1で0.5以下となる。今回サンプルに用いた貫通孔のアスペクト比は2.0であるから、めっきの成長がボトムアップし、貫通孔をめっき膜で充填するためには(2r/c)が0.5以下になる必要がある。従って、図7からボトムアップ条件は(x/R)が0.1以上であることがわかる。つまり、ボトムアップ条件は、0.1≦(x/R)<0.5である。SEM観察の結果からは、(x/R)が0.3を越えると貫通孔底部62周辺部に逆に微小ボイドが発生することが分かったので、本サンプルおよび実験の範囲内では、良好なボトムアップ条件は、0.1≦(x/R)≦0.3である。ただし、この場合のボイドは微小であったので電気的にあるいは信頼性の面では0.3以上でも問題ない。また、図7では、半導体基板とプレートとの間隔(距離)yは1.0mmであった。   FIG. 7 shows the relationship between the plate opening diameter (x / R) and the plating growth (2r / c) with respect to the through-hole opening diameter. The horizontal axis (x / R) indicates that the opening diameter of the plate decreases as it increases, and 0.5 indicates that there is no plate opening. The vertical axis (2r / c) represents the ratio between the plating growth at the hole bottom and the plating growth rate at the opening. The negative horizontal axis (x / R) indicates that x is negative, that is, the opening diameter 68 of the plate is larger than the opening diameter R of the through hole. When the opening diameter 68 of the plate is larger than the opening diameter R of the through-hole, it can be seen that the current is concentrated at the corner of the through-hole as described above and the plating growth becomes very fast. Even when the opening diameter 68 of the plate is equal to the opening diameter R of the through hole (when x / R = 0), there are about 4 (2r / c), and the growth rate of the plating at the bottom (bottom) of the through hole is increased. However, it can be seen that the through hole is blocked along the way. However, when the opening diameter 68 of the plate is slightly smaller than the opening diameter R of the through-hole (that is, x becomes slightly positive), (2r / c) decreases rapidly, and (x / R) is 0.1 and 0. .5 or less. Since the aspect ratio of the through hole used in this sample is 2.0, in order to bottom up the plating growth and fill the through hole with the plating film, (2r / c) needs to be 0.5 or less. There is. Therefore, it can be seen from FIG. 7 that (x / R) is 0.1 or more in the bottom-up condition. That is, the bottom-up condition is 0.1 ≦ (x / R) <0.5. From the results of SEM observation, it was found that when (x / R) exceeds 0.3, microvoids are generated in the periphery of the through-hole bottom 62, so that it is good within the scope of this sample and experiment. The bottom-up condition is 0.1 ≦ (x / R) ≦ 0.3. However, since the void in this case is very small, there is no problem even if it is 0.3 or more in terms of electrical or reliability. In FIG. 7, the distance (distance) y between the semiconductor substrate and the plate was 1.0 mm.

また、図8にシリコンウエハ裏面64とプレート67間の距離y(mm)とデバイス表面のめっき厚a(um)との関係を示す。この実験に用いたプレート67の開口径は80umである。(すなわち、x=10umとなり、貫通孔の開口径Rは100umであるから、x/R=0.1である。)図8のグラフ内で○は貫通孔内のめっきが正常だったもの、△は微小なボイドが残ったもの、×はプレートとウエハがくっついたものや貫通孔内に大きなボイドが残ったものなど明らかなめっき不良を表している。図8から、yが1.0mmを越えるとめっき厚みが急速に増加する傾向があるが、これはプレート67の開口部68から回りこんでくる電流量が増加するためと考えられる。yが1.25mm以上では貫通孔内に欠陥が発生してくる。また、プレートを完全に半導体基板に接触させると半導体基板に傷等がついたりしたり、接触部にメッキが付きプレートを半導体基板から離すときにそのメッキが剥離したりするという問題が発生する。そのため半導体基板の凹凸なども考慮してプレートと半導体基板の間隔は最低0.05mm必要である。以上から、貫通孔内及び表面にめっきが正常に形成出来る範囲は、0.05mm≦y≦1.25mm、好適には0.05mm≦y≦1.0mmであることがわかる。(シリコン1裏面のめっき厚みの増加は、めっき膜をある程度研磨する必要がある場合がある。)   FIG. 8 shows the relationship between the distance y (mm) between the silicon wafer back surface 64 and the plate 67 and the plating thickness a (um) of the device surface. The opening diameter of the plate 67 used in this experiment is 80 μm. (That is, x = 10 μm, and the opening diameter R of the through hole is 100 μm, so x / R = 0.1.) In the graph of FIG. Δ indicates that a minute void remains, and × indicates an obvious plating defect such as a plate and wafer adhering or a large void remaining in a through hole. From FIG. 8, when y exceeds 1.0 mm, the plating thickness tends to increase rapidly, which is considered to be due to an increase in the amount of current flowing from the opening 68 of the plate 67. When y is 1.25 mm or more, a defect occurs in the through hole. Further, when the plate is completely brought into contact with the semiconductor substrate, there are problems that the semiconductor substrate is scratched, or that the contact portion is plated and the plating is peeled off when the plate is separated from the semiconductor substrate. Therefore, in consideration of the unevenness of the semiconductor substrate, the distance between the plate and the semiconductor substrate must be at least 0.05 mm. From the above, it can be seen that the range in which plating can be normally formed in the through hole and on the surface is 0.05 mm ≦ y ≦ 1.25 mm, preferably 0.05 mm ≦ y ≦ 1.0 mm. (Increasing the plating thickness on the back surface of silicon 1 may require the plating film to be polished to some extent.)

以上説明したように、本発明はシリコンウエハに形成した貫通孔のパターンに合わせた開口部を有するプレートをある間隔y(mm)を持たせてシリコンウエハに固定し、電解めっきを行うことを特長としている。この結果、貫通孔内部にボイド等の欠陥のない内部をめっき膜で充填した貫通配線を形成することができる。   As described above, the present invention is characterized in that a plate having openings matching the pattern of through holes formed in a silicon wafer is fixed to the silicon wafer with a certain interval y (mm) and electroplating is performed. It is said. As a result, it is possible to form a through wiring in which the inside of the through hole free from defects such as voids is filled with the plating film.

従来は、めっき液に添加剤を加えて行っていて添加剤成分の調整が大変という問題があったが、このような貫通配線形成用の添加剤は必要がなくなるので、作業手間がかかるという問題は完全に解消する。ただし、光沢剤や応力低減剤など、貫通配線を形成するためではない効果を得るための添加剤のみの調整は必要であるが、これらは作業手間には余り影響を与えない。   Conventionally, there has been a problem that adjustment of the additive component is difficult because an additive is added to the plating solution, but such an additive for forming the through wiring is no longer necessary, so that the work is troublesome. Completely disappears. However, it is necessary to adjust only additives such as a brightener and a stress reducing agent for obtaining an effect that is not for forming the through wiring, but these do not have much influence on the labor.

本発明ではめっきの電源は汎用的なDC電源1台で十分であり、高価なパルスめっき用電源や電源を複数台使用する必要がないため、設備を低コストで準備できる。
本発明においては、プレートの開口径を貫通孔の開口径より小さくすることで、貫通孔開口部の角部の電流密度が小さくなり、相対的に貫通孔内部の側壁や底部のめっきが促進される。プレートの開口径と貫通孔の開口径との比(x/R)を、0.1≦(x/R)<0.5、好適には0.1≦(x/R)≦0.3にすることでめっきの成長がボトムアップする条件となり、開口部でめっきがふさがる事が無くなるため貫通孔内にボイドが残留しない。尚、この条件は貫通孔のアスペクト比(貫通孔深さ/貫通孔開口径)が変動すると多少変化する。たとえば、アスペクト比が小さくなれば、x/Rが0.1より小さくても良い。
In the present invention, a single general-purpose DC power source is sufficient as a plating power source, and it is not necessary to use a plurality of expensive pulse plating power sources or power sources, so that equipment can be prepared at low cost.
In the present invention, by making the opening diameter of the plate smaller than the opening diameter of the through-hole, the current density at the corner of the through-hole opening is reduced, and the plating on the side wall and bottom of the through-hole is relatively promoted. The The ratio (x / R) between the opening diameter of the plate and the opening diameter of the through hole is 0.1 ≦ (x / R) <0.5, preferably 0.1 ≦ (x / R) ≦ 0.3. By doing so, it becomes a condition that the growth of the plating is bottomed up, and the plating is not blocked in the opening, so that no void remains in the through hole. This condition slightly changes when the aspect ratio of the through hole (through hole depth / through hole opening diameter) varies. For example, if the aspect ratio is small, x / R may be smaller than 0.1.

実例として、アスペクト比が1(貫通孔深さが100um、貫通孔開口径が100umの場合)のときは、x/R=0.05でも良好なボトムアップ条件を得ることができる(y=0.05〜1.0mmのとき)。一方、アスペクト比が4の場合には、x/R=0.1でも良好なボトムアップ条件を得ることができる(y=0.05〜1.0mmのとき)。これは、アスペクト比が大きくなっても、x/R=0.1で貫通孔角部での電流集中がかなり抑えられオーバーハング条件が解消するためと考えられる。従って、上記の範囲規定はかなり普遍性があると言える。   As an example, when the aspect ratio is 1 (when the through-hole depth is 100 μm and the through-hole opening diameter is 100 μm), good bottom-up conditions can be obtained even when x / R = 0.05 (y = 0). 0.05 to 1.0 mm). On the other hand, when the aspect ratio is 4, good bottom-up conditions can be obtained even when x / R = 0.1 (when y = 0.05 to 1.0 mm). This is considered to be because even when the aspect ratio is large, the current concentration at the corner of the through hole is considerably suppressed at x / R = 0.1, and the overhang condition is eliminated. Therefore, it can be said that the above range definition is quite universal.

さらに、ウエハとプレート間の距離を0.05mm以上1.0mm以下にすることで、ウエハ表面のめっき成長が抑制され、表面のめっき厚みを薄くでき、以降の配線形成に適切な厚さを有して形成出来る。また、ウエハ表面のめっき厚が薄いため、ウエハ基板への応力が低減される。ウエハ表面のめっき厚が薄いため、不必要な厚さ分のめっき膜を研磨やエッチング等によって除去する必要が無くなり、工程の削減及び資源の節約が出来る。
尚、プレートは絶縁体であることが望ましい。プレートが金属等の電気良導体である場合でも本発明を用いることは可能であるが、プレート自体にめっき成長してしまうため余り望ましくはない。また、本発明のプレートは多孔質体であることが望ましいが、これは上述したように、プレートの孔質部を通って浸みだして新鮮なめっき液をシリコンウエハ裏面に供給するとともに電流の通り道となり、シリコンウエハ裏面に薄くめっきを形成できるという理由による。従って、めっきを余り成長させたくない場合には、必ずしも多孔質体でなくとも良い。たとえば、多孔質でないセラミックス、ガラス、高分子材料、非導電体金属酸化物などである。
Furthermore, by making the distance between the wafer and the plate 0.05 mm or more and 1.0 mm or less, the plating growth on the wafer surface can be suppressed, the plating thickness on the surface can be reduced, and it has an appropriate thickness for subsequent wiring formation. Can be formed. Further, since the plating thickness on the wafer surface is thin, the stress on the wafer substrate is reduced. Since the plating thickness on the wafer surface is thin, it is not necessary to remove an unnecessary thickness of the plating film by polishing, etching, or the like, thereby reducing the number of processes and saving resources.
The plate is preferably an insulator. The present invention can be used even when the plate is a good electrical conductor such as a metal, but it is not desirable because it grows on the plate itself. In addition, the plate of the present invention is preferably a porous body. As described above, this plate oozes through the porous portion of the plate and supplies fresh plating solution to the back surface of the silicon wafer, and also passes the current. This is because a thin plating can be formed on the back surface of the silicon wafer. Therefore, when it is not desired to grow the plating excessively, it is not necessarily required to be a porous body. For example, non-porous ceramics, glass, polymer materials, non-conductive metal oxides, and the like.

本発明は、貫通孔を有する半導体基板に適用できるものとして説明してきた。すなわち、10um〜200umの開口径を有する貫通孔に適用すると最も本発明を効果的に適用できる。この間であれば、本明細書で規定した上述の範囲を適用できる。貫通孔の開口径が10um以下になるとプレートの精度やアライメント(合わせ)がかなり困難となる。また、200um以上の開口径でも本発明を用いることは可能であるが、現実的にはそのような開口径が広いものは余り要求されないし、そのような広い貫通孔をめっき膜で完全充填する必要がない。(もちろん、完全充填するのであれば、本発明を適用できる。)   The present invention has been described as being applicable to a semiconductor substrate having a through hole. That is, the present invention can be most effectively applied to a through hole having an opening diameter of 10 μm to 200 μm. If it is between these, the above-mentioned range prescribed | regulated by this specification is applicable. When the opening diameter of the through hole is 10 μm or less, the accuracy and alignment (alignment) of the plate becomes considerably difficult. In addition, although the present invention can be used even with an opening diameter of 200 μm or more, in reality, a large opening diameter is not required, and such a wide through hole is completely filled with a plating film. There is no need. (Of course, the present invention can be applied to complete filling.)

さらに、上記で説明した貫通孔は半導体基板の裏面からあけて半導体基板の表面にあるI/Oパッドまであけた孔であるとして説明してきたが、半導体基板の両面に孔を形成したいわば完全な貫通孔に対しても本発明を適用できることは言うまでもない。 Furthermore, although the above-described through-hole has been described as being a hole opened from the back surface of the semiconductor substrate to the I / O pad on the surface of the semiconductor substrate, it is completely said that holes are formed on both surfaces of the semiconductor substrate. Needless to say, the present invention can also be applied to the through-holes.

また、貫通孔ではない通常のコンタクト孔やビアにも適用できることも言うまでもない。ただし上述したように、プレートに開口し、その開口部をシリコンウエハのコンタクト孔等に合わせる必要がある。従って、プレートの開口を形成でき、合わせこみさえできればどのような小さな貫通孔、コンタクト孔やビア等に本発明を適用できる。たとえば、1um以下の貫通孔、コンタクト孔、ビアにも適用できる。さらに、トレンチ等の半導体基板に形成する分離溝内に形成するめっきにおいても本発明を適用できることも言うまでもない。 It goes without saying that the present invention can also be applied to normal contact holes and vias that are not through holes. However, as described above, it is necessary to open the plate and align the opening with the contact hole of the silicon wafer. Therefore, the present invention can be applied to any small through-hole, contact hole, via, or the like as long as the opening of the plate can be formed and aligned. For example, the present invention can also be applied to through holes, contact holes, and vias of 1 μm or less. Furthermore, it goes without saying that the present invention can also be applied to plating formed in a separation groove formed in a semiconductor substrate such as a trench.

尚、これまで図面、各実施形態、各実例などにおいて説明したことで、互いの所で説明していない内容について、お互いに矛盾なく適用できることは互いに適用できることも言うまでもない。   Needless to say, what has been described in the drawings, each embodiment, each example, and the like so far can be applied to the contents not described in each other without contradiction.

本発明は、半導体産業で用いられる貫通孔を有するウエハレベルパッケージに利用できる。   The present invention can be used for a wafer level package having a through hole used in the semiconductor industry.

図1は、貫通孔を形成した半導体基板(シリコンウエハ)を示す図である。FIG. 1 is a view showing a semiconductor substrate (silicon wafer) in which through holes are formed. 図2は、貫通孔を有するシリコンウエハとその貫通孔と同位置に開口部のある本発明のプレートを示す図である。FIG. 2 is a view showing a silicon wafer having a through hole and a plate of the present invention having an opening at the same position as the through hole. 図3は、貫通孔を有するシリコンウエハに電解めっきを行ったときのめっきの成長具合を模式的に示した図である。FIG. 3 is a diagram schematically showing the growth of plating when electrolytic plating is performed on a silicon wafer having a through hole. 図4は、めっき中における貫通孔内部の電流分布を模式的に示した図である。FIG. 4 is a diagram schematically showing the current distribution inside the through hole during plating. 図5は、本発明のプレートを用いたときのめっき中における貫通孔内部の電流分布を模式的に示した図である。FIG. 5 is a diagram schematically showing the current distribution inside the through hole during plating when the plate of the present invention is used. 図6は、貫通孔に成長しためっき膜の形状を模式的に示した図である。FIG. 6 is a diagram schematically showing the shape of the plating film grown on the through hole. 図7は、貫通孔開口径に対するプレートの開口径(x/R)と、めっき成長の関係(2r/c)を示す図である。FIG. 7 is a diagram showing the relationship between the plate opening diameter (x / R) and the plating growth (2r / c) with respect to the through-hole opening diameter. 図8は、シリコンウエハ裏面とプレート間の距離y(mm)とデバイス表面のめっき厚a(um)との関係を示す図である。FIG. 8 is a diagram showing the relationship between the distance y (mm) between the back surface of the silicon wafer and the plate and the plating thickness a (um) on the device surface. 図9は、貫通孔に成長した従来のめっき形状を示す図である。FIG. 9 is a view showing a conventional plating shape grown in the through hole.

符号の説明Explanation of symbols

1・・・シリコンウエハ、2・・・I/Oパッド電極、3・・・絶縁膜、4・・・保護膜、
5・・・貫通孔、6・・・絶縁膜、7・・・バリアメタル、8・・・シード層、
10・・・プレート、11・・・(プレート)開口部、12・・・シリコンウエハ裏面、
13・・・貫通孔底部(底面)、14・・・貫通孔側壁(側面)、15・・・めっき(膜)、
61・・・シリコンウエハ、62・・・貫通孔底部(底面)、63・・・貫通孔側壁(側面)、
64・・・シリコンウエハ裏面、65・・・貫通孔、66・・・めっき(膜)、
67・・・プレート、68・・・(プレート)開口部、91・・・シリコンウエハ、
92・・・貫通孔、93・・・貫通孔角部、94・・・オーバーハング形状、
95・・めっき(膜)、96・・・ボイド(空洞)
DESCRIPTION OF SYMBOLS 1 ... Silicon wafer, 2 ... I / O pad electrode, 3 ... Insulating film, 4 ... Protective film,
5 ... Through-hole, 6 ... Insulating film, 7 ... Barrier metal, 8 ... Seed layer,
10 ... Plate, 11 ... (Plate) opening, 12 ... Back side of silicon wafer,
13 ... Through-hole bottom part (bottom surface), 14 ... Through-hole side wall (side surface), 15 ... Plating (film | membrane),
61 ... Silicon wafer, 62 ... Through hole bottom (bottom), 63 ... Through hole side wall (side),
64 ... back side of silicon wafer, 65 ... through hole, 66 ... plating (film),
67 ... Plate, 68 ... (Plate) opening, 91 ... Silicon wafer,
92 ... through hole, 93 ... corner of through hole, 94 ... overhang shape,
95 .. Plating (film), 96 ... Void (cavity)

Claims (7)

半導体基板に形成された貫通孔内にウエハレベルで電解めっきによりめっき配線を形成するプロセスにおいて、めっき液中においてめっき電極と半導体基板との間に半導体基板の貫通孔開口部と同一箇所に開口部を有する板状のプレートを配置し、前記プレートの開口部は前記半導体基板の貫通孔開口部に対して一定の距離を有して位置合わせされ配置された状態で、電解めっきを行うことを特長とする電解めっき方法。 In the process of forming plated wiring by electrolytic plating at the wafer level in a through hole formed in a semiconductor substrate, an opening is formed at the same position as the through hole opening of the semiconductor substrate between the plating electrode and the semiconductor substrate in the plating solution. A plate-like plate having an opening, and the electrolytic plating is performed in a state where the opening of the plate is aligned and arranged with a certain distance from the opening of the through hole of the semiconductor substrate. Electrolytic plating method. 貫通孔の開口径が10um〜200umであることを特長とする、請求項1に記載の電解めっき方法。 The electrolytic plating method according to claim 1, wherein an opening diameter of the through hole is 10 μm to 200 μm. プレート開口部の開口径は半導体基板の貫通孔開口部の開口径より小さいことを特長とする、請求項1または2に記載の電解めっき方法。   The electrolytic plating method according to claim 1 or 2, wherein the opening diameter of the plate opening is smaller than the opening diameter of the through-hole opening of the semiconductor substrate. プレート開口部の開口径と貫通孔開口部の開口径との関係が、0.1≦(貫通孔開口径−プレート開口径)÷貫通孔開口径÷2)≦0.3の範囲であることを特長とする、請求項3に記載の電解めっき方法。 The relationship between the opening diameter of the plate opening and the opening diameter of the through-hole opening is in the range of 0.1 ≦ (through-hole opening diameter−plate opening diameter) ÷ through-hole opening diameter ÷ 2) ≦ 0.3. The electrolytic plating method according to claim 3, wherein: 半導体基板とプレートとの距離を0.05mm以上1.0mm以下の範囲に設置することを特長とする、請求項1〜4のいずれかの項に記載の電解めっき方法。 The electrolytic plating method according to any one of claims 1 to 4, wherein the distance between the semiconductor substrate and the plate is set in a range of 0.05 mm or more and 1.0 mm or less. 板状のプレートの材質が多孔質セラミックスであることを特長とする、請求項1〜4のいずれかの項に記載の電解めっき方法。   The electroplating method according to any one of claims 1 to 4, wherein the plate-like plate is made of a porous ceramic. 請求項1〜6のいずれかの項に記載の電解めっき方法を用いて電解めっきを行うことが可能な電解めっき装置。

The electroplating apparatus which can perform electroplating using the electroplating method in any one of Claims 1-6.

JP2008058871A 2008-03-09 2008-03-09 Method and device for electrolytic plating of semiconductor substrate Pending JP2009218302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008058871A JP2009218302A (en) 2008-03-09 2008-03-09 Method and device for electrolytic plating of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008058871A JP2009218302A (en) 2008-03-09 2008-03-09 Method and device for electrolytic plating of semiconductor substrate

Publications (1)

Publication Number Publication Date
JP2009218302A true JP2009218302A (en) 2009-09-24

Family

ID=41189904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008058871A Pending JP2009218302A (en) 2008-03-09 2008-03-09 Method and device for electrolytic plating of semiconductor substrate

Country Status (1)

Country Link
JP (1) JP2009218302A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174140A (en) * 2010-02-25 2011-09-08 Tokyo Electron Ltd Film deposition method, program and computer storage medium
US8564102B2 (en) 2010-05-18 2013-10-22 Samsung Electronics Co., Ltd. Semiconductor device having through silicon via (TSV)
JP5539511B2 (en) * 2010-06-15 2014-07-02 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP2017222905A (en) * 2016-06-15 2017-12-21 富士通株式会社 Shielding sheet for electroplating
KR20220060675A (en) * 2020-11-05 2022-05-12 성균관대학교산학협력단 Method of manufacturing void-free through silicon via electrode
JP2022167917A (en) * 2019-07-19 2022-11-04 エーエスエムピーティー・ネックス・インコーポレイテッド Electrochemical deposition system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133230A (en) * 1973-04-26 1974-12-20
JPH11269697A (en) * 1998-03-26 1999-10-05 Matsushita Electric Works Ltd Jig for electric plating
JP2004225119A (en) * 2003-01-23 2004-08-12 Ebara Corp Plating method and plating apparatus used for this method
JP2005298886A (en) * 2004-04-09 2005-10-27 Ebara Corp Electrolytic treatment apparatus and method
JP2007009241A (en) * 2005-06-28 2007-01-18 Ebara Corp Plating device, and plating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133230A (en) * 1973-04-26 1974-12-20
JPH11269697A (en) * 1998-03-26 1999-10-05 Matsushita Electric Works Ltd Jig for electric plating
JP2004225119A (en) * 2003-01-23 2004-08-12 Ebara Corp Plating method and plating apparatus used for this method
JP2005298886A (en) * 2004-04-09 2005-10-27 Ebara Corp Electrolytic treatment apparatus and method
JP2007009241A (en) * 2005-06-28 2007-01-18 Ebara Corp Plating device, and plating method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174140A (en) * 2010-02-25 2011-09-08 Tokyo Electron Ltd Film deposition method, program and computer storage medium
US8564102B2 (en) 2010-05-18 2013-10-22 Samsung Electronics Co., Ltd. Semiconductor device having through silicon via (TSV)
JP5539511B2 (en) * 2010-06-15 2014-07-02 東京エレクトロン株式会社 Manufacturing method of semiconductor device
JP2017222905A (en) * 2016-06-15 2017-12-21 富士通株式会社 Shielding sheet for electroplating
JP2022167917A (en) * 2019-07-19 2022-11-04 エーエスエムピーティー・ネックス・インコーポレイテッド Electrochemical deposition system
KR20220060675A (en) * 2020-11-05 2022-05-12 성균관대학교산학협력단 Method of manufacturing void-free through silicon via electrode
WO2022098107A1 (en) * 2020-11-05 2022-05-12 성균관대학교산학협력단 Method for manufacturing through silicon via having no voids
KR102442256B1 (en) 2020-11-05 2022-09-08 성균관대학교산학협력단 Method of manufacturing void-free through silicon via electrode

Similar Documents

Publication Publication Date Title
US7850836B2 (en) Method of electro-depositing a conductive material in at least one through-hole via of a semiconductor substrate
US8455357B2 (en) Method of plating through wafer vias in a wafer for 3D packaging
TW201027668A (en) Process for through silicon via filling
JP2009218302A (en) Method and device for electrolytic plating of semiconductor substrate
KR20010014062A (en) Electro-chemical deposition system and method of electroplating on substrates
JP4755545B2 (en) Substrate manufacturing method
US20020112964A1 (en) Process window for gap-fill on very high aspect ratio structures using additives in low acid copper baths
US9714474B2 (en) Seed layer deposition in microscale features
US8277619B2 (en) Apparatus for electrochemical plating semiconductor wafers
JP5708762B2 (en) Method for manufacturing through electrode substrate
KR100964030B1 (en) Method for forming a through-hole electrode and structure therefore
US20130213816A1 (en) Incorporating High-Purity Copper Deposit As Smoothing Step After Direct On-Barrier Plating To Improve Quality Of Deposited Nucleation Metal In Microscale Features
JP5453763B2 (en) Method for manufacturing through electrode substrate
JP2007005402A (en) Method of forming through interconnection line in semiconductor substrate
US20040245107A1 (en) Method for improving electroplating in sub-0.1um interconnects by adjusting immersion conditions
US20080261392A1 (en) Conductive via formation
JP2008141088A (en) Method for manufacturing semiconductor device
KR100916771B1 (en) Method for forming a through hole electrode
JP2005129677A (en) Semiconductor device and its manufacturing method
TWI795957B (en) Method of electroplating
KR101605811B1 (en) Cu plating solution for filling through silicon via and method for filling through silicon via using the same
KR101204275B1 (en) Forming method for thermal stress relaxation type through-hole electrode and thermal stress relaxation type through-hole electrode formed thereby
JP2008066328A (en) Forming method of wiring film
KR100698063B1 (en) Apparatus and Method for Electro Chemical Plating
Mathew et al. Through-silicon via fill for 3D interconnect applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A131 Notification of reasons for refusal

Effective date: 20130129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Effective date: 20130131

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20130903

Free format text: JAPANESE INTERMEDIATE CODE: A02